
Blue Coat SystemsTM

ProxySG Content Policy Language Guide

Content Policy Language Guide

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

2

Blue Coat Systems Inc. (408) 220-2200 Voice

650 Almanor Avenue (408) 220-2250 FAX

Sunnyvale, California 94086 (866) 302-2628

Technical Support (866) 362-2628

info@bluecoat.com www.bluecoat.com

Copyright (c) 2002, 2003 Blue Coat Systems, Inc. All rights reserved worldwide. No part of this document may
be reproduced by any means nor modified, decompiled, disassembled, published or distributed, in whole or in
part, or translated to any electronic medium or other means without the written consent of Blue Coat Systems,
Inc. Without Blue Coat Systems, Inc. consent, the Software may not be modified, reproduced (except to the
extent specifically allowed by local law), removed from the product on which it was installed, reverse
engineered, decompiled, disassembled, or derived source code. In addition to the above restrictions, the
Software may not be (i) published, distributed, rented, leased, sold, sublicensed, assigned or otherwise
transferred or any part thereof, (ii) used for competitive analysis or derivative works thereof or translated, (iii)
permitted application development use of the Software, (iv) used to publish or distribute the results of any
benchmark tests run on the Software without the express written permission of Blue Coat Systems, Inc., or (v)
removed or obscured of any Blue Coat Systems, Inc. or licensor copyrights, trademarks or other proprietary
notices or legends from any portion of the Software or any associated documentation. All right, title and interest
in and to the Software and documentation are and shall remain the exclusive property of Blue Coat Systems, Inc.
and its licensors. Blue Coat Systems, Inc. specifications and documentation are subject to change with notice.
Information contained in this document is believed to be accurate and reliable, however, Blue Coat Systems, Inc.
assumes no responsibility for its use. Blue Coat™, ProxySG™, CacheOS™, are trademarks of Blue Coat
Systems, Inc. and CacheFlow®, and Accelerating The Internet® are registered trademarks of Blue Coat
Systems, Inc. All other trademarks contained in this document and in the Software are the property of their
respective owners.

BLUE COAT SYSTEMS, INC. DISCLAIMS ALL WARRANTIES, CONDITIONS OR OTHER TERMS,
EXPRESS OR IMPLIED, STATUTORY OR OTHERWISE, ON SOFTWARE AND DOCUMENTATION
FURNISHED HEREUNDER INCLUDING WITHOUT LIMITATION THE WARRANTIES OF
DESIGN, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL BLUE COAT SYSTEMS, INC., ITS SUPPLIERS OR
ITS LICENSORS BE LIABLE FOR ANY DAMAGES, WHETHER ARISING IN TORT, CONTRACT
OR ANY OTHER LEGAL THEORY EVEN IF BLUE COAT SYSTEMS, INC. HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. The Software and all related technical information,
documents and materials are subject to export controls under the U.S. Export Administration
Regulations and the export regulations of other countries.

Printed in U.S.A.

Document Number: 231-02586

Document Revision: 3.1.2

Download from Www.Somanuals.com. All Manuals Search And Download.

Copyrights

3

THIRD PARTY COPYRIGHT NOTICES
Blue Coat Systems, Inc. Security Gateway Operating System (SGOS) version 3 utilizes third party software from various sources. Portions of this
software are copyrighted by their respective owners as indicated in the copyright notices below.

The following lists the copyright notices for:

BPF

Copyright (c) 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that: (1) source code distributions retain
the above copyright notice and this paragraph in its entirety, (2) distributions including binary code include the above copyright notice and this
paragraph in its entirety in the documentation or other materials provided with the distribution, and (3) all advertising materials mentioning
features or use of this software display the following acknowledgement:

This product includes software developed by the University of California, Lawrence Berkeley Laboratory and its contributors.

Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE.

DES

Software DES functions written 12 Dec 1986 by Phil Karn, KA9Q; large sections adapted from the 1977 public-domain program by Jim Gillogly.

EXPAT

Copyright (c) 1998, 1999, 2000 Thai Open Source Software Center Ltd.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"),
to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Finjan Software

Copyright (c) 2003 Finjan Software, Inc. All rights reserved.

Flowerfire

Copyright (c) 1996-2002 Greg Ferrar

ISODE

ISODE 8.0 NOTICE

Acquisition, use, and distribution of this module and related materials are subject to the restrictions of a license agreement. Consult the Preface in
the User's Manual for the full terms of this agreement.

4BSD/ISODE SMP NOTICE

Acquisition, use, and distribution of this module and related materials are subject to the restrictions given in the file SMP-READ-ME.

UNIX is a registered trademark in the US and other countries, licensed exclusively through X/Open Company Ltd.

MD5

RSA Data Security, Inc. MD5 Message-Digest Algorithm

Copyright (c) 1991-2, RSA Data Security, Inc. Created 1991. All rights reserved.

License to copy and use this software is granted provided that it is identified as the "RSA Data Security, Inc. MD5 Message-Digest Algorithm" in
all material mentioning or referencing this software or this function.

License is also granted to make and use derivative works provided that such works are identified as "derived from the RSA Data Security, Inc.
MD5 Message-Digest Algorithm" in all material mentioning or referencing the derived work.

RSA Data Security, Inc. makes no representations concerning either the merchantability of this software or the suitability of this software for any
particular purpose. It is provided "as is" without express or implied warranty of any kind.

THE BEER-WARE LICENSE" (Revision 42):

 <phk@FreeBSD.org <mailto:phk@FreeBSD.org>> wrote this file. As long as you retain this notice you can do whatever you want with this stuff. If
we meet some day, and you think this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp

Microsoft Windows Media Streaming

Copyright (c) 2003 Microsoft Corporation. All rights reserved.

OpenLDAP

Copyright (c) 1999-2001 The OpenLDAP Foundation, Redwood City, California, USA. All Rights Reserved. Permission to copy and distribute
verbatim copies of this document is granted.

http://www.openldap.org/software/release/license.html

The OpenLDAP Public License Version 2.7, 7 September 2001

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

4

Redistribution and use of this software and associated documentation ("Software"), with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain copyright statements and notices,

2. Redistributions in binary form must reproduce applicable copyright statements and notices, this list of conditions, and the following disclaimer
in the documentation and/or other materials provided with the distribution, and

3. Redistributions must contain a verbatim copy of this document.

The OpenLDAP Foundation may revise this license from time to time. Each revision is distinguished by a version number. You may use this
Software under terms of this license revision or under the terms of any subsequent revision of the license.

THIS SOFTWARE IS PROVIDED BY THE OPENLDAP FOUNDATION AND ITS CONTRIBUTORS ``AS IS'' AND ANY EXPRESSED OR
IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OPENLDAP FOUNDATION, ITS CONTRIBUTORS, OR THE
AUTHOR(S) OR OWNER(S) OF THE SOFTWARE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The names of the authors and copyright holders must not be used in advertising or otherwise to promote the sale, use or other dealing in this
Software without specific, written prior permission. Title to copyright in this Software shall at all times remain with copyright holders.

OpenLDAP is a registered trademark of the OpenLDAP Foundation.

OpenSSH

Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland. All rights reserved

This file is part of the OpenSSH software.

The licences which components of this software fall under are as follows. First, we will summarize and say that all components are under a BSD
licence, or a licence more free than that.

OpenSSH contains no GPL code.

1) As far as I am concerned, the code I have written for this software can be used freely for any purpose. Any derived versions of this software
must be clearly marked as such, and if the derived work is incompatible with the protocol description in the RFC file, it must be called by a name
other than "ssh" or "Secure Shell".

[Tatu continues]

 However, I am not implying to give any licenses to any patents or copyrights held by third parties, and the software includes parts that are not
under my direct control. As far as I know, all included source code is used in accordance with the relevant license agreements and can be used
freely for any purpose (the GNU license being the most restrictive); see below for details.

[However, none of that term is relevant at this point in time. All of these restrictively licenced software components which he talks about have
been removed from OpenSSH, i.e.,

- RSA is no longer included, found in the OpenSSL library

- IDEA is no longer included, its use is deprecated

- DES is now external, in the OpenSSL library

- GMP is no longer used, and instead we call BN code from OpenSSL

- Zlib is now external, in a library

- The make-ssh-known-hosts script is no longer included

- TSS has been removed

- MD5 is now external, in the OpenSSL library

- RC4 support has been replaced with ARC4 support from OpenSSL

- Blowfish is now external, in the OpenSSL library

[The licence continues]

Note that any information and cryptographic algorithms used in this software are publicly available on the Internet and at any major bookstore,
scientific library, and patent office worldwide. More information can be found e.g. at "http://www.cs.hut.fi/crypto".

The legal status of this program is some combination of all these permissions and restrictions. Use only at your own responsibility. You will be
responsible for any legal consequences yourself; I am not making any claims whether possessing or using this is legal or not in your country, and
I am not taking any responsibility on your behalf.

 NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT
PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER
PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. IN NO EVENT UNLESS REQUIRED BY APPLICABLE
LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR

Download from Www.Somanuals.com. All Manuals Search And Download.

Copyrights

5

A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

2) The 32-bit CRC compensation attack detector in deattack.c was contributed by CORE SDI S.A. under a BSD-style license.

Cryptographic attack detector for ssh - source code

Copyright (c) 1998 CORE SDI S.A., Buenos Aires, Argentina. All rights reserved. Redistribution and use in source and binary forms, with or
without modification, are permitted provided that this copyright notice is retained. THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY
EXPRESS OR IMPLIED WARRANTIES ARE DISCLAIMED. IN NO EVENT SHALL CORE SDI S.A. BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR MISUSE OF THIS SOFTWARE.

Ariel Futoransky <futo@core-sdi.com> <http://www.core-sdi.com>

3) ssh-keygen was contributed by David Mazieres under a BSD-style license.

Copyright 1995, 1996 by David Mazieres <dm@lcs.mit.edu>. Modification and redistribution in source and binary forms is permitted provided
that due credit is given to the author and the OpenBSD project by leaving this copyright notice intact.

4) The Rijndael implementation by Vincent Rijmen, Antoon Bosselaers and Paulo Barreto is in the public domain and distributed with the
following license:

@version 3.0 (December 2000)

Optimised ANSI C code for the Rijndael cipher (now AES)

@author Vincent Rijmen <vincent.rijmen@esat.kuleuven.ac.be>

@author Antoon Bosselaers <antoon.bosselaers@esat.kuleuven.ac.be>

@author Paulo Barreto <paulo.barreto@terra.com.br>

This code is hereby placed in the public domain.

THIS SOFTWARE IS PROVIDED BY THE AUTHORS ''AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

5) One component of the ssh source code is under a 3-clause BSD license, held by the University of California, since we pulled these parts from
original Berkeley code.

Copyright (c) 1983, 1990, 1992, 1993, 1995

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

6) Remaining components of the software are provided under a standard 2-term BSD licence with the following names as copyright holders:

Markus Friedl

Theo de Raadt

Niels Provos

Dug Song

Aaron Campbell

Damien Miller

Kevin Steves

Daniel Kouril

Wesley Griffin

Per Allansson

Nils Nordman

Simon Wilkinson

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

6

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

OpenSSL

Copyright (c) 1995-1998 Eric Young (eay@cryptsoft.com). All rights reserved.

http://www.openssl.org/about/

http://www.openssl.org/about/

OpenSSL is based on the excellent SSLeay library developed by Eric A. Young <mailto:eay@cryptsoft.com> and Tim J. Hudson
<mailto:tjh@cryptsoft.com>.

The OpenSSL toolkit is licensed under a Apache-style license which basically means that you are free to get and use it for commercial and
non-commercial purposes.

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com). The implementation was written so as to conform with
Netscapes SSL.

This library is free for commercial and non-commercial use as long as the following conditions are adhered to. The following conditions apply to
all code found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the SSL code. The SSL documentation included with this
distribution is covered by the same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are not to be removed. If this package is used in a product, Eric
Young should be given attribution as the author of the parts of the library used. This can be in the form of a textual message at program startup or
in documentation (online or textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement: "This product includes
cryptographic software written by Eric Young (eay@cryptsoft.com)" The word 'cryptographic' can be left out if the routines from the library being
used are not cryptographic related :-).

4. If you include any Windows specific code (or a derivative thereof) from the apps directory (application code) you must include an
acknowledgement: "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN
NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The license and distribution terms for any publicly available version or derivative of this code cannot be changed. i.e. this code cannot simply be
copied and put under another distribution license [including the GNU Public License.]

Copyright (c) 1998-2002 The OpenSSL Project. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgment:

 "This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit. (http://www.openssl.org/)"

4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to endorse or promote products derived from this software without
prior written permission. For written permission, please contact openssl-core@openssl.org.

5. Products derived from this software may not be called "OpenSSL" nor may "OpenSSL" appear in their names without prior written permission
of the OpenSSL Project.

6. Redistributions of any form whatsoever must retain the following acknowledgment: "This product includes software developed by the
OpenSSL Project for use in the OpenSSL Toolkit (http://www.openssl.org/)"

THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT
NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Download from Www.Somanuals.com. All Manuals Search And Download.

Copyrights

7

This product includes cryptographic software written by Eric Young (eay@cryptsoft.com). This product includes software written by Tim Hudson
(tjh@cryptsoft.com).

PCRE

Copyright (c) 1997-2001 University of Cambridge

University of Cambridge Computing Service, Cambridge, England. Phone: +44 1223 334714.

Written by: Philip Hazel <ph10@cam.ac.uk>

Permission is granted to anyone to use this software for any purpose on any computer system, and to redistribute it freely, subject to the following
restrictions:

1. This software is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

2. Regular expression support is provided by the PCRE library package, which is open source software, written by Philip Hazel, and copyright by
the University of Cambridge, England.

ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre/

PHAOS SSLava and SSLavaThin

Copyright (c) 1996-2003 Phaos Technology Corporation. All Rights Reserved.
The software contains commercially valuable proprietary products of Phaos which have been secretly developed by Phaos, the design and
development of which have involved expenditure of substantial amounts of money and the use of skilled development experts over substantial
periods of time. The software and any portions or copies thereof shall at all times remain the property of Phaos.

PHAOS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION THE IMPLIED WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, REGARDING THE SOFTWARE, OR ITS USE AND OPERATION ALONE
OR IN COMBINATION WITH ANY OTHER SOFTWARE.

PHAOS SHALL NOT BE LIABLE TO THE OTHER OR ANY OTHER PERSON CLAIMING DAMAGES AS A RESULT OF THE USE OF ANY
PRODUCT OR SOFTWARE FOR ANY DAMAGES WHATSOEVER. IN NO EVENT WILL PHAOS BE LIABLE FOR SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES, EVEN IF ADVISED OF THE POSSIBLITY OF SUCH DAMAGES.

RealSystem

The RealNetworks® RealProxy™ Server is included under license from RealNetworks, Inc. Copyright 1996-1999, RealNetworks, Inc. All rights
reserved.

SNMP

Copyright (C) 1992-2001 by SNMP Research, Incorporated.

This software is furnished under a license and may be used and copied only in accordance with the terms of such license and with the inclusion of
the above copyright notice. This software or any other copies thereof may not be provided or otherwise made available to any other person. No
title to and ownership of the software is hereby transferred. The information in this software is subject to change without notice and should not be
construed as a commitment by SNMP Research, Incorporated.

Restricted Rights Legend:

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data
and Computer Software clause at DFARS 252.227-7013; subparagraphs (c)(4) and (d) of the Commercial Computer Software-Restricted Rights
Clause, FAR 52.227-19; and in similar clauses in the NASA FAR Supplement and other corresponding governmental regulations.

PROPRIETARY NOTICE

This software is an unpublished work subject to a confidentiality agreement and is protected by copyright and trade secret law. Unauthorized
copying, redistribution or other use of this work is prohibited. The above notice of copyright on this source code product does not indicate any
actual or intended publication of such source code.

STLport

Copyright (c) 1999, 2000 Boris Fomitchev

This material is provided "as is", with absolutely no warranty expressed or implied. Any use is at your own risk.
Permission to use or copy this software for any purpose is hereby granted without fee, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is granted, provided the above notices are retained, and a notice that the code was
modified is included with the above copyright notice.

The code has been modified.

Copyright (c) 1994 Hewlett-Packard Company

Copyright (c) 1996-1999 Silicon Graphics Computer Systems, Inc.

Copyright (c) 1997 Moscow Center for SPARC Technology

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided
that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting
documentation. Hewlett-Packard Company makes no representations about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided
that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting
documentation. Silicon Graphics makes no representations about the suitability of this software for any purpose. It is provided "as is" without
express or implied warranty.

Permission to use, copy, modify, distribute and sell this software and its documentation for any purpose is hereby granted without fee, provided
that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

8

documentation. Moscow Center for SPARC Technology makes no representations about the suitability of this software for any purpose. It is
provided "as is" without express or implied warranty.

SmartFilter

Copyright (c) 2003 Secure Computing Corporation. All rights reserved.

SurfControl

Copyright (c) 2003 SurfControl, Inc. All rights reserved.

Symantec AntiVirus Scan Engine

Copyright (c) 2003 Symantec Corporation. All rights reserved.

TCPIP

Some of the files in this project were derived from the 4.X BSD (Berkeley Software Distribution) source.

Their copyright header follows:

Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995

The Regents of the University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must display the following acknowledgement:

This product includes software developed by the University of California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Trend Micro

Copyright (c) 1989-2003 Trend Micro, Inc. All rights reserved.

zlib

Copyright (c) 2003 by the Open Source Initiative

This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising
from the use of this software.

Download from Www.Somanuals.com. All Manuals Search And Download.

Preface: Introducing the Content Policy Language

The Content Policy Language (CPL) is a powerful, flexible language that enables you to specify a variety
of Web-access policies. ProxySG policy is written in CPL, and every Web request is evaluated based on
the installed policy. The language is designed so that policies can be customized to an organization’s
specific set of users and unique enforcement needs.

CPL uses the settings created when you configured the ProxySG to your specifications.

CPL has the following capabilities:

• Fine-grained control over various aspects of ProxySG behavior.

• Layered policy, allowing for multiple policy decisions for each request.

• Multiple actions triggered by a particular condition.

• Flexibility of user-defined conditions and actions.

• Convenience of predefined common actions and transformations.

• Authentication-aware policy, including user and group configuration.

• Support for multiple authentication realms.

• Configurable policy event logging.

• Built-in debugging.

About the Document Organization
This document is organized for easy reference, and is divided into the following sections and chapters:

Table 2.1: Manual Organization

Chapter 1 – Overview of Content Policy
Language

This chapter provides an overview of CPL, including concepts, CPL
basics, writing and troubleshooting policy and upgrade/downgrade
issues.

Chapter 2 – Managing CPL Building upon Chapter 1, this chapter discusses understanding
transactions, timing, layers, and sections, defining policies, and best
practices.

Chapter 3 – Conditions This reference guide contains the list of conditions that are supported
by CPL and provides an explanation for the usage.

Chapter 4 – Properties This reference guide contains the list of properties that are supported
by CPL and provides an explanation for the usage.

Chapter 5 – Actions This reference guide contains the list of actions that are supported by
CPL and provides an explanation for the usage.

Chapter 6 – Definitions This reference guide contains the list of definitions that are
supported by CPL and provides an explanation for the usage.

Appendix A – Glossary Terms used in this manual are defined in this appendix.

Appendix B – Troubleshooting Using policy trace properties is explained in this appendix.

Appendix C – Recognized HTTP Headers This appendix lists all recognized HTTP 1.1 headers and
indicates how the ProxySG interacts with them.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

x

Supported Browsers
The ProxySG Management Console supports Microsoft® Internet Explorer 5 and 6, and Netscape®
Communicator 4.78, 6.2, and 7.1.

The Management Console uses the Java Runtime Environment. All browsers come with a default,
built-in JRE, and you should use this default JRE rather than an independent JRE version downloaded
from Sun® Microsystems.

Related Blue Coat Documentation
Blue Coat 6000 and 7000 Installation Guide

Blue Coat 400 Series Installation Guide

Blue Coat 800 Series Installation Guidel

ProxySG Command Line Interface Reference

Document Conventions
The following section lists the typographical and Command Line Interface (CLI) syntax conventions
used in this manual.

Appendix D – CPL Substitutions This appendix lists all substitution variables available in CPL.

Appendix E – Filter File Syntax This appendix provides a summary of the syntax and
evaluation order used in CacheOS version 4.x filter files.

Appendix F – Upgrading from CacheOS
4.x

If you upgrade from CacheOS 4.x, you need to be aware of the
concerns and issues that affect a policy upgrade to SGOS 3.x.

Table 2.2: Typographic Conventions

Conventions Definition

Italics The first use of a new or Blue Coat-proprietary term.

Courier font Command line text that appears on your administrator workstation.

Courier Italics A command line variable that is to be substituted with a literal name or value
pertaining to the appropriate facet of your network system.

Courier Boldface A ProxySG literal to be entered as shown.

{ } One of the parameters enclosed within the braces must be supplied

[] An optional parameter or parameters.

| Either the parameter before or after the pipe character can or must be selected, but
not both. To more clearly indicate that only one can be chosen, no spaces are put
between the pipe and the options.

