

SERVICE INFORMATION GUIDE

A.O.Smith Water Heaters

FORMULAS \& FACTS

BTU (British Thermal Unit) is the heat required to raise 1 pound of water $1^{\circ} \mathrm{F}$

$$
\begin{aligned}
& 1 \text { BTU }=252 \text { cal }=0.252 \text { kcal } \\
& 1 \text { cal }=4.187 \text { Joules } \\
& \text { BTU X } 1.055=\text { Kilo Joules } \\
& \text { BTU divided by } 3,413=\text { Kilowatt (I KW) }
\end{aligned}
$$

To convert from Fahrenheit to Celsius: (${ }^{\circ} \mathrm{F}-32$) $\times 5 / 9$ or $.556={ }^{\circ} \mathrm{C}$.

FAHRENHEIT	CENTIGRADE
32	0
41	5
60.8	16
120.2	49
140	60
180	82
212	100

One gallon of $120^{\circ} \mathrm{F}\left(49^{\circ} \mathrm{C}\right)$ water weighs approximately 8.25 pounds.

> Pounds $\times .45359=$ Kilogram
> Gallons $\times 3.7854=$ Liters
$\%$ of hot water = (Mixed Water Temp. - Cold Water Temp.) divided by (Hot Water Temp. - Cold Water Temp.)
\% thermal efficiency = (GPH recovery X 8.25 X temp. rise X 1.0) divided by BTU/H Input

BTU output (Gas) =
GPH recovery x 8.25 x temp. rise x 1.0

BTU output (Electric) $=$ BTU Input (Not exactly true due to minimal flange heat loss.)

Capacity of a
cylindrical tank
$-1 / 2$ diameter (in inches)
$\times 3.146 \times$ length. (in inches)
Divide by 231 for gallons.
Doubling the diameter of a pipe will increase its flow capacity (approximately) 5.3 times.

Linear expansion of pipe - in inches per 100 Ft .

TEMP ${ }^{\circ}$ F RISE	STEEL	COPPER
50°	$0.38^{\prime \prime}$	$0.57^{\prime \prime}$
100°	$.076^{\prime \prime}$	$1.14^{\prime \prime}$
125°	$.092^{\prime \prime}$	$1.40^{\prime \prime}$
150°	$1.15^{\prime \prime}$	$1.75^{\prime \prime}$

FORMULAS \& FACTS

GPH (Gas) =
(BTU/H Input X \% Eff.) divided by (temp. ise $\times 8.25$)

GPH (Electric) =
(KW $\times 3413$) divided by
(temp. rise x 8.25) or (KW x 414)
divided by (temp rise.)
KW required =
(GPH X 8.25 X temp. rise)
divided by 3413 or
(GPH x Temp. rise) divided by 414
$1 \mathrm{KW}=$
3413 BTH = 4.1 GPH @ 100° temp.
rise or $4.6 \mathrm{GPH} @ 80^{\circ}$ temp. rise
Meters = Inches x 0054
Centimeters = Inches X 2.54 mm (millimeters) = Inches 25.4

One boiler horsepower (BHP) = 33,475 BTU

One cubic foot of Natural Gas contains about 1000 BTU of heat.

One "therm" is equal to 100,000 BTU (100 CU. FT.)

One cubic foot of Propane Gas contains about 2500 BTU of heat.

One gallon of Propane gas contains about 91,250 BTU of heat.

One pound of Propane gas contains about 21,600 BTU of heat.

One pound of gas pressure is equal to 27.7 inches water column pressure

> Inches of Water Column

$$
x .036091=\text { PSI }
$$

Inches of Water Column $x .073483=$ Inches of
Mercury (Hg.)
One pound per sq. in.
$=16$ oz per sq. in.

Water expands

approximately 2% in volume for a $100^{\circ} \mathrm{F}$ temperature rise (from $40^{\circ} \mathrm{F}$ to $140^{\circ} \mathrm{F}$)

Water confined
to a storage tank or piping system, when subjected to a temperature rise of $10^{\circ} \mathrm{F}$ (increasing from 75° to 85°), increases pressure from 50 psi to 250 psi.

