

$\frac{\text{MG3700A Vector Signal Generator}}{\text{MX3700X series software}}$

MX3700xxA Waveform pattern MX3701xxA IQproducer

Superior Expandability Supporting A Wide Variety Of Communication Systems

MX370x series software

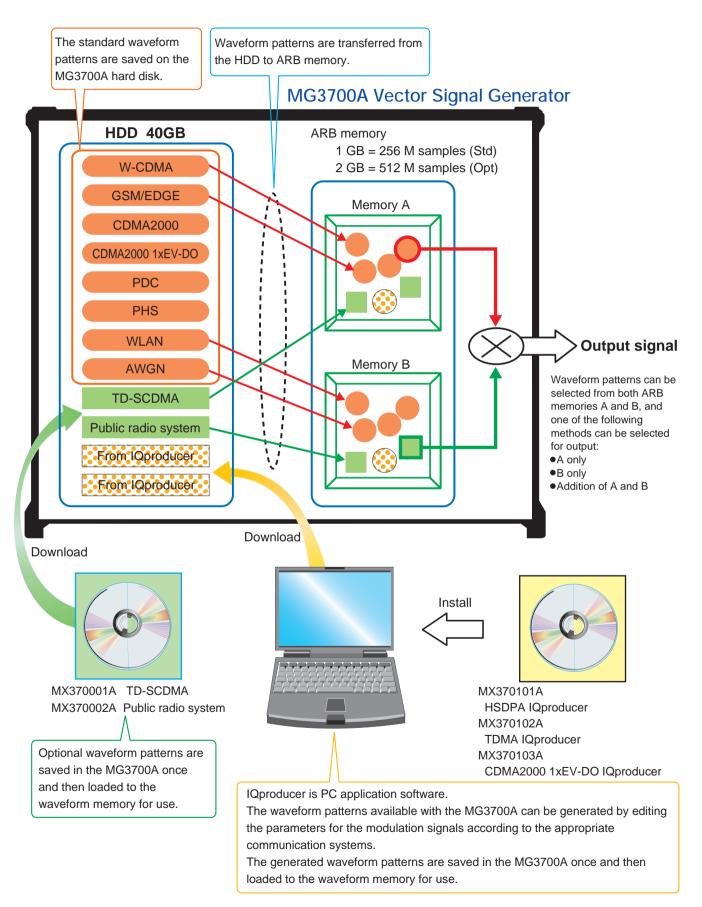
The MG3700A Vector Signal Generator (hereafter referred to as "MG3700A") is a signal generator that integrates a 160-MHz high-speed ARB baseband generator. With features that include a broadband vector modulation bandwidth and large-capacity ARB memory, it supports digital modulation signals for a variety of communication systems. The MG3700A provides optimal performance for generating signals for new wireless communications in advancing broadband technology, as well as for major mobile telecommunication systems such as mobile phones and wireless LANs.

Since the standard MG3700A comes equipped with an ARB generator, modulation signals can be output simply by selecting a waveform pattern that conforms to each supported communication system. The following four categories of waveform patterns are available for the MG3700A:

- Standard waveform patterns
- Waveform patterns generated by the optional waveform pattern option (Model: MX3700xxA)
- Waveform patterns generated by the optional waveform generation software IQproducer (Model: MX3701xxA)
- Waveform patterns converted from data generated by commonly-used signal generation software, so as to be available for the MG3700A.

Each waveform category above contains multiple waveform pattern files in which parameters conforming to each communication system are set in advance. The default waveform patterns are saved on the MG3700A hard disk, allowing users to make free use of them. In addition, optional waveform patterns are also available.

The waveform generation software IQproducer is provided with the system to support various communication methods. Parameter setting for the waveform data of a corresponding communication system can generate an arbitrary waveform pattern file that can be used by MG3700A.


MG3700A can output signals by choosing a waveform pattern when the generated arbitrary waveform pattern file is downloaded to MG3700A via LAN or a CompactFlash (CF) card.

Furthermore, an IQ sample file in ASCII format, generated by common EDA (Electronic Design Automation) software such as MATLAB®, can be converted into a waveform pattern file for MG3700A. Thus, a user can arbitrarily generate a custom waveform pattern file.

Selection guide

			Waveform pattern	1	IQproducer		
Communication system	Page	Standard	MX370001A TD-SCDMA	MX370002A Public Radio System	MX370101A HSDPA	MX370102A TDMA	MX370103A CDMA2000 [®] 1xEV-DO
W-CDMA	4	✓			✓		
HSDPA	24	✓			✓		
GSM	11	✓					
EDGE	11	✓					
CDMA2000	10	✓					
CDMA2000 1xEV-DO	8, 31	✓					✓
TD-SCDMA	18		✓				
PDC	13, 14, 28	✓				✓	
PHS	12, 28	✓				✓	
WLAN IEEE802.11a	15	✓					
WLAN IEEE802.11b	15	✓					
WLAN IEEE802.11g	15	✓					
RCR STD-39	21			✓			
ARIB STD-T61	21, 28			✓		✓	
ARIB STD-T79	21, 28			1		1	
ARIB STD-T86	21, 28			1		1	
AWGN	16	✓					

CDMA2000® is a registered trademark of the Telecommunications Industry Association (TIA-USA).

W-CDMA waveform pattern

Standard

■ W-CDMA waveform pattern:

The W-CDMA waveform patterns listed below are provided on the MG3700A internal hard disk as standard (see the next page for details):

•For evaluating transmitter device of BS

(TS 25.141 Test Model 1 to 4)

TestModel_1_16DPCH

TestModel 1 32DPCH

TestModel_1_64DPCH

TestModel 1 64x2 10M

TestModel_1_64x2_15M

TestModel 2

TestModel_3_16DPCH

TestModel 3 32DPCH

TestModel 4

TestModel_5_2HSPDSCH

TestModel_5_4HSPDSCH

TestModel_5_8HSPDSCH

TestModel_1_64DPCHx2

TestModel_1_64DPCHx3

TestModel_1_64DPCHx4

 For testing receivers and performance of BS and evaluating transmitter devices of UE

(TS 25.101/25.104 UL RMC 12.2 to 384 kbps)

UL_RMC_12_2kbps

UL_RMC_12_2kbps_ACS

UL_RMC_64kbps

UL_RMC_144kbps

UL_RMC_384kbps

UL_AMR_TFCS1

UL_AMR_TFCS2

UL_AMR_TFCS3

UL_ISDN

UL_64kbps_Packet

UL_Interfere

UL_RMC_12_2kbps_TX

 For testing receivers and performance of UE (TS 25.101 DL RMC 12.2 to 384 kbps)

DL_RMC_12_2kbps_RX

DL_RMC_12_2kbps

DL_RMC_12_2kbps_MIL

DL_RMC_12_2kbps_ACS

DL_RMC_64kbps

DL_RMC_144kbps

DL_RMC_384kbps

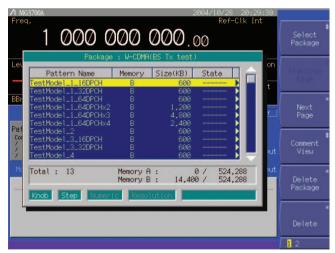
DL_AMR_TFCS1

DL_AMR_TFCS2

DL_AWK_1FC32

DL_AMR_TFCS3

DL_ISDN


DL_384kbps_Packet

DL_Interfere

P CCPCH

DL_CPICH

Uplink/downlink W-CDMA modulation signals conforming to the 3GPP (FDD) standards can be output simply by selecting a waveform pattern loaded from the MG3700A internal hard disk to the large-capacity ARB memory, without setting any complex 3GPP-compliant parameters.

Example of selecting a waveform pattern

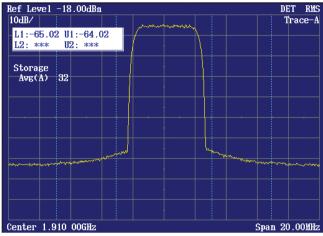
•W-CDMA waveform pattern list

Waveform pattern	UL/DL	Channel	3GPP (Release1999)	Evaluation
UL_RMC_12_2kbps		DPCCH, DPDCH	TS25.104 A.2	
UL_RMC_12_2kbps_ACS		DPCCH, DPDCH	1020.104 A.2	
UL_RMC_64kbps *1		DPCCH, DPDCH	TS25.104 A.3	
UL_RMC_144kbps *1		DPCCH, DPDCH	TS25.104 A.4	
UL_RMC_384kbps *1		DPCCH, DPDCH	TS25.104 A.5	
UL_AMR_TFCS1	UL	DPCCH, DPDCH		BS RX test
UL_AMR_TFCS2		DPCCH, DPDCH		
UL_AMR_TFCS3		DPCCH, DPDCH	TS25.944 4.1.2	
UL_ISDN *1		DPCCH, DPDCH		
UL_64kbps_Packet		DPCCH, DPDCH		
UL_Interfere		DPCCH, DPDCH	TS25.141 I	
UL_RMC_12_2kbps_TX		DPCCH, DPDCH	TS25.101 A.2.1	UE TX device test
P_CCPCH		P_CCPCH	TS25.944 4.1.1*3	
DL_RMC_12_2kbps_RX *2		P-CPICH, SCH, PICH, DPCH	TS25.101 A.3.1 TS25.101 C.3.1	
DL_RMC_12_2kbps_ACS		P-CPICH, P-CCPCH, SCH, PICH, DPCH	1323.101 0.3.1	
DL_RMC_12_2kbps *2		P-CCPCH, SCH, PICH, DPCH, OCNS		
DL_RMC_12_2kbps_MIL *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1	
DL_RMC_64kbps *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	TS25.101 A.3.1	
DL_RMC_144kbps *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	1023.101 0.3.2	LIE DV
DL_RMC_384kbps *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS		UE RX test
DL_AMR_TFCS1 *2		P-CCPCH, SCH, PICH, DPCH, OCNS		
DL_AMR_TFCS2 *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	T005 044 4 4 4 0	
DL_AMR_TFCS3 *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	TS25.944 4.1.1.3 TS25.101 C.3.2	
DL_ISDN *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS	1023.101 0.3.2	
DL_384kbps_Packet *2	1	P-CCPCH, SCH, PICH, DPCH, OCNS		
DL_Interfere	1	P-CPICH, P-CCPCH, SCH, PICH, DPCH, OCNS	TS25.101 C.4	
DL_CPICH	1	P-CPICH	_	
TestModel_1_16DPCH	DL	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH		
TestModel_1_32DPCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH		
TestModel_1_64DPCH	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH		
TestModel_2	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, DPCH		
TestModel_3_16DPCH	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 16 DPCH		
TestModel_3_32DPCH	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 32 DPCH		
TestModel_4	1	P-CCPCH, SCH		
TestModel_5_2HSPSDCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 6DPCH, HS-SCCH, 2HS-PDSCH	T005 444 0 4 4	BS TX
TestModel_5_4HSPSDCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 14DPCH, HS-SCCH, 4HS-PDSCH	TS25.141 6.1.1	device test
TestModel_5_8HSPSDCH		P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 30DPCH, HS-SCCH, 8HS-PDSCH		
TestModel_1_64DPCHx2 *4	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH		
TestModel_1_64DPCHx3 *4	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	1	
TestModel_1_64DPCHx4 *4	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	1	
TestModel_1_64x2_10M	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	-	
TestModel 1 64x2 15M	1	P-CPICH, P-CCPCH, SCH, PICH, S-CCPCH, 64 DPCH	1	

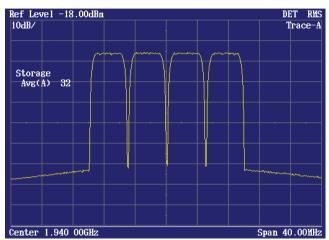
^{*1:} UL_ISDN can be combined with AWGN that is a standard waveform pattern only when Option 021/121 ARB Memory Upgrade 512M samples is installed.