Table 2.1: Manual Organization (Continued)

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

Preface: Introducing the Content Policy Language
About the Document Organization ...ix
Supported Browsers...ix
Related Blue Coat Documentation..x
Document Conventions..x

Chapter 1: Overview of Content Policy Language
Concepts ...19

Transactions...19
Policy Model..20
Role of CPL ..21

CPL Language Basics..21
Comments ..21
Rules ...21
Notes...22
Quoting ..23
Layers ...24
Sections...24
Definitions..25
Referential Integrity..26
Substitutions ..27

Writing Policy Using CPL..27
Authentication and Denial ..28
Installing Policy...29
CPL General Use Characters and Formatting ..29

Troubleshooting Policy...30
Upgrade/Downgrade Issues...30

CPL Syntax Deprecations ..30
Conditional Compilation...31

Chapter 2: Managing Content Policy Language
Understanding Transactions and Timing..33

Administrator Transactions ..33
Proxy Transactions ...33
Cache Transactions...35
Forwarding Transactions...36
Timing ..36

Understanding Layers ..37
<Admin> Layers ...37
<Cache> Layers...38
<Exception> Layers ..39

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

xii

<Forward> Layers.. 39
<Proxy> Layers... 40
Layer Guards... 40
Timing .. 41

Understanding Sections ... 41
[Rule] .. 42
... [url]43
[url.domain] .. 43
[url.regex] .. 43
[server_url.domain].. 43
Section Guards .. 44

Defining Policies.. 44
Blacklists and Whitelists.. 45
General Rules and Exceptions to a General Rule .. 45

Best Practices.. 48

Chapter 3: Condition Reference
Condition Syntax... 49
Pattern Types ... 50
Unavailable Triggers .. 51

Layer Type Restrictions ... 51
Global Restrictions ... 51

Condition Reference ... 51
acl=.. 52
admin.access= ... 53
attribute.name=... 54
authenticated= .. 56
bitrate= ... 57
category= ... 59
client.address= .. 60
client.protocol= ... 61
condition=.. 62
console_access= .. 64
content_admin=.. 65
content_management... 66
date[.utc]=.. 67
day=.. 68
exception.id=... 69
ftp.method=... 71
group=.. 72
has_attribute.name=... 74
has_client=... 76
hour= .. 77

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

xiii

http.method= .. 79
http.request.version= ... 80
http.response.code= ... 81
http.response.version= .. 82
http.transparent_authentication= .. 83
http.x_method= .. 84
im.buddy_id= ... 85
im.chat_room.conference=.. 86
im.chat_room.id= ... 87
im.chat_room.invite_only=... 88
im.chat_room.type= ... 89
im.chat_room.member= .. 90
im.chat_room.voice_enabled=.. 91
im.file.extension= ... 92
im.file.name= .. 93
im.file.path= .. 94
im.file.size= ... 95
im.message.opcode=.. 96
im.message.route= ... 97
im.message.size= .. 98
im.message.text= .. 99
im.message.type= ... 100
im.method= ... 101
im.user_id=.. 102
live= .. 103
method=... 104
minute=.. 106
month=... 107
protocol=.. 108
proxy.address= ... 109
proxy.card= ... 110
proxy.port=.. 111
realm= .. 112
release.id=.. 114
release.version= .. 115
request.header.header_name= ... 116
request.header.header_name.address=... 117
request.header.Referer.url= .. 118
request.x_header.header_name= ... 121
request.x_header.header_name.address= .. 122
response.header.header_name=... 123
response.x_header.header_name=... 124

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

xiv

server_url= .. 125
socks=... 128
socks.accelerated= ... 129
socks.method= .. 130
socks.version=... 131
streaming.client= .. 132
streaming.content=... 133
time=... 134
tunneled=... 136
url= ... 137
user=... 144
user.domain= .. 146
user.x509.issuer= .. 147
user.x509.serialNumber= .. 148
user.x509.subject=... 149
weekday= .. 150
year=... 151

Chapter 4: Property Reference
Property Reference.. 153

access_log()... 154
access_server() ... 155
action() .. 156
advertisement() ... 157
allow ... 158
always_verify() ... 159
authenticate().. 160
authenticate.force() ... 162
authenticate.mode() .. 163
authenticate.use_url_cookie() .. 165
block_category()... 166
bypass_cache() .. 167
cache() .. 168
check_authorization() ... 170
content_filter_override()... 171
cookie_sensitive() ... 172
delete_on_abandonment().. 173
deny() .. 174
deny.unauthorized() ... 175
direct() .. 176
dynamic_bypass().. 177
exception() .. 178
exception.autopad() .. 179

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

xv

force_cache() .. 180
force_deny().. 181
force_exception() ... 182
force_patience_page() ... 183
forward()... 184
forward.fail_open() ... 185
ftp.server_connection() ... 186
ftp.server_data()... 187
ftp.transport() ... 188
http.force_ntlm_for_server_auth().. 189
http.request.version().. 190
http.response.version() .. 191
icp() .. 192
im.strip_attachments() ... 193
integrate_new_hosts()... 194
label() .. 195
log.rewrite.field-id() .. 196
log.suppress.field-id() ... 197
max_bitrate() .. 198
never_refresh_before_expiry() .. 199
never_serve_after_expiry() .. 200
patience_page() .. 201
pipeline() .. 202
prefetch()... 203
reflect_ip() .. 204
reflect_vip() .. 205
refresh() .. 206
remove_IMS_from_GET() .. 207
remove_PNC_from_GET()... 208
remove_reload_from_IE_GET() .. 209
request.filter_service() .. 210
request.icap_service() ... 212
response.icap_service() .. 213
service() .. 214
socks.accelerate() ... 215
socks.authenticate() ... 216
socks.authenticate.force() ... 217
socks_gateway()... 218
socks_gateway.fail_open() ... 219
streaming.transport() .. 220
terminate_connection() ... 221
trace.destination() ... 222

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

xvi

trace.request() .. 223
trace.rules() .. 224
ttl() ... 225
ua_sensitive() .. 226

Chapter 5: Action Reference
Argument Syntax .. 227
Action Reference ... 227

append() ... 228
delete() .. 229
delete_matching() ... 230
im.alert().. 231
log_message() .. 232
notify_email() .. 233
notify_snmp() .. 234
redirect() ... 235
replace()... 236
rewrite() .. 237
set() .. 240
transform ... 242
virus_check() .. 244

Chapter 6: Definition Reference
Definition Names .. 245

define action .. 246
define active_content ... 248
define category.. 250
define condition .. 252
define domain condition ... 254
define javascript.. 255
define prefix condition .. 257
define server_url.domain condition .. 258
define subnet ... 260
define url condition.. 261
define url.domain condition ... 263
define url_rewrite... 265
restrict dns ... 267
restrict rdns.. 268
transform active_content... 269
transform url_rewrite .. 270

Appendix A: Glossary

Download from Www.Somanuals.com. All Manuals Search And Download.

Contents

xvii

Appendix B: Testing and Troubleshooting
Enabling Rule Tracing ... 275
Enabling Request Tracing ... 276
Using Trace Information to Improve Policies .. 276

Appendix C: Recognized HTTP Headers

Appendix D: CPL Substitutions

Appendix E: Filter File Syntax
Filter File Overview .. 299
Filter File Structure ... 299

Filter-Part Components ... 300
Action-Part Components... 305
Evaluation Order .. 306

Appendix F: Upgrading from CacheOS

Index

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

xviii

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

The Content Policy Language (CPL) is a programming language with its own concepts and rules that
you must follow.

This chapter provides an overview of CPL, including the following topics:

• "Concepts"

• "CPL Language Basics"

• "Writing Policy Using CPL"

• "Troubleshooting Policy"

• "Upgrade/Downgrade Issues"

Concepts
The term policy, as used here, refers to configuration values and rules applied to render decisions on
authentication requirements, access rights, quality of service, or content transformations (including
rewrites and off-box services that should be used to process the request or response). Often, the policy
references system configuration for the default values for some settings and then evaluates rules to see
if those settings should be overridden.

CPL is a language for specifying the policy rules for the ProxySG. Primarily, it controls the following:

• User Authentication requirements

• Access to Web-related resources

• Cache content

• Various aspects of request and response processing

• Access logging

You can create policy rules using either the Visual Policy Manager (VPM), which is accessible through
the Management Console, or by composing CPL.

Before reading sample CPL or trying to express your own policies in CPL, Blue Coat recommends that
you understand the fundamental concepts underlying policy enforcement in the ProxySG appliances.
This section provides an overview of important concepts.

Transactions

In the CPL context, a transaction is the encapsulation of a request for service and any associated
response for the purposes of policy evaluation and enforcement. In most cases, a transaction is created
for each unique request for service, and the transaction exists for the time taken to process the request
and deliver the response.

The transaction serves the following purposes:

• Exposes request and response state for testing during policy evaluation.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

20

This provides the ability to test various aspects of a request, such as the IP address of the client
and the URL used, or the response, such as the contents of any HTTP headers.

• Ensures policy integrity during processing.

The lifetime of a transaction may be relatively long, especially if a large object is being fetched
over slow networks and subjected to off-box processing services such as content filtering and
virus scanning. During this time, changes to configuration or policy rules may occur, which
would result in altering the policy decisions that affect a transaction. If a request was evaluated
against one version of policy, and some time later the associated response were evaluated against
a different version of policy, the outcome would be unpredictable and possibly inconsistent.

The transaction ensures that both the request and the response are evaluated against the version
of policy that was current when the transaction was created. To ensure that new policy is
respected, long lived transactions such as those involved in streaming, or large file downloads, are
re-evaluated under new policy. Re-evaluation applies to both the request and response, and any
resulting new decisions that cannot be honoured (such as new authentication requirements) result
in transaction termination.

• Maintains policy decisions relevant to request and response processing.

• Various types of transactions are used to support the different policy evaluation requirements of
the individual protocols: administrator, cache, and proxy transactions.

• In a few special cases, two or more transactions can be created for a single request. For example, if
an HTTP request is made via the SOCKS proxy (on port 1080 of the ProxySG), then it is possible
for two transactions to be created: a SOCKS proxy transaction, and an HTTP proxy transaction.
You can see these transactions for yourself if you turn on policy tracing. A new entry is added to
the policy trace file for each transaction.

Policy Model

Each transaction begins with a default set of decisions, many of which are taken from configuration of
the system. These defaults include such things as forwarding hosts or SOCKS gateways. The most
important default decision affects whether or not requests should be allowed or denied. The defaults
for the various transaction types are:

• Administrator Transaction— the default is to deny requests.

By default, administration is only available through one of the methods that bypasses policy
evaluation. These are:

❐ accessing the CLI through the serial console

❐ accessing the CLI through RSA authenticated SSH

❐ logging into the Management Console or CLI using the console credentials

Specific rights must be granted through policy to enable other administration methods.

• Cache Transactions—the default is to allow requests.

These requests originate from the ProxySG itself, and are used primarily to maintain the state of
content. Additional policy can be added to specifically deny requests for specific content, and to
distinguish content management requests from other cache transactions.

• Proxy Transactions—the default is taken from system configuration.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

21

For new ProxySG appliances, the default is to deny all requests. For ProxySG appliances being
upgraded from 4.x, the default is to allow all requests. In either case, the ProxySG can be
configured for either default. The default setting is displayed in policy listings.

The proper approach to writing <proxy> layer policy depends on whether or not the default is to
allow or deny requests. The default proxy policy is configurable and represents the starting point for
writing policy to control proxy transactions. The default proxy policy is reported at the top of every
policy listing generated by the ProxySG.

; Default proxy policy is DENY

That line in a policy listing is a CPL comment, defining the starting point for proxy policy.

Role of CPL

CPL is the language used to express policy that depends on the runtime evaluation of each
transaction. Policy is written in CPL, installed on the ProxySG, and is evaluated during request
processing to override any default decisions taken from configuration.

CPL Language Basics
The following sections provide an overview of the CPL language. In order to concentrate on higher
level themes, CPL elements are informally introduced and discussed. Detailed specifications for each
of these elements is left to the reference portion of this manual.

Comments

Any line starting with ‘;’ is a comment.

A semicolon (;) following a space or tab introduces a comment that extends to the end of the line
(except where the semicolon appears inside quotes as part of a trigger pattern expression or property
setting).

For example:

; This is a comment.

Comments can appear anywhere in policy.

Rules

A policy rule consists of a condition and some number of property settings, written in any order. Rules
are generally written on a single line, but can be split across lines using a special line continuation
character. When a rule is evaluated, the condition is tested for that particular transaction. If the
condition evaluates to True, then all of the listed property settings are executed and evaluation of the
current layer ends. The rule is said to match. If the condition evaluates to False for that transaction, it is
said to miss.

In turn, a condition is a boolean combination of trigger expressions. Triggers are individual tests that
can be made against components of the request (url=), response (response.header.Content-Type=),
related user (user=, group=), or system state (time=).

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

22

With a few notable exceptions, triggers test one aspect of request, response, or associated state against
a boolean expression of values.

For the conditions in a rule, each of the triggers is logically anded together. In other words, the
condition is only true if each one of the trigger expressions is true.

Properties are settings that control transaction processing, such as deny, or the handling of the object,
such as cache(no), indicating that the object is not to be cached locally. At the beginning of a
transaction, all properties are set to their default values. As the policy is evaluated in sequence, rules
that match might set a property to a particular value. A property retains the final value setting when
evaluation ends, and the transaction is processed accordingly. Properties that are not set within the
policy maintain their default values.

The logical form of a policy rule could be expressed as:

if condition is true then set all listed properties as specified

The following is an example of a simple policy rule:

url.domain=example.com time=0900..1700 exception(policy_denied)

It states that the exception() property is set to policy_denied if both of the following triggers test
true:

• The request is made for a page from the domain example.com

• The request is made between 9 a.m. and 5 p.m.

Notes
• CPL triggers have the form trigger_name=pattern_expression

• CPL properties have the form property_name(setting), except for a few imperative gestures
such as allow and deny.

• The text in policy rules is case-insensitive, with a few exceptions identified in the following
chapters.

• Policy listings are normalized in several ways. First, condition and action definitions which may
appear anywhere in the source, will be grouped following the policy rules. Second, the order of
the conditions and properties on a rule may change, since the CPL compiler always puts a deny or
allow at the beginning of the rule, and orders conditions to optimize evaluation. Finally, several
phrases are synonyms for phrases that are preferred. In the output of show policy, the preferred
form is listed instead of the synonym.

Four such synonyms are:

❐ exception(authorization_failed), which is a synonym for the preferred
deny.unauthorized

❐ force_exception(authorization_failed), which is a synonym for the preferred
force_deny.unauthorized

❐ exception(policy_denied), which is a synonym for the preferred deny

❐ exception(no), which is a synonym for the preferred allow.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

23

• More complex boolean expressions are allowed for the pattern_expression in the triggers. For
example, the second part of the condition in the simple rule shown above could be “the request is
made between 9 a.m. and noon or between 1 p.m. and 5 p.m”, expressed as:

... time=(0900..1200 || 1300..1700) ...

Boolean expression are built from the specific values allowed with the trigger, and the boolean
operators ! (not), && (and), || (or) and () for grouping. More details are found in the Trigger
Reference chapter. Alternative values may also be separated by a comma—this is often more
readable than using the ‘||’ operator. For example, the following rule will deny service to requests
for pages in either one of the two domains listed.

url.domain=(example.com, another.com) deny

• Long lines can be split using ‘\’ as a line continuation character. The ‘\’ must be the last character
on the line and be preceded by space or Tab. For example:

url.domain=example.com time=0900..1700 \
deny

Do not use a semicolon to add comments within such a continued line: everything following the
semicolon, including text on the continued lines, will be treated as part of the comment. For
example:

url.domain=example.com \ ; missplaced comment
deny

becomes

url.domain=example.com ; missplaced comment deny

In other words, the effect was to continue the comment.

Quoting

Certain characters are considered special by CPL and have meaning as punctuation elements of the
language. For example = (equal) separates a trigger name from its associated value, and blank space
separates expressions in a rule. To use a value that contains one of these characters, the value must be
quoted with either single (') or double (") quotation marks, so that the special characters are not
interpreted as punctuation. Text within single quotation marks can include any character other than a
single quotation mark. Text within double quotation marks can include any character other than a
double quotation mark. Here are some examples of where quoting is necessary:

user="John Doe" ; value contains a space

url="www.example.com/script.cgi?param=value" ; value contains ‘=’

deny("You don’t have access to that page!") ; several special chars

The full list of characters that should be quoted when they appear can be found in the reference
manual. Note that you can quote any string in CPL without affecting interpretation, even if the quotes
are not strictly needed. For convenience, you can quote any value that consists of more than letters
and/or numbers.

user="john.doe" ; quotes not required, but can be used

Important: Within a define action or define url_rewrite statement, you must use double
quotes ("), not single quotes (') to delimit a string.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

24

Layers

A policy layer is a CPL construct used to evaluate a set of rules and reach one decision. Separating
decisions helps control policy complexity, and is done through writing each decision in a separate
layer. Each layer has the form:

<layer_type [label]> [layer_condition][layer_properties] ...

layer_content

where:

• The layer_type defines the transactions evaluated against this policy, and restricts the triggers
and properties allowed in the rules used in the layer. See the following Layer Types section.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier (see
section Chapter 2), basically an alphabetic character followed by alphanumeric or underscore
characters.

• The optional layer_condition is a list of triggers, all of which must evaluate to true before the
layer content is evaluated.

• The optional layer_properties is a list of properties that will become the default settings for
those properties for any rule matched in the layer. These can be overridden by explicitly setting a
different value for that property in a specific rule within the layer.

• The layer_content is a list of rules, possibly organized in sections. (see following). A layer must
contain at least one rule.

Collectively, the layer_condition and layer_properties are often referred to as a layer guard expression.

If a rule has the logical form “if (condition is true) then set properties”, a layer has the form:

if (layer_condition is true) then
 {
 if (rule1_condition is true) then

set layer_properties then set rule1 properties
 else if (rule2_condition is true) then

set layer_properties then set rule2 properties
 else if (rule3_condition is true) then

set layer_properties then set rule3 properties
 ...
 }

Within a layer, the first rule that matches terminates evaluation of that layer.

Layers within a policy are evaluated from top to bottom, with rules in later layers taking precedence
over rules in earlier layers.

In CPL, all policy rules are written in a layer. A rule cannot appear in policy preceding any layer
header.

Sections

The rules in layers can optionally be organized in one or more sections, which is a way of grouping
rules together. A section consists of a section header followed by a list of rules.

A section has the form:

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

25

[section_type [label]] [section_condition][section_properties]

section_content

where:

• The section_type defines the syntax of the rules used in the section, and the evaluation strategy
used to evaluate those rules. The square brackets [] surrounding the section name (and optional
label) are required.

• The optional label, separated from the section type by space, is a CPL User-defined Identifier
similar to a layer label.

• The optional section_condition is a list of triggers, all of which must evaluate to true before the
section content is evaluated.

• The optional section_properties is a list of properties that will become the default settings for
those properties for any rule matched in the section. These override any layer property defaults
and can in turn be overridden by explicitly setting a different value for that property in a rule
within the section.

• The section_content is a list of rules. A section must contain at least one rule.

Collectively, the section_condition and section_properties are often referred to as a section guard
expression.

A layer with sections has the logical form:

if (layer_condition is true) then
 {
 if (section1_condition is true then
 {
 if (rule1A_condition is true) then
 set layer_properties then section_properties then rule1A properties
 else if (rule1B_condition is true) then
 set layer_properties then section_properties then set rule1B
properties

 }
 else if (section2_condition is true then
 {
 if (rule2A_condition is true) then
 set layer_properties then section_properties then rule2A properties
 else ...
 }
 ...
 }

Definitions

Two types of definitions are used in CPL:

• Named definitions that are explicitly referenced by policy

• Anonymous definitions that apply to all policy evaluation and are not referenced directly in rules.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

26

Named Definitions

There are various types of named definitions. Each definition is given a user defined name that is then
used in rules to refer to the definition. This section highlights a few of the definition types, as an
overview of the topic. Refer to the Definitions reference chapter for more details.

Subnet Definitions

Subnet definitions are used to define a list of IP addresses or IP subnet masks that can be used to test
any of the IP addresses associated with the transaction, for example, the client’s address or the
request’s destination address.

Condition Definitions

Condition definitions can include any triggers that are legal in the layer referencing the condition. The
condition= trigger is the exception to the rule that triggers can test only one aspect of a transaction.
Since conditions definitions can include other triggers, condition= triggers can test multiple parts of
the transaction state. Also, condition definitions allow for arbitrary boolean combinations of trigger
expressions.

Category Definitions

Category definitions are used to extend vendor content categories or to create your own. These
categories are tested (along with any vendor defined categories) using the category= trigger.

Action Definitions

An action takes arguments and is wrapped in a named action definition block. Actions are turned on
or off for a transaction through setting the action() property. The action property has syntax that
allows for individual actions to be turned on and off independently. When the action definition is
turned on, any actions it contains operate on their respective arguments.

Transformer Definitions

A transformer definition is a kind of named definition that specifies a transformation that is to be
applied to an HTTP response. There are three types: url_rewrite definitions, active_content
definitions, and javascript definitions.

Anonymous Definitions

Two types of anonymous definitions modify policy evaluation, but are not referenced by any rules.
These definitions serve to restrict DNS and Reverse-DNS lookups and are useful in installations
where access to DNS or Reverse-DNS resolution is limited or problematic.

Referential Integrity

Policy references many objects defined in system configuration, such as authentication realms,
forward hosts, SOCKS gateways, and the like. CPL enforces the integrity of those references by
ensuring that the entities named in policy exist and have appropriate characteristics at the time the
policy is compiled. During runtime, any attempts to remove a configured object that is referenced by
currently active policy will fail.

To remove a configured entity, such as a realm, that is referenced by policy, new policy must be
installed with all references to that realm removed. New transactions will open against a version of

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

27

policy that does not require the realm. Once all outstanding transactions that required reference to the
realm have completed, the realm can be removed from configuration.

