ATAVRAUTO200

.....

User Guide

Table of Contents

Section 1

Introducti	on	1-	1
1.1	Overview	.1-	1

Section 2

Using the	ATAVRAUTO200	2-3
•	Overview	
2.2	Power Supply	2-4
	Oscillator Sources	
2.4	On-board Resources	2-4
2.5	In-System Programming	2-8
2.6	Debugging	2-11
Section 3	3	

Section 5	
Section 4 Technical Support	
Continu 1	
Technical Specifications	

Complete Schematics	5-1	7
	J- I	

i

Section 1 Introduction

Congratulations on your purchase of the ATAVRAUTO200 board. This board includes all elements necessary for designers to quickly develop code related to LIN communication node implementing the ATmega88 and for prototyping and testing of new designs.

1.1 Overview

This document describes the ATAVRAUTO200 dedicated to the ATmega88 AVR micro controllers. This board is designed to allow an easy evaluation of the product using demonstration firmware.

To increase its demonstrative capabilities, this stand alone board has numerous onboard resources (motor relay, motor FET, hall sensor inputs, current measurements, power supply measurement, LIN, push buttons).

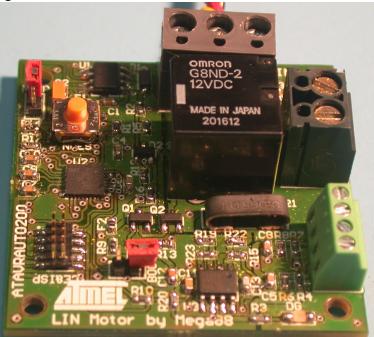


Figure 1-1. ATAVRAUTO200

features

1.2 ATAVRAUTO200 The ATAVRAUTO200 provides the following features:

- ATmega88 QFN32
- AVR Studio[®] software interface⁽¹⁾,
- Power supply
 - Regulated 5V
 - From LIN connector (LIN network power supply)
- JTAG connector:
 - for on-chip In Situ Programming (ISP)
 - for on-chip debugging using JTAG ICE
- DC Motor connector
 - DC Motor power supply output
 - Hall effect sensor(s) power supply and input(s)
- Serial interface:
 - 1 LIN interface 1.3 and 2.0 compliant (firmware library available on the ATMEL website for LIN 1.3).
- On-board resources:
 - 1 LIN transceiver with internal regulator
 - Relay for DC motor control
 - Shunt Resistor for motor current measurement
 - Speed/Position measurement Inputs
 - Power supply measurement
- System clock:
 - Internal RC oscillator
- Dimension: 45 mm x 45 mm
- *Note:* The ATmega88 is supported by AVR Studio, version 4.12 or higher. For up-todate information on this and other AVR tool products, please consult our web site. The newest version of AVR Studio, AVR tools and this user guide can be found in the AVR section of the Atmel web site, http://www.atmel.com.

Section 2 Using the ATAVRAUTO200

2.1 Overview

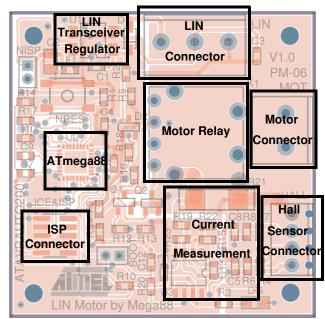
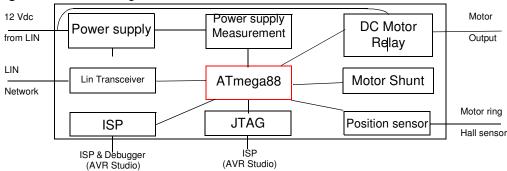



Figure 2-1. Board Overview

2.2	Power	Supply
-----	-------	--------

The on-board power supply circuitry is supplied through the LIN connector.

2.2.1 LIN powered The LIN connector power line is used to provide VBAT to the ATAVRAUTO200 LIN transceiver.

A LIN network has to be connected to have your LIN interface function (Input supply from 8 up to 18V DC, see Figure 2-3 on page 5).