^{*2:} P-CCPCH is not included in the waveform patterns such as RMC for UE RX test. They must be used in combination with P-CCPCH waveform patterns.

^{*3: 12-}bit SFN is added to the head of the BCH transport block.


^{*4:} x2, x3, and x4 represent the number of multi-carrier signals 2, 3, and 4, respectively.

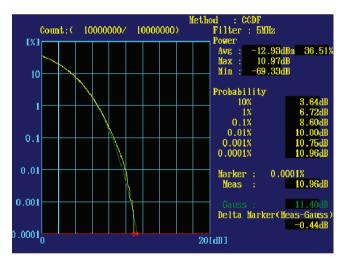
W-CDMA waveform pattern


Standard

ACPR:

The adjacent channel leakage power ratio of a Vector Signal Generator is an important factor in device distortion testing and receiver interference testing.

W-CDMA ACPR (Test Model 1, 64 DPCH, 1carrier)
Waveform pattern [Test_Model_1_64DPCH]



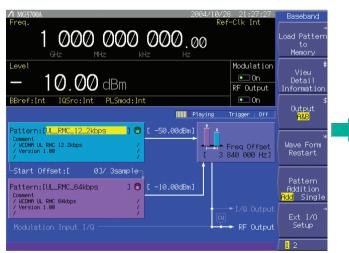
W-CDMA ACPR (Test Model 1, 64 DPCH, 4carrier)
Waveform pattern [Test_Model_1_64DPCH × 4]

CCDF:

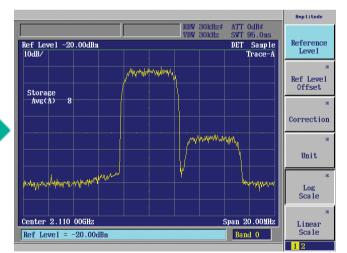
CCDF (Test Model 1, 64 DPCH, 1carrier)
Waveform pattern [Test_Model_1_64DPCH]

CCDF (Test Model 1, 64 DPCH, 4carrier)
Waveform pattern [Test_Model_1_64DPCH x 4]

■ AWGN (Additive White Gaussian Noise) Supports Dynamic Range Test


When performing the receiver dynamic range test specified by 3GPP, AWGN with a W-CDMA modulation signal is required. Either of the AWGN waveform patterns AWGN_3_84MHz_x2 or AWGN_3_84MHz_x1_5, which are stored on the MG3700A internal hard disk, can be used for an AWGN signal.

Since a single MG3700A can add a W-CDMA uplink modulation signal and AWGN signal internally and output them as a combined signal, it is useful for a simple dynamic range test for base station receivers.



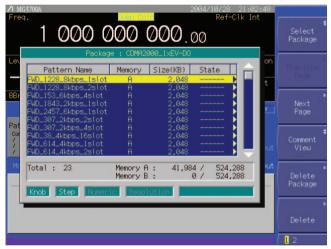
Wanted signal + AWGN screen

Output waveform screen of Wanted signal + AWGN

Wanted signal + Interfering signal screen

Output waveform screen of Wanted signal + Interfering signal

CDMA2000 1xEV-DO waveform pattern


Standard

■ CDMA2000 1xEV-DO waveform pattern:

The CDMA2000 1xEV-DO waveform patterns listed on the right are provided on the MG3700A internal hard disk.

The signals for testing the receiver and transmitter of the CDMA2000 1xEV-DO access network (base station) and access terminal (mobile station), which are specified in 3GPP2, can be output by selecting one of these CDMA2000 1xEV-DO waveform patterns. Thirteen forward and ten reverse data rate waveform patterns are available.

When multi-carrier signals, mixed signals of idle and active, and/or multi-user signals are required, parameter setting and waveform pattern generation are available using the optional MX370103A CDMA2000 1xEV-DO IQproducer.

Example of selecting a waveform pattern

 Access terminal (AT) receiver test CDMA2000 1xEV-DO forward
 Base band filter: IS-95SPEC +EQ
 Data: PN15fix* (excluding FWD-Idle)

FWD_38_4kbps_16slot

FWD_76_8kbps_8slot

FWD_153_6kbps_4slot

FWD_307_2kbps_2slot

FWD 614 4kbps 1slot

FWD_307_2kbps_4slot

FWD 614 4kbps 2slot

1 WD_014_4Kbps_25l0t

FWD_1228_8kbps_1slot

FWD_921_6kbps_2slot

FWD_1843_2kbps_1slot

FWD_1228_8kbps_2slot

FWD_2457_6kbps_1slot

FWD_ldle

 Access network (AN) receiver test CDMA2000 1xEV-DO Reverse

Base band filter: IS-95SPEC

Data: PN9fix*

RVS_9_6kbps_RX

RVS_19_2kbps_RX

RVS_38_4kbps_RX

RVS_76_8kbps_RX

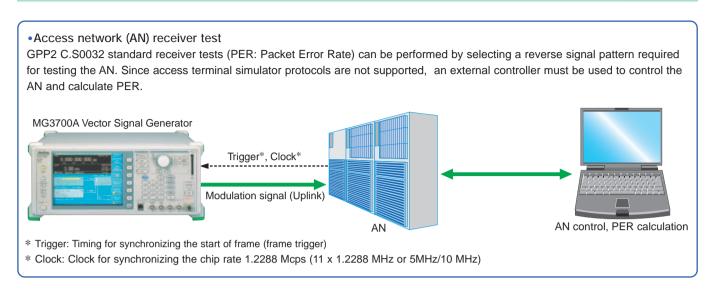
RVS_153_6kbps_RX

RVS_9_6kbps_TX

RVS_19_2kbps_TX

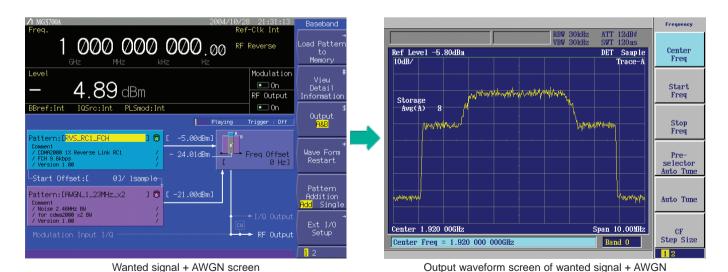
RVS_38_4kbps_TX

RVS_76_8kbps_RT


RVS_153_6kbps_RT

* This is a PN sequence delimited for each packet. Therefore, the PN sequence is discontinuous between the end data of a packet and the start data of the next packet.

Access terminal (AT) receiver test


3GPP2 C.S0033 standard receiver tests (PER: Packet Error Rate) can be performed by selecting a forward signal pattern required for testing the AT. No protocol is supported for the access network simulator. In addition, all the transmission channels are traffic, and all the other channels (e.g., Sync) are unsupported; it is necessary to calculate the PER by controlling the AT using an external controller.

AWGN Supports Dynamic Range Test (AWGN: Additive White Gaussian Noise)

When performing the receiver dynamic range test specified by 3GPP2, a 1xEV-DO modulation signal with AWGN is required. Either of the AWGN waveform patterns AWGN_1.23MHz_x2 or AWGN_1.23MHz_x1_5, which are stored on the MG3700A internal hard disk, can be used for an AWGN signal. Since a single MG3700A can add a CDMA2000 uplink modulation signal and an AWGN signal internally and output them as a combined signal, it is useful for a simple dynamic range test for an AN receiver.

CDMA2000 waveform pattern

Standard

■ CDMA2000 waveform pattern:

The CDMA2000 waveform patterns listed in the table below are provided on the MG3700A internal hard disk.

CDMA2000 modulation signals specified in 3GPP2 C.S0002-0-2 can be output by selecting one of these CDMA2000 waveform patterns.

Since reverse channel signals are output by channel coding (convolutional coding, etc.) 4-frame length PN9 fix*1 data, it is useful for Frame Error Rate (FER) measurement*2 of the base station, as well as device evaluation.

- *1: The data length is not an integer multiple of the PN sequence length (511 bits for PN9), and the PN sequence becomes discontinuous at the end.
- *2: This is the case where the timing signal and 1.2288 Mcps x 11 clock signal (or 5 or 10 MHz reference clock) can be input from the test target base station to the MG3700A in order to provide synchronization of the frame start point and chip clock.

Example of selecting waveform pattern

Waveform pattern	System	Frame coding	Symbol data
RVS_RC1_FCH	CDMA2000 1xRTT RC1 Reverse	Coded	FCH 9.6 kbps
RVS_RC2_FCH	CDMA2000 1xRTT RC2 Reverse	Coded	FCH 14.4 kbps
RVS_RC3_FCH	CDMA2000 1xRTT RC3 Reverse	Coded	PICH, FCH 9.6 kbps
RVS_RC3_FCH/SCH	CDMA2000 1xRTT RC3 Reverse	Coded	PICH, FCH 9.6 kbps, SCH 9.6 kbps
RVS_RC3_DCCH	CDMA2000 1xRTT RC3 Reverse	Coded	PICH, DCCH 9.6 kbps
RVS_RC4_FCH	CDMA2000 1xRTT RC4 Reverse	Coded	PICH, FCH 14.4 kbps
FWD_RC1-2_9channel	CDMA2000 1xRTT RC1, RC2 Forward	spreading only	PICH, SyncCH, PagingCH, FCH 19.2 ksps x 6
FWD_RC3-5_9channel	CDMA2000 1xRTT RC3, RC4, RC5 Forward	spreading only	PICH, SyncCH, PagingCH, FCH 38.4 ksps x 6

Waveform pattern		Walsh Code	Code Power	Data Rate	Data
RVS_RC1_FCH	R-FCH			9.6 kbps	PN9fix*
RVS_RC2_FCH	R-FCH			14.4 kbps	PN9fix*
DVC DC2 FCU	R-PICH	0	-5.278 dB	N/A	All "0"
RVS_RC3_FCH	R-FCH	4	-1.528 dB	9.6 kbps	PN9fix*
	R-PICH	0	-7.5912 dB	N/A	AII"0"
RVS_RC3_FCH/SCH	R-FCH	4	-3.8412 dB	9.6 kbps	PN9fix*
	R-SCH	2	-3.8412 dB	9.6 kbps	PN9fix*
DVC DC2 DCCU	R-PICH	0	-5.278 dB	N/A	AII"0"
RVS_RC3_DCCH	R-DCCH	8	-1.528 dB	9.6 kbps	PN9fix*
D)/0 D04 F011	R-PICH	0	-5.278 dB	N/A	AII"0"
RVS_RC4_FCH	R-FCH	4	-1.528 dB	14.4 kbps	PN9fix*
Waveform pattern		Walsh Code	Code Power	Symbol Rate	Symbol Data
	F-PICH	0	-7.0 dB	N/A	AII"0"
FWD_RC1-2_9channel	F-SyncCH	32	-13.3 dB	4.8 kbps	PN9fix*
FWD_RC1-2_9channer	PagingCH	1	−7.3 dB	19.2 kbps	PN9fix*
	F-FCH x6	8-13	-10.3 dB	19.2 kbps	PN9fix*
	F-PICH	0	-7.0 dB	N/A	AII"0"
FWD RC3-5 9channel	F-SyncCH	32	-13.3 dB	4.8 kbps	PN9fix*
rwb_kco-b_9channei	PagingCH	1	−7.3 dB	19.2 kbps	PN9fix*
	F-FCH x6	8-13	-10.3 dB	38.4 kbps	PN9fix*

R-PICH (Reverse Pilot Channel),

R-FCH (Reverse Fundamental Channel)

R-DCCH (Reverse Dedicated Control Channel)

R-SCH (Reverse Supplemental Channel)

F-PICH (Forward Pilot Channel), F-SyncCH (Forward Sync Channel),

PagingCH (Paging Channel),

F-FCH (Forward Fundamental Channel)

GSM/EDGE waveform pattern

Standard

■ GSM/EDGE waveform pattern:

The GSM/EDGE waveform patterns listed in the table below are provided on the MG3700A internal hard disk.