Substitutions

The actions used to rewrite the URL request or to modify HTTP request headers or HTTP response
headers often need to reference the values of various elements of the transaction state when
constructing the new URL or header value. CPL provides support for various substitutions, which will
expand at runtime to the indicated transaction value. Substitutions have the form:

$(name)

For example, the substitution $(user) expands to the authenticated user name associated with the
transaction. If policy did not require that user to authenticate, the substitution expands to an empty
string.

Substitutions can also be used directly in the values specified to some CPL properties, such as when
setting text in a message that will be displayed to users.

Substitutions are available for a variety of purposes. For a categorized list of the substitutions
available, see Appendix D: "CPL Substitutions".

Writing Policy Using CPL
A policy file is the unit of integration used to assemble policy.

Policy written in CPL is stored in one of four files on the ProxySG. These files are the following:

• VPM: This file is reserved for use by the Visual Policy Manager.

• Local: When the VPM is not being used, the Local file will typically contain the majority of the
policy rules for a system. When the VPM is being used, this file might be empty, it might include
rules for advanced policy features that are not available in the VPM, or it might otherwise
supplement VPM policy.

• Central: This file is typically managed by Blue Coat, although you can have the ProxySG point to a
custom Central policy file instead.

• Forward: The Forward policy file is normally used for all Forward policy, although you can use it
to supplement any policy created in the other three policy files. The Forward policy file will
contain Advanced Forwarding rules when the system is upgraded from a previous version of
SGOS (2.x) or CacheOS (4.x).

Each of the files may contain rules and definitions, but an empty file is also legal. (An empty file
specifies no policy and has no effect on the ProxySG.)

Cross file references are allowed but the definitions must be installed before the references, and
references must be removed before definitions are removed.

The final installed policy is assembled from the policy stored in the four files by concatenating their
contents. The order of assembly of the VPM, Central and Local policy files is configurable. The
recommended evaluation order is VPM, Local, Central. The Forward policy file is always last.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

28

Authentication and Denial

One of the most important timing relationships to be aware of is the relation between authentication
and denial. Denial can be done either before or after authentication, and different organizations have
different requirements. For example, suppose an organization requires the following:

• Protection from denial of service attacks by refusing traffic from any source other than the
corporate subnet.

• The user name of corporate users is to be displayed in access logs, even when the user request has
been denied.

The following example demonstrates how to choose the correct CPL properties. First, the following is
a sample policy that is not quite correct:

define subnet corporate_subnet
10.10.12.0/24

end

<Proxy>
client.address=!corporate_subnet deny ; filter out strangers
authenticate(MyRealm) ; this has lower precedence than deny

<Proxy>
; user names will NOT be displayed in the access log for the denied requests
category=Gambling exception(content_filter_denied)

In this policy, requests coming from outside the corporate subnet are denied, while users inside the
corporate subnet are asked to authenticate.

Content categories are determined from the request URL and can be determined before
authentication. Deny has precedence over authentication, so this policy denies the user request before
the user is challenged to authenticate. Therefore, the user name is not available for access logging.
Note that the precedence relation between deny and authenticate does not depend on the order of the
layers, so changing the layer order will not affect the outcome.

The CPL property force_authenticate(), however, has higher precedence than deny, so the
following amended policy ensures that the user name is displayed in the access logs:

define subnet corporate_subnet
10.10.12.0/24
end

<Proxy>
client.address=!corporate_subnet deny ; filter out strangers
force_authenticate(MyRealm) ; this has higher precedence than deny

<Proxy>
; user names will be displayed in the access log for the denied requests
category=Gambling exception(content_filter_denied)

The timing for authentication over the SOCKS protocol is different. If you are using the SOCKS
authentication mechanism, the challenge is issued when the connection is established, so user
identities are available before the request is received, and the following policy would be correct.

define subnet corporate_subnet
10.10.12.0/24

end

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

29

<Proxy>
client.address=!corporate_subnet deny ; filter out strangers
socks.authenticate(MyRealm) ; this happens earlier than the category test

<Proxy>
; user names be displayed in the access log for the denied requests
category=Gambling exception(content_filter_denied)

Note that this only works for SOCKS authenticated users.

Installing Policy

Policy is installed by installing one of the four policy files (VPM, Local, Central or Forward). Installing
one new file causes the most recent versions of the other three files to be loaded, the contents
concatenated in the order specified by the current configuration, and the resulting complete policy
compiled.

If any compilation errors are detected, the new policy file is not installed and the policy in effect is
unchanged.

Refer to Chapter 12, “Advanced Policy,” of the ProxySG Configuration and Management Guide for
specific instructions on installing a policy file.

CPL General Use Characters and Formatting

The following characters and formatting have significance within policy files in general, outside of the
arguments used in condition expressions, the values used in property statements, and the arguments
used in actions.

Character Example Significance

Semicolon (;) ; Comment
<Proxy> ; Comment

Used either inline or at the beginning of a
line to introduce text to be ignored during
policy evaluation. Commonly used to
provide comments.

Newline deny server_url.scheme=mms deny
server_url.domain=xyz.com

CPL expects most constructs (layers,
sections, rules, definitions) to begin on a new
line. When not preceded by a line
continuation character, a newline terminates
a layer header, section header, the current
rule, clause within a defined condition, or
action within an action definition.

Line Continuation \ A line continuation character indicates that
the current line is part of the previous line.

Whitespace < proxy >
 weekday = (3 || 7) deny

Used to enhance readability. Whitespace can
be inserted between tokens, as shown in this
example, without affecting processing. In
addition, quoted strings can include
whitespace. However, numeric ranges, such
as weekday = 1..7, cannot contain
whitespace.

Angle brackets (< >) <Proxy> Used to mark layer headings.

Square brackets ([]) [Rule] Used to mark section names.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

30

Troubleshooting Policy
When installed policy does not behave as expected, use policy tracing to understand the behavior of
the installed policy.

Tracing records additional information about a transaction and re-evaluates the transaction when it is
terminated; however, it does not show the timing of evaluations through transaction processing. The
extra processing required significantly impacts performance, so do not enable tracing in production
environments unless you need to reproduce and diagnose a problem. If tracing is used on a system in
production, attempt to restrict which transactions are traced. For example, you can trace only requests
from a test workstation by defining the tracing rules as conditional on a client.address= trigger that
tests for that workstation's IP address.

For more information on generating and retrieving policy trace, see Appendix B: "Testing and
Troubleshooting".

While policy traces can show the rule evaluation behavior, they do not show the final effect of policy
actions like HTTP header or URL modifications. To see the result of these policy actions it is often
useful to actually view the packets sent and received. The PCAP facility can be used in conjunction
with tracing to see the effect of the actions set by the matching rules.

Upgrade/Downgrade Issues
Specific upgrade downgrade issues will be mentioned in the release notes accompanying your version
of SGOS. This section highlights general upgrade downgrade issues related to policy written in CPL.

CPL Syntax Deprecations

As the power of CPL has increased, the CPL language has evolved. To allow continuous evolution, the
CPL language constructs are now more regular and flexible. Older language constructs have been
replaced with new constructs of equal or greater power.

However, this also implies that support for old language constructs will eventually be dropped to
help maintain the runtime efficiency of evaluation. As part of the migration strategy, the CPL
compilation warnings might include warnings regarding the use of deprecated constructs. This class
of warning is special, and indicates use of a CPL language element that will not be supported in the
next major release of SGOS. Eliminate deprecation warnings by migrating the policy identified by the
warning to more modern syntax, which is usually indicated in the warning message. Attempts to
upgrade to the next major release might fail, or result in a failure to load policy, unless all deprecation
warnings are eliminated.

Equal sign (=) server_url.scheme=mms Used to indicate the value a condition is to
test.

Parentheses () service(no) Used to enclose the value that a property is
to be set to, or group components of a test.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 1: Overview of Content Policy Language

31

Conditional Compilation

Occasionally, you might be required to maintain policy that can be applied to appliances running
different versions of SGOS and requiring different CPL. CPL provides the following conditional
compilation directive that tests the SGOS version (such as 2.1.06):

release.version= <version number range>

The range is a standard CPL range test: min..max, where both minimum and maximum are optional.

The min and max can be MAJOR.MINOR.DOT.PATCH, with MINOR, DOT and PATCH optional. Therefore,
rules containing grammar introduced in 2.1.07 can be protected with

#if release.version=2.1.07..
; guarded rules
...
#endif

while grammar introduced in 2.2 can be protected with:

#if release.version=2.2..
; guarded rules
...
#endif

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

32

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

As discussed in Chapter 1, Content Policy Language policies are composed of transactions that are
placed into rules and tested against various conditions.

This chapter discusses the following:

• "Understanding Transactions and Timing"

• "Understanding Layers"

• "Understanding Sections"

• "Defining Policies"

• "Best Practices"

Understanding Transactions and Timing
Transactions are classified as administrator, proxy, cache, and forwarding. Only a subset of layer types,
conditions, properties, and actions is appropriate for each of these four transaction types.

Administrator Transactions

An administrator transaction evaluates policy in <Admin> layers. The policy is evaluated in two stages:

• Before the authentication challenge.

• After the authentication challenge.

If an administrative user logs in to the ProxySG Management Console, and the administrator’s Web
browser is proxied through that same ProxySG, then a proxy transaction is created and <Proxy> policy
is evaluated before the administrator transaction is created and <Admin> policy is evaluated. In this
case, it is possible for an administrator to be denied access to the Management Console by proxy
policy.

Important: Policy is not evaluated for serial console access, RSA authenticated SSH access, managers
logged in using the console account credentials, or SNMP traffic.

Proxy Transactions

When a client connects to one of the proxy service ports configured on the secure proxy appliance
(refer to Chapter 6: “Proxies” of the Configuration and Management Guide), a proxy transaction is created
to cover both the request and its associated response.

A proxy transaction evaluates policy in <Proxy>, <Cache>, <Forward> and <Exception> layers. The
<Forward> layers are only evaluated if the transaction reaches the stage of contacting an origin server
to satisfy the request (this is not the case if the request is satisfied by data served from cache, or if the
transaction is terminated by an exception). The <Exception> layers are only evaluated if the
transaction is terminated by an exception.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

34

Each of the protocol-specific proxy transactions has specific information that can be
tested—information that may not be available from or relevant to other protocols. HTTP Headers and
Instant Messaging buddy names are two examples of protocol-specific information.

Other key differentiators among the proxy transaction subtypes are the order in which information
becomes available and when specific actions must be taken, as dictated by the individual protocols.
Variation inherent in the individual protocols determines timing, or the sequence of evaluations that
occurs as the transaction is processed.

The following table summarizes the policy evaluation order for each of the protocol-specific proxy
transactions.
Table 2.1: When Policy is Evaluated

Transaction Type Policy is Evaluated....

Tunneled TCP transactions before the connection is established to the origin server.
HTTP proxy transactions Before the authentication challenge.

After the authentication challenge, but before the requested object is fetched.

Before making an upstream connection, if necessary.

After the object is fetched

FTP over HTTP transactions: Before the authentication challenge.

After the authentication challenge, but before the required FTP commands are
executed.

Before making an upstream connection, if necessary.

After the object is fetched.

Transparent FTP transactions Policy is examined before the requested object is fetched.
Real Media streaming
transactions

Before the authentication challenge.

After the authentication challenge, but before getting object information.

Before making an upstream connection, if necessary.

After the object information is available, but before streaming begins.

After streaming begins (this evaluation can be done multiple times, for example
after playback is paused and restarted).

Windows Media MMS
streaming transactions

Before the authentication challenge.

Before making an upstream connection, if necessary.

After the authentication challenge but before getting object information.

After the object information is available, but before streaming begins.

After streaming begins (this evaluation can be done multiple times, for example
after playback is paused and restarted).

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

35

Some conditions cannot be evaluated during the first stage; for example, the user and group
information will not be known until stage two. Likewise, the response headers and MIME type are
unavailable for testing until stage three. For conditions, this is known as the earliest available time.

Policy decisions can have similar timing considerations, but this is known as the latest commit time. In
this example, the requirement to authenticate must be known at stage one, and a forwarding host or
gateway must be determined by stage three.

Cache Transactions

Cache transactions are initiated by the ProxySG in order to load or maintain content in the local object
store during adaptive refresh or pipelining, or as a result of a content distribute CLI command.
These may be HTTP, FTP, or streaming media transactions. Since no specific user is associated with
these transactions, content related policy is evaluated for cache transactions, but user related policy is
not evaluated.

A cache transaction evaluates policy in <Cache> and <Forward> layers. The <Forward> layers are only
evaluated if an origin server must be contacted to complete the transaction.

The following is a list of cache transactions:

• A content distribute transaction that is initiated by the content distribute CLI command. A
content distribute transaction may use one of the following protocols: HTTP, HTTPS, Real Media,
or Windows Media. This type of transaction may be preceded by a separate Administrator
transaction, since the administrator must be authenticated and authorized to use the command.

• Pipeline transactions (HTTP only).

• Advertisement transactions (HTTP only).

• If-modified-since transactions (HTTP only).

• Refresh transactions (HTTP only).

• ICP transactions.

Cache transactions have no client identity since they are generated internally by the ProxySG, and
they do not support authentication or authorization. Therefore, they do not support conditions such as
client.address= and group=, or the authenticate() property.

Windows Media HTTP
streaming transactions

Before the authentication challenge.

After the authentication challenge, but before the requested object is fetched.

Before making an upstream connection, if necessary. (Up to this point it is
similar to an HTTP transaction.)

What happens at this stage depends on negotiations with the origin server:

• After the origin server is contacted, if the User Agent header denotes the
Windows Media player and the server supports Microsoft streaming HTTP
extensions, it finishes like an MMS transaction: Object information is
available at this stage but streaming has not begun.

• If the User-Agent header is not a Windows Media player or the server does
not support Microsoft streaming extensions, it finishes like an HTTP
transaction: The requested object is fetched, and policy is evaluated

Table 2.1: When Policy is Evaluated (Continued)

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

36

An HTTP cache transaction is examined in two stages:

• Before the object is retrieved from the origin server.

• After the object is retrieved.

Forwarding Transactions

A forwarding transaction is created when the ProxySG needs to evaluate forwarding policy before
accessing a remote host and no proxy or cache transaction is associated with this activity. Examples
include sending a heart-beat message, and downloading an installable list from an HTTP server.

A forwarding transaction only evaluates policy in <Forward> layers.

Timing

As stated in the discussion of proxy transactions, various portions of the transaction information
become available at different points in the evaluation, and each protocol has specific requirements for
when each decision must be made. The CPL triggers and properties are designed so that wherever
possible, the policy writer is shielded from the variations among protocols by making the timing
requirements imposed by the CPL accommodate all the protocols. Where this is not possible (because
using the most restrictive timing causes significant loss of functionality for the other protocols),
protocol specific triggers have been introduced. When evaluated against other protocols, these
triggers return the not applicable value or N/A. This results in the rule being skipped (the
expression evaluates to false, no matter what it is). It is possible to explicitly guard such rules so that
they are only evaluated against appropriate transactions.

The variation in trigger and property timings implies that within a policy rule a conflict is possible
between a condition that can only be tested relatively late in the evaluation sequence and a property
that must be set relatively early in the evaluation sequence. Such a rule results in a compile-time error.

For example, here is a rule that would be incorrect for evaluating any transaction:

If the user is in group xyz, require authentication.

The rule is incorrect because group membership can only be determined after authentication and the
rule tests group membership and specifies the authentication realm, a property that must be set before
the authentication challenge can be issued. The following code illustrates this incorrect rule and the
resulting message at compile time:

group=xyz authenticate(MyRealm)

Error: Late condition guards early action: 'authenticate(MyRealm)'

It is, however, correct for the authentication requirement to be conditional on the client address
(client.address=) or proxy port (proxy.port=), as these can be determined at the time the client
connection is established and therefore are available from the beginning of a proxy transaction.

For the HTTP protocol, authenticate() can be conditional on the URL (url=), but for MMS
streaming, only the Host portion of the URL can be tested (url.host=). Recall the outline of the
evaluation model for Windows Media transactions presented in "Understanding Transactions and
Timing" on page 33.

As another example, consider the following:

response.header.Content-type=”text/html” forward(somehost)

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

37

But policy cannot determine the value of the Content-type response header until the response is
returned. The ProxySG cannot contact the server to get the response until policy determines what
hosts or gateways to route through to get there. In other words, policy must set the forward()
property. But policy cannot commit the forwarding action until the Content-type response header has
been determined. Again, since the condition is not testable until later in the request (after the time at
which the property must be set), an error is received.

Understanding Layers
Five types of layers are allowed in any policy file. The layer type determines the kinds of transaction
its rules will act upon. The token used in the header identifies the layer type.

• <Admin>—Used to define policy that controls access to the management console and the
command line. Policy is not evaluated for serial console access or SNMP traffic, however.

• <Cache>—Used to list policy rules that are evaluated during both cache and proxy transactions.

• <Exception>—Exception layers are evaluated when a proxy transaction is terminated by an
exception.

• <Forward>—Forward layers are only evaluated when the current transaction requires an
upstream connection. Forwarding policy is generally distinct and independent of other policies,
and is often used as part of maintaining network topologies.

• <Proxy>—Used to list policy rules that are evaluated during a proxy transaction.

Important: Only a subset of the conditions, properties, and actions available in the policy language is
permitted within each layer type; the remainder generate compile-time errors. The CPL
Reference for the conditions, properties, and actions describes where they can be used.

<Admin> Layers

<Admin> layers hold policy that is executed by Administrator transactions. This policy is used to
specify an authentication realm; to allow or deny administrative access based on the client’s IP
address, credentials, and type of administrator access requesuested (read or write); and to perform
any additional logging for administrative access.

Important: When traffic is explicitly proxied, it arrives at the <Admin> layer with the client IP
address set to the ProxySG’s IP address; therefore, the client.address= condition is not
useful for explicitly proxied traffic.

The syntax is:

<Admin [label]> [admin_condition][admin_properties] ...

admin_content

where:

• The <Admin> layer defines the transactions evaluated against this policy, and restricts the triggers
and properties allowed in the rules used in the layer.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier.

• The optional admin_condition is a list of triggers, all of which must evaluate to true before the
layer content is evaluated. For more information on using conditions, see Chapter 3: "Condition
Reference". See also the following Layer Guards section.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

38

• The optional admin_properties is a list of properties set if any of the rules in the layer match.
These act as defaults, and can be overridden by property settings in specific rules in the layer. For
more information on using properties, see Chapter 4: "Property Reference". See also the following
Layer Guards section.

<Cache> Layers

<Cache> layers hold policy that is executed by both cache and proxy transactions. Since cache
transactions have no concept of a client, all <Cache> layer policy is clientless, so you cannot test client
identity using client.address=, user=, group=, and the like.

Certain types of policy must be applied consistently to both proxy and cache transactions to preserve
cache consistency. Such policy must not be conditional on client identity or time of day, and belongs in
a <Cache> layer. Examples include the following:

• Response virus scanning.

• Cache control policy (other than bypass_cache).

• Modifications to request headers, if the modification affects the content returned by the web
server, and the content is cached.

• Rewrites of the request URL that modify the server URL but not the cache URL. (Place rewrites of
the request URL that change the cache and server URL to the same value in a <Proxy> layer.)

Only the following properties are safe to make conditional on time or client identity in a <Cache>
layer:

• Pipelining

• Tracing, logging

• Freshness checks

• Redirection

• Content transforms

The syntax is:

<Cache [label]> [cache_condition][cache_properties] ...

cache_content

where:

• The <Cache> layer defines the transactions evaluated against this policy, and restricts the triggers
and properties allowed in the rules used in the layer.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier.

• The optional cache_condition is a list of triggers, all of which must evaluate to true before the
layer content is evaluated. For more information on using conditions, see Chapter 3: "Condition
Reference". See also the following Layer Guards section.

• The optional cache_properties is a list of properties set if any of the rules in the layer match.
These act as defaults, and can be overridden by property settings in specific rules in the layer. For
more information on using properties, see Chapter 4: "Property Reference". See also the following
Layer Guards section.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

39

<Exception> Layers

<Exception> layers are evaluated when a proxy transaction is terminated by an exception. This could
be caused by a bad request (for example, the request URL names a non-existent server) or by setting
the deny or exception() properties in policy. Policy in an exception layer can be used to control how
access logging is performed for exceptions, such as authentication_failed. It can also be used to
modify the HTTP response headers in the exception page that is sent to the client.

The syntax is:

<Exception [label]> [exception_condition][exception_properties] ...

exception_content

where:

• The <Exception> layer defines the transactions evaluated against this policy, and restricts the
triggers and properties allowed in the rules used in the layer.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier.

• The optional exception_condition is a list of triggers, all of which must evaluate to true before
the layer content is evaluated. For more information on using conditions, see Chapter 3:
"Condition Reference". See also the following Layer Guards section.

• The optional exception_properties is a list of properties set if any of the rules in the layer
match. These act as defaults, and can be overridden by property settings in specific rules in the
layer. For more information on using properties, see Chapter 4: "Property Reference". See also the
following Layer Guards section.

<Forward> Layers

<Forward> layers are evaluated when the current transaction requires an upstream connection (and
only then: forward policy will not be evaluated for a cache hit). <Forward> layers use the server_url=
tests rather than the url= tests so that they are guaranteed to honor any policy that rewrites the URL.

The syntax is:

<Forward [label]> [forward_condition][forward_properties] ...

forward_content

where:

• The <Forward> layer defines the transactions evaluated against this policy, and restricts the
triggers and properties allowed in the rules used in the layer.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier.

• The optional forward_condition is a list of triggers, all of which must evaluate to true before the
layer content is evaluated. For more information on using conditions, see Chapter 3: "Condition
Reference". See also the following Layer Guards section.