Water capacity of copper tubing per foot

TUBING SIZE	$1 / 2$	$3 / 4$	1	$11 / 2$	2	3
g/t type L	.012	.025	.044	0.92	.161	.354

A.O.Smith Water Heaters

COMMON TERMS

Energy factor is an indicator of the combined thermal efficiency and standby efficiency of a water heater. The higher the energy factor, the more efficient the water heater will be.

What Happens When Water Is Heated:

The relationship between water temperature and time to burn normal adult skin.| WATER
 TEMP. | TIME FOR 1ST
 DEGREE BURN | TIME FOR PERMANENT BURNS
 (2nd AND 3rd DEGREE) |
| :---: | :---: | :---: |
| 105 | Normal shower temperature | |
| 122 | 1 minute | 5 minutes |
| 131 | 5 seconds | 25 seconds |
| 140 | 2 seconds | 5 seconds |

2 Water cannot (for all practical purposes) be compressed.

3 Water expands when it is heated. Approximately $.00023 \%$ per degree F temperature rise.
This expansion will result in a pressure increase in a "closed" system. Water confined to a storage tank or piping system will, when subjected to a temperature rise of $10^{\circ} \mathrm{F}$ (increasing from $75^{\circ} \mathrm{F}$ to $85^{\circ} \mathrm{F}$) increase in pressure from 50 psi to 250 psi.

A.O.Smith Water Heaters

COMMON TERMS

The closed system illustrated requires the thermal expansion tank because of the preceding \#2 and \#3 facts.

4 Gases in the water will separate from the water as temperature rises.
5. Water boils at $212^{\circ} \mathrm{F}$ - at sea level - unless it is contained under pressure. At 52 psi gauge pressure, water would not boil until it exceeded $300^{\circ} \mathrm{F}$.

6 Minerals in the water will separate from the water as temperature is added. This may lead to a much faster scaling rate in the tank.
Ex: 10 grains hardness; 2700 gallons of hot water per day. Water stored at 140° F in the tank may accumulate 19 lbs . of lime per year.
$160^{\circ} \mathrm{F}$ in the tank may accumulate 85 lbs . of lime per year.
180° in the tank may accumulate 135 lbs . of lime per year.

7 Adding heat to water may make it more corrosive.
Water may be 2 times more corrosive at $160^{\circ} \mathrm{F}$ than at $140^{\circ} \mathrm{F}$.
Water may be 2 times more corrosive at $180^{\circ} \mathrm{F}$ than at $160^{\circ} \mathrm{F}$.

A.O.Smith Water Heaters

COMMON TERMS

Polarity - Verify that an electrical socket has correct "polarity." Verify that the "Neutral" (typically white on a 120 V circuit) wire has no power to ground and that the "Hot" (typically black wire on a 120 V circuit) has $115-125 \mathrm{~V}$ to ground.

Watts divided by Volts $=$ Amps (single phase)
(Watts x .557) divided by (Volts) = Amps (3 phase)

Volts x amps $=$ watts.
Volts divided by amps = ohms (resistance)

For insulating purposes " R " value is a measure of the resistance of a substance to heat flow.

Recovery rate is the amount of water that is heated to a specific temperature rise, per hour. An example might be that a water heater has a recovery rate of 30 gallons of water per hour at $80^{\circ} \mathrm{F}$ temperature rise.

Thermal efficiency is approximately the percentage of generated BTU that enters the stored water. A percentage of the total BTU input passes out through the vent piping.

Temperature rise is the increase in the temperature from its coldest "inlet" water temperature to the desired hot (outlet) setting. Typically this is assumed to be 40° entering water; 120° desired stored water or 80° "temperature rise."

Standby efficiency is the water heater's ability to contain heat in the tank.
A minimum of tank water heat loss per hour is desired.
Sample: temperature change per hour = BTU/H loss/square foot of tank surface " R " value

Water hammer is a concussion of moving water against the sides of a containing pipe or vessel on a sudden stoppage of flow.
Ex: 1/2" copper pipe, 5GPM flow (7.2ft/sec.) - stop.
Pressure rise of approximately 412 psi
$3 / 4^{\prime \prime}$ copper pipe, 5 GPM flow ($3.3 \mathrm{ft} / \mathrm{sec}$) - stop.
Pressure rise of approximately 188 psi

A. O. SMITH TRAINING CENTER

106 Adkisson Street
Ashland City, TN 37015
MHW.hotwater.com
Download from Www.Somanuals.com. All Manuals Search And Download
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