The signals suitable for testing receivers and for managing device evaluation in a GSM/EDGE system can be output by selecting one of these GSM/EDGE waveform patterns.

• GMSK_PN9, 8PSK_PN9

PN9 data is inserted into the entire area of the slots, except the guard. The PN9 data in each slot are continuous.

• GMSK_TN0, 8PSK_TN0

PN9 data is inserted into the entire area of the slots, except the guard. The PN9 data in each slot are continuous.

• NB_TN0, NB_ALL

PN9 data is inserted into the normal burst encrypted bit area. The PN9 data in the slots are continuous.

• TCH_FS

Supports the Speech channel at the full rate (TCH/FS) specified in Section 3.1 of 3GPP TS05.03.

• CS-1_1 (4)_SLOT (_4SLOT)

Supports the packet data block type 1 (CS-4) and 4 (CS-1) specified in Section 5.1 of 3GPP TS05.03.

• DL (UL)_MCS-1 (5, 9)_1SLOT (_4SLOT)

Supports the packet data block types 5(MCS-1), 9(MCS-5), and 13 (MCS-9) specified in Section 5.1 of 3GPP TS05.03.

Example of selecting waveform pattern

Waveform pattern	Uplink / Downlink	Data	Output slot	Communications	
GMSK_PN9	Uplink / Downlink	PN9 *1	_	_	
8PSK_PN9	Uplink / Downlink	FINS	_	_	
GMSK_TN0	Uplink / Downlink	PN9 *2	TN0	_	
8PSK_TN0	Uplink / Downlink	1113	TN0	_	
NB_TN0	Uplink / Downlink	PN9 *3	TN0		
NB_ALL	Uplink / Downlink	FINS	All slot		
TCH_FS	Uplink / Downlink		TN0	GSM	
CS-1_1SLOT	Uplink / Downlink		TN0		
CS-4_1SLOT	Uplink / Downlink		TN0		
DL_MCS-1_1SLOT	Downlink		TN0	GPRS	
UL_MCS-1_1SLOT	Uplink		TN0	GPRS	
DL_MCS-5_1SLOT	Downlink	PN9 *4	TN0		
UL_MCS-5_1SLOT	Uplink		TN0		
DL_MCS-9_1SLOT	Downlink		TN0	EDGE	
UL_MCS-9_1SLOT	Uplink		TN0	LDGE	
DL_MCS-9_4SLOT	Downlink		TN0, 1, 2, 3		
UL_MCS-9_4SLOT	Uplink		TN0, 1, 2, 3		

^{*1:} PN9 data is inserted into the entire area that does not have the slot format.

^{*2:} PN9 data is inserted into the entire area of the slots, except the guard.

^{*3:} PN9 is inserted into the normal burst encrypted bit area.

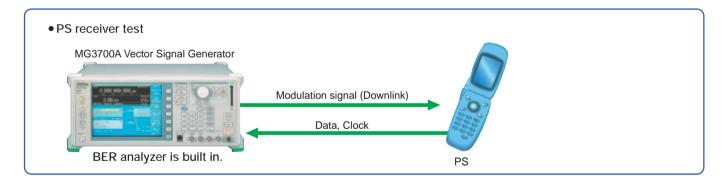
^{*4:} The bit string channel-coded for PN9 data is inserted into the normal burst encrypted bit area.

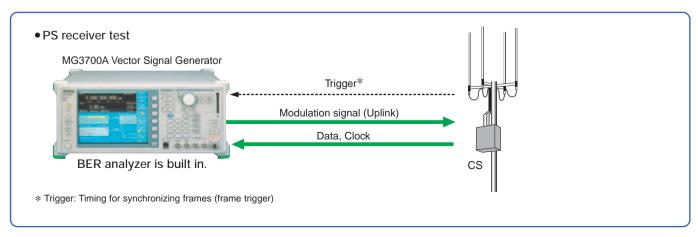
PHS waveform pattern

Standard

■ PHS waveform pattern:

The PHS waveform patterns listed in the table below are provided on the MG3700A internal hard disk.


The signals for testing CS (base station) and PS (mobile station) receivers, which are specified in RCR STD-28, can be output by selecting one of these PHS waveform patterns, without setting any complex RCR STD-28 parameters.


When a signal that has parameters different from those of the provided waveform patterns are required, parameter setting and waveform pattern generation are available using the optional MX370102A TDMA IQproducer.

Example of selecting waveform pattern

Waveform pattern	Uplink / Downlink	Scramble	Output slot
PI_4_DQPSK_PN9	_	OFF	No frame
PI_4_DQPSK_PN15	4_DQPSK_PN15 — OFF		No frame
PI_4_DQPSK_ALL0	_	OFF	No frame
DL TCH Slot 1	Downlink	OFF	Slot1: TCH
DL_1CH_SIOL_1	DOWININK	OFF	Slot 2 to 4: off
III TOH Slot 1	Uplink	OFF	Slot1: TCH
UL_TCH_Slot_1	Оршк	OFF	Slot 2 to 4: off

PDC waveform pattern

Standard

■ PDC waveform pattern:

The waveform patterns for the wanted signals/interfering signals required to execute transmission/reception tests as specified in ARIB STD-27 are provided on the MG3700A internal hard disk. Modulation signals conforming to the standard can be output without any options (Note: Check the parameters listed on the next page in advance).

The waveform pattern to output uplink/downlink Slot 0 data only and the unframed waveform pattern for interfering signals are provided for full rate and half rate, respectively.

When a signal is required that has parameters different from those of the provided waveform patterns, parameter setting and waveform pattern generation are available using the optional MX370102A TDMA IQproducer.

Example of selecting waveform pattern

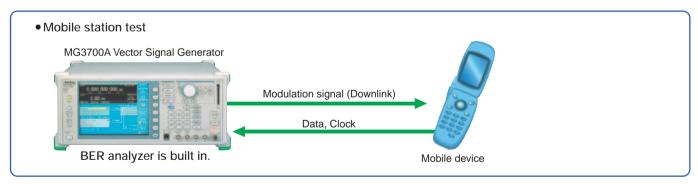
Waveform pattern	Uplink / Downlink	Half rate / Fill rate	Output slot	Evaluation
PI_4_DQPSK_PN9			No frame	TX device test
PI_4_DQPSK_PN15		_	No frame	Interfering signal
DL_Full_Rate_Slot0	Downlink	Full rate	Slot 0 only	
DL_Half_Rate_Slot0	Downlink	Half rate	Slot 0 only	Wanted signal for
UL_Full_Rate_Slot0	Uplink	Full rate	Slot 0 only	receiver test
UL_Half_Rate_Slot0	Uplink	Half rate	Slot 0 only	

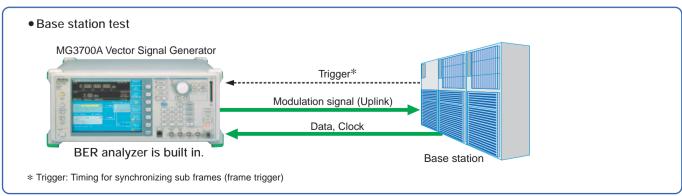
PDC Packet waveform pattern

Standard

■ PDC Packet waveform pattern:

The four types of waveform patterns listed in the table below are provided on the MG3700A internal hard disk.


The signals for testing base station and mobile station receivers for UPCH communications, which are specified in RCR STD-27, can be output by selecting one of these waveform patterns, without setting any complex RCR STD-27 parameters. Also, the Downlink3 data rate UPHC pattern and Uplink1 UPHC pattern can be switched.


When a signal is required that has parameters different from those of the provided waveform patterns, parameter setting and waveform pattern generation are available using the optional MX370102A TDMA IQproducer.

Example of selecting waveform pattern

Waveform pattern	Uplink / Downlink	Output slot
		Slot 0 = UPCH
DL_Packet_Slot_0	Downlink	Slot 1 = IDLE (all "1")
		Slot 2 = IDLE (all "1")
		Slot 0 = UPCH
DL_Packet_Slot_01	Downlink	Slot 1 = UPCH
		Slot 2 = IDLE (all "1")
		Slot 0 = UPCH
DL_Packet_Slot_all	Downlink	Slot 1 = UPCH
		Slot 2 = UPCH
		Slot 0 = UPCH
UL_Packet_Slot_0	Uplink	Slot 1 = Transmit off
		Slot 2 = Transmit off

WLAN waveform pattern

Standard

■ WLAN waveform pattern:

The WLAN (IEEE802.11a/b/g) waveform patterns listed in the table below are provided on the MG3700A internal hard disk. The signals for testing the receiver/transmitter of a terminal or module can be output by selecting one of these WLAN waveform patterns.