• The optional forward_properties is a list of properties set if any of the rules in the layer match.
These act as defaults, and can be overridden by property settings in specific rules in the layer. For
more information on using properties, see Chapter 4: "Property Reference". See also the following
Layer Guards section.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

40

<Proxy> Layers

<Proxy> layers define policy for authenticating and authorizing users’ requests for service over one of
the configured proxy service ports (refer to Chapter 6:”Managing Port Services” in the ProxySG
Configuration and Management Guide.). Proxy layer policy involves both both client identity and
content. Only proxy transactions are evaluated against <Proxy> layers.

The syntax is:

<Proxy [label]> [proxy_condition][proxy_properties] ...

proxy_content

where:

• The <Proxy> layer defines the transactions evaluated against this policy, and restricts the triggers
and properties allowed in the rules used in the layer.

• The optional label, separated from the layer type by space, is a CPL User-defined Identifier.

• The optional proxy_condition is a list of triggers, all of which must evaluate to true before the
layer content is evaluated. For more information on using conditions, see Chapter 3: "Condition
Reference". See also the following Layer Guards section.

• The optional proxy_properties is a list of properties set if any of the rules in the layer match.
These act as defaults, and can be overridden by property settings in specific rules in the layer. For
more information on using properties, see Chapter 4: "Property Reference". See also the following
Layer Guards section.

Layer Guards

Often, the same set of conditions or properties appears in every rule in a layer. For example, a specific
user group for which a number of individual cases exist where some things are denied:

<Proxy>
group=general_staff url.domain=competitor.com/jobs deny
group=general_staff url.host=bad_host deny
group=general_staff condition=whatever deny
; etc.
group=general_staff allow

You can factor out the common elements into guard expressions. Notice that the common elements are
group=general_staff and deny. The following is the same policy, expressed as a layer employing a
guard expression:

<Proxy> group=general_staff deny
url.domain=competitor.com/jobs
url.host=bad_host
condition=whatever
; etc.
allow

Note that the explicit allow overrides the deny specified in the layer guard. This is an instance of a
rule specific property setting overriding the default property settings specified in a guard expression.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

41

Timing

The “late guards early” timing errors that can occur within a rule can arise across rules in a layer.
When a trigger cannot yet be evaluated, policy also has to postpone evaluating all following rules in
that layer (since if the trigger turns out to be true and the rule matches, then evaluation stops for that
layer. If the trigger turns out to be false and the rule misses, then evaluation continues for the rest of
the rules in that layer, looking for the first match). Thus a rule inherits the earliest evaluation point
timing of the latest rule above it in the layer.

For example, as noted earlier, the following rule would result in a timing conflict error:

group=xyz authenticate(MyRealm)

Error: Late condition guards early action: 'authenticate(MyRealm)'

The following layer would result in a similar error:

<Proxy>
group=xyz deny
authenticate(MyRealm)

Error: Late condition 'group=xyz' guards early action: 'authenticate(MyRealm)'

This also extends to guard expressions, as the guard condition must be evaluated before any rules in
the layer. For example:

<Proxy> group=xyz deny
authenticate(MyRealm)

Error: Late condition 'group=xyz' guards early action: 'authenticate(MyRealm)'

Understanding Sections
The rules in layers can optionally be organized in one or more sections, which is a way of grouping
rules together. A section consists of a section header followed by a list of rules.

Four sections types are supported in a standard CPL file:

• [Rule]

• [url]

• [url.domain]

• [server_url.domain]

However, if a CacheOS 4.x filter file is used in place of a policy file and running in
backward-compatibility mode, the [Domain-suffix], [Prefix], and [Regular-Expression]
sections are also available. These deprecated sections are described in Appendix E: "Filter File Syntax".

Three of the section types, [url], [url.domain] and [server_url.domain], provide optimization
for URL tests. The names for these sections correspond to the CPL URL triggers used as the first test
for each rule in the section, that is url=, url.domain= and server_url.domain=. The
[url.regex] section provides factoring and organization benefits, but does not provide any
performance advantage over using a [Rule] section and explicit url.regex= tests.

To give an example, the following policy layer is created:

<Proxy>
url.domain=abc.com/sports deny

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

42

url.domain=nbc.com/athletics deny
; etc, suppose it's a substantial list
url.regex="sports|athletics" access_server(no)
url.regex="\.mail\." deny
; etc
url=www.bluecoat.com/internal group=!bluecoat_employees deny
url=www.bluecoat.com/proteus group=!bluecoat_development deny
; etc

This can be recast into three sections:

<Proxy>
[url.domain]

abc.com/sports deny
nbc.com/athletics deny
; etc.

[Rule]
url.regex="sports|athletics" access_server(no)
url.regex="\.mail\." deny

[url]
www.bluecoat.com/internal group=!bluecoat_employees deny
www.bluecoat.com/proteus group=!bluecoat_development deny

Notice that the first thing on each line is not a labelled CPL trigger, but is the argument for the trigger
assumed by the section type. Also, after the first thing on the line, the rest of the line is the familiar
format.

The performance advantage of using the [url], [url.domain], or [server_url.domain] sections is
measurable when the number of URLs being tested reaches roughly 100. Certainly for lists of several
hundred or thousands of URLs, the performance advantage is significant.

When no explicit section is specified, all rules in a layer are assumed to be in a [Rule] section. That is,
the first example is equivalent to:

<Proxy>
[Rule]

url.domain=abc.com/sports deny
url.domain=nbc.com/athletics deny
; etc, suppose it's a substantial list
url.regex="sports|athletics" access_server(no)
url.regex="\.mail\." deny
; etc
url=www.bluecoat.com/internal group=!bluecoat_employees deny
url=www.bluecoat.com/proteus group=!bluecoat_development deny
; etc

[Rule]

The [Rule] section type is used to logically organize policy rules into a section, optionally applying a
guard to the contained rules. The [Rule] section was so named because it can accept all rules in a
policy. If no section is specified, all rules in a layer are assumed to be in a [Rule] section.

• Use [Rule] sections to clarify the structure of large layers. When a layer contains many rules, and
many of the rules have one or more conditions in common, you may find it useful to define
[Rule] sections.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

43

• Rules in [Rule] sections are evaluated sequentially, top to bottom. The time taken is proportional
to the number of rules in the section.

• [Rule] sections can be used in any layer.

[url]

The [url] section type is used to group a number of rules that test the URL. The [url] section
restricts the syntax of rules in the section. The first token on the rule line is expected to be a pattern
appropriate to a url= trigger. The trigger name is not included. The [url] section replaces the
[Prefix] section used in previous versions of CPL)

• Rules in [url] sections are evaluated through hash table techniques, with the result that the time
taken is not dependent on the number of rules in the section.

• [url] sections are not allowed in <Admin> or <Forward> layers.

[url.domain]

The [url.domain] section is used to group a number of rules that test the URL domain. The
[url.domain] section restricts the syntax of rules in the section. The first token on the rule line is
expected to be a pattern appropriate to a url.domain= trigger. The trigger name is not included. (The
[url.domain] section replaces the [domain-suffix] section used in previous versions of CPL.)

• Rules in [url.domain] sections are evaluated through hash table techniques, with the result that
the time taken is not dependent on the number of rules in the section.

• [url.domain] sections are not allowed in <Admin> or <Forward> layers.

[url.regex]

The [url.regex] section is used to test the URL. The [url.regex] section restricts the syntax of
rules in the section. The first token on the rule line is expected to be a pattern appropriate to a
url.regex= trigger. The trigger name is not included . The [url.regex] section replaces the [Regex]
section used in previous versions of CPL.

• Rules in [url.regex] sections are evaluated sequentially, top to bottom. The time taken is
proportional to the number of rules in the section.

• [url.regex] sections are not allowed in <Admin> or <Forward> layers.

[server_url.domain]

The [server_url.domain] section is used to test the domain of the URL used to fetch content from
the origin server. The [server_url.domain] section restricts the syntax and rules in the section. The
first token on the rule line is expected to be a pattern appropriate to a server_url.domain= trigger.
The trigger name is not included.

[server_url.domain] sections contain policy rules very similar to [url.domain] sections except that
these policy rules test the server_url, which reflects any rewrites to the request URL.

• Rules in [server_url.domain] sections are evaluated through hash table techniques, with the
result that the time taken is not dependent on the number of rules in the section.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

44

• [server_url.domain] sections are allowed only in <Exception> or <Forward> layers.

Section Guards

Just as you can with layers, you can improve policy clarity and maintainability by grouping rules into
sections and converting the common conditions and properties into guard expressions that follow the
section header. A guard expression allows you to take a condition that applies to all the rules and put
the common condition next to the section header, as in [Rule] group=sales.

Guards are essentially a way of factoring out common sets of triggers and properties, to avoid having
to repeat them each time.

Defining Policies
This section includes some guidelines for defining policies using CPL.

• Write an explicit layer header (<Proxy>, <Cache>, <Admin>, <Forward>, or <Exception>) before
writing any rules or sections. The only constructs that should occur before the first layer header
are the condition-related definitions and comments.

• Do not begin a policy file with a section, such as [Rule]. Ensure all sections occur within layers.

• Do not use [Rule] sections unnecessarily.

• Avoid empty or badly formed policy. While some CPL may look well-formed, make sure it
actually does something.

While the following example appears like proper CPL, it actually has no effect. It has a layer header
and a [Rule] section header, but no rule lines. As no rules exist, no policy exists either:

<Admin> group=Administrators
 [Rule] allow

Correct policy that allows access for the group “administrators” would be:

<Admin>
group=Administrators allow

In the following example, the layer is deceptive because only the first rule can ever be executed:

<Proxy>
authenticate(MyRealm) ; this rule is unconditional
;all following rules are unreachable
allow group=administrator
allow group=clerk time=0900..1700
deny

At most, one rule is executed in any given layer. The first one that meets the conditions is acted upon;
all other rules in the layer are ignored. To execute more than one rule, use more than one layer. To
correctly define the above policy, two layers are required:

<Proxy>
 authenticate(MyRealm)
<Proxy>
 allow group=administrator
 allow group=clerk time=0900..1700
 deny

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

45

• Do not mix the CacheOS 4.x filter-file syntax with CPL syntax.

Although the Content Policy Language is backward-compatible with the filter-file syntax, avoid
using the older syntax with the new. For example, as the filter-file syntax uses a different order of
evaluation, mixing the old and new syntax can cause problems. Blue Coat strongly recommends
not mixing the two syntaxes.

Blacklists and Whitelists

For administrative policy, the intention is to be cautious and conservative, emphasizing security over
ease of use. The assumption is that everything not specifically mentioned is denied. This approach,
referred to as the whitelist approach, is common in corporations concerned with security or legal issues
above access. Organizations that want to extend this concept to general Internet access select a default
proxy policy of deny as well.

In the second approach, the idea is that by default everything is allowed. Some requests might be
denied, but really that is the exception. This is known as blacklist policy because it requires specific
mention of anything that should be denied (blacklisted). Blacklist policy is used by organizations
where access is more important than security or legal responsibilities.

This second approach is used for cache transactions, but can also be common default proxy policy for
organizations such as internet service providers.

Blacklists and whitelists are tactical approaches and are not mutually exclusive. The best overall policy
strategy is often to combine the two approaches. For example, starting from a default policy of deny,
one can use a whitelist approach to explicitly filter-in requests that ought to be served in general (such
as all requests originating from internal subnets, while leaving external requests subject to the default
DENY). Further policy layers can then apply more specific restrictions in a blacklist mode to filter-out
unwanted requests (such as those that fail to conform to content filtering policies).

Whitelisting and blacklisting can also be used not simply to allow or deny service, but also to subject
certain requests to further processing. For example, not every file type presents an equal risk of virus
infection or rogue executable content. One might choose to submit only certain file types (presumably
those known to harbor executable content) to a virus scanner (blacklist), or virus-scan all files except
for a whitelist of types (such as image files) that may be considered safe.

General Rules and Exceptions to a General Rule

When writing policy many organizations use general rules, and then define several exceptions to the
rule. Sometimes, you might find exceptions to the exceptions. Exceptions to the general rule can be
expressed either:

• Through rule order within a layer

• Through layer order within the policy.

Using Rule Order to Define Exceptions

When the policy rules within a layer are evaluated, remember that evaluation is from the top down,
but the first rule that matches will end further evaluation of that layer. Therefore, the most specific
conditions, or exceptions, should be defined first. Within a layer, use the sequence of most-specific to
most-general policy.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

46

The following example is an exception defined within a layer. A company wants access to payroll
information limited to Human Resources staff only. The administrator uses membership in the
HR_staff group to define the exception for HR staff, followed by the general policy:

<Proxy>
; Blue Coat uses groups to identify HR staff, so authentication is required
authenticate(MyRealm)

define condition payroll_location
url=hr.my_company.com/payroll/

end

<Proxy> condition=payroll_location
allow group=HR_staff ; exception
deny ; general rule

This approach requires that the policy be in one layer, and because layer definitions cannot be split
across policy files, the rule and the exceptions must appear in the same file. That may not work in
cases where the rules and the exceptions are maintained by different groups.

However, this is the preferred technique, as it maintains all policy related to the payroll files in one
place. This approach can be used in either blacklist or whitelist models (see "Blacklists and Whitelists"
on page 45) and can be written so that no security holes are opened in error. The example above is a
whitelist model, with everything not explicitly mentioned left to the default rule of deny.

Using Layer Ordering to Define Exceptions

Since later layers override earlier layers, general rules can be written in one layer, with exceptions
written in following layers, put specific exceptions later in the file.

The Human Resources example could be rewritten as:

<Proxy>
; Blue Coat uses groups to identify HR staff, so authentication is required
authenticate(MyRealm)

define condition payroll_location
url=hr.my_company.com/payroll/

end

<Proxy>
condition=payroll_location deny ; general rule

<Proxy>
condition=payroll_location allow group=HR_staff ; exception

Notice that in this approach, some repetition is required for the common condition between the layers.
In this example, the condition=payroll_location must be repeated. It is very important to keep the
exception from inadvertently allowing other restrictions to be undone by the use of allow.

As the layer definitions are independent, they can be installed in separate files, possibly with different
authors. Definitions, such as the payroll location condition, can be located in one file and referenced in
another. When linking rules to definitions in other files, file order is not important, but the order of
installation is. Definitions must be installed before policy that references them will compile. Keeping
definitions used across files in only one of the files, rather than spreading them out, will eliminate the
possibility of having changes rejected because of interlocking reference problems. Note that when
using this approach, exceptions must follow the general rule, and you must be aware of the policy file

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 2: Managing Content Policy Language

47

evaluation order as currently configured. Changes to the policy file evaluation order must be managed
with great care.

Remember that properties maintain any setting unless overridden later in the file, so you could
implement general policy in early layers by setting a wide number of properties, and then use a later
layer to override selected properties.

Avoid Conflicting Actions

Although policy rules within a policy file can set the action property repeatedly, turning individual
actions on and off for the transaction being processed, the specific actions can conflict.

• If an action-definition block contains two conflicting actions, a compile-time error results. This
conflict would happen if, for example, the action definition consisted of two
response.icap_service() actions.

• If two different action definitions are executed and they contain conflicting actions, it is a run-time
error; a policy error is logged to the event log, and one action is arbitrarily chosen to execute.

The following describes the potential for conflict between various actions:

• Two header modification actions will conflict if they modify the same header. Header
modification actions include the append(), delete(), delete_matching(),
rewrite(header,...), and set(header,...) actions.

• Two instant message text modification actions will conflict. Instant message text modification
actions include the append(im.message.text,...) and set(im.message.text,...) actions.

• Two transform actions of the same type conflict.

• Two rewrite() actions conflict.

• Two response.icap_service() actions conflict.

Making Policy Definitive

You can make policy definitive two ways. The first is to put that policy into the file; that is, last in the
evaluation order. (Remember that the forward file is always the last policy file.) For example, suppose
that service was limited to the corporate users identifiable by subnet. Placing a rule such as:

<Proxy>
client.address=!my_subnet deny

at the end of the Forward file ensures that no other policy overrides this restriction through accidental
use of allow. Although not usually used for this purpose, the fact that the forward file is always last,
and the order of the other three files is configurable, makes this the appropriate location for definitive
policy in some organizations.

An alternate method has been provided for definitive denial. While a deny or an exception()
property can be overridden by a subsequent allow in later rules, CPL provides force_deny and
force_exception(). CPL does not offer force_allow, so while the error returned to the user may be
reset by subsequent force_deny or force_exception() gestures, the ultimate effect is that the
request is denied. Thus these properties provide definitive denial regardless of where they appear in
policy.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

48

Best Practices
• Express separate decisions in separate layers.

As policy grows and becomes more complex, maintenance becomes a significant issue.
Maintenance will be easier if the logic for each aspect of policy is separate and distinct.

Try to make policy decisions as independent as possible, and express each policy in one layer or
two adjacent layers.

• Be consistent with the model.

Set the default proxy policy according to your policy model and then use blacklist or whitelist
approaches as appropriate.

The recommended approach is to begin with a default proxy policy of deny in configuration.
Allow requests in early layers and deny requests in later layers. Ensure that all layers that allow
requests precede any layers that deny requests. The following is a simple illustration of this
model:

define subnet corporate_subnet
10.10.12.0/24

end

; First, explicitly allow access to our users
<proxy>

ALLOW client.address=corporate_subnet

; Next, impose any authentication requirements
<proxy>

authenticate(corp_realm) ; all access must be authenticated

; And now begin to filter-out unwanted requests
<proxy>

DENY url.domain=forbidden.com
DENY category=(Gambling, Hacking, Chat)

; more layers…

• Expose only what is necessary.

Often, it may be useful to keep the rule logic and the condition definitions separate so that the
rules can be maintained by one group, but the definitions by another. The rules may contain
exception details or other logic that should not be modified; however, the conditions, such as
affected groups or content, may change frequently. With careful separation of the rules and the
conditions, the rules can be expressed in the local policy file, and users unfamiliar with CPL can
update the condition definitions through the VPM.

When using this technique, installation order is important. Condition definitions must be
available before policy referencing those conditions will compile, so the conditions you want to
expose for general use must be defined in the VPM before they are referenced in the Local policy
file.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

A condition is an expression that yields true or false when evaluated. Conditions can appear in:

• Policy rules.

• Section and layer headers, as guards; for example,

[Rule] group=(“bankabc\hr” || “cn=humanresources,ou=groups,o=westernnational”)

• define condition, define domain condition, and define prefix condition definition
blocks.

Condition Syntax
A condition has the following form:

trigger=pattern-expression

A trigger is the name of a condition variable. It can be simple, such as url, or it can contain sub-object
specifiers and modifiers, as in url.path.case_sensitive or request.header.Cookie.A trigger
cannot contain white space.

A pattern expression can be either:

• A simple pattern, which is matched against the trigger value.

• A Boolean combination of simple patterns, or a parenthesized, comma-separated list of simple
patterns.

A pattern expression can be any of the following:

• String: A string argument must be quoted if it contains whitespace or other special characters. An
example condition expression is category=”self help”.

• Single argument: Conditions such as live= take only a single argument, in this case, yes or no.

• Boolean expressions: Conditions such as server_url.scheme= can list one or more arguments
together with Boolean operators; for example, server_url.scheme=!http.

• Integer or range of integers: Numeric conditions can use Boolean expressions and double periods
(..), meaning an inclusive numeric range. Numeric ranges cannot use whitespace. The minute=
condition is used to show examples of ranges:

❐ minute=10..40—From 10 minutes to 40 minutes after the hour.

❐ minute=10..—From 10 minutes after the hour to the end of the hour.

❐ minute=..40—From the beginning of the hour to 40 minutes after the hour.

❐ minute=40..10—From 40 minutes after the hour, to 10 minutes after the next hour.

• Regular expressions: Some header-related conditions and two URL-related conditions take regular
expressions. For more information about writing regular expressions, refer to Appendix E: “Using
Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

The following is Backus-Naur Form (BNF) grammar:

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

50

• condition ::= trigger "=" expression

• trigger ::= identifier | identifier "." word

• expression ::= term | list

• list ::= "(" ((pattern ",")* pattern)? ")"

• disjunction ::= conjunction | disjunction "||" conjunction

• conjunction ::= term | conjunction "&&" term

• term ::= pattern | "(" disjunction ")" | "!" term

• pattern ::= word | 'string' | "string"

• word ::= sequence of characters not including whitespace, & | () < > [] ; ! =
" '

• string ::= sequence of characters that may including whitespace, & | () < > [] ;
! =. The characters " and ' may be enclosed within a string delimited by the
alternate delimiter.

Pattern Types
Different triggers support different pattern syntaxes.

A pattern for a boolean trigger has one of the following forms:

boolean ::= yes | no | true | false | on | off

The pattern for a numeric trigger can be either an integer or a range of integers. Numeric patterns
cannot contain white space.

trigger=I

Test if trigger == I.

trigger=I..J

Test if trigger >= I and trigger <= J (where I <= J). For example, time=0900..1700 tests if the
time is between 9:00 and 17:00 inclusive.

trigger=J..I

Test if trigger >= J or trigger <= I (where J > I). For example, minute=45..15 tests if the minute
of the hour is between 45 and 15 inclusive.

trigger=I..

Test if trigger >= I. For example, bitrate=56k.. tests if the bitrate is greater than or equal to
56000.

trigger=..J

Test if trigger <= J. For example, bitrate=..56k tests if the bitrate is less than or equal to 56000.

Some triggers have IP address patterns. This can be either a literal IP address, such as 1.2.3.4, or an IP
subnet pattern, such as 1.2.0.0/16, or a name defined by a define subnet statement.