2.3 Oscillator Sources

The ATAVRAUTO200 board allows only one oscillator source:

- Internal RC oscillator (Default configuration).
- *Note:* The "Divide by 8" Fuse is configured by default. The first step in the demonstration application is to clear the prescaler to have the internal RC oscillator running at 8MHz:

CLKPR = (1<<CLKPCE); //! Clear Prescaler CLKPR = 0;

2.3.1 Interal RC oscillatorn

A LIN Slave node with a run-time oscillator calibration can be used with the internal RC oscillator.

At ambiant temperature and normal Vcc, the internal oscillator is precise enough to be compliant with LIN 1.3 and 2.0 specifications. For wider temperature and/or power ranges, a run-time calibration of the internal RC oscillator can be used as explained in the application note AVR140: "ATMega48/88/168 family run-time calibration of the internal RC oscillator" available on the Atmel website.

2.4 On-board Resources

2.4.1 LIN & Power supply

The LIN screwed connector allows the user to select his own connector. *Note:* The LIN power supply input is reverse voltage protected.

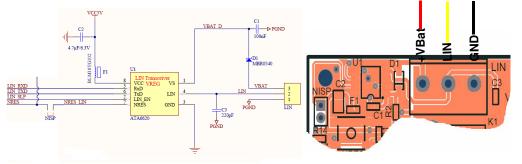

LIN transceiver control is realized by the micrcontroller. All modes depend on microcontroller's ports configuration.

Table 2-1. LIN ressources

Function	Port	State	Description
LIN_NSLP	PD2	Low	LIN transceiver in Sleep mode
		High	LIN transceiver in normal mode
NRES_LIN	PC6	Low	Perform MCU reset when NISP Jumper is inserted
		High	No Action

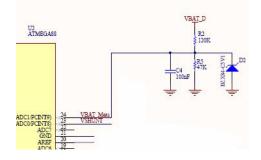
Figure 2-3. LIN transceiver and power supply

- *Note:* The LIN transceiver undervoltage protection can be disabled by removing the NISP jumper.
- *Note:* The NISP jumper has to be removed when programming.

2.4.2 Power supply measurement

The voltage measurement is realized with a bridge of resistors. The read value is 0.281 of the LIN power supply (47 K Ω / (47 K Ω + 120 K Ω)). Input voltage on channel 1 of the ADC is limited to 5.1V by a zener diode. This will give a voltage reading range from 0 to 18.1V with Vcc as reference.

The power supply measurement can be performed using the A/D converter. See the ATmega48/88/168 datasheet for how to use the ADC. The input voltage value (VIN) is calculated with the following expression:


$$V_{IN} = 3.55 \times V_{ADC1}$$

■ Where: VIN = Input voltage value (V)

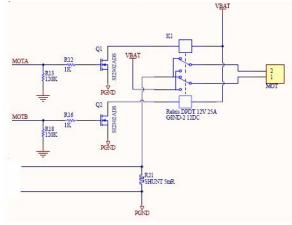
■ VADC7 = Voltage value on ADC-1 input (V)

Figure 2-4. Power supply measurement through ADC1

2.4.3 Motor relay

DC Motor can be operated through a relay. It is supplied with Vbat, -Vbat or 0V.

■ The relay allows the motor to be operated in two rotating directions, or to be stopped.


Table 2-2. Motor Relay commands


Function	Port	State	Description
Mot_A	PB1	Low/	Relay coil1 OFF (Normaly closed switch activated)
		High	Relay coil1 ON (Normaly opened switch activated)
Mot_B	PB2	Low	Relay coil2 OFF (Normaly closed switch activated)
		High	Relay coil2 ON (Normaly opened switch activated)

Table 2-3. Logical command table

Mot_A	Mot_B	Motor Supply	Description
L	L	0V	Motor stopped
L	Н	-Vbat	Motor running (Direction B)
Н	L	+Vbat	Motor running (DirectionA)
Н	Н	0V	Motor stopped

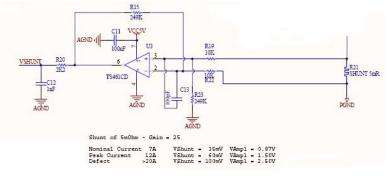
Figure 2-5. Motor on board command schematics

ATAVRAUTO200 User Guide

2.4.4 Current measurement

Motor current is measured using a shunt resistor. External differential amplifier (on board) is connected to ADC to measure shunt resistor voltage.