Example of selecting waveform pattern

• IEEE_802.11a waveform pattern list

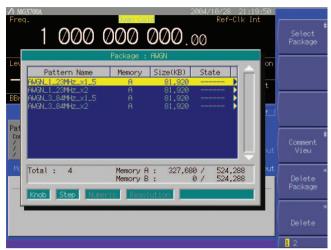
Waveform pattern	Data rate (Mbits/s)	Modulation	Coding rate	Coding bits per sub-carrier	Coding bits per OFDM symbol	Data bits per OFDM symbol
11a_OFDM_6Mbps	6	BPSK	1/2	1	48	24
11a_OFDM_9Mbps	9	BPSK	3/4	1	48	36
11a_OFDM_12Mbps	12	QPSK	1/2	2	96	48
11a_OFDM_18Mbps	18	QPSK	3/4	2	96	72
11a_OFDM_24Mbps	24	16-QAM	1/2	4	192	96
11a_OFDM_36Mbps	36	16-QAM	3/4	4	192	144
11a_OFDM_48Mbps	48	64-QAM	2/3	6	288	192
11a_OFDM_54Mbps	54	64-QAM	3/4	6	288	216

• IEEE_802.11b waveform pattern list

Waveform pattern	Spreading, Coding	Modulation
11b_DSSS_1Mbps	DSSS, 11 chip Barker Code	DBPSK
11b_DSSS_2Mbps	DSSS, 11 chip Barker Code	DQPSK
11b_CCK_5_5Mbps	CCK	DQPSK
11b_CCK_11Mbps	CCK	DQPSK

• IEEE_802.11g waveform pattern list

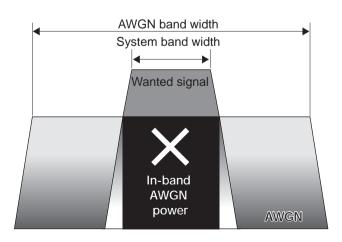
Waveform pattern	Data rate (Mbits/s)	Modulation	Coding rate	Coding bits per sub-carrier	Coding bits per OFDM symbol	Data bits per OFDM symbol
11g_DSSS_OFDM_6Mbps	6	BPSK	1/2	1	48	24
11g_DSSS_OFDM_9Mbps	9	BPSK	3/4	1	48	36
11g_DSSS_OFDM_12Mbps	12	QPSK	1/2	2	96	48
11g_DSSS_OFDM_18Mbps	18	QPSK	3/4	2	96	72
11g_DSSS_OFDM_24Mbps	24	16-QAM	1/2	4	192	96
11g_DSSS_OFDM_36Mbps	36	16-QAM	3/4	4	192	144
11g_DSSS_OFDM_48Mbps	48	64-QAM	2/3	6	288	192
11g_DSSS_OFDM_54Mbps	54	64-QAM	3/4	6	288	216

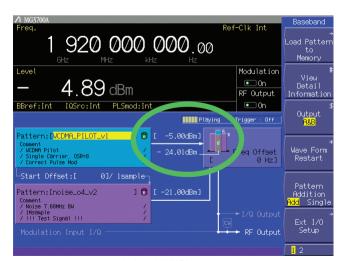

AWGN waveform pattern

Standard

■ AWGN waveform pattern:

The Additive White Gaussian Noise (AWGN) waveform patterns listed in the table below are provided on the MG3700A internal hard disk.


The signals for testing the receiver/transmitter of a terminal or module can be output by selecting one of these AWGN waveform patterns.



Example of selecting a waveform pattern

Waveform pattern	MAX peak/RMS ratio	3dB bandwidth (MHz)	In-band power conversion ratio (dB)*	Evaluation
AWGN_3_84MHz_x2	>12 dB	7.68	3.01	Added with the W-CDMA UL signal to perform a dynamic range test.
AWGN_3_84MHz_x1_5	>12 dB	5.76	1.76	Added with the W-CDMA UL signal to perform a dynamic range test.
AWGN_1.23MHz_x2	>12 dB	2.46	3.01	Added with the reverse signals of CDMA2000 or CDMA2000 1xEV-DO to perform a dynamic range test.
AWGN_1.23MHz_x1_5	>12 dB	3.69	1.76	Added with the reverse signals of CDMA2000 or CDMA2000 1xEV-DO to perform a dynamic range test.

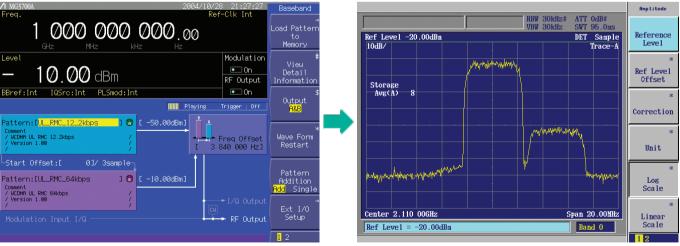
^{*} In-band power conversion ratio is the ratio of the system bandwidth of each communication system to the total power of the MG3700A output measured with a power meter or another equivalent device.

In-band AWGN power

■ With the waveform combine function, a single MG3700A outputs a signal that is the addition (such as modulation signal + AWGN) of the wanted signal and interfering signal:

The MG3700A has ARB memory that consists of two memory areas, each allowing one waveform pattern to be set. The addition of the signals from the two memories, as well as the signal for either one, can be output.

For example, if a wanted signal (W-CDMA, CDMA2000) waveform pattern is selected for one memory and an interfering signal (AWGN) waveform pattern for the other, a signal that is the addition of the wanted signal and interfering signal (AWGN) shown in the upper figures below can be output with a single MG3700A.


Also, if a modulation signal is selected as the interfering signal, the addition of the wanted signal and interfering signal (modulation signal) shown in the lower figures below can also be output with a single MG3700A.

Furthermore, the accuracy of the level ratio is superior since the S/N adjustment and calculation are performed by digital processing.

Wanted signal + AWGN screen

Output waveform screen of wanted signal + AWGN

Wanted signal + interfering signal screen

Output waveform screen of wanted signal + interfering signal

MX370001A TD-SCDMA waveform pattern

Optional

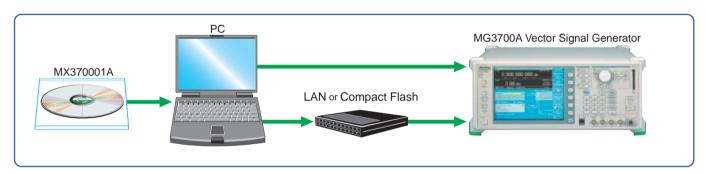
■ TD-SCDMA waveform pattern:

The signals corresponding to the 3GPP 1.28Mcps TDD options can be output by installing the MX370001A TD-SCDMA waveform pattern on the MG3700A.

UE DL RMC 12.2k

UE DL RMC 384

UE DL RMC 12.2k+OCNS


UE_DL RMC 64k+OCNS

UE_DL RMC 144k+OCNS

- For evaluating transmitter of BS For evaluating receiver of UE (TS 25.141 Test Model 1 to 4)
 - BS DL RMC 1Code
 - BS_DL RMC 1Code+P-CCPCH
 - BS DL RMC 8Code
 - BS DL RMC 10Code
- For evaluating receiver of BS
 - BS_UL RMC 12.2k(Single)
 - BS UL RMC 12.2k+OCNS
 - BS_UL RMC 64k+OCNS
 - BS_UL RMC 144k+OCNS
 - BS_UL RMC 384

Simple operation and high speed signal pattern change:

Typical waveforms specified in 3GPP, such as the reference management channel, can be output simply by selecting the waveform pattern loaded from the MG3700A internal hard disk to the large-capacity ARB memory, without setting any complex TD-SCDMA parameters.

Waveform patterns for evaluating BS transmitters

Target of test	BS Transmitter Test (DL)								
raiget of test			BS						
Test signal			BS-DL RMC						
Waveform pattern	rmc_1 code_bs_dl	rmc_P-CCPCH_bs_dl	rmc_8 code_bs_dl	rmc_10 code_bs_dl					
Test	Freq / Power Ctrlr / Minimum Pwr	PCCPCH Pw	OBW / On Off Ratio / Max Pwr / spurious / ACLR / TxIM	EVM / Peak code domain err					
Standard			TS25.142						
DwPTS/UpPTS SYNC_DL/UL NUMBER (quadruples)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)					
P-CCPCH	_	add	_	_					
Scrambling Code	0	0	0	0					
midamble ID	0	0	0	0					
Maximum User (user number)	2 (1)	8 (1)	2 (1)	2 (1)					
Spread Factor	16	16	16	16					
Time Slot Number	4, 5, 6	0	4, 5, 6	4, 5, 6					
Number of DPCH0	_	_	0	0					
DPCH Channelization Codes	C (i, 16), i = 1	C (i, 16), i = 1, 2	C (i, 16), 1 ≤ i ≤8	C(i, 16), 1 ≤ i ≤10					
DPCH0 Channelization Codes	_	_	_	_					
Data:DPCH0	PN9	_	PN9	PN9					
Data: other channel	_	P-CCPCH:All 0	_	_					
∑ DPCH_Ec/lor [dB]	0	_	0	0					
DPCH0_Ec/lor [dB]	_	_	_	_					
DPCH Channelization Codes Power [dB]/1 ch	0	_	-9	-10					
DPCH0 Channelization Codes Power [dB]/1 ch	_	_	_	_					

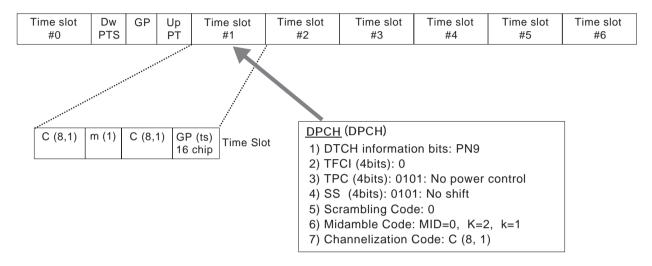
• Waveform patterns for evaluating BS receivers

T			BS Receive Test (UL)		
Target of test			BS		
Test signal			BS-UL RMC		
Waveform patterns	rmc12_2k_bs_ul	rmc12k_ocns_bs_ul	rmc64k_ocns_bs_ul	rmc144k_bs_ul	rmc384k_bs_ul
Test	RS / Min. Input Lev./ Dynamic range/ACS/ Blocking / Rx IM	Performance Req.	Performance Req.	Performance Req.	Performance Req.
Standard			TS25.142		
DwPTS/UpPTS/SYNC_DL/UL NUMBER (quadruples)	_	_	_	_	_
P-CCPCH	_	_	_	_	_
Scrambling Code	0	0	0	0	0
midamble ID	0	0	0	0	0
Maximum User (user number)	2 (1)	2 (1)	2 (1)	2 (1)	2 (1)
Spread Factor	8	8	2, 8	2, 8	8, 2
Time Slot Number	1	1	1	1, 2	1, 2, 3, 4
Number of DPCH	0	4	1	1	0
DPCH Channelization Codes	C (i, 8), i = 1	C (i, 8), i = 1	C (i, 2), i = 1	C (i, 2), i = 1	C (i, 2) i = 1 C (i, 8) i = 5
DPCH0 Channelization Codes	_	C (i, 8), 2≤ i ≤5	C (i, 8), i = 5	C (i, 8), i = 5	_
Data: DPCH0	PN9	PN9	PN9	PN9	PN9
Data: other channel	_	PN9	PN9	PN9	_
Σ DPCH_Ec/lor [dB]	0	_	_	_	0
DPCH0_Ec/lor [dB]	_	- 7	-7	-7	
DPCH Channelization Codes Power [dB] / 1 ch	0	- 7	-0.97	-0.97	C (i, 2) = -6.99 C (i, 8) = -0.97
DPCH0 Channelization Codes Power [dB] / 1 ch	_	-7	-7	-7	_