Some triggers have regex patterns. This is a Perl 5 regular expression that matches a substring of the
trigger value; it is not an anchored match unless an anchor is specified as part of the pattern.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

51

Unavailable Triggers
Some triggers can be unavailable in some transactions. If a trigger is unavailable, then any condition
containing that trigger is false, regardless of the pattern expression. For example, if the current
transaction is not authenticated (that is, the authenticate property was set to no), then the user trigger
is unavailable. This means that user=kevin and user=!kevin are both false.

A condition can be false either because the pattern does not match the trigger value, or because the
trigger is unavailable. Policy rule-tracing distinguishes these two cases, using miss for the former and
N/A for the latter.

Layer Type Restrictions

Each trigger is restricted as to the types of layers in which it can be used. A direct use of a trigger in a
forbidden layer results in a compile-time error. Indirect use of a trigger in a forbidden layer (by way of
condition= and a condition definition) also results in a compile time error.

Global Restrictions

To allow suppression of DNS and RDNS lookups from policy, the following restrictions are supported.
These restrictions have the effect of assuming a no_lookup modifier for appropriate url= and
server_url tests. The restrictions also apply to lookups performed by on-box content category
lookups. For more information on DNS and RDNS restrictions, see Chapter 6: "Definition Reference".

Condition Reference
The remainder of this chapter lists the conditions and their accepted values. It also provides tips as to
where each condition can be used and examples of how to use them.

restrict dns
domain_list
end

Applies to all layers. Applies to all
transactions.

If the domain specified in a URL matches any of the
domain patterns specified in domain_list, no
DNS lookup is performed for any server_url=,
server_url.address=, server_url.domain=,
or server_url.host= test.
If a lookup is required to evaluate the trigger, the
trigger evaluates to false.

restrict rdns
subnet_list
end

Applies to all layers. Applies to all
transactions.

If the requested URL specifies the host in IP form, no
RDNS lookup is performed to match any
server_url=, server_url.domain=, or
server_url.host= trigger.
If a lookup is required to evaluate the trigger, the
trigger evaluates to false.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

52

acl=

Deprecated syntax. See "client.address=" on page 60 for more information.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

53

admin.access=

Tests the administrative access requested by the current transaction.

It evaluates to null if the transaction is not an administrative transaction, which may occur if the test is
included in an <Exception> layer.

Replaces: method=

Syntax

admin.access=READ|WRITE

Layer and Transaction Notes

• Use in <Admin> layers instead of method=

• Applies to administrator transactions.

Examples

This example grants full administrative access to members of the IT_Admin group, allows read-only
access to members of the IT group, and denies administrative access to all others.

<Admin>
authenticate(MyRealm)

<Admin>
group=IT_Admin allow
group=IT_support admin.access=READ allow ; can view but not modify
deny

See Also

• Conditions: console_access=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

54

attribute.name=

Tests if the current transaction is authenticated in a RADIUS or LDAP realm, and if the authenticated
user has the specified attribute with the specified value. This trigger is unavailable if the current
transaction is not authenticated (that is, the authenticate property is set to no).

If you reference more than one realm in your policy, you may wish to disambiguate attribute tests by
combining them with a realm= test. This can reduce the number of extraneous queries to
authentication services for attribute information that does not pertain to that realm.

Syntax

attribute.name=value

where:

• name is a RADIUS or LDAP attribute. The name attribute’s case-sensitivity depends on the type of
authentication realm.

• RADIUS realm: The only available attribute is ServiceType, which is always case-sensitive.

• LDAP realm: Case-sensitivity depends on the realm definition in configuration.

• value: An attribute value.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

• Applies to proxy and administrator transactions.

• This condition cannot be combined with the authenticate() or socks.authenticate()
properties.

Examples

; This example uses the value of the ContentBlocking attribute associated with a
; user to select which content categories to block. (SmartFilter 3 categories are
; used.)

<proxy>

authenticate(LDAPRealm)

<proxy> exception(content_filter_denied)

attribute.ContentBlocking=Adult category=(Sex, Nudity, Mature, Obscene/Extreme)
attribute.ContentBlocking=Violence category=(Criminal_Skills, Hate_Speech)

...

; This example uses the attribute property to determine permissions associated with
; RADIUS authentication.

define condition ProxyAllowed

attribute.ServiceType=(2,6,7,8)

end

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

55

<proxy>

authenticate(RADIUSRealm)

; This rule would restrict non-authorized users.

<proxy>

deny condition=!ProxyAllowed

; This rule would serve to override a previous denial and grant access to authorized
; users

<proxy>

allow condition=ProxyAllowed

See Also

• Conditions: authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user.domain=

• Properties: authenticate(), authenticate.force(), check_authorization(),
exception(), socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

56

authenticated=

True if authentication was requested and the credentials could be verified; otherwise, false.

Syntax

authenticated=(yes|no)

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

• Applies to proxy and administrator transactions.

• This condition cannot be combined with the authenticate() property.

Examples

; In this example, only users authenticated in any domain are granted access to a
; specific site.

<proxy>

client.address=10.10.10.0/24 authenticate(LDAPRealm)
client.address=10.10.11.0/24 authenticate(NTLMRealm)
client.address=10.10.12.0/24 authenticate(LocalRealm)
;anyone else is unauthenticated

; This rule would restrict unauthorized users. Use this when overriding previously
; granted access.

<proxy> server_url.domain=xyz.com

deny authenticated=no

; This rule would grant access and would be used to override a previous denial.
; It assumes a deny in a previous layer.

<proxy> server_url.domain=xyz.com

allow authenticated=yes

See Also

• Conditions: attribute.name=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user.domain=

• Properties: authenticate(), authenticate.force(), check_authorization(),
socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

57

bitrate=

Tests if a streaming transaction requests bandwidth within the specified range or an exact match.
When providing a range, either value can be left empty, implying either no lower or no upper limit on
the test. Bitrate can change dynamically during a transaction, so this policy is re-evaluated for each
change. Note that the numeric pattern used to test the bitrate= condition can contain no whitespace.
This trigger is only available if the current transaction is a Real Media or Windows Media transaction.

Syntax

bitrate={ [lower]..[upper]|exact_rate }

where:

• lower—Lower end of bandwidth range. Specify using an integer, in bits, kilobits (1000x), or
megabits (1,000,000x), as follows: integer | integerk | integerm. If left blank, there is no
lower limit on the test.

• upper—Upper end of bandwidth range. Specify using an integer, in bits, kilobits, or megabits, as
follows: integer | integerk | integerm. If left blank, there is no upper limit on the test.

• exact_rate—Exact bandwidth to test. Specify using an integer, in bits, kilobits, or megabits, as
follows: integer | integerk | integerm.

Note: To test an inverted range, the following shorthand expression is available. Instead of writing
bitrate=(..28.8k|56k..) to indicate bit rates from 0 to 28.8k and from 56k up, the policy
language recognizes bitrate=56k..28.8k as equivalent.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

• Applies to streaming transactions.

• This condition can be used with the max_bitrate() property.

Examples

; Deny service for bit rates above 56k.

deny bitrate=!0..56k

; This example allows members of the Sales group access to streams up to 2 megabits.
; All others are limited to 56K bit streams.

<proxy>
authenticate(NTLMRealm)

<proxy>
; deny sales access to streams over 2M bits
deny group=sales bitrate=!0..2m

; deny non-sales access to streams over 56K bits
deny group=!sales bitrate=!0..56k..

; In this form of the rule, we assume that the users are by default denied, and we
; are overriding this to grant access to authorized users.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

58

<Proxy> ; Use this layer to override a deny in a previous layer
; Grant everybody access to streams up to 56K, sales group up to 2M
allow bitrate=..56K
allow group=sales bitrate=..2M

See Also

• Conditions: live=, streaming.client=, streaming.content=

• Properties: access_server(), max_bitrate(), streaming.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

59

category=

Tests the content categories of the requested URL as assigned by policy definitions or an installed
content filter database.

A URL that is not categorized is assigned the category none.

If a content filter provider is selected in configuration, but an error occurs in determining the category,
the URL is assigned the category unavailable (in addition to any categories assigned directly by
policy). This can be the result of either a missing database or license expiry. An additional category of
unlicensed is assigned in the latter case.

A URL may have been assigned a list of categories. The category= trigger is true if it matches any of
the categories assigned to the URL.

You cannot use category= to test the category assigned by off-box content filtering services. These
services have their own policy that must be managed separately.

Notes:

• If category=unlicensed is true, category=unavailable is true.

• category=unavailable replaces the deprecated category.unavailable=yes syntax.

• category=(category_list) exception(content_filter_denied) replaces the deprecated
block_category(category_list) syntax.

Syntax

category={ none|unlicensed|unavailable|category_name1, category_name2, ...}

where category_name1, category_name2, ... represent category names defined by policy or the
selected content filter provider. The list of currently valid category names is available both through the
Management Console and CLI.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Exception> layers.

• This condition can be combined with the authenticate() property, except when a Microsoft
Media Streaming (MMS) over HTTP transaction is being evaluated.

• Applies to proxy transactions.

Examples

; This example denies requests for games or sports related content.

<Proxy>

; Tests true if the request is in one of these categories.
category=(Sports, Games) exception(content_filter_denied)
category=unavailable exception(content_filter_unavailable); Fail closed

See Also

• Properties: exception(), request.filter_service()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

60

client.address=

Tests the IP address of the client. The expression can include an IP address or subnet or the label of a
subnet definition block.

Important: If a user is explicitly proxied to the ProxySG, <Proxy> layer policy applies even if the
URL destination is an administrative URL for the ProxySG itself, and should therefore
also be covered under <Admin> layer policy. However, when the
client.address= trigger is used in an <Admin> layer, clients explicitly proxied to the
ProxySG appear to have their client IP address set to the IP address of the ProxySG.

Replaces: client_address=, acl=

Syntax

client.address=ip_address|subnet_label

where:

• ip_address—Client IP address or subnet specification; for example, 10.25.198.0/24.

• subnet_label—Label of a subnet definition block that binds a number of IP addresses or subnets.

Layer and Transaction Notes

• Can be used in all layers.

• Unavailable if the transaction is not associated with a client.

Examples

; Blacklisted workstation.

client.address=10.25.198.0 deny

; This example uses the client address to select the authentication realm for
; administration of the ProxySG.

<admin>

client.address=10.25.198.0/24 authenticate(LDAPRealm)
client.address=10.25.199.0/24 authenticate(NTLMRealm)
authenticate(LocalRealm) ; Everyone else

See Also

• Conditions: client.protocol=, proxy.address=, proxy.card=, proxy.port=

• Definitions: define subnet

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

61

client.protocol=

Tests true if the client transport protocol matches the specification.

Replaces: client_protocol=

syntax

client.protocol=http|https|ftp|tcp|socks|mms|rtsp|icp|aol-im|msn-im|yahoo-im

Note that tcp specifies a tunneled transaction.

Layer and Transaction Notes

• Use in <Exception>, <Forward>, and <Proxy> layers.

• Applies to proxy transactions.

• Tests false if the transaction is not associated with a client.

See Also

• Conditions: client.address=, proxy.address=, proxy.card=, proxy.port=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

62

condition=

Tests if the specified defined condition is true.

Syntax

condition=condition_label

where condition_label is the label of a custom condition as defined in a define
condition, define url.domain condition, or define url condition definition block.

Layer and Transaction Notes

• Use in all layers.

• The defined conditions that are referenced may have usage restrictions, as they must be evaluated
in the layer from which they are referenced.

Examples

; Deny access to client 1.2.3.4 for any http request through proxy port 8080.

define condition qa

client.address=1.2.3.4 proxy.port=8080

end condition qa

<proxy>

condition=qa client.protocol=http deny

; Restrict access to internal sites to specific groups,
; using nested conditions.

define condition restricted_sites
url.domain=internal.my_co.com

end condition restricted_sites

define condition has_full_access
group=admin,execs,managers

end condition

define condition forbidden
condition=restricted_sites condition=!has_full_acesss

end

<proxy>
authenticate(My_realm)

<proxy>
condition=forbidden deny

; Example of a define url condition.

define url condition test

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

63

http://www.x.com time=0800..1000
http://www.y.com month=1
http://www.z.com hour=9..10

end

<proxy>
condition=test deny

; Example of a define domain-suffix (or domain) condition

define url.domain condition test

com ; Matches all domains ending in .com

end

<proxy>

condition=test deny

See Also

• Definitions: define condition, define url.domain condition, define url condition

• Properties: action.action_label()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

64

console_access=

Tests if the current request is destined for the <Admin> layer. This test can be used to distinguish access
to the management console by admininstrators who are explicitly proxied to the ProxySG being
admininstered. The test can be used to guard transforms that should not apply to the Management
Console. This cannot be used to test Telnet sessions, as they do not go through a <Proxy> layer.

Syntax

console_access=yes|no

Layer and Transaction Notes

• Use in <Exception>, <Proxy>, and <Cache> layers.

• Applies to HTTP transactions.

See Also

• Conditions: admin.access=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

65

content_admin=

The content_admin= condition has been deprecated. For more information, see
"content_management" on page 66.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

66

content_management

Tests if the current request is a content management transaction.

Replaces: content_admin=yes|no

Syntax

content_management=yes|no

Layer and Transaction Notes

• Use in <Cache> and <Forward> layers.

• Applies to all transactions.

See Also

• Conditions: category=, ftp.method=, http.method=, http.x_method=, method=, server_url=

• Properties: http.request.version(), http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

67

date[.utc]=

Tests true if the current time is within the startdate..enddate range, inclusive. The comparison is
made against local time unless the .utc qualifier is specified.

syntax

date[.utc]=YYYYMMDD..YYYYMMDD
date[.utc]=MMDD..MMDD

Layer and Transaction Notes

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

See Also

• Conditions: day=, hour=, minute=, month=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

68

day=

Tests if the day of the month is in the specified range or an exact match. The ProxySG appliance’s
configured date and time zone are used to determine the current day of the month. To specify the UTC
time zone, use the form day.utc=. Note that the numeric pattern used to test the day condition can
contain no whitespace.

Syntax

day[.utc]={[first_day]..[last_day]|exact_day}

where:

• first_day—An integer from 1 to 31, indicating the first day of the month that will test true. If left
blank, day 1 is assumed.

• last_day—An integer from 1 to 31, indicating the last day of the month that will test true. If left
blank, day 31 is assumed.

• exact_day—An integer from 1 to 31, indicating the day of the month that will test true.

Note: To test against an inverted range, such as days early and late in the month, the following
shorthand expression is available. While day=(..5|25..) specifies the first 5 days of the
month and last few days of the month, the policy language also recognizes day=25..5 as the
same.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

Examples

; Test for New Year’s Day (January 1).

day=1 month=1

; This policy allows access to a special event site only during the days of
; the event.

; This form of the rule restricts access during non-event times.

<Proxy> url=http://www.xyz.com/special_event

; The next line matches, but does nothing if allow is the default
; year=2003 month=7 day=23..25 ; During the event
; deny Any other time

; This form of the rule assumes access is generally denied, and grants access during
; the special event.

<Proxy> url=http://www.xyz.com/special_event

allow year=2003 month=7 day=23..25 ; During the event

See Also

• Conditions: date[.utc]=, hour=, minute=, month=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

69

exception.id=

Tests whether the exception being returned to the client is the specified exception. It can also be used
to determine whether the exception being returned is a built-in or user-defined exception.

Built-in exceptions are handled automatically by the ProxySG but special handling can be defined
within an <Exception> layer. Special handling is most often required for user-defined exceptions.

syntax

exception.id=exception_id

where exception_id is either the name of a built-in exception of the form:

exception_id

or the name of a user defined exception in the form:

user_defined.exception_id

In addition to testing the identity of exceptions set by the exception() property, exception.id=
can also test for exceptions returned by other CPL gestures, such as policy_denied, returned by the
deny() property and policy_redirect returned by the redirect() action.

Layer and Transaction Notes

• Use in <Exception> layers.

• Applies to proxy transactions.

Examples

This example illustrates how some commonly generated exceptions are caught. Appropriate subnet
and action and category definitions are assumed.

<Proxy> url.domain=partner.my_co.com/

action.partner_redirect(yes) ; action contains redirect()

<Proxy> url.domain=internal.my_co.com/

force_deny client.address!=mysubnet
authenticate(my_realm)

<Proxy> deny.unauthorized

url.domain=internal.my_co.com/hr group=!hr;
; and other group/user restrictions ...

<Proxy> category=blocked_sites

exception(user_defined.restricted_content)
; could probably have used built in content_filter_denied

; Custom handling for some built-in exceptions
;
<Exception>

; thrown by authenticate() if there is a realm configuration error
exception.id=configuration_error action.config_err_alerts(yes)
; thrown by deny.unauthorized
exception.id=authorization_failed action.log_permission_failure(yes)

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

70

; thrown by deny or force_deny
exception.id=policy_denied action.log_interloper(yes)

<Exception> exception.id=user_defined.restricted_content

; any policy required for this user defined exception
...

See Also

• Properties: deny(), deny.unauthorized(), exception()

• Actions: authenticate(), authenticate.force(), redirect()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

71

ftp.method=

Tests FTP request methods against any of a well-known set of FTP methods. A CPL parse error is
given if an unrecognized method is specified.

• ftp.method= evaluates to true if the request method matches any of the methods specified.

• ftp.method= evaluates to NULL if the request is not an FTP protocol request.

Syntax

ftp.method=ABOR|ACCT|ALLO|APPE|CDUP|CWD|DELE|HELP|LIST|MDTM|MKD|MODE|NLST|NOOP|P
ASS|PASV|PORT|PWD|REST|RETR|RMD|RNFR|RNTO|SITE|SIZE|SMNT
|STOR|STOU|STRU|SYST|TYPE|USER|XCUP|XCWD|XMKD|XPWD|XRMD|OPEN

where:

• ftp.method= evaluates to true if the request method matches any of the methods specified.

• It evaluates to NULL if the request is not an FTP protocol request.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to FTP transactions.

See Also

• Conditions: category=, content_management=, http.method=, http.x_method=, im.method=,
method=, server_url=, socks.method=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

72

group=

Tests if the client is authenticated, and the client belongs to the specified group. If both of these
conditions are met, the result is true. In addition, the realm= condition can be used to test whether the
user is authenticated in the specified realm. This trigger is unavailable if the current transaction is not
authenticated; that is, the authenticate() property is set to no.

If you reference more than one realm in your policy, consider disambiguating group tests by
combining them with a realm= test. This reduces the number of extraneous queries to authentication
services for group information that does not pertain to that realm.

Syntax

group=group_name

where:

• group_name—Name of a group in the default realm. The required form, and the name attribute’s
case-sensitivity, depends on the type of realm.

❐ NTLM realm: Group names are of the form Domain\groupname, where Domain may be
optional, depending on whether or not the CAASNT is installed on the NT domain controller
for the domain. Names are case-insensitive.

❐ Local Password realm: Group names are up to 32 characters long, and underscores (_) and
alphanumerics are allowed. Names are case-sensitive.

❐ RADIUS realm: RADIUS does not support groups. Instead, groups in RADIUS environments
are defined by assigning users a ServiceType attribute.

❐ LDAP realm: Group definitions depend on the type of LDAP directory and LDAP schema.
Generally, LDAP distinguished names are used in the following form: cn=proxyusers,
ou=groups, o=companyname. Case-sensitivity depends on the realm definition configuration.

❐ Certificate realm: Certificate realms provide authentication, but do not themselves provide
authorization; instead they delegate group membership decisions to their configured
authorization realm, which is either a Local Password realm or an LDAP realm. Group
definitions should conform to the appropriate standards for the delegated authorization
realm. Although the group used in policy is then a group from the delegated realm, to achieve
performance benefits, the group= test should be preceded with a realm test for the certificate
realm, not the delegated authorization realm.

❐ Sequence realm: A sequence realm is a configured list of subordinate realms to which the user
credentials are offered, in the order listed. The user is considered authenticated when the
offered credentials are valid in one of the realms in the sequence. Authorization of the user is
done with respect to the subordinate realm in which authentication occurred. Group names
may be valid names in any of the realms in the sequence, but for the group= test to evaluate to
true, the group must be valid in the realm in which the user is actually authenticated. If the
group is valid in all realms in the sequence, then the group= test must be preceded by a
realm= test of the Sequence realm; otherwise, it should be preceded by a realm= test of the
appropriate subordinate realm.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

73

• Applies to proxy and administrator transactions.

• This condition cannot be combined with the authenticate(), proxy_authentication(), or
socks.authenticate() properties.

Examples

; Test if user is authenticated in group all_staff and specified realm.

realm=corp group=all_staff

; This example shows sample group tests for each type of realm. It does
; this by creating a condition in CPL that treats a group of administrators in
; each realm as equivalent, granting them permission to administer the Security
; Appliance. Recall that the <Admin> layer uses a whitelist model by default.

define condition RW_Admin

realm=LocalRealm group=RWAdmin
realm=NTLMRealm group=xyz-domain\cache_admin
realm=LDAPRealm group=”cn=cache_admin, ou=groups, o=xyz”
; The RADIUSRealm uses attributes, and this can be expressed as follows:
realm=RADIUSRealm attribute.ServiceType=8

end condition RW_Admin

<admin>

client.adress=10.10.1.250/28 authenticate(LocalRealm)
client.adress=10.10.1.0/24 authenticate(NTLMRealm)
client.adress=10.10.2.0/24 authenticate(LDAPRealm)
client.adress=10.10.3.0/24 authenticate(RADIUSRealm)

<admin>

allow condition=RW_Admin admin.access=(READ||WRITE)

See Also

• Conditions: attribute.name=, authenticated=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user.domain=

• Properties: authenticate(), authenticate.force(), check_authorization(),
socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

74

has_attribute.name=

Tests if the current transaction is authenticated in an LDAP realm and if the authenticated user has the
specified LDAP attribute. If the attribute specified is not configured in the LDAP schema and yes is
used in the expression, the condition always yields false. This trigger is unavailable if the current
transaction is not authenticated (that is, the authenticate property is set to no).