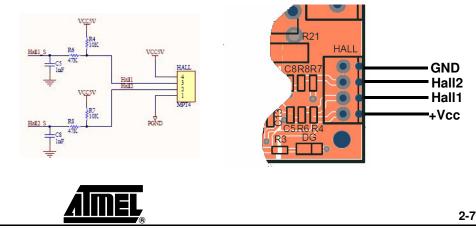
Amplifer output (current image voltage) is connected to


- ADC0 pin for current acquisition
- AIN1 pin to detect max current peak (compared to AIN0 through internal analog comparator)

The current measurement (I) can be performed using the A/D converter. See the ATmega48/88/168 datasheet for how to use the ADC. The input voltage value (VADC-0) is calculated with the following expression:

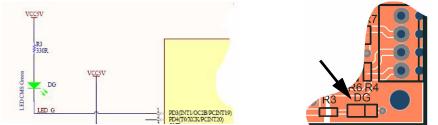
 $\begin{pmatrix} (V_{ADC-0} = Gain \times V_{shunt} = Gain \times Rshunt \times I = 30, 16 \times 0.005 \times I) \\ V_{ADC-0} = 0.151 \times I \end{pmatrix}$

Analog comparator allows peak current detection. It provides interrupts on analog comparator output change. See the ATmega48/88/168 datasheet for how to use the Analog comparator. Comparison voltage is determined for a 12A peak which leads to:


Figure 2-6. Current Acquisition chain and current Peak detection

2.4.5 Speed/Position measurement inputs

A screw connector with 4 inputs can be used to plug two hall effect sensors. The two hall effect sensors inputs are connected to the two external interrupt pins (INT0 and INT1) of the microcontroller.



ATAVRAUTO200 User Guide

2.4.6 LED

The ATAVRAUTO200 includes one green LED implemented on one I/O pin. It is connected to the "PortD Pin3" of the ATmega48/88/168. To light On the LED, the corresponding port pin must drive a low level. To light Off the LED, the corresponding port pin must drive a high level.



2.4.7 BOOT

An additional jumper (BOOT) has been added. This jumper is available for custom use.

For example : the BOOT jumper can be used to switch from the application to the bootloader by firmware (Not implemented in the example) by reading the pin7 of PortB.

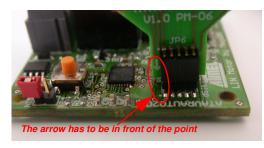
Figure 2-9. BOOT Jumper

2.5 In-System Programming

The ATmega88 can be programmed using specific SPI serial links. This sub section will explain how to connect the programmer.

The Flash, EEPROM memory (and all Fuse and Lock Bit options ISP-programmable) can be programmed individually or with the sequential automatic programming option.

- *Note:* If debugWire fuse is enabled, AVR ISP can't be used. If debugWire fuse is disabled, JTAGICE mkII have to be used in ISP mode to enable debugWire fuse.
- *Note:* When programming, the NISP jumper has to be removed.



2.5.1 Using the ATAVRAUTO900 Adaptator

An additionnal adaptator has to be used to program the board using IPS or JTAG mode. The 10 pins connector is used for the JTAGICE mkII device and the 6 pins connector is used for the AVRISP device. To plug the ATAVRAUTO900 connector to the board, the arrow (on the adaptator) has to be in front of the point (on the board).