• Waveform patterns for evaluating receiver of UE

Townst of toot			UE Receiver Test (DL))						
Target of test	UE									
Test signal			UE-DL RMC							
Waveform pattern	rmc12_2k_ue_dl	rmc12k_ocns_ue_dl	rmc64k_ocns_ue_dl	rmc144k_ocns_ue_dl	rmc384k_ue_dl					
Test	RS / Min. Input Lev. / ACS / Blocking / Spur.Resp. / Inter Mod	Maximum input level test / RMC 12.2k	Performance Req.	Performance Req.	Performance Req.					
Standard			TS25.102							
DwPTS/UpPTS SYNC_DL/UL NUMBER (quadruples)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)	SYNC_DL #0 (S1)					
P-CCPCH	Add	Add	Add	Add	Add					
Scrambling Code	0	0	0	0	0					
midamble ID	0	0	0	0	0					
Maximum User (user number)	8 (1)	8 (1)	8 (1)	8 (1)	8 (1)					
Spread Factor	16	16	16	16	16					
Time Slot Number	4	4	4	4, 5	3, 4, 5, 6					
Number of DPCH0	0	8	2	2	0					
DPCH Channelization Codes	C (i, 16), i = 1, 2	C (i, 16), i = 1, 2	C (i, 16), $i = 1, \dots, 8$	C (i, 16), i = 1,, 8	C (i, 16)i = 1,···, 10					
DPCH0 Channelization Codes	_	C (i, 16) 3≤ i ≤10	C (i, 16) 9≤ i ≤10	C (i, 16) 9≤ i ≤10	_					
Data:DPCH0	PN9	PN9	PN9	PN9	PN9					
Data: other channel	_	PN9	PN9	PN9	_					
Σ DPCH_Ec/lor [dB]	0	-7	_	_	_					
DPCH0_Ec/lor [dB]	_	-10	-10	-10	0					
DPCH Channelization Codes Power [dB] / 1ch	-3.01	-10.00	-10.00	-10.00	-10					
DPCH0 Channelization Codes Power [dB / 1 ch	_	-10.00	-10.00	-10.00	_					

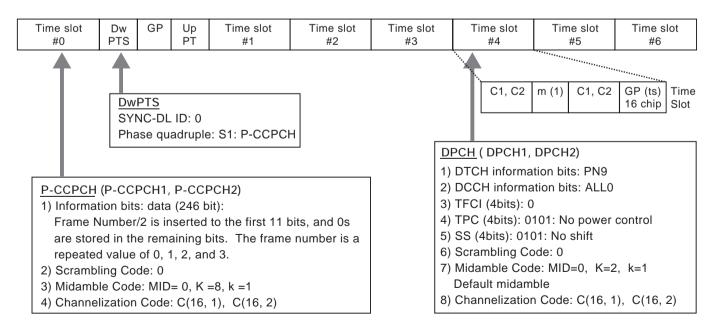
MX370001A TD-SCDMA waveform pattern


Optional

■ Frame configuration

•UL-RMC12.2 kbps: For BS receiver test (Uplink):

TS-25.142: BS UL reference measurement channel p132, A2.1.2, 1.28 MCps, SF = 8


Test items: 7.2 Reference sensitivity level / 7.3 Dynamic range / 7.4 Adjacent Channel Selectivity (ACS) / 7.5 Blocking characteristics / 7.6 Inter modulation characteristics

•UL-RMC12.2 kbps: For UE receiver test (Uplink):

TS-25.102: UE DL reference measurement channel p58, A.2.2.2.1, 1.28 MCps, 12.2 kbps, 12.2 kbps,

Test items: 7.3 Reference sensitivity level / 7.4 Maximum input level / 7.5 Adjacent Channel selectivity (ACS) / 7.6 Blocking characteristics / 7.7 Spurious response / 7.8 Inter modulation characteristics

MX370002A Public radio system waveform pattern

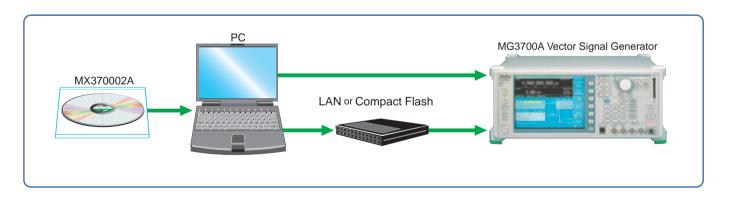
Optional

■ Public radio system waveform pattern:

The downlink/uplink modulation signals of the following ARIB standards can be output by installing the MX370002A Public radio system waveform pattern on the MG3700A:

•RCR STD-39

Waveform pattern	Uplink / Downlink	Transmit frame
UpLink	Uplink	0, x, x, x
DownLink 1	Downlink	0, x, x, x
DownLink 4	Downlink	0, 1, 2, 3
DownCCH 4	Downlink	0, 1, 2, 3
PN9	_	_
PN15	_	_


Sampling Rate 128 kHz Symbol Rate 16 kHz

•ARIB STD-T61

Waveform pattern	Uplink / Downlink	Transmit frame
UpDownLink	Uplink / Downlink	0, 0, 0, 0
40ms_Burst_all	Uplink / Downlink	0, 1, 2, 3
20ms_Burst_all	Uplink / Downlink	0, 1, 2, 3
40ms_Burst_1_4	Uplink / Downlink	0, x, x, x,
20ms_Burst_1_8	Uplink / Downlink	0, x, x, x, x, x, x
PN9	_	_
PN15	_	_

Sampling Rate 76.8 kHz Symbol Rate 4.8 kHz The signals for testing the receiver/tester specified in the ARIB standards can be output by selecting a waveform pattern loaded from the MG3700A internal hard disk to the large-capacity ARB memory, without setting any complex ARIB standard

parameters. The TCH/CCH pattern, PN9 pattern, and PN15 continuous modulation pattern can be switched quickly.

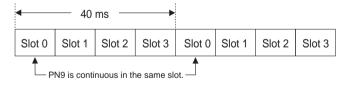
MX370002A Public radio system waveform pattern

Optional

•ARIB STD-T79

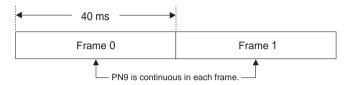
Waveform pattern	Uplink / Downlink	Transmit frame
UpLink	Uplink	0, x, x, x
DownLink 1	Downlink	0, x, x, x
DownLink 4	Downlink	0, 1, 2, 3
Direct	Uplink / Downlink	1, x, x, x
PN9	_	_
PN15	_	_

Sampling Rate 128 kHz Symbol Rate 16 kHz

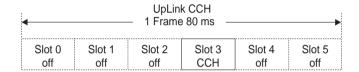

•ARIB STD-T86

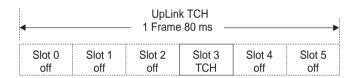
Waveform pattern	Uplink / Downlink	Transmit frame
Down_tch	Uplink	0, 1, 2, x, 4, 5
Down_tch_all	Downlink	0, 1, 2, x, 4, 5
Down_cch	Downlink	x, x, x, 3, x, x
Up_tch	Uplink	x, x, x, 3, x, x
Up_cch	Uplink	x, x, x, 3, x, x
PN9	_	_
PN15	_	_

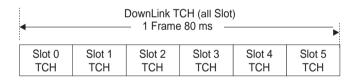
Sampling Rate 90 kHz Symbol Rate 11.25 kHz

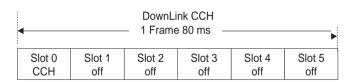

■ Frame configuration

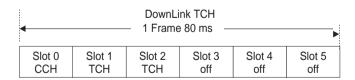
• RCR STD-39, ARIB STD-T79 frame configuration The uplink frame (TDMA) and downlink frame (TDM) both generate data in frame cycles of 4-slot length (40 ms) defined as a basic frame length. The PN9 pseudo random pattern of the traffic channel (hereinafter called TCH) in a slot is independent per slot and has continuity.


•ARIB STD-T61 frame configuration


The uplink/downlink frames both generate data in cycles of 40 ms defined as a basic frame length. The PN9 pseudo random pattern of TCH in a frame has continuity in each frame.




•ARIB STD-T86 frame configuration


One frame consists of 6 slots and the data is generated in this frame cycle. The PN9 pseudo random pattern of TCH in a slot has continuity in all slots.

■ Signal formats in each system

•RCR STD-39, slot format

The signal formats in uplink/downlink are as follows.

Uplink

R	Р	TCH	SW	Ι	CC	SACCH	TCH	G
6	2	148	20	2	6	20	108	8

R: Guard time for burst transient response 00H (6 bit) P: Preamble 2H (2 bit) Continuous PN9 TCH: Traffic channel SW: Sync word 785B4H (Slot 0) (20 bit) 0H (2 bit) I: Idle bit (all "0") CC: Color code (Counterinterference code) 00H (6 bit) SACCH: Slow ACCH 00000H (20 bit) G: Guard time 00H (8 bit)

Downlink

R	Р	TCH	SW	CI	CC	SACCH	TCH	B/I
6	2	112	20	2	6	20	144	8

R: Guard time for burst transient response
P: Preamble
Continuous PN9
SW: Sync word
SW: Sync word
STA4BH (Slot 0),
9D236H (Slot 1),
81D75H (Slot 2),
A94EAH (Slot 3) (20 bit)
CI: Control channel communication information

C: Color code (Counterinterference code)

SACCH: Slow ACCH

B/I: Busy/Idle bit

CC: Color code (Counterinterference code)

00H (6 bit)

00000H (20 bit)

FFH (8 bit)

•ARIB STD-T61, Frame format

The signal formats in uplink/downlink are as follows.

LP+R	Pa	TCH	RI	SW	undefined	TCH
30	2	96	56	20	20	160

LP+R: Preamble for linearizer and guard

time for burst transient response 00000000H (30 bit)

Pa: Preamble 2H (2 bit)

TCH: Traffic channel Continuous PN9

RI: Radio information channel 0000000000000H (56 bit)

SW: Sync word 1E56FH (20 bit)

Undefined: 00000H (20 bit)

•ARIB STD-T79, Slot format

The signal formats in uplink/downlink and direct communication between mobile stations are as follows.

Uplink

- 1								
R	Р	TCH	SW	ı	СС	SACCH	TCH	G
6	2	148	20	2	6	20	108	8

R: Guard time for burst transient response 00H (6 bit)
P: Preamble 2H (2 bit)
TCH: Traffic channel Continuous PN9
SW: Sync word 785B4H (Slot 0) (20 bit)

I: Idle bit (all "0")

CC: Color code (Counterinterference code)

SACCH: Slow ACCH

G: Guard time for transient response

OH (2 bit)

00000H (20 bit)

Downlink

R	Р	TCH	SW	CI	CC	SACCH	TCH	B/I
6	2	112	20	2	6	20	144	8

R: Guard time for burst transient response
P: Preamble
Continuous PN9
SW: Sync word
87A4BH (Slot 0),
9D236H (Slot 1),
81D75H (Slot 2),
A94EAH (Slot 3) (20 bit)
CI: Control channel communication information 11H (2 bit)

CC: Color code (Counterinterference code) 00H (6 bit)
SACCH: Slow ACCH 00000H (20 bit)
B/I: Busy/Idle bit FFH (8 bit)

• Direct communication between mobile stations

	G	R	Р	TCH	SW	PICH	TCH	G
Į	8	6	2	140	20	12	116	16

G: Guard time for transient response
R: Guard time for burst transient response
P: Preamble
TCH: Traffic channel
SW: Sync word
PICH: Parameter information channel

O0H (8 bit), 0000H (16 bit)
00H (6 bit)

Continuous PN9
4D9DEH (20 bit)
000H (12 bit)

•ARIB STD-T86, Slot format

There are four types of slots: uplink/downlink traffic channels and uplink/downlink control channels.

• Uplink / Downlink traffic channel

R	TCH	Р	TCH	SW	С	TCH	Р	TCH	G	1
16	24	4	232	40	4	232	4	24	20	

R: Ramp time for transient response OH (16 bit)
P: Pilot symbol AH (4 bit)

SW: Sync word Uplink=00A000000AH (40 bit)
Downlink=00A0000AAAAH (40 bit)

C: Channel identification 8H (4 bit)
TCH: Information channel PN9 pseudo rand

TCH: Information channel PN9 pseudo random pattern (The PN pattern has continuity in

TCH of all slots.)