If you reference more than one realm in your policy, consider disambiguating has_attribute tests by
combining them with a realm= test. This reduces the number of extraneous queries to authentication
services for attribute information that does not pertain to that realm.

Important: This condition is incompatible with Novell eDirectory servers. If the name attribute is
configured in the LDAP schema, then all users are reported by the eDirectory server to
have the attribute, regardless of whether they actually do. This can cause unpredictable
results.

Syntax

has_attribute.name=yes|no

where name is an LDAP attribute. Case-sensitivity for the attribute name depends on the realm
definition in configuration.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

• Applies to proxy and administrate transactions.

• This condition cannot be combined with the authenticate()or socks.authenticate()
properties.

Example

; The following policy allows users to access the proxy if they have the
; LDAP attribute ProxyUser. The attribute could have any value, even null.
; Generally this kind of policy would be established in the first proxy layer,
; and would set up either the blacklist or whitelist model, as desired.

<proxy>

authenticate(LDAPRealm)

; Setting up a whitelist model

<proxy>

deny has_attribute.ProxyUser=no

; Setting up a blacklist model

<proxy>

allow has attribute.ProxyUser=yes

deny

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

75

See Also

• Conditions: attribute.name=, authenticated=, group=,
http.transparent_authentication=, realm=, user=, user.domain=

• Properties: authenticate(), authenticate.force(), check_authorization()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

76

has_client=

The has_client= condition is used to test whether or not the current transaction has a client. This can
be used to guard triggers that depend on client identity in a <Forward> layer.

Syntax

has_client=yes|no

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to all transactions.

See Also

• Conditions: client.address=, client.protocol=, proxy.address=, proxy.card=,
proxy.port=, streaming.client=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

77

hour=

Tests if the time of day is in the specified range or an exact match. The current time is determined by
the ProxySG appliance’s configured clock and time zone by default, although the UTC time zone can
be specified by using the form hour.utc=. The numeric pattern used to test the hour= condition
contains no whitespace.

Note: Any range of hours or exact hour includes all the minutes in the final hour. See the
“Examples” section.

Syntax

hour[.utc]={first_hour]..[last_hour]|exact_hour}

where:

• first_hour—Two digits (nn) in 24-hour time format representing the first hour in a range; for
example, 09 means 9:00 a.m. If left blank, midnight (00) is assumed—exactly 00:00 a.m.

• last_hour—Two digits (nn) in 24-hour time format representing the last full hour in a range; for
example, 17 specifies 5:59 p.m. If left blank, 23 is assumed (23:59 p.m.).

• exact_time—Two digits (nn) in 24-hour time format representing an exact, full hour.

Note: To test against an inverted range, such as a range that crosses from one day into the next, the
following shorthand expression is available. While hour=(..06|19..) specifies midnight to
6:59 a.m. and 7:00 p.m. to midnight, the policy language also recognizes hour=19..06 as
equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

• Applies to all transactions.

Examples

; Tests for 3:00 a.m. to 1:59 p.m. UTC.

hour.utc=03..13

; The following example restricts access to external sites during business hours.
; This rule assumes that the user has access that must be restricted.

<proxy>

; Internal site always available, no action required
server_url.domain=xyz.com
; Restrict other sites during business hours
deny weekday=1..5 hour=9..16

; If a previous rule had denied access, then this rule could provide an exception.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

78

<proxy>

allow server_url.domain=xyz.com ; internal site always available
 allow weekday=6..7 ; unrestricted weekends
 allow hour=17..8; Inverted range for outside business hours

See Also

• Conditions: date[.utc]=, day=, minute=, month=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

79

http.method=

Tests HTTP request methods against any of a common set of HTTP methods. A CPL parse error is
given if an unrecognized method is specified.

Syntax

http.method=GET|CONNECT|DELETE|HEAD|POST|PUT|TRACE|OPTIONS|TUNNEL|LINK|UNLINK
|PATCH|PROPFIND|PROPPATCH|MKCOL|COPY|MOVE|LOCK|UNLOCK|MKDIR|INDEX|RMDIR|COPY|
MOVE

where:

• http.method= evaluates to true if the request method matches any of the methods specified.

• http.method= evaluates to NULL if the request is not an HTTP protocol request.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: admin.access=, ftp.method=, http.x_method=, im.method=, method=,
socks.method=

• Properties: http.request.version(), http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

80

http.request.version=

Tests the version of HTTP used by the client in making the request to the appliance.

syntax

http.request.version=0.9|1.0|1.1

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: http.response.code=, http.response.version=

• Properties: http.request.version(), http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

81

http.response.code=

Tests true if the current transaction is an HTTP transaction and the response code received from the
origin server is as specified.

Replaces: http.response_code

syntax

http.response.code=nnn

where nnn is a standard numeric range test with values in the range 100 to 999 inclusive.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: http.request.version=, http.response.version=

• Properties: http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

82

http.response.version=

Tests the version of HTTP used by the origin server to deliver the response to the ProxySG.

Syntax

http.response.version=0.9|1.0|1.1

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: http.request.version=, http.response.code=

• Properties: http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

83

http.transparent_authentication=

This trigger evaluates to true if HTTP uses transparent proxy authentication for this request.

The trigger can be used with the authenticate() or authenticate.force() properties to select an
authentication realm.

Syntax

http.transparent_authentication=yes|no

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: attribute.name=, authenticated=, group=, has_attribute.name=, realm=, user=,
user.domain=

• Properties: authenticate(), authenticate.force(), authenticate.mode(),
check_authorization()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

84

http.x_method=

Tests HTTP request methods against any uncommon HTTP methods. A CPL parse warning is given if
the method specified is a recognized method (in which case, http.method= is recommended).

Uncommon methods are tested using a string comparison, so some performance benefit exists with
using http.method= when testing for common methods.

Syntax

http.x_method=method_name_list

where http.x_method= evaluates to NULL if the request is not an HTTP protocol request.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP transactions.

See Also

• Conditions: ftp.method=, http.method=, im.method=, method=, socks.method=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

85

im.buddy_id=

Tests the buddy_id associated with the instant messaging transaction.

Syntax

im.buddy_id[.case_sensitive]=user_id_string
im.buddy_id.substring[.case_sensitive]=substring
im.buddy_id.regex[.case_sensitive]=“expr”

where:

• user_id_string—An exact match of the complete instant messaging buddy name.

• substring . . . substring—Specifies a substring of an instant messaging buddy name.

• regex . . . ”expr”—Takes a regular expression.

Notes

• By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.chat_room.conference=, im.chat_room.id=, im.chat_room.invite_only=,
im.chat_room.type=, im.chat_room.member=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

86

im.chat_room.conference=

Tests whether the chat room associated with the instant messaging transaction has the conference
attribute set.

Syntax

im.chat_room.conference=yes|no

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.id=, im.chat_room.invite_only=,
im.chat_room.type=, im.chat_room.member=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

87

im.chat_room.id=

Tests the chat room ID associated with the instant messaging transaction.

Syntax

im.chat_room.id[.case_sensitive]=user_id_string
im.chat_room.id.substring[.case_sensitive]=substring
im.chat_room.id.regex[.case_sensitive]=“expr”

where:

• user_id_string—An exact match of the complete chat room ID.

• substring . . . substring—Specifies a substring of a chat room ID.

• regex . . . ”expr”—Takes a regular expression.

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.invite_only=,
im.chat_room.type=, im.chat_room.member=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

88

im.chat_room.invite_only=

Tests whether the chat room associated with the instant messaging transaction has the invite_only
attribute set.

Syntax

im.chat_room.invite_only=yes|no

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.type=, im.chat_room.member=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

89

im.chat_room.type=

Tests whether the chat room associated with the transaction is public or private.

Syntax

im.chat_room.type=public|private

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.member=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

90

im.chat_room.member=

Tests whether the chat room associated with the instant messaging transaction has a member
matching the specified criterion.

Syntax

im.chat_room.id[.case_sensitive]=buddy_id_string
m.chat_room.id.substring[.case_sensitive]=substring
im.chat_room.id.regex[.case_sensitive]=“expr”

where:

• string—An exact match of the complete instant messaging buddy ID.

• substring . . . substring—Specifies a substring of the instant messaging buddy ID.

• regex . . . ”expr”—Takes a regular expression.

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.voice_enabled=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

91

im.chat_room.voice_enabled=

Tests whether the chat room associated with the instant messaging transaction is voice enabled.

Syntax

im.chat_room.voice_enabled=yes|no

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.file.extension=, im.file.name=, im.file.path=, im.file.size=, im.message.route=,
im.message.size=, im.message.text=, im.message.type=, im.method=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

92

im.file.extension=

Tests the file extension of a file associated with an instant messaging transaction. The leading '.' of the
file extension is optional. Only supports an exact match.

Syntax

im.file.extension[.case-sensitive]=[.]filename_extension

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.name=, im.file.path=, im.file.size=,
im.message.route=, im.message.size=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

93

im.file.name=

Tests the file name (the last component of the path), including the extension, of a file associated with
an instant messaging transaction.

Syntax

im.file.name[.case_sensitive]=string
im.file.name.prefix[.case_sensitive]=prefix_string
im.file.name.substring[.case_sensitive]=substring
im.file.name.regex[.case_sensitive]=“expr”

where:

• string—An exact match of the complete file name with extension.

• prefix . . . prefix_string—Specifies a prefix match.

• substring . . . substring—Specifies a substring match of the file name.

• regex . . . ”expr”—Takes a regular expression.

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.path=, im.file.size=,
im.message.route=, im.message.size=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

94

im.file.path=

Tests the file path of a file associated with an instant messaging transaction against the specified
criterion.

Syntax

im.file.path[.case_sensitive]=string
im.file.path.prefix[.case_sensitive]=prefix_string
im.file.path.substring[.case_sensitive]=substring
im.file.path.regex[.case_sensitive]=“expr”

where:

• string—An exact match of the complete path.

• prefix . . . prefix_string—Specifies a prefix match.

• substring . . . substring—Specifies a substring match of the path.

• regex . . . ”expr”—Takes a regular expression.

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.size=,
im.message.route=, im.message.size=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

95

im.file.size=

Performs a signed 64-bit range test of the size of a file associated with an instant messaging
transaction.

Syntax

im.file.size=[min]..[max]

The default minimum value is zero (0); there is no default maximum value.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.message.route=, im.message.size=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

96

im.message.opcode=

Tests the value of an opcode associated with an instant messaging transaction whose im.method is
send_unknown or receive_unknown.

Note: Generally, this is used with deny() to restrict interactions that are new to one of the
supported instant messaging protocols and for which direct policy control is not yet available.
Use of this trigger requires specific values for the opcode as determined by Blue Coat Systems
technical support.

Syntax

im.message.opcode=string

where string is a value specified by technical support.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

97

im.message.route=

Tests how the instant messaging message reaches its recipients.

Syntax

im.message.route=service|direct|chat

where:

• service—The message is relayed through the IM service.

• direct—The message is sent directly to the recipient.

• chat—The message is sent to a chat room (includes conferences).

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.size=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

98

im.message.size=

Performs a signed 64-bit range test on the size of the instant messaging message.

Syntax

im.message.size=[min]..[max}

The default minimum value is zero (0); there is no default maximum value.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.text=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

99

im.message.text=

Tests if the message text contains the specified text or pattern.

Note: The .regex version of this test is limited to the first 8K of the message. The .substring
version of the test does not have this restriction.

Syntax

im.message.text.substring[.case_sensitive]=substring
im.message.text.regex[.case_sensitive]=expr

where:

• substring . . . substring—Specifies a substring match of the message text.

• regex . . . ”expr”—Takes a regular expression.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.size=, im.message.type=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

100

im.message.type=

Tests the message type of an instant messaging transaction.

Syntax

im.message.type=text|invite|voice_invite|file|file_list|application

where:

• text—Normal IM text message.

• invite—An invitation to a chat room or to communicate directly.

• voice_invite—Invitation to a voice chat.

• file—The message contains a file.

• file_list—The message contains a list of exported files.

• application—Tests if this instant messaging request was generated internally by the instant
messaging application, rather than as a direct result of a user gesture.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.size=, im.message.text=, im.method=,
im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

101

im.method=

Tests the method associated with the instant messaging transaction.

Syntax

im.method=open|create|join|join_user|login|logout|notify_join|notify_quit|
notify_state|quit|receive|receive_unknown|send|send_unknown|set_state

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Actions: append(), im.alert(), set()

• Conditions: ftp.method=, http.method=, http.x_method=, method=, socks.method=

• IM Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.size=, im.message.text=,
im.message.type=, im.user_id=

• Properties: im.strip_attachments()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

102

im.user_id=

Tests the user_id associated with the instant messaging transaction.

Syntax

im.user_id[.case_sensitive]=user_id_string
im.user_id.substring[.case_sensitive]=substring
im.user_id.regex[.case_sensitive]=“expr”

where:

• user_id_string—An exact match of the complete instant messaging username.

• substring . . . substring—Specifies a substring of an instant messaging username.

• regex . . . ”expr”—Takes a regular expression.

Notes

By default the test is case-insensitive. Specifying .case_sensitive makes the test case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to instant messaging transactions.

See Also

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.size=, im.message.text=,
im.message.type=, im.method=

• Properties: im.strip_attachments()

• Actions: append(), im.alert(), set()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

103

live=

Tests if the streaming content is a live stream.

Syntax

live=yes|no

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

• Applies to streaming transactions.

Examples

; The following policy restricts access to live streams during morning hours.
; In this example, we use a policy layer to define policy just for the live streams.
; This example uses the restrict form and integrates with other <proxy> layers.

<proxy>

deny live=yes time=1200..0800 ; Policy for live streams

See Also

• Conditions: bitrate=, streaming.client=, streaming.content=

• Properties: access_server(), max_bitrate(), streaming.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

104

method=

Tests the protocol method name associated with the transaction. Appropriate method names depend
on the protocol. Also, a warning is issued during policy file compilation if the name is not a
recognized method.

method= accepts any of the protocol specific methods accepted by admin.access=, ftp.method=,
http.method=, im.method=, or socks.method=.

It also recognizes ICP_QUERY, MMS_PLAY, and RTSP_PLAY.

It accepts, but gives a parse warning for, unrecognized methods.

Matches are done by case insensitive string comparison, so there is a performance benefit to using
protocol specific tests, in addition to the extra error checking available.

A specified method can match a commonly named method from multiple protocols (for example,
CONNECT).

Note: Use of method= in <Admin> layers has been replaced by admin.access=.

Syntax

method=method_name

where method_name is a valid method appropriate for the protocol of interest. Method names are
case-insensitive. The following methods are recognized:

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

Protocol Methods

HTTP, HTTPS

See "http.method=" on page 79,
"http.x_method=" on page 84

TUNNEL
GET, HEAD, POST, PUT, CONNECT, DELETE, OPTIONS, TRACE (HTTP
1.1/rfc 2616)
PROPFIND PROPPATCH MKCOL COPY MOVE LOCK UNLOCK
(WebDAV/rfc 2518)
MKDIR INDEX RMDIR COPY MOVE (Netscape)
LINK UNLINK PATCH (HTTP 1.1/rfc 2068, dropped in rfc 2616)

FTP

See "ftp.method=" on page 71.

ABOR ACCT ALLO APPE CDUP CWD DELE HELP LIST MDTM
MKD MODE NLST NOOP PASS PASV PORT PWD RETR RMD RNFR
RNTO SITE SIZE SMNT STOR STOU STRU SYST TYPE USER
XCUP XCWD XMKD XPWD XRMD

ICP ICP_QUERY

instant messaging OPEN, CREATE, JOIN, JOIN_USER, LOGIN, LOGOUT, NOTIFY_JOIN,
NOTIFY_QUIT, NOTIFY_STATE, QUIT, RECEIVE,
RECEIVE_UNKNOWN, SEND, SEND_UNKNOWN, SET_STATE

Real Media (RTSP) RTSP_PLAY

SOCKS CONNECT, BIND, UDP_ASSOCIATE

Windows Media (MMS) MMS_PLAY

Windows Media HTTP streaming (HTTP
then MMS)

GET then MMS_PLAY

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

105

Examples

<proxy>

http.method=GET response.header.Pragma=”no-cache" deny

; This example is applicable to a blacklist model. It denies access to
; transparent FTP by denying the OPEN method on port 21.

<proxy> proxy.port=21

deny ftp.method=OPEN

; This example tests method=CONNECT to secure against firewall bypass

<proxy>

deny method=CONNECT server_url.port=!443

See Also

• Conditions: admin.access=, category=, console_access=, content_management=,
ftp.method=, http.method=, http.x_method=, im.method=, server_url=, socks.method=

• Properties: http.request.version(), http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

106

minute=

Tests if the minute of the hour is in the specified range or an exact match. By default, the ProxySG
appliance’s clock and time zone are used to determine the current minute. To specify the UTC time
zone, use the form minute.utc=. The numeric pattern used to test the minute condition can contain
no whitespace.

Syntax

minute[.utc]={[first_minute]..[last_minute]|exact_minute}

where:

• first_minute—An integer from 0 to 59, indicating the first minute of the hour that tests true. If
left blank, minute 0 is assumed.

• last_minute—An integer from 0 to 59, indicating the last minute of the hour that tests true. If left
blank, minute 59 is assumed.

• exact_minute—An integer from 0 to 59, indicating the minute of each hour that tests true.

Note: To test against an inverted range, such as a range that crosses from one hour into the next, the
following shorthand expression is available. While minute=(..14|44..) specifies the first 15
minutes and last 15 minutes of each hour, the policy language also recognizes
minute=44..14 as equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

Examples

; Tests for the first 5 minutes of every hour.

minute=0..4

See Also

• Conditions: date[.utc]=, day=, hour=, month=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

107

month=

Tests if the month is in the specified range or an exact match. By default, the ProxySG appliance’s date
and time zone are used to determine the current month. To specify the UTC time zone, use the form
month.utc=. The numeric pattern used to test the month condition can contain no whitespace.

Syntax

month[.utc]={[first_month]..[last_month]|exact_month}

where:

• first_month—An integer from 1 to 12, where 1 specifies January and 12 specifies December,
specifying the first month that tests true. If left blank, January (month 1) is assumed.

• last_month—An integer from 1 to 12, where 1 specifies January and 12 specifies December,
specifying the last month that tests true. If left blank, December (month 12) is assumed.

• exact_month—An integer from 1 to 12, where 1 specifies January and 12 specifies December,
indicating the month that tests true.

Note: To test against an inverted range, such as a range that crosses from one year into the next, the
following shorthand expression is available. While month=(..6|9..) specifies September
through June, the policy language also recognizes month=9..6 as equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

Examples

; Tests for the year-end holiday season.

define condition year_end_holidays
month=12 day=25..
month=1 day=1
end_condition year_end_holidays

See Also

• Conditions: date[.utc]=, day=, hour=, minute=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

108

protocol=

The protocol= condition has been deprecated in favor of url.scheme=. For more information see
"url=" on page 137.

See Also

Conditions: client.protocol=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

109

proxy.address=

Tests the destination address of the arriving IP packet. The expression can include an IP address or
subnet, or the label of a subnet definition block.

If the transaction was explicitly proxied, then proxy.address= tests the IP address the client used to
reach the proxy, which is either the IP address of the NIC on which the request arrived or a virtual IP
address. This is intended for situations where the proxy has a range of virtual IP address; you can use
proxy.address= to test which virtual IP address was used to reach the proxy.

If the transaction was transparently proxied, then proxy.address= tests the destination address
contained in the IP packet. Note that this test may not be equivalent to testing the
server_url.address. The server_url.address and proxy.address conditions test different
addresses in the case where a proxied request is transparently intercepted: server_url.address=
contains the address of the origin server, and proxy.address= contains the address of the upstream
proxy through which the request is to be handled.

Note: proxy.card= functions correctly for transparent transactions.

Replaces: proxy_address=

Syntax

proxy.address=ip_address|subnet|subnet_label

where:

• ip_address—NIC IP address or subnet; for example, 10.1.198.54.

• subnet—A subnet mask; for example, 10.1.198.0/24

• subnet_label—Label of a subnet definition block that binds a number of IP addresses or subnets.

Layer and Transaction Notes

• Use in <Admin>, <Proxy>, and <Forward> layers.

• Applies to proxy transactions.

Examples

; Service should be denied through proxy within the subnet 1.2.3.x.

<proxy>

proxy.address=1.2.3.0/24 deny

See Also

• Conditions: client.address=, client.protocol=, proxy.card=, proxy.port=

• Definitions: define subnet

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

110

proxy.card=

Tests the ordinal number of the network interface card (NIC) used by a request.

Replaces: proxy_card

Syntax

proxy.card=card_number

where card_number is an integer that reflects the installation order.

Layer and Transaction Notes

• Use in <Admin>, <Proxy>, and <Forward> layers.

• Applies to proxy transactions.

Examples

; Deny all incoming traffic through proxy card 0.

<proxy>

proxy.card=0 deny

See Also

• Conditions: client.address=, client.protocol=, proxy.address=, proxy.port=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

111

proxy.port=

Tests if the IP port used by a request is within the specified range or an exact match.The numeric
pattern used to test the proxy.port= condition can contain no whitespace.

If the transaction was explicitly proxied, then this tests the IP port that the client used to reach the
proxy. The pattern is a number between 1 and 65535 or a numeric range.