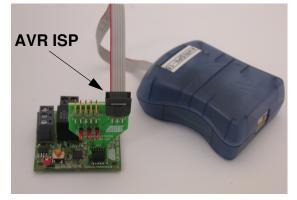
Figure 2-10. ATAVRAUTO900 Connection

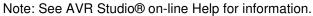
Table 2-4. ICE Connector

PIN	Function
1	TCK
2	GND
3	TDO
4	VCC
5	TMS
6	NRES
7	VCC
8	NC
9	TDI
10	GND

Table 2-5. ISP Connector

	Connector
PIN	Function
1	MISO
2	VCC
3	SCK
4	MOSI
5	NRES
6	GND

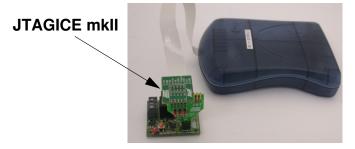

2.5.2 **Programming with AVR ISP Programmer**


The AVR ISP programmer is a compact and easy-to-use In-System Programming tool for developing applications with ATmega88. Due to its small size, it is also an excellent tool for field upgrades of existing applications. It is powered by the ATAVRAUTO200 and an additional power supply is thus not required.

The AVR ISP programming interface is integrated in AVR Studio.

To program the device using AVR ISP programmer, connect the AVR ISP to the adaptator (ATAVRAUTO900) and connect the adaptator to the connector of the ATAVRAUTO200.

Figure 2-11. Programming from AVR ISP programmer using ATAVRAUTO900.



2.5.3 Programming with AVR JTAGICEmkII

The ATmega48/88/168 can be programmed using specific JTAG link: 3-wire debug-WIRE interface. To use the AVR JTAGICEmkII with an ATAVRAUTO200 thr ATAVRAUTO900 adaptator has to be be used. Then the JTAG probe can be connected to the ATAVRAUTO200 as shown in the following Figure 2-12.

To use the JTAGICEmkII in ISP mode the 3 jumpers "SCK", "MISO" and "MOSI" of the adaptator (ATAVRAUTO900) should be connected.

Figure 2-12. JTAGICE mkll probe connecting through debugWIRE interface

- **Note:** When the debugWIRE Enable (DWEN) Fuse is programmed and Lock bits are unprogrammed, the debugWIRE system within the target device is activated. RESET pin is configured as communication gateway between ATmega48/88/168 and JTAG. JTAGICE mkll must have control over it.
- *Note:* See AVR Studio® on-line Help for information.

ATAVRAUTO200 User Guide

2.6 Debugging

2.6.1 Debugging with AVR JTAGICEmkII

The ATAVRAUTO200 can be used for debugging with JTAG ICE MK II.

Connect the JTAG ICE mkII as shown in Figure 2-12 for debugging, please refer to AVR Studio Help information.

Section 3

Technical Specifications

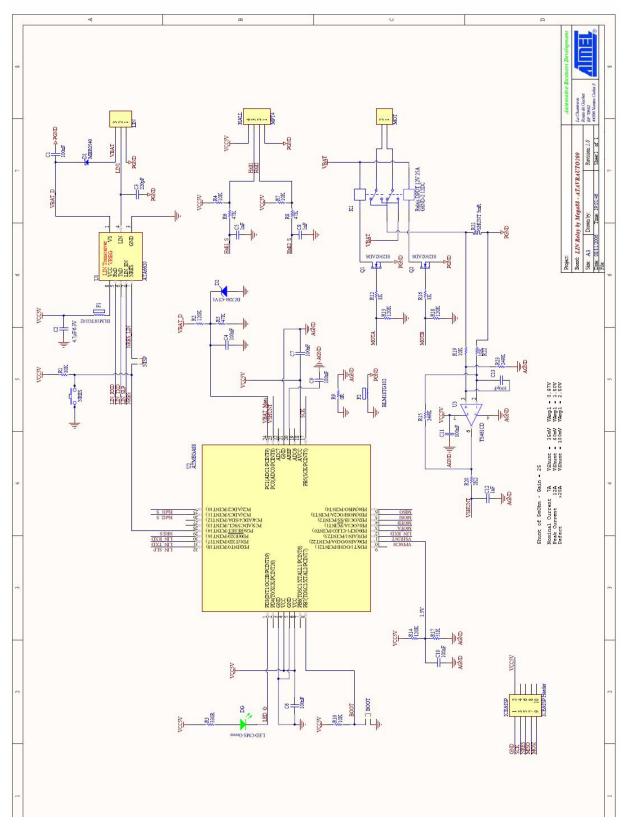
System Unit	
 Physical Dimensions 	L=45 x W=45 x H=8 mm
 Weight 	25 g
Operating Conditions	
 Internal Voltage Supply 	5.0V
 External Voltage Supply 	7V -18V