G: Guard time for transient response 00000H (20 bit)

Uplink / Downlink control channel

R	AP	Р	AP	SW	С	CAC	Р	CAC	G
16	24	4	232	40	4	232	4	24	20

R: Ramp time for transient response 0H (16 bit)

AP: Repetition of AGC preamble 20A800080AH

P: Pilot symbol AH (4 bit)

C: Channel identification AH (4 bit)
CAC: Information channel random pattern

G: Guard time for transient response 00000H (20 bit)

MX370101A HSDPA IQproducer

Optional

■ HSDPA IQproducer:

The MX370101A HSDPA IQproducer is GUI-driven PC application software used to set up the parameters and generate waveform patterns according to the 3GPP HSDPA (Uplink/Downlink) system. The generated waveform patterns are downloaded to the MG3700A, and used to output HSDPA Modulation baseband signals and RF signals with the ARB generation function of the MG3700A.

In addition, it is possible to set the parameters specified in TS25.212 with respect to HS-PDSCH and HS-DPCCH. The signals in various states can be generated by changing the transmitting process freely.

In addition, the Downlink Easy Setup function provides typical items and parameters so that the settings can be executed simply by selecting items/parameters.

IQproducer[™] operating environment

CPU	Pentium III 1 GHz or faster
Memory size	≥512 Mbytes
HDD	≥5 Gbytes
Display	1024 × 768 pixels or more
OS	Windows® 2000 Professional, Windows® XP

Windows/WindowsZP is a registered trademark of Microsoft Corporation.

Downlink Settings:

Various parameters conforming to standards can be set for downlink (for details, refer to the "Downlink parameter setting range" table shown later).

The Downlink Easy Setup function provides the items for the HSDPA Fixed Reference Channel (FRC) specified in 3GPP TS25.101 and the Reference Measurement Channel (RMC) specified in 3GPP TS25.101, TS25.104. Parameter setting and waveform pattern generation can be performed simply by selecting items.

[Easy Setup items]

FRC: H-Set1 (QPSK), H-Set1 (16QAM), H-Set2 (QPSK), H-Set2 (16QAM), H-Set3 (QPSK), H-Set3 (16QAM), H-Set4, H-Set5

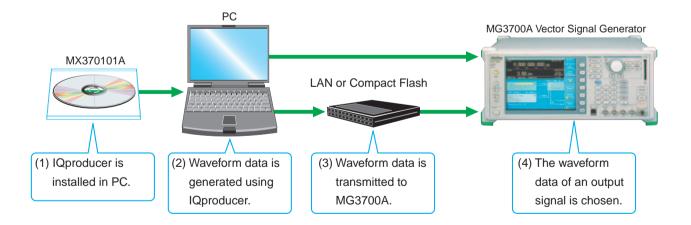
RMC: RMC12.2 kbps (for RX test),

RMC12.2 kbps (for Performance test),

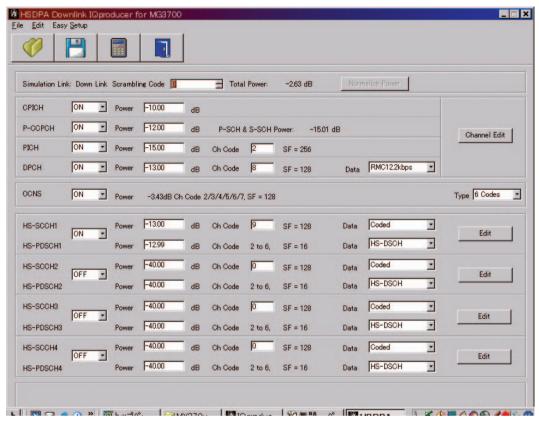
RMC64 kbps (for Performance test),

RMC144 kbps (for Performance test),

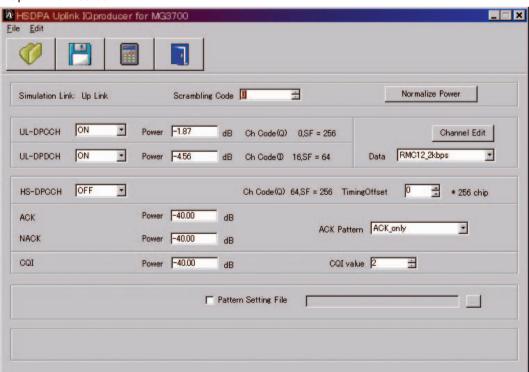
RMC384kbps (for Performance test)


• Uplink Settings:

For Uplink, parameter setting for the UL-DPCCH/UL-DPDCH and HS-DPCCH channels and waveform pattern generation can be performed (for details, refer to the "Uplink parameter setting range" table shown later).


HS-DPCCH (ACK, NACK, CQI)

UL-DPCCH


UL-DPDCH

• Downlink Main screen:

• Uplink Main screen:

MX370101A HSDPA IQproducer

Optional

• Downlink parameter setting range:

Display Scrambling Code		Setting range 0 to 8191	
ociambing code	ON/OFF	ON or OFF	
CPICH	Power	-40.00 to 0.00 [dB], Resolution 0.01 dB	
	ON/OFF	ON or OFF	
P-CCPCH			
	Power	-40.00 to 0.00 [dB], Resolution 0.01 dB ON or OFF	
DIOLI	ON/OFF		
PICH	Power	-40.00 to 0.00 [dB], Resolution 0.01 dB	
	Channelization Code	0 to 255	
	ON/OFF	ON or OFF	
	Power	-40.00 to 0.00 [dB], Resolution 0.01 dB	
		0 to SF –1	
		The spreading factor (SF) varies depending on the [Data]	
		setting as follows: RMC 12.2 kbps = 128	
DPCH	Channelization Code	RMC 64 kbps = 32	
DI CIT	Charmenzation Code	RMC 144 kbps = 16	
		RMC 384 kbps = 8	
		AMR1/AMR2/AMR3 = 128	
		ISDN = 32384 kbps Packet = 8	
		RMC12.2 kbps / RMC 64 kbps / RMC 144 kbps / RMC 384	
	Data	kbps / AMR1 / AMR2 / AMR3 / ISDN / 384 kbps Packet	
	ON/OFF	ON or OFF	
OCNS	Type	16 Codes or 6 Codes	
	ON/OFF	ON or OFF	
	Power	-40.00 to 0.00 [dB]	
HS-SCCH1/2/3/4	Channelization Code	0 to 127	
	Data	PN9/PN9fix/PN15fix/16bitRepeat/Coded	
	ON/OFF	ON or OFF	
	Power	-40.00 to 0.00 [dB]	
HS-PDSCH1/2/3/4	Channelization Code	0 to 127	
	Data	PN9/PN9fix/PN15fix/16bitRepeat/HS-DSCH	
P-CCPCH Edit	SFN Cycle	8 or 4096	
	DTCH Information Data	PN9/PN9fix/PN15fix/16bitRepeat	
DPCH Edit	TFCI	0 to 1023	
	Channelization Code Offset	1 to (16 - "Number of Physical Channel Code")	
	Number of Physical Channel Code	1 to (16 - "Channelization Code Offset")	
	Modulation	QPSK or 16QAM	
	Transport Block Size Information	0 to 63	
HSDPA transport channel	RV Information	0 to 7	
(HS-SCCH,HS-PDSCH	UE Identity	0 to 65535	
parameters)	CRC Error Insertion	Correct or Fail (CRC error of all)	
	Number of HARQ Processes	0 to 8	
	Virtual IR Buffer Size	800 to 304000 (Resolution: 800)	
	Payload Data	PN9/PN9fix/PN15fix/16bitRepeat	
	HARQ Process Cycle	0 to 16 (Note that it ranges from 0 to 6 if PN9 has been set for	
Transmitting Pattern Edit	Inter-TTI Distance	Payload Data.) 1 to 8	
Transmitting Pattern Edit			
	TTI Start Offset	0 to 7	

• Uplink parameter setting range:

Display		Setting range
Scrambling Code		0 to 16777215
	Channel ON/OFF	ON or OFF
UL-DPCCH, UL-DPDCH	Power	0 to -40.00 dB
UL-DPCCH, UL-DPDCH	Data	RMC 12.2 kbps / RMC 64 kbps / RMC 144 kbps / RMC 384
	Data	kbps / AMR1 / AMR2 / AMR3 / ISDN / 64 kbps Packet
	ON/OFF	HS-DPCCH ON or OFF
	Timing Offset	0 to 149
	ACK Power	0 to -40.00 dB
HS-DPCCH	NACK Power	0 to -40.00 dB
по-рессп	CQI Power	0 to -40.00 dB
	ACK Pattern	ACK_only, NACK_only, alt_ACK_NACK_DTX
	CQI value	0 to 30
	Pattern Setting File	Used or Not used
DPCH Edit	DTCH Information Data	PN9/PN9fix/PN15fix/16 bit Repeat
DFON EUIL	TFCI	0 to 1023

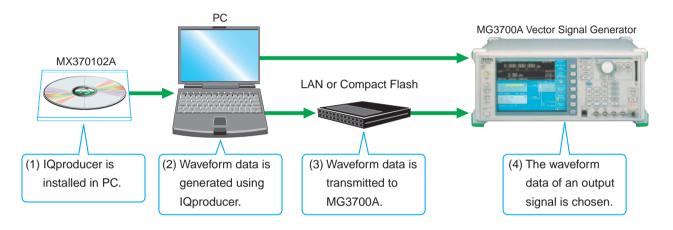
• Parameter save/recall:

The numeric values and settings for each item can be saved in a parameter file. Type the desired name in the [file name] text box and then click the [Save] button to save the parameter file.

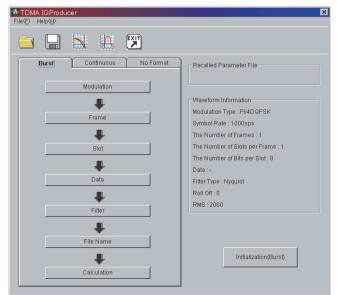
A parameter file can be recalled. Click the desired parameter file from the file list and then click the [Open] button.

MX370102A TDMA IQproducer

Optional


■TDMA IQproducer:

The MX370102A TDMA IQproducer" is GUI-driven PC application software used to set up the parameters and generate waveform patterns according to the TDMA system. The generated waveform patterns are downloaded to the MG3700A, and used to output TDMA Modulation baseband signals and RF signals with the ARB generation function of the MG3700A.


In addition to the signals supporting the PDC, PHS, and ARIB STD-T61/T79/T86 systems, signals for other systems can also be generated.