If the transaction was transparently proxied, however, then proxy.port= tests which port the client
thinks it is connecting to on the upstream proxy device or origin server. If the client thinks it is
connecting directly to the origin server, but is transparently proxied, and if the port number specified
by the client in the request URL is not inconsistent or falsified, then proxy.port= and
server_url.port= are testing the same value.

Note: Since the ProxySG default configuration passes through tunneled traffic, some changes must
be made to begin transparent port monitoring. Only proxy ports that have been configured
and enabled can be tested using the proxy.port= condition. For example, if the transparent
FTP service, on port 21, is either not configured or not enabled, a policy rule that includes
proxy.port=21 has no effect.

Replaces: proxy_port=

Syntax

proxy.port={[low_port_number]..[high_port_number]|exact_port_number}

where:

• low_port_number—A port number at the low end of the range to be tested. Can be a number
between 1 and 65535.

• high_port_number—A port number at the high end of the range to be tested. Can be a number
between 1 and 65535.

• exact_port_number—A single port number; for example, 80. Can be a number between 1 and
65535.

Layer and Transaction Notes

• Use in <Admin>, <Proxy>, and <Forward> layers.

• Applies to proxy transactions.

Examples

; Deny URL through the default proxy port.

<proxy>

url=http://www.example.com proxy.port=8080 deny

See Also

• Conditions: client.address=, client.protocol=, proxy.address=, proxy.card=,
proxy.port=, server_url.port=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

112

realm=

Tests if the client is authenticated and if the client has logged into the specified realm. If both of these
conditions are met, the response is true. In addition, the group= condition can be used to test whether
the user belongs to the specified group. This trigger is unavailable if the current transaction is not
authenticated (for example, the authenticate property is set to no).

If you reference more than one realm in your policy, consider disambiguating user, group and
attribute tests by combining them with a realm=test. This reduces the number of extraneous queries
to authentication services for group, user or attribute information that does not pertain to that realm.

Syntax

realm=realm_name

where realm_name is the name of an NTLM, Local Password, RADIUS, LDAP, Certificate, or
Sequence realm. Realm names are case-insensitive for all realm types.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

• Applies to proxy and administrator transactions.

Examples

; This example tests if the user has logged into realm corp and
; is authenticated in the specified group.

realm=corp group=all_staff

; This example uses the realm property to distinguish the policy applied
; to two groups of users--corp’s employees, and their corporate partners and
; clients. These two groups will authenticate in different realms.

<proxy>

client.address=10.10.10/24 authenticate(corp) ; The corporate realm
authenticate(client) ; Company partners & clients

<proxy> realm=corp ; Rules for corp employees

allow url.domain=corp.com ; Unrestricted internal access
category=(violence, gambling) exception(content_filter_denied)

<proxy> realm=client ; Rules for business partners & clients

allow group=partners url=corp.com/partners ; Restricted to partners
allow group=(partners, clients) url=corp.com/clients ; Both groups allowed

deny

; Additional layers would continue to be guarded with the realm, so that only
; the ‘client’ realm would be queried about the ‘partners’ and ‘clients’ groups.

See Also

• Conditions: attribute.name=, authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, user=, user.domain=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

113

• Properties: authenticate(), authenticate.force(), check_authorization()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

114

release.id=

Tests the release ID of the ProxySG software. The release ID of the ProxySG software currently
running is displayed on the main page of the Management Console and in the
Management>Maintenance>Upgrade>Systems tab of the Management Console. It also can be displayed
through the CLI using the show version command.

Replaces: release_id=

Syntax

release.id=number

where number is a five-digit number that increases with each new release of ProxySG.

Layer and Transaction Notes

• May be used in any type of layer.

Examples

; the condition below is only true if you are running a version of ProxySG
; whose release id is 18000 or later

release.id=18000..

See Also

• Conditions: release.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

115

release.version=

Tests the release version of the ProxySG software. The release version of the ProxySG software
currently running is displayed on the main page of the Management Console and in the
Management>Maintenance>Upgrade>Systems tab of the Management Console. It also can be displayed
through the CLI using the show version command.

Replaces: release_version=

Syntax

release.version={[minimum_version]..[maximum_version]|version}

where each of the versions is of the format:.

major_#.minor_#.dot_#.patch_#

Each number must be in the range 0 to 255. The major_# is required; less significant portions of the
version may be omitted and will default to 0.

Layer and Transaction Notes

• May be used in any layer.

Examples

; the condition below is only true if you are running a version of ProxySG
; whose release version is 3.1. or greater

release.version=3.1...

; the condition below is only true if you are running a version of ProxySG
; whose release version is less or equal to than 3.1.2

release.version=..3.1.2

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

116

request.header.header_name=

Tests the specified request header (header_name) against a regular expression. Any recognized HTTP
request header can be tested. For custom headers, use request_x_header.header_name= instead. For
streaming requests, only the User-Agent header is available.

Replaces: request_header.header_name=

Syntax

request.header.header_name=regular_expression

where:

• header_name—A recognized HTTP header. For a complete list of recognized headers, see
Appendix C: "Recognized HTTP Headers".

• regular_expression—A regular expression. For more information, refer to Appendix E: “Using
Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

Examples

;deny access when request is sent with Pragma-no-cache header

<proxy>

deny url=http://www.bluecoat.com request.header.Pragma=”no-cache”

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.header.header_name.address=, request.x_header.header_name=,
response.header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

117

request.header.header_name.address=

Tests if the specified request header can be parsed as an IP address; otherwise, false. If parsing
succeeds, then the IP address extracted from the header is tested against the specified IP address. The
expression can include an IP address or subnet, or the label of a subnet definition block. The header
must be a common HTTP header. This condition is commonly used with the X-Forwarded-For and
Client-IP headers. For other, custom headers, use request.x_header.header_name.address=.

Replaces: request_header_address.header_name=

Syntax

request.header.header_name.address=ip_address|subnet|subnet_label

where:

• header_name—A recognized HTTP header. For a complete list of recognized headers, see
Appendix C: "Recognized HTTP Headers".

• ip_address—IP address; for example, 10.1.198.46.

• subnet—A subnet mask; for example, 10.1.198.0/24.

• subnet_label—Label of a subnet definition block that binds a number of IP addresses or subnets.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

Examples

; In this example, we assume that there is a downstream ProxySG that
; identifies client traffic by putting the client’s IP address in a request
; header.

; Here we’ll deny access to some clients, based on the header value.

<proxy>

; Netscape’s convention is to use the Client-IP header

deny request.header.Client-IP.address=10.1.198.0/24 ; the subnet

; Blue Coat’s convention is to use the extended header:

deny request.header.X-Forwarded-For.address=10.1.198.12

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.header.header_name=, response.header.header_name=,
response.x_header.header_name=

• Definitions: define subnet

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

118

request.header.Referer.url=

Test if the URL specified by the Referer header matches the specified criteria. The basic
request.header.Referer.url= test attempts to match the complete Referer URL against a
specified pattern. The pattern may include the scheme, host, port, path and query components of the
URL. If any of these is not included in the pattern, then the corresponding component of the URL is
not tested and can have any value.

Specific portions of the Referer URL can be tested by applying URL component modifiers to the
trigger. In addition to component modifiers, optional test type modifiers can be used to change the
way the pattern is matched.

This trigger is unavailable if the Referer header is missing, or if its value cannot be parsed as a URL.
If the Referer header contains a relative URL, the requested URL is used as a base to form an absolute
URL prior to testing.

Syntax

request.header.Referer.url[.case_sensitive][.no_lookup]=prefix_pattern
request.header.Referer.url.domain[.case_sensitive][.no_lookup]=

domain_suffix_pattern
request.header.Referer.url.regex[.case_sensitive]=regular_expression

request.header.Referer.url.address=ip_address|subnet|subnet_label
request.header.Referer.url.extension[.case_sensitive]=[.]filename_extension

request.header.Referer.url.host[.exact][.no_lookup]=host
request.header.Referer.url.host.[prefix|substring|suffix][.no_lookup]=string
request.header.Referer.url.host.is_numeric=yes|no
request.header.Referer.url.host.no_name=yes|no

request.header.Referer.url.path[.case_sensitive]=/string
request.header.Referer.url.path[.substring|.suffix][.case_sensitive]=string
request.header.Referer.url.path.regex[.case_sensitive]=regular_expression

request.header.Referer.url.port={[low_port_number]..[high_port_number]
|exact_port_number}

request.header.Referer.url.query.regex[.case_sensitive]=regular_expression

request.header.Referer.url.scheme=url_scheme

where all options are identical to url=, except for the URL being tested. For more information, see
"url=" on page 137.

Discussion

The request.header.Referer.url= condition is identical to url=, except for the lack of a define
url condition and [url] or [url.domain] sections.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to HTTP proxy transactions.

Examples

; Test if the Referer URL includes this pattern, and block access.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

119

; Relative URLs, such as docs subdirectories and pages, will match.

deny request.header.Referer.url=http://www.example.com/docs

; Test if the Referer URL host’s IP address is a match.

request.header.Referer.url.address=10.1.198.0

; Test whether the Referer URL includes company.com as domain.

request.header.Referer.url.domain=company.com

; Test whether the Referer URL includes .com.

request.header.Referer.url.domain=.com

; Test if the Referer URL includes this domain-suffix pattern,

; and block service. Relative URLs, such as docs

; subdirectories and pages, will match.

deny request.header.Referer.url.domain=company.com/docs

; examples of the use of request.header.Referer.url.extension=

request.header.Referer.url.extension=.txt

request.header.Referer.url.extension=(.htm, .html)

request.header.Referer.url.extension=(img, jpg, jpeg)

; This example matches the first Referer header value and doesn’t match the second
from
; the following two requests:

; 1) Referer: http://1.2.3.4/test

; 2) Referer: http://www.example.com

<proxy>

request.header.Referer.url.host.is_numeric=yes

; In the example below we assume that 1.2.3.4 is the IP of the host mycompany

; The condition will match the following two requests if the reverse DNS was
; successful:

; 1) Referer: http://1.2.3.4/

; 2) Referer: http://mycompany.com/

; If the reverse DNS fails then the first request is not matched

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

120

<proxy>

request.header.Referer.url.host.regex=mycompany

; request.header.Referer.url.path tests

; The following request.header.Referer.url.path strings would all match the example
Referer URL:

; Referer: http://www.example.com/cgi-bin/query.pl?q=test#fragment

request.header.Referer.url.path=”/cgi-bin/query.pl?q=test”
request.header.Referer.url.path=”/cgi-bin/query.pl”
request.header.Referer.url.path=”/cgi-bin/”
request.header.Referer.url.path=”/cgi” ; partial components match too

request.header.Referer.url.path=”/” ; Always matches regardless of URL.

; Testing the Referer URL port

request.header.Referer.url.port=80

See Also

• Conditions: url=, server_url=

• Definitions: define subnet

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

121

request.x_header.header_name=

Tests the specified request header (header_name) against a regular expression. Any HTTP request
header can be tested, including custom headers. To test recognized headers, use
request.header.header_name= instead, so that typing errors can be caught at compile time. For
streaming requests, only the User-Agent header is available.

Replaces: request_x_header.header_name=

Syntax

request.x_header.header_name=regular_expression

where:

• header_name—Any HTTP header, including custom headers.

• regular_expression—A regular expression. For more information, see Appendix E: “Using
Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

Examples

; deny access to the URL below if the request contains the custom
; header “Test” and the header has a value of “test1”

<proxy>

deny url=http://www.bluecoat.com request.x_header.Test=”test1”

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.header.header_name=, request.header.header_name.address=,
response.x_header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

122

request.x_header.header_name.address=

Tests if the specified request header can be parsed as an IP address; otherwise, false. If parsing
succeeds, then the IP address extracted from the header is tested against the specified IP address. The
expression can include an IP address or subnet, or the label of a subnet definition block. This condition
is intended for use with custom headers other than X-Forwarded-For and Client-IP headers; for
these, use request.header.header_name.address= so that typing any errors can be caught at
compile time.

Replaces: request_x_header.header_name.address=

Syntax

request.x_header.header_name.address= ip_address|subnet|subnet_label

where:

• header_name—Any HTTP header, including custom headers.

• ip_address—IP address; for example, 10.1.198.0.

• subnet—A subnet mask; for example, 10.1.198.0/24.

• subnet_label—Label of a subnet definition block that binds a number of IP addresses or subnets.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

Examples

; deny access if the request’s custom header “Local” has the value 10.1.198.0

deny request.x_header.Local.address=10.1.198.0

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.header.header_name=, request.header.header_name.address=,
response.x_header.header_name=

• Definitions: define subnet

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

123

response.header.header_name=

Tests the specified response header (header_name) against a regular expression. Any recognized
HTTP response header can be tested. For custom headers, use response.x_header.header_name=
instead.

Replaces: response_header.header_name=

Syntax

response.header.header_name=regular_expression

where:

• header_name—A recognized HTTP header. For a list of recognized headers, see Appendix C:
"Recognized HTTP Headers". For custom headers not listed, use condition
response.x_header.header_name instead.

• regular_expression—A regular expression. For more information, refer to Appendix E: “Using
Regular Expressions,” in the ProxySG Configuration and Management Guide.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Exception> layers.

Examples

; Test if the response’s “Content-Type” header has the value “image/jpeg”

response.header.Content-Type=”image/jpeg”

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.header.header_name=, response.x_header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

124

response.x_header.header_name=

Tests the specified response header (header_name) against a regular expression. For HTTP requests,
any response header can be tested, including custom headers. For recognized HTTP headers, use
response.header.header_name= instead so that typing errors can be caught at compile time.

Replaces: response_x_header.header_name=

Syntax

response.x_header.header_name=regular_expression

where:

• header_name—Any HTTP header, including custom headers.

• regular_expression—A regular expression. For more information, see Appendix E: “Using
Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Exception> layers.

Examples

; Tests if the custom header “Security” has the value of “confidential”

response.x_header.Security=”confidential”

See Also

• Actions: append(), delete(), delete_matching(), rewrite(), set()

• Conditions: request.x_header.header_name=, response.header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

125

server_url=

Tests if a portion of the URL used in server connections matches the specified criteria. The basic
server_url= test attempts to match the complete possibly-rewritten request URL against a specified
pattern. The pattern may include the scheme, host, port, path and query components of the URL. If
any of these is not included in the pattern, then the corresponding component of the URL is not tested
and can have any value.

Specific portions of the URL can be tested by applying URL component modifiers to the trigger. In
addition to component modifiers, optional test type modifiers can be used to change the way the
pattern is matched.

Note: This set of tests match against the requested URL, taking into account the effect of any
rewrite() actions. Because any rewrites of the URL intended for servers or other upstream
devices must be respected by <Forward> layer policy, the url= triggers are not allowed in
<Forward> layers. Instead, the equivalent set of server_url= tests are provided for use in the
<Forward> layer. Those tests always take into account the effect of any rewrite() actions on
the URL.

Syntax

server_url[.case_sensitive][.no_lookup]=prefix_pattern
server_url.domain[.case_sensitive][.no_lookup]=domain_suffix_pattern
server_url.regex[.case_sensitive]=regular_expression

server_url.address=ip_address|subnet|subnet_label

server_url.extension[.case_sensitive]=[.]filename_extension

server_url.host[.exact][.no_lookup]=host
server_url.host.[prefix|substring|suffix][.no_lookup]=string
server_url.host.regex[.no_lookup]=regular_expression
server_url.host.is_numeric=yes|no
server_url.host.no_name=yes|no

server_url.path[.case_sensitive]=/string
server_url.path[.substring|.suffix][.case_sensitive]=string
server_url.path.regex[.case_sensitive]=regular_expression

server_url.port={[low_port_number]..[high_port_number]|exact_port_number}

server_url.query.regex[.case_sensitive]=regular_expression

server_url.scheme=url_scheme

where all options are identical to url=, except for the URL being tested. For more information, see
"url=" on page 137.

Discussion

The server_url= condition is identical to url=, except for the lack of a define server_url condition
and [server_url] section. Most optimization in forwarding is done with server_url.domain
conditions and sections.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

126

• Applies to all non-administrator transactions.

Examples

; Test if the server URL includes this pattern, and block access.

; Relative URLs, such as docs subdirectories and pages, will match.

server_url=http://www.example.com/docs access_server(no)

; Test if the URL host’s IP address is a match.

server_url.address=10.1.198.0

; Test whether the URL includes company.com as domain.

server_url.domain=company.com

; Test whether the URL includes .com.

server_url.domain=.com

; Test if the URL includes this domain-suffix pattern,

; and block service. Relative URLs, such as docs

; subdirectories and pages, will match.

server_url.domain=company.com/docs access_server(no)

; examples of the use of server_url.extension=

server_url.extension=.txt

server_url.extension=(.htm, .html)

server_url.extension=(img, jpg, jpeg)

; This example matches the first request and doesn’t match the second from
; the following two requests:

; http://1.2.3.4/test

; http://www.example.com

<forward>

server_url.host.is_numeric=yes

; In the example below we assume that 1.2.3.4 is the IP of the host mycompany

; The condition will match the following two requests if the reverse DNS was
; successful:

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

127

;request http://1.2.3.4/

;request http://mycompany.com/

; If the reverse DNS fails then the first request is not matched

<forward>

server_url.host.regex=mycompany

; server_url.path tests

; The following server_url.path strings would all match the example URL:

; http://www.example.com/cgi-bin/query.pl?q=test#fragment

server_url.path=”/cgi-bin/query.pl?q=test”
server_url.path=”/cgi-bin/query.pl”
server_url.path=”/cgi-bin/”
server_url.path=”/cgi” ; partial components match too

server_url.path=”/” ; Always matches regardless of URL.

; testing the url port

server_url.port=80

See Also

• Conditions: content_management=, url=

• Definitions: define subnet, define server_url.domain condition

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

128

socks=

This condition is true whenever the session for the current transaction involves SOCKS to the client.
The SOCKS=yes trigger is intended as a way to test whether or not a request arrived via the SOCKS
proxy. It will be true for both SOCKS requests that the ProxySG tunnels and for SOCKS requests the
ProxySG accelerates by handing them off to HTTP or IM. In particular, socks=yes remains true even
in the resulting HTTP or IM transactions. Other triggers, such as proxy.address or proxy.port do
not maintain a consistent value across the SOCKS transaction and the later HTTP or IM transaction, so
they cannot be reliably used to do this kind of cross-protocol testing.

Replaces: socks.destination_address=

Syntax

socks=yes|no

Layer and Transaction Notes

• Use in all layers

• Applies to all proxy transactions.

See Also

• Conditions: socks.accelerate=

• Properties: socks_gateway(), socks.accelerate(), socks.authenticate(),
socks.authenticate.force().

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

129

socks.accelerated=

Tests whether the SOCKS proxy will hand off this transaction to other protocol agents for acceleration.

Syntax

socks.accelerated={yes|http|aol-im|msn-im|yahoo-im|no}

where:

• yes is true only for SOCKS transactions that will hand off to another protocol-specific proxy agent.

• no implies the transaction is a SOCKS tunnel.

• http is true if the transaction will be accelerated by the http proxy.

• aol-im is true if the transaction will be accelerated by the aol-im proxy.

• msn-im is true if the transaction will be accelerated by the msn-im proxy.

• yahoo-im is true if the transaction will be accelerated by the yahoo-im proxy.

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to SOCKS transactions.

See Also

• Conditions: socks.method=, socks.version=

• Properties: socks_gateway(), socks.accelerate(), socks.authenticate(),
socks.authenticate.force().

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

130

socks.method=

Tests the SOCKS protocol method name associated with the transaction.

Syntax

socks.method=CONNECT|BIND|UDP_ASSOCIATE

Layer and Transaction Notes

• Use in <Proxy> and <Exception> layers.

• Applies to SOCKS transactions.

See Also

• Conditions: ftp.method=, http.method=, http.x_method=, im.method=, method=,
server_url=, socks.version=

• Properties: socks_gateway(), socks.accelerate(), socks.authenticate(),
socks.authenticate.force().

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

131

socks.version=

Tests whether the version of the SOCKS protocol used to communicate to the client is SOCKS 4/4a or
SOCKS 5. SOCKS 5 has more security and is more highly recommended.

SOCKS 5 supports authentication and can be used to authenticate transactions that may be accelerated
by other protocol services.

SOCKS 4/4a does not support authentication. If socks.authenticate() or
socks.authenticate.force() is set during evaluation of a SOCKS 4/4a transaction, that transaction
will be denied.

Syntax

socks.version=4..5

Layer and Transaction Notes

• Use in <Proxy>, <Forward>, and <Exception> layers.

• Applies to SOCKS transactions.

• Does not apply to administrator transactions.

Examples

This example authenticates SOCKS v5 clients, and allows only a known set of client IP addresses to
use SOCKS v4/4a.

<Proxy>

socks.version=5 socks.authenticate(my_realm)
deny socks.version=4 client.address=!old_socks_allowed_subnet

See Also

• Conditions: socks.destination_address=, socks.destination_port=, socks.method=,
socks.version=

• Properties: socks_gateway(), socks.accelerate(), socks.authenticate(),
socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

132

streaming.client=

Tests the client agent associated with the current transaction.

Syntax

streaming.client=yes|no|windows_media|real_media|quicktime

where:

• yes is true if the user agent is recognized as a windows media player, real media player or
quicktime player.

• no is true if the user agent is not recognized as a windows media player, real media player or
quicktime player.

• other values are true if the user agent is recognized as a media player of the specified type.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, <Forward>, and <Exception> layers.

• Applies to HTTP and streaming transactions.

• Does not apply to administrator transactions.

See Also

• Conditions: bitrate=, live=, streaming.content=

• Properties: access_server(), max_bitrate(), streaming.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

133

streaming.content=

Tests the content of the current transaction to determine whether or not it is streaming media, and to
determine the streaming media type.