Section 4

Technical Support

For Technical support, please contact avr@atmel.com. When requesting technical support, please include the following information:

- Which target AVR device is used (complete part number)
- Target voltage and speed
- Clock source and fuse setting of the AVR
- Programming method (ISP, JTAG or specific Boot-Loader)
- Hardware revisions of the AVR tools, found on the PCB
- Version number of AVR Studio. This can be found in the AVR Studio help menu.
- PC operating system and version/build
- PC processor type and speed
- A detailed description of the problem


Section 5

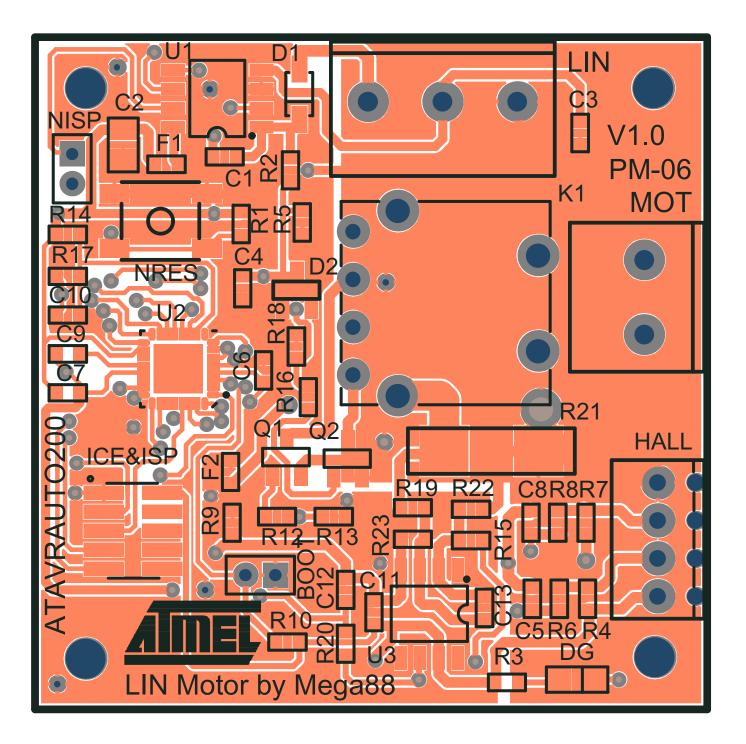
Complete Schematics

On the next pages, the following documents of ATAVRAUTO200 are shown:

- Complete schematics,
- Bill of materials,
- Assembly drawing.