IQproducer[™] operating environment

CPU	Pentium III 1 GHz or faster
Memory size	≥512 Mbytes
HDD	≥5 Gbytes
Display	1024 × 768 pixels or more
OS	Windows® 2000 Professional, Windows® XP

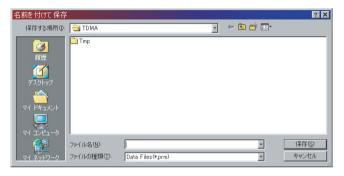
· Main screen:

• Parameter setting items list:

	Parameter setting sheet				
Setting items	r didinator setting sheet				
	Burst	Continuous	No Format		
Modulation	✓	✓	✓		
Frame		✓	✓		
_					
Slot	✓	1	_		
Field	✓	1	_		
Data	_	_	1		
Filter	✓	✓	✓		
Pattern Name	✓	✓	1		

• Parameter setting items list:

Items	Display	Outline	Setting range
	Madulation Tuna	Madulation avatam	PI/4DQPSK, BPSK, QPSK, 8PSK, 16QAM,
Modulation	Modulation Type	Modulation system	16QAM (ARIB_STD_T86), 64QAM, 256QAM
	Symbol Rate	Symbol rate	1ksps to 40Msps (Specified in increments of 1 sps.)
	The Number of Frames	Frame number	1 to 4088
Frame	The Number of Slots per Frame	Slot numbers in one frame	1 to 10
	1, 24field	Guard field	Set the number of bits listed in the separate table according to "Modulation Type."
Slot(Burst)	2, 23field	Ramp field	Set the number of bits listed in the separate table according to "Modulation Type."
	3 to 22field	Fixed (Fixed data) field	Set an integer from 0 to 32.
	3 to 22field	DATA (PN9, PN15) field	Set an integer from 0 to 400.
	4 to 22field	CRC(Cyclic Redundancy Check character) field	Set an integer from 0 to 32.
	1 to 24field	Fixed (Fixed data) field	Set an integer from 0 to 32.
Clat(Cantinuous)	1 to 24field	DATA (PN9, PN15) field	Set an integer from 0 to 400.
Slot(Continuous)	2 to 24field	CRC(Cyclic Redundancy Check character) field	Set an integer from 0 to 32.
	Fixed	Sets a hexadecimal fixed data.	0 to the maximum value of the number of bits being set
Field	CRC	Sets the CRC calculation	1 to the number of bits in the field on the left to CRC
(Burst/Continuous)	CRC	field by an integer.	(except Guard and Ramp fields)
	Data Field	Selects a continuous pattern.	PN9, PN15, 16-bit Pattern, ALL0, ALL1
	Data Field	Selects a continuous pattern.	Enter arbitrary hexadecimal number for "16-bit Pattern."
Data(No Format)	Data	Selects a continuous pattern.	PN9, PN15, 16-bit Pattern, ALL0, ALL1
	Filter	Filter type	Root Nyquist, Nyquist
Filter	Roll Off	Filter roll-off rate	0 to 1.00 (up to the second digit of fraction)
i iitoi	RMS	RMS value of waveform pattern data	651 to 4104
Pattern Name	Pattern Name	Waveform pattern file name	Within 20 characters
rauem Name	Comment	Comment	Within 38 characters
Calculation	Starts waveform pattern of	data generation after setting para	ameters.


MX370102A TDMA IQproducer

Optional

• Ramp field Setting range:

Modulation Type	Bit numbers
Pi/4DQPSK, QPSK	Multiple of 2 from 2 to 32
BPSK	Integer from 1 to 32
8PSK	Multiple of 3 from 3 to 30
16QAM, 16QAM (ARIB_STD_T86)	Multiple of 4 from 4 to 32
64QAM	Multiple of 6 from 6 to 30
256QAM	Multiple of 8 from 8 to 32

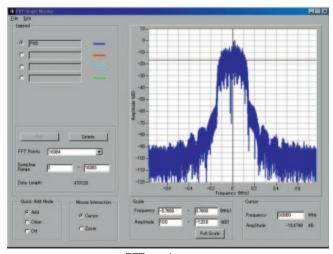
• Parameter save/recall:



The numeric values and settings for each item can be saved in a parameter file. Type the desired name in the [file name] text box and then click the [Save] button to save the parameter file. A parameter file can be recalled. Click the desired parameter file from the file list and then click the [Open] button.

• Graph:

This function displays a generated waveform pattern in a CCDF or FFT graph on the PC. It is useful to check/review the waveform pattern in a graph before transferring it to the MG3700A.


[CCDF (Complimentary Cumulative Distribution Function) graph] Up to eight types of generated waveform patterns are read to be displayed in a CCDF graph.

CCDF graph screen

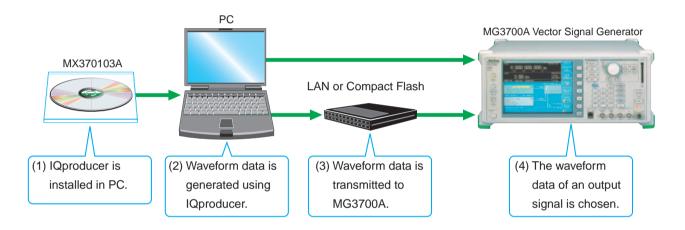
[FFT (Fast Fourier Transform) graph]

Up to four types of generated waveform patterns are read and the FFT calculation results for them are displayed in an FFT graph.

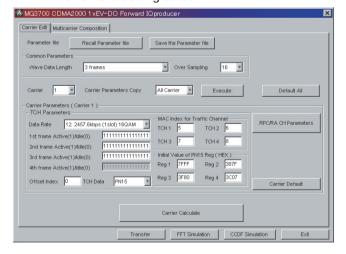
FFT graph screen

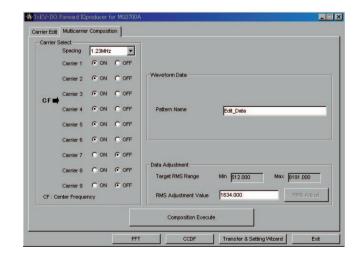
MX370103A CDMA2000 1xEV-DO IQproducer

Optional


■ CDMA2000 1xEV-DO IQproducer:

The MX370103A CDMA2000 1xEV-DO IQproducer is GUI-driven PC application software used to set up the parameters and generate waveform patterns according to the CDMA2000 1xEV-DO system (1xEV-DO forward and 1xEV-DO Reverse). The generated waveform patterns are downloaded to the MG3700A, and used to output CDMA2000 1xEV-DO Modulation baseband signals and RF signals with the ARB generation function of the MG3700A.


For forward, multi-carrier signals of up to nine carriers and mixed signals of Idle and Active can be generated. For reverse, multi-user signals for which the frequency, phase, level, and delay are adjusted freely can be generated.


IQproducer[™] operating environment

CPU	Pentium III 1 GHz or faster
Memory size	≥512 Mbytes
HDD	≥5 Gbytes
Display	1024 × 768 pixels or more
os	Windows2000® Professional, Windows XP

• 1xEV-DO forward setting screen

MX370103A CDMA2000 1xEV-DO IQproducer

Optional

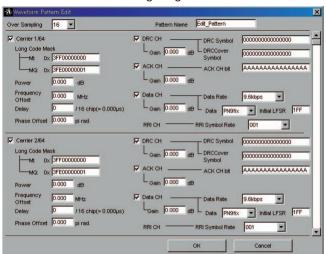
• 1xEV-DO forward setting range

[Carrier Edit sheet]

On the Carrier Edit sheet, set up the Modulation parameters for the single carriers (associated with carrier numbers 1 to 9) that constitute the multi-carrier.

Display	Setting range			
Wave Data Length ing	Number of frames of the waveform pattern to be generated. Specify up to 4 frames. Specify 3 frames when generat-			
	a multi-carrier.			
Over Sampling	Over sampling rate for waveform patterns. Set 4, 8, or 16.			
Default All	Restores the settings of all the single carriers to the initial values.			
Carrier	Select a single carrier to be edited from 1 to 9.			
Carrier Parameters Copy	Specify a single carrier to which the settings of the currently-set single carrier are to be copied (copy destination). Set Carrier 1 to Carrier 9 or All Carrier.			
Execute	Copies the settings of the currently-set single carrier (the corresponding carrier number is displayed in Carrier) to the copy destination specified by Carrier Parameters Copy. The settings to be copied include the contents of the RPC/RA CH Parameter screen.			
Data Rate	Set the data rate and transmission slot for the single carrier to be generated from the following:38.4 kbps (16 slots) QPSK, 76.8 kbps (8 slots) QPSK, 153.6 kbps (4 slots) QPSK, 307.2 kbps (2 slots) QPSK, 614.4 kbps (1 slot) QPSK, 307.2 kbps (4 slots) QPSK, 614.4 kbps (2 slots) QPSK, 1228.8 kbps (1 slot) QPSK, 921.6 kbps (2 slots) 8-PSK, 1843.2 kbps (1 slot) 8-PSK, 1228.8 kbps (2 slots) 16QAM, 2457.6 kbps (1 slot) 16QAM, Idle Slot			
1st to 4th Frame Active (1) / Idle (0)	Set traffic channel active/idle for each slot.			
TCH Data	Set the traffic channel payload data. All '0': Sets the payload data to all 0. All '1': Sets the payload data to all 1. PN15: Sets the payload data to a discontinuous PN15 sequence. PN15 is continuous within a frame.			
Offset Index	Specify the PN Offset Index of the single carrier to be generated from 0 to 511.			
TCH1 to TCH4	Specify the MAC Index that is used for the scrambling sequence of the traffic channel and preamble Walsh cover by an integer from 5 to 63.			
Reg1 to Reg4	Initial value of the linear feedback shift register used to generate the PN15 sequence when TCH Data is set to PN15. Set a hexadecimal number from 0 to 7FFF. The offset can be added to the PN15 sequence of each TCH by changing this initial value.			
Carrier Default	Restores the settings of the single carrier currently set on the screen (the corresponding carrier number is displayed in Carrier) to the initial values. The settings in the Carrier Parameters frame are restored to the initial values of the single carrier.			
RPC/RA CH Parameters	Opens the RPC/RA CH Parameters screen used to set up the parameters of the RPC and RA channels.			
	Generates the waveform patterns of nine single carriers with the current settings. After clicking this button, the entire			

• RPC/RA CH Parameters sheet:


Display	Setting range	
Frame	Selects a frame for which the RPC and RA channels are to be edited.	
Slot	Selects a slot for which the RPC and RA channels are to be edited.	
RA Bit	RA bit of RA channel. Set 0 or 1.	
CH Power	Channel gain of MAC channel (relative value to pilot channel). Set from -40 to +40 dB.	
RPC Bit	RPC bit of RPC channel. Set 0 or 1.	
ON/OFF	Turns on/off each MAC channel.	
Normalize	Sets the channel gains of the RPC and RA channels in the currently-set slot collectively to the ratio expressed with a fraction. The numerator of the RA channel ratio can be set from 1 to "denominator –1". The denominator can be set from 2 to 99.	