Figure 5-1. ATAVRAUTO200 schematic

<u>AIMEL</u>_®


ATAVRAUTO200 User Guide

Bill o	Bill of Materials	s					IN Relay t	y Mega8	LIN Relay by Mega88 - ATAVRAUT0200	
Source Data Fron	ta From:		LIN Relay M88.PrjPcb	rįPcb						
Project: Variant:			LIN Relay M88.PriPcb None	riPcb						
Creation Date 09/11/2006 Print Date: 02-Jan-07	03/11/2006 02-Jan-07		19:34:10 2:24:01 PM							
Designator	Descriptions	Reference	Fabricant	Fournisseur	Code Commande Unit	Unite de Vente (Quantity P	Priz UDV	LibRef	Footprint
ō	100nF	X7R 16V	Phycomp	FARNELL	432210	9	-	0.63		0603
C10		X7R 16V	Phycomp	FARNELL	432210	ę	-	0.63		0603
5		X7R 16V	Phycomp 5.	FARNELL	432210	£ :	-	0.63		0603
t C	100hF	X/H I6V V7D 46V	Phycomp	FARNELL	432210	2 9		0.63	Ciap 100nF 0603 X/H 16Y Cise 100nE 0603 V7E 16V	0603
02		X7B 16V	Phicomp	FARNELL	432210	2 @		0.63		0603
8		X7R 16V	Phycomp	FARNELL	432210	ę	-	0.63	0.63 Cap 100nF 0603 X7R 16V	0603
C13	ų	COG	MURATA	FARNELL	8819866	9	-	0.54		0603
C12 Sr		06035A102JAT2A	AVX	FARNELL	317202	25		2.25	Cap thF 0603 50V 5%	0603
5 8		06035A102JA12A	AVX	FARNELL	31/202	5		2.20	2.25 Clap The UGU3 5UY 5%	0603
3 2	In- 220nF	VEUSDATUZUATIZA X7B.50V	Phicomo	FARMELL	31/202	2 2		1	2.20 Cap Inf. U6U3 OV 0X 1 Cap 220hF 0603 X7B 50V	0603
8 8	6.3V	X5R	MURATA	FARNELL	9522999	; =	-	3.1	Cap 4.7µF 0805 6.3V	0805
MOT	~	20.101/2	OMI	FARNELL	9632670	5	-	13	Bornier 1X2 24A	IMO2 5mm
LIN		20.101/3	OMI	FARNELL	9632689	2	-	1.75		IM03 5mm
ICE&ISP	ICE&ISP Header	M50-3600542		FARNELL	1022310	ю ,		3.1	AVR ICE ISP PIN Header 2X5	PIN Header 2x5 1.27mm
10	\$20	ATA6620	ATMEL	ATMEL	ATA6620	-		0		SO8
u2	8	ATmega88-15AZ	ATMEL	ATMEL	ATmega88-15AZ			0	0 ATMEGA88	GEN5X5-32 NO VIA
U3		OPA251UA	Burr-Brown	FARNELL	1097476	-	-	2.34	2.34 Ampli OP OP A251UA	SO8
E		BLM18TG102TN1D	MURATA	FARNELL	1115051	-	-	0.18	EMI Filter BLM18TG102	0603
F2 POOT	rG102	BLMI8TG102TNID	MURATA	FARNELL	1115051	- 9		0.18	EMI Filter BLM18TG102	0603
NISP	2mm V	M22-2010205		FARNELL	671915	2 9		112	112 Jump 2 Vert - 2mm	SIL2V2mm SIL2V2mm
		VKSC421JLFS	ITT CANNON	FARNELL	1201417	2	-	0.42	BP SPN0 CMS	BP SPNO
02	BZX84-C5V1	BZX84-C5V1	Philips	FARNELL	1081430	2	-	-	ZENER BZX84-C5V1	SOT23
		G8ND-212DC	OMRON	RADIOSPARE:		-	-	5.11	5.11 Relay-DPDT G8ND2 OMRON	G8ND2
g	Green	HSMG-C170	Agilent	FARNELL	5730852	a	-			LED CMS Agilent
58	MBR0540	MBR0540T1G		FARNELL	9556923	- 5				SOD123
2 62		RC21	Phicomp	FARNELL	9233504	8 8		* 18 17	14 THES UN USUS 19 Res 10K 0603 1%	0603
R10		RC21	Phycomp	FARNELL	9233504	50	-	1.9	1.9 Res 10K 0603 1%	0603
R19	10K	MC 0.063W 0603 1x 10K	MULTICOMP	FARNELL	9330399	50	-	1.4		0603
R22		MC 0.063W 0603 1× 10K	MULTICOMP	FARNELL	8330399	20	-	1.4	Res 10K 0603 1%	0603
R4		MC 0.063V 0603 1/ 10K	MULTICOMP	FARNELL	9330399	20		1.4	1.4 Res 10K 0603 1%	0603
B13	10K	MIC 0.063W 0603 1z 120K	MULTICOMP	FARNELL	9238735	20 50		1.4	Res 120K 0603 1%	0603
R14		MC 0.063W 0603 1x 120K	MULTICOMP	FARNELL	9238735	50	-	1.4		0603
R18		MC 0.063W 0603 1x 120K	MULTICOMP	FARNELL	9238735	50	-	1.4		0603
22	×	MC 0.063V 0603 1× 120K	MULTICOMP	FARNELL	9238735	20		1.4		0603
HIZ Die		MIC 0.063W 0603 17 IK		FARNELL CADACLI	9330380	8 9		1.4	Hes IK U6U3 1% Door to Dept 40	0603
B15	249K	MC 0.063W 0603 12 249K	MULTICOMP	FARNELL	1171024	8 23		<u>+</u> -		0603
R23		MC 0.063W 0603 1/2 249K	MULTICOMP	FARNELL	1171024	20	-	-	Res 249K 0603 1x	0603
R20			MULTICOMP	FARNELL	9330810	50	-	1.4		0603
R3	330R		Phycomp	FARNELL	9238425	20	-	2.17		0603
8			MULTICOMP	FARNELL	9238689	20		1.4	Res 47K 0603 1%	0603
¥ 8	47K	MIC 0.063W 0603 1X 47K	MULTICOMP	FARNELL	9331255 00010EE	8 9	- +	1.4	1.4 Res 47K 06031X	0603
R17		MIC 0.063W 0603 12 51K	MULTICOMP	FARNELL	3331200	20		14	Hes 4/K U6U3 IX Bas 51K 0603 12	0603
R21	UNT 5mR	DARSI-R005FI	Welwin	FARNELL	1200348	3 60		00		Current SHUNT
QI		SI2302ADS	VISHAY	FARNELL	8156689	5	1	3.55	3.55 SI2302ADS	SOT23-GSD
Q2	SI2302ADS	SI2302ADS	VISHAY	FARNELL	8156689	2	-	3.55	3.55 SI2302ADS	SOT23-GSD

7698A-AUTO-01/07

Figure 5-3. ATAVRAUTO200 assembly drawing

Atmel Corporation

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Regional Headquarters

Europe

Atmel Sarl Route des Arsenaux 41 Case Postale 80 CH-1705 Fribourg Switzerland Tel: (41) 26-426-5555 Fax: (41) 26-426-5500

Asia

Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Atmel Operations

Memory

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

Microcontrollers

2325 Orchard Parkway San Jose, CA 95131, USA Tel: 1(408) 441-0311 Fax: 1(408) 436-4314

La Chantrerie BP 70602 44306 Nantes Cedex 3, France Tel: (33) 2-40-18-18-18 Fax: (33) 2-40-18-19-60

ASIC/ASSP/Smart Cards

Zone Industrielle 13106 Rousset Cedex, France Tel: (33) 4-42-53-60-00 Fax: (33) 4-42-53-60-01

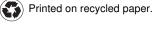
1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759

Scottish Enterprise Technology Park Maxwell Building East Kilbride G75 0QR, Scotland Tel: (44) 1355-803-000 Fax: (44) 1355-242-743

RF/Automotive

Theresienstrasse 2 Postfach 3535 74025 Heilbronn, Germany Tel: (49) 71-31-67-0 Fax: (49) 71-31-67-2340

1150 East Cheyenne Mtn. Blvd. Colorado Springs, CO 80906, USA Tel: 1(719) 576-3300 Fax: 1(719) 540-1759


Biometrics/Imaging/Hi-Rel MPU/

High Speed Converters/RF Datacom Avenue de Rochepleine BP 123 38521 Saint-Egreve Cedex, France Tel: (33) 4-76-58-30-00 Fax: (33) 4-76-58-34-80

Literature Requests www.atmel.com/literature

Disclaimer: Atmel Corporation makes no warranty for the use of its products, other than those expressly contained in the Company's standard warranty which is detailed in Atmel's Terms and Conditions located on the Company's web site. The Company assumes no responsibility for any errors which may appear in this document, reserves the right to change devices or specifications detailed herein at any time without notice, and does not make any commitment to update the information contained herein. No licenses to patents or other intellectual property of Atmel are granted by the Company in connection with the sale of Atmel products, expressly or by implication. Atmel's products are not authorized for use as critical components in life support devices or systems.

© 2007 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, Everywhere You Are®, AVR®, AVR®, AVR Studio® and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Windows® and others are registered trademarks or trademarks of Microsoft Corporation in the US and/or other countries. Other terms and product names may be trademarks of others.

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com