[Multi-carrier Composition sheet]

Generates a multi-carrier or single carrier waveform pattern from the single carrier waveform patterns generated in the Carrier Edit

Display	Setting range	
Spacing	Sets the frequency interval between the carriers having the consecutive carrier numbers, from 1.20, 1.23, or 1.25 MHz.	
Carrier Select	Turns on or off the single carrier that is used to generate a multi-carrier (or a single carrier, if only one single carrier were turned with all the others turned off) in the single carrier generated in the Carrier Edit sheet.	
Target RMS Range	"RMS" indicates the waveform pattern RMS value. Set the maximum value to "Max" when adjusting the waveform pattern RMS value.	
RMS Adjustment Value	Sets the RMS value of the multi- or single carrier waveform pattern.	
RMS Adjust Converts a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button into a waveform pattern generated by clicking the Composition Execute button generated by clicking the Composition generated by clicking the Composition generated by clicking the Composition generated by clicking th		

• 1xEV-DO Reverse Setting range:

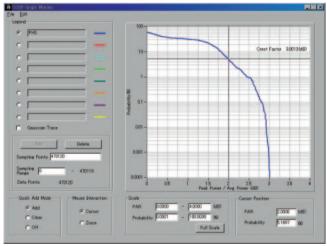
Display	Description	Setting range
Over Sampling	Ratio of the waveform pattern sampling rate and the chip rate 4, 8, 16	
Carrier On/Off	Set the carrier On/Off. It is "On" when checked.	On, Off
Long Code Mask	Set the I and Q long code masks. MQ is set automatically when MI is set by a user.	MI, MQ: 0x0 to 0x3FFFFFFFFF
Power	Set the power of carrier.	-80.000 to 0.000 dB
Frequency Offset	Set the carrier frequency offset from the center frequency setting of the MG3700A.	-5.000 to 5.000MHz
Delay	Set the delay of the carrier. A delay is a time gap from when a frame trigger is output from the rear panel of the MG3700A to when the first frame of the carrier is output.	0 chip to 32768 chip
Phase Offset	Set a phase offset of the carrier.	0.000 to 2.000 pai rad.
DRC CH On/Off	Set the DRC channel On/Off. It is "On" when checked.	On, Off
DRC CH Gain	Set the channel gain of the DRC channel by a relative value to the pilot channel.	-80.000 to 20.000 dB
DRC Symbol	Set the DRC channel symbol data in hexadecimal.	0000000000000000000 to FFFFFFFFFFFFFFFFF
DRC Cover Symbol	Set the DRC cover symbol data in octal.	0000000000000000000000 to 77777777777777
ACK CH On/Off	Set the ACK channel On/Off. It is "On" when checked.	On, Off
ACK CH Gain	Set the channel gain of the ACK channel by a relative value to the pilot channel.	-80.000 to 20.000 dB
ACK CH Bit	Set the ACK channel bit.	A (ACK), N (NACK), X (DTX)
Data CH On/Off	Set the Data channel On/Off. It is "On" when checked.	On, Off
Data CH Gain	Set the channel gain of the Data channel by a relative value to the pilot channel.	-80.000 to 20.000 dB
Data Rate	Set the Data channel data rate.	9.6, 19.2, 38.4, 76.8, 153.6 kbps
Data	Set the Data channel payload data. The selection item "PN9fix" specifies a discontinuous PN9 code sequence.	PN9fix, All '0', All '1'
Initial LFSR	When PN9fix is set for Data, set the initial value of the PN9 generation shift register in hexadecimal.	0 to 1FF (HEX)
RRI Symbol	Set the RRI symbol in binary.	000 to 101 (BIN)

MX370103A CDMA2000 1xEV-DO IQproducer

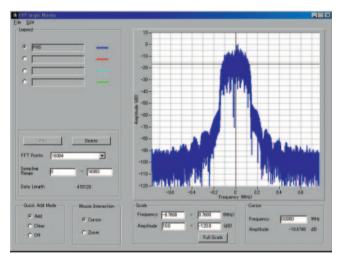
Optional

■ Parameter save/recall:

The numeric values and settings for each item can be saved in a parameter file. Type the desired name in the [file name] text box and then click the [Save] button to save the parameter file. A parameter file can be recalled. Click the desired parameter file from the file list and then click the [Open] button.


Graph:

This function displays a generated waveform pattern in a CCDF or FFT graph on the PC. It is useful to check/review the waveform pattern in a graph before transferring it to the MG3700A.


[CCDF (Complimentary Cumulative Distribution Function) graph]
Up to eight types of generated waveform patterns are read to be displayed in a CCDF graph.

[FFT (Fast Fourier Transform) graph]

Up to four types of generated waveform patterns are read and the FFT calculation results for them are displayed in an FFT graph.

CCDF graph screen

FFT graph screen

Ordering information

Please specify model/order number, name, and quantity when ordering.

Model/Order No.	Name	Remarks
	— Mainframe —	
MG3700A	Vector Signal Generator	
J0017F J1276 P0020 J1254 Z0742	— Standard accessories — Power cord, 2.6 m : 1 pc LAN Straight cable : 1 pc Compact Flash 64 MB : 1 pc Compact Flash Adapter : 1 pc MG3700A CD-ROM : 1 pc	10 cm, For U link connection on Rear panel Main frame operation manual, IQproducer operation manual, Standard waveform operation manual, IQproducer software
MG3700A-001 MG3700A-002 MG3700A-011 MG3700A-021 MG3700A-102 MG3700A-103 MG3700A-121 MG3700A-121 MG3700A-ES210 MG3700A-ES310 MG3700A-ES510	— Options — Rubidium Reference Oscillator Mechanical Attenuator Upper Frequency 6 GHz ARB Memory Upgrade 512 M sample Rubidium Reference Oscillator Retrofit Mechanical Attenuator Retrofit Electronic Attenuator Retrofit Upper Frequency 6GHz Retrofit ARB Memory Upgrade 512 M sample Retrofit — Maintenance service — Extended warranty service Extended warranty service Extended warranty service	Aging rate: +/-1 × 10 ⁻¹⁰ /Month Standard Electron Attenuator is changed to Mechanical Attenuator. Standard "250 kHz to 3 GHz" is extended to "250 kHz to 6 GHz." Standard "128 Msample/channel × 2" is extended to "256 Msample/channel × 2." Retrofitted to an already-shipped mainframe. Retrofit Retrofitted to an already-shipped mainframe. Two years Three years Five years
MX370001A MX370002A MX370101A MX370102A MX370103A	- Softwares (Waveform pattern) — TD-SCDMA Waveform Pattern Public Radio System Waveform Pattern - Softwares (License Key for IQproducer system) — HSDPA IQproducer TDMA IQproducer CDMA2000 1xEV-DO IQproducer	RCR STD-39, ARIB STD-T61/T79/T86
W2495AE W2496AE W2539AE W2503AE W2504AE W2504AE W2505AE G0141 K240B MA1612A MP752A MA2512A J0576B J0576D J0127C J00127B J0127A J0322A J0322B J0322C J0322D J1264 J1261B J1261D J0008 J1277 B0329C B0331C B0332 B0333C B0334C P0021 P0022	— Optional accessories — MG3700A operation manual MG3700A IQproducer operation manual MG3700A standard waveform pattern operation manual MX370101A HSDPA IQproducer operation manual MX370103A CDMA2000 1xEV-DO IQproducer operation manual HDD ASSY Power Divider (K connector) Four-Port Junction pad Termination Band Pass Filter Coaxial Cord, 1.0 M Coaxial Cord, 2.0 M Coaxial Cord, 2.0 M Coaxial Cord, 2.0 M Coaxial Cord, 1.0 M Coaxial Cord, 1.0 M Coaxial Cord, 1.0 M Coaxial Cord, 2.0 M Coaxial Cord, 2.0 M Coaxial Cord, 1.0 M Coaxial Cord, 1.0 M Coaxial Cord, 1.0 M Coaxial Cord, 1.0 M Coaxial Cord, 2.0 M Coaxial Cord, 2.0 M N-SMA Adapter Ethernet Cable (Shield Type) Ethernet Cable (Shield Type) GPIB CABLE, 2.0 M IQ Output Conversion Adapter Front cover for 1MW 4 Front panel handle kit Joint plate Rack mount kit Hardtype carrying case Compact Flash 128 MB Compact Flash 256 MB	For Embedded HDD Exchange DC to 26.5 GHz, K-J, 50 Ω, 1 Wmax 5 MHz to 3 GHz, N-J DC to 12.4 GHz, 50 Ω, N-P For W-CDMA, pass band: 1.92 to 2.17 GHz N-P · 5D-2W · N-P N-P · 5D-2W · N-P BNC-P · RG-58A/U · BNC-P BNC-P · RG-58A/U · BNC-P BNC-P · RG-58A/U · BNC-P SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-P, DC to 18 GHz, 50 Ω SMA-P · SMA-J Straight, 3 m Cross, 3 m D-SUB/BNC 2 pcs/set 4 pcs/set

ANRITSU CORPORATION

1800 Onna, Atsugi-shi, Kanagawa, 243-8555 Japan Phone: +81-46-223-1111 Fax: +81-46-296-1264

ANRITSU COMPANY TX OFFICE SALES AND SERVICE

1155 East Collins Blvd., Richardson, TX 75081, U.S.A. Toll Free: 1-800-ANRITSU (267-4878)

Phone: +1-972-644-1777 Fax: +1-972-644-3416

Canada

ANRITSU ELECTRONICS LTD.

700 Silver Seven Road, Suite 120, Kanata, ON K2V 1C3, Canada Phone: +1-613-591-2003 Fax: +1-613-591-1006

Brasil

ANRITSU ELETRÔNICA LTDA.

Praca Amadeu Amaral, 27 - 1 andar 01327-010 - Paraiso, Sao Paulo, Brazil Phone: +55-11-3283-2511 Fax: +55-11-3886940

U.K.

ANRITSU LTD.

200 Capability Green, Luton, Bedfordshire LU1 3LU, U.K. Phone: +44-1582-433280 Fax: +44-1582-731303

Germany ANRITSU GmbH

Grafenberger Allee 54-56, 40237 Düsseldorf, Germany Phone: +49-211-96855-0 Fax: +49-211-96855-55

France

ANRITSU S.A.

9, Avenue du Québec Z.A. de Courtabœuf 91951 Les Ulis Cedex, France Phone: +33-1-60-92-15-50 Fax: +33-1-64-46-10-65

Italy

ANRITSU S.p.A.

Via Elio Vittorini, 129, 00144 Roma EUR, Italy Phone: +39-06-509-9711 Fax: +39-06-502-2425

Sweden

ANRITSU AB

Borgafjordsgatan 13 164 40 Kista, Sweden Phone: +46-853470700 Fax: +46-853470730

Denmark

Anritsu AB Danmark

Korskildelund 6 DK - 2670 Greve, Denmark Phone: +45-36915035 Fax: +45-43909371

Singapore

ANRITSU PTE LTD.

10, Hoe Chiang Road #07-01/02, Keppel Towers, Singapore 089315 Phone: +65-6282-2400 Fax: +65-6282-2533

Specifications are subject to change without notice.

Hong Kong ANRITSU COMPANY LTD.

Suite 923, 9/F., Chinachem Golden Plaza, 77 Mody Road, Tsimshatsui East, Kowloon, Hong Kong, China Phone: +852-2301-4980 Fax: +852-2301-3545

• P. R. China

ANRITSU COMPANY LTD.

Beijing Representative Office

Room 1515, Beijing Fortune Building, No. 5 North Road, the East 3rd Ring Road, Chao-Yang District Beijing 100004, P.R. China Phone: +86-10-6590-9230

Korea

ANRITSU CORPORATION

8F Hyun Juk Bldg. 832-41, Yeoksam-dong, Kangnam-ku, Seoul, 135-080, Korea Phone: +82-2-553-6603 Fax: +82-2-553-6604

Australia

ANRITSU PTY LTD.

Unit 3/170 Forster Road Mt. Waverley, Victoria, 3149,

Australia Phone: +61-3-9558-8177 Fax: +61-3-9558-8255

• Taiwan

ANRITSU COMPANY INC.

7F, No. 316, Sec. 1, NeiHu Rd., Taipei, Taiwan Phone: +886-2-8751-1816

Fax: +886-2-8751-1817

050114

Catalog No. MX370x-E-A-1-(1.00) Printed in Japan 2005-1 W/CDT

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com