Syntax

streaming.content=yes|no|windows_media|real_media|quicktime

where:

• yes is true if the content is recognized as Windows media, Real media, or QuickTime content.

• no is true if the content is not recognized as Windows media, Real media, or QuickTime content.

• other values are true if the streaming content is recognized as the specified type.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, <Forward>, and <Exception> layers.

• Applies to all transactions.

See Also

• Conditions: bitrate=, live=, streaming.client=

• Properties: access_server(), max_bitrate(), streaming.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

134

time=

Tests if the time of day is in the specified range or an exact match. The current time is determined by
the ProxySG appliance’s configured clock and time zone by default, although the UTC time zone can
be specified by using the form time.utc=. The numeric pattern used to test the time condition can
contain no whitespace.

Syntax

time[.utc]={[start_time]..[end_time]|exact_time}

where:

• start_time—Four digits (nnnn) in 24-hour time format representing the start of a time range; for
example, 0900 specifies 9:00 a.m. If left blank, midnight (0000) is assumed.

• end_time—Four digits (nnnn) in 24-hour time format representing the end of a time range; for
example, 1700 specifies 5:00 p.m. If left blank, 2359 (11:59 p.m.) is assumed.

• exact_time—Four digits (nnnn) in 24-hour time format representing an exact time.

Note: To test against an inverted range, such as a range that crosses from one day into the next, the
following shorthand expression is available. While time=(..0600|1900..) specifies
midnight to 6 a.m. and 7 p.m. to midnight, the policy language also recognizes
time=1900..0600 as equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

• Applies to all transactions.

Examples

; Tests for 3 a.m. to 1 p.m. UTC.

time.utc=0300..1300

; Allow access to a particular site only during 9 a.m.
; to noon UTC (presented in two forms).

; Restrict form:

<proxy>

deny url.host=special_event.com time=!0900..1200

; Grant form:

<proxy>

allow url.host=special_event.com time=0900..1200

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

135

; This example restricts the times during which certain
; stations can log in with administrative privileges.

define subnet restricted_stations
 10.10.10.4/30
 10.10.11.1
end subnet restricted_stations

<admin> client.address=restricted_stations

allow time=0800..1800 weekday=1..5 admin.access=(READ||WRITE);
deny

See Also

• Conditions: date[.utc]=, day=, hour=, minute=, month=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

136

tunneled=

Tests if the current transaction represents a tunneled request. A tunneled request is one of:

• TCP tunneled request

• HTTP CONNECT request

• Unaccelerated SOCKS request

Note: HTTPS connections to the management console are not tunneled for the purposes of this test.

Syntax

tunneled=yes|no

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to proxy transactions.

Examples

This example denies tunneled transactions except when they originate from the corporate subnet.

define subnet corporate_subnet
10.1.2.0/24
10.1.3.0/24

end

<Proxy>

deny tunneled=yes client.address=!corporate_subnet

See Also

Conditions: http.method=, socks.accelerated=, url.scheme=

Properties: sock.accelerate()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

137

url=

Tests if a portion of the requested URL matches the specified criteria. The basic url= test attempts to
match the complete request URL against a specified pattern. The pattern may include the scheme,
host, port, path and query components of the URL. If any of these is not included in the pattern, then
the corresponding component of the request URL is not tested and can have any value.

Specific portions of the URL can be tested by applying URL component modifiers to the trigger. In
addition to component modifiers, optional test type modifiers can be used to change the way the
pattern is matched.

Note: This set of tests match against the originally requested URL, disregarding the effect of any
rewrite() actions. Because any rewrites of the URL intended for servers or other upstream
devices must be respected by <Forward> layer policy, the url= triggers are not allowed in
<Forward> layers. Instead, an equivalent set of server_url= tests are provided for use in the
<Forward> layer. Those tests always take into account the effect of any rewrite() actions on
the URL.

Replaces: various url_xxx forms; url.scheme= replaces protocol=.

Syntax

url[.case_sensitive][.no_lookup]=prefix_pattern
url.domain[.case_sensitive][.no_lookup]=domain_suffix_pattern
url.regex[.case_sensitive]=regular_expression

url.address=ip_address|subnet|subnet_label

url.extension[.case_sensitive]=[.]filename_extension

url.host[.exact][.no_lookup]=host
url.host.[prefix|substring|suffix][.no_lookup]=string
url.host.regex[.no_lookup]=regular_expression
url.host.is_numeric=yes|no
url.host.no_name=yes|no

url.path[.case_sensitive]=/string
url.path[.substring|.suffix][.case_sensitive]=string
url.path.regex[.case_sensitive]=regular_expression

url.port={[low_port_number]..[high_port_number]|exact_port_number}

url.query.regex[.case_sensitive]=regular_expression

url.scheme=url_scheme

where the URL test patterns are:

• prefix_pattern—A URL pattern that includes at least a portion of the following:

scheme://host:port/path

Accepted prefix patterns include the following:

scheme://host
scheme://host:port
scheme://host:port/path_query
scheme://host/path_query
//host

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

138

//host:port
//host:port/path_query
//host/path_query
host
host:port
host:port/path_query
host/path_query
/path_query

• domain_suffix_pattern—A URL pattern that includes a domain suffix, as a minimum, using
the following syntax:

scheme://domain_suffix:port/path

Accepted domain suffix patterns include the following:

scheme://domain_suffix
scheme://domain_suffix:port
scheme://domain_suffix:port/path_query
scheme://domain_suffix/path_query
//domain_suffix
//domain_suffix:port
//domain_suffix:port/path_query
//domain_suffix/path_query
domain_suffix
domain_suffix:port
domain_suffix:port/path_query
domain_suffix/path_query

• url_scheme—One of http, https, ftp, mms, rtsp, tcp, aol-im, msn-im, or yahoo-im.
The request URL has the scheme https only in the case of SSL termination. A request URL with
the scheme tcp only has a host and a port, and occurs in two cases: when a connection is made to
a TCP tunnel service port, and when the CONNECT method is used in an explicitly proxied
HTTP request. For example, when the Web browser has an explicit HTTP proxy and the user
requests an HTTPS URL, the browser creates a TCP tunnel using the CONNECT method.

• host—A domain name or IP address. Host names must be complete; for example,
url=http://www fails to match a URL such as http://www.example.com. This use of a complete
host instead of a domain_suffix (such as example.com) indicates the difference between the url=
and url.domain= conditions.

• domain_suffix—A pattern which matches either a complete domain name or is a suffix of the
domain name, respecting component boundaries. An IP address is not allowed. This use of a
domain_suffix pattern instead of a complete host name marks the difference between the
url.domain= and url= conditions.

• port—A port number, between 1 and 65535.

• path_query—The path_query portion of a URL is the string beginning with ‘/’ that follows the
host and port, and precedes any URL fragment. A path_query pattern is a string beginning with
a ‘/’ that matches the beginning of the path_query.

• filename_extension—A string representing a filename extension to be tested, optionally
preceded by a period (.). A quoted empty string (url.extension=””) matches URLs that do not

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

139

include a filename extension, such as http://example.com/ and http://example.com/test. To
test multiple extensions, use parentheses and a comma separator (see the Example section below).

• regular_expression—A Perl regular expression. The expression must be quoted if it contains
whitespace or any of the following: & | () < > { } ; ! . = " '. For more information, refer
to Appendix E: “Using Regular Expressions,” in the Blue Coat ProxySG Configuration and
Management Guide.

Objects with paths relative to the prefix_pattern and domain_suffix_pattern are also considered
a match (see the “Example” section).

The following are test modifiers:

• .case_sensitive—By default, all matching is case-insensitive; however, the matches on the path
and query portions can be made case-sensitive by using the form url.case_sensitive=.

• .domain—Changes the way the match is performed on the host portion of the URL. The host
pattern is a domain_suffix pattern which either matches the hostname exactly, or matches a
suffix of the hostname on component boundaries. The host is converted to a domain name by
reverse DNS lookup if necessary. For example, the condition url.domain=//example.com
matches the request URL http://www.example.com/, but does not match the request URL
http://www.myexample.com/.

• .exact—Forces an exact string comparison on the full URL or component.

• .no_lookup—Depending on the form of the request’s host and the form of the pattern being
matched, a DNS or reverse DNS lookup is performed to convert the request’s host before the
comparison is made. This lookup can be suppressed by using the .no_lookup= form of the
condition. The .no_lookup modifier speeds up policy evaluation, but use of it may introduce
loopholes into your security policy that can be exploited by those who want to bypass your
security measures. DNS and reverse DNS lookups can be globally restricted by restrict
definitions.

• .prefix—Test if the string pattern is a prefix of the URL or component.

• .regex—Test the URL or component against a regular_expression pattern.

When applied to the url= condition, the URL is treated as a literal string for the purposes of the
test.

When applied to the url.host= condition, if the URL host was specified as an IP address, the
behavior depends on whether or not the no_lookup modifier was specified. If no_lookup was
specified, then the condition is false. If no_lookup was not specified, then a reverse DNS lookup is
performed to convert the IP address to a domain name. If the reverse DNS lookup fails, then the
condition is false. This leads to the following edge conditions: url.host.regex=!”” has the same
truth value as url.host.no_name=yes, and url.host.regex.no_lookup=!”” has the same
truth value as url.host.is_numeric=yes.

When applied to the url.host= condition, this pattern match is always case-insensitive.

• .substring—Test if the string pattern is a substring of the URL or component. The substring
need not match on a boundary (such as a subdomain or path directory) within a component.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

140

• .suffix—Test if the string pattern is a suffix of the URL or component. The suffix need not
match on a boundary (such as a domain component or path directory) within a URL component.

Note: .prefix, .regex, .substring, and .suffix are string comparisons that do not require a
match on component boundaries. For this reason, url.host.suffix= differs from the host
comparison used in url.domain= tests, which does require component level matches.

The URL component modifiers are:

• .address—Tests if the host IP address of the requested URL matches the specified IP address, IP
subnet, or subnet definition. If necessary, a DNS lookup is performed on the host name. DNS
lookups can be globally restricted by a restrict DNS definition.

The patterns supported by the url.address= test are:

❐ ip_address—Host IP address or subnet; for example, 10.1.198.0.

❐ subnet—A subnet mask; for example, 10.1.198.0/24.

❐ subnet_label—Label of a subnet definition block that binds a number of IP addresses or
subnets.

The .address modifier is primarily useful when the expression uses either a subnet or a
subnet_label. If a literal ip_address is used, then the url.address= condition is equivalent to
url.host=.

• .host—Tests the host component of the requested URL against the IP address or domain name
specified by the host pattern. The pattern cannot include a forward slash (/) or colon (:). It does
not recognize wild cards or suffix matching. Matches are case-insensitive. The default test type is
.exact.

Note: url.host.exact= can be tested using hash techniques rather than string matches, and will
therefore have significantly better performance than other, string based, versions of the
url.host= tests. .

Since the host component of a request URL can be either an IP address or a domain name, a
conversion is sometimes necessary to allow a comparison.

❐ If the expression uses a domain name and the host component of the request URL is an IP
address, then the IP address is converted to a domain name by doing a reverse DNS lookup.

❐ If the expression uses an IP address and the host component of the request URL is a domain
name, then the domain name is converted to an IP address by doing a DNS lookup.

The .host component supports additional test modifiers:

❐ .is_numeric—This is true if the URL host was specified as an IP address. For some types of
transactions (for example, transparent requests on a non-accelerated port), this condition will
always be true.

❐ .no_name—This is true if no domain name can be found for the URL host. Specifically, it is
true if the URL host was specified as an IP address, and a reverse DNS lookup on this IP
address fails, either because it returns no name or a network error occurs.

• .path—Tests the path component of the request URL. By default, the pattern is tested as a prefix
of the complete path component of the requested URL, as well as any query component. The path
and query components of a URL consist of all text from the first forward slash (/) that follows the
host or port, to the end of the URL, not including any fragment identifier. The leading forward

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

141

slash is always present in the request URL being tested, because the URL is normalized before any
comparison is performed. Unless an .exact, .substring, or .regex modifier is used, the pattern
specified must include the leading ‘/’ character.

In the following URL example, bolding shows the components used in the comparison; ?q=test is
the included query component and #fragment is the ignored fragment identifier:

http://www.example.com/cgi-bin/query.pl?q=test#fragment

A URL such as the following is normalized so that a forward slash replaces the missing path
component: http://www.example.com becomes http://www.example.com/.

• .port—Tests if the port number of the requested URL is within the specified range or an exact
match. URLs that do not explicitly specify a port number have a port number that is implied by
the URL scheme. The default port number is 80 for HTTP, so url.port=80 is true for any
HTTP-based URL that does not specify a port.

The patterns supported by the url.address= test are:

❐ low_port_number—A port number at the low end of the range to be tested. Can be a number
between 1 and 65535.

❐ high_port_number—A port number at the high end of the range to be tested. Can be a
number between 1 and 65535.

❐ exact_port_number—A single port number; for example, 80. Can be a number between 1
and 65535.

Note that the numeric pattern used to test the url.port condition can contain no whitespace.

• .query—Tests if the regex matches a substring of the query string component of the request URL.
If no query string is present, the test is false. As a special case, url.query_regex=!"" is true if
there is no query string.

The query string component of the request URL, if present, consists of all text from the first '?'
following the path, to the end of the URL, or up to the first occurrence of '#', whichever comes first.
Thus, any fragment identifier that might be present is excluded from the query string component.
If there is a query string component at all, then it begins with a '?' character.

• .scheme—Tests if the scheme of the requested URL matches the specified schema string. The
comparison is always case-insensitive.

Discussion

The url= condition can be considered a convenient way to do testing that would require a
combination of the following conditions: url.scheme=, url.host=, url.port=, and url.path=. For
example,

url=http://example.com:8080/index.html

is equivalent to:

 url.scheme=http url.host=example.com url.port=8080 url.path=/index.html

If you are testing a large number of URLs using the url= condition, consider the performance benefits
of a url definition block or a [url] section (see Chapter 6: "Definition Reference").

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

142

If you are testing a large number of URLs using the url.domain= condition, consider the performance
benefits of a url.domain definition block or a [url.domain] section (see Chapter 6: "Definition
Reference").

Regular expression matches are not anchored. You may want to use either or both of the ^ and
$ operators to anchor the match. Alternately, use the .exact, .prefix, or .suffix form of the test, as
appropriate.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to all non-administrator transactions.

Examples

; Test if the URL includes this pattern, and block service.

; Relative URLs, such as docs subdirectories and pages, will match.

url=http://www.example.com/docs service(no)

; Test if the URL host’s IP address is a match.

url.address=10.1.198.0

; Test whether the URL includes company.com as domain.

url.domain=company.com

; Test whether the URL includes .com.

url.domain=.com

; Test if the URL includes this domain-suffix pattern,

; and block service. Relative URLs, such as docs

; subdirectories and pages, will match.

url.domain=company.com/docs service(no)

; examples of the use of url.extension=

url.extension=.txt

url.extension=(.htm, .html)

url.extension=(img, jpg, jpeg)

; This example matches the first request and doesn’t match the second from
; the following two requests:

; http://1.2.3.4/test

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

143

; http://www.example.com

<proxy>

url.host.is_numeric=yes;

; In the example below we assume that 1.2.3.4 is the IP of the host mycompany

; The condition will match the following two requests if the reverse DNS was
; successful:

;request http://1.2.3.4/

;request http://mycompany.com/

; If the reverse DNS fails then the first request is not matched

<proxy>

url.host.regex=mycompany

; url.path tests

; The following server_url.path strings would all match the example URL:

; http://www.example.com/cgi-bin/query.pl?q=test#fragment

url.path=”/cgi-bin/query.pl?q=test”
url.path=”/cgi-bin/query.pl”
url.path=”/cgi-bin/”
url.path=”/cgi” ; partial components match too

url.path=”/” ; Always matches regardless of URL.

; testing the url port

url.port=80

See Also

• Conditions: category=, console_access=, content_management=, server_url=

• Definitions: define subnet, define url condition, define url.domain condition

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

144

user=

Tests the authenticated username associated with the transaction. This trigger is only available if the
transaction was authenticated (that is, the authenticate() property was set to something other
than no, and the proxy_authentication() property was not set to no).

Syntax

user=user_name

where user_name is a username.

• NTLM realm: Usernames are case-insensitive.

In NTLM this provides the flexibility of matching either a full username (which includes the NT
Domain) or relative username (which does not include the NT Domain).

For example:

user=bluecoat\mary.jones

matches a complete username, and

user=mary.jones

matches a relative name.

• UNIX (local) realm: Usernames are case-sensitive.

• RADIUS realm: Username case-sensitivity depends on the RADIUS server’s setting. The
case-sensitive setting should also be set correctly when defining a RADIUS realm in the ProxySG.

• LDAP realm: Username case-sensitivity depends on the LDAP server’s setting. The case-sensitive
setting should also be set correctly when defining an LDAP realm in ProxySG.

In LDAP this provides the flexibility of matching either a fully qualified domain name or relative
username.

For example:

user=”cn=mary.jones,cn=sales,dc=bluecoat,dc=com”

or

user=”uid=mary.jones,ou=sales,o=bluecoat”

matches a complete username, and

user=mary.jones

matches a relative name.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

Examples

; Test for user john.smith.

user=john.smith

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

145

See Also

• Conditions: attribute.name=, authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user.domain=

• Properties: authenticate(), authenticate.force(), check_authorization(),
deny.unauthorized(), socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

146

user.domain=

Tests if the client is authenticated, the logged-into realm is an NTLM realm, and the domain
component of the username is the specified domain. If all of these conditions are met, the response
will be true. This trigger is unavailable if the current transaction is not authenticated (that is, the
authenticate() property is set to no).

Replaces: user_domain=

Syntax

user.domain=windows_domain_name

where windows_domain_name is a Windows domain name. This name is case-insensitive.

Layer and Transaction Notes

• Use in <Admin> and <Proxy> layers.

Examples

; Test if the user is in domain all-staff.

user.domain=all-staff

See Also

• Conditions: attribute.name=, authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=

• Properties: authenticate(), authenticate.force(), check_authorization(),
deny.unauthorized(), socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

147

user.x509.issuer=

Tests the issuer of the x509 certificate used in authentication to certificate realms. The
user.x509.issuer= condition is primarily useful in constructing explicit certificate revocation lists.
This condition will only be true for users authenticated against a certificate realm.

Syntax

user.x509.issuer=issuer_DN

where issuer_DN is an RFC2253 LDAP DN, appropriately escaped. Comparisons are case-sensitive.

Layer and Transaction Notes

• Use in <Proxy>, <Admin>, and <Exception> Layers.

• Applies to proxy transactions.

See Also

• Conditions: user.x509.serialNumber=, user.x509.subject=

• Properties: authenticate(), authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

148

user.x509.serialNumber=

Tests the serial number of the x509 certificate used to authenticate the user against a certificate realm.
The user.x509.serialNumber= condition is primarily useful in constructing explicit certificate
revocation lists. Comparisons are case-insensitive.

Syntax

user.x509.serialNumber=serial_number

where serial_number is a string representation of the certificate’s serial number in HEX.

The string is always an even number of characters long, so if the number needs an odd number of
characters to represent in hex, there is a leading zero. This can be up to 160 bits.

Layer and Transaction Notes

• Use in <Proxy>, <Admin>, and <Exception> Layers.

• Applies to proxy transactions.

See Also

• Conditions: user.x509.issuer=, user.x509.subject=

• Properties: authenticate(), authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

149

user.x509.subject=

Tests the subject field of the x509 certificate used to authenticate the user against a certificate realm.
The user.x509.subject= condition is primarily useful in constructing explicit certificate revocation
lists.

Syntax

user.x509.subject=subject

where subject is an RFC2253 LDAP DN, appropriately escaped.

Comparisons are case-sensitive.

Layer and Transaction Notes

• Use in <Proxy>, <Admin>, and <Exception> Layers.

• Applies to proxy transactions.

See Also

• Conditions: user.x509.issuer=, user.x509.serialNumber=

• Properties: authenticate(), authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

150

weekday=

Tests if the day of the week is in the specified range or an exact match. By default, the ProxySG
appliance’s date is used to determine the day of the week. To specify the UTC time zone, use the form
weekday.utc=. The numeric pattern used to test the weekday= condition can contain no whitespace

Syntax

weekday[.utc]={[first_weekday]..[last_weekday]|exact_weekday}

where:

• first_weekday—An integer from 1 to 7, where 1 specifies Monday and 7 specifies Sunday,
indicating the first day of the week that tests true. If left blank, Monday is assumed.

• last_weekday—An integer from 1 to 7, where 1 specifies Monday and 7 specifies Sunday,
indicating the last day of the week that tests true. If left blank, Sunday is assumed.

• exact_weekday—An integer from 1 to 7, where 1 specifies Monday and 7 specifies Sunday,
indicating the day of the week that tests true.

Note: When you want to test a range that wraps from one week into the next, the following
shorthand expression is available. While weekday=(..1|6..) specifies a long weekend that
includes Monday, the policy language also recognizes weekday=6..1 as equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

• Applies to all transactions.

Examples

; Test for the weekend.

weekday=6..7

; Test for Saturday through Monday.

weekday=6..1

See Also

• Conditions: date[.utc]=, day=, hour=, minute=, month=, time=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 3: Condition Reference

151

year=

Tests if the year is in the specified range or an exact match. The current year is determined by the date
set on the ProxySG by default. To specify the UTC time zone, use the form year.utc=. Note that the
numeric pattern used to test the year= condition can contain no whitespace.

Syntax

year[.utc]={[first_year]..[last_year]|exact_year}

where:

• first_year—Four digits (nnnn) representing the start of a range of years; for example, 2002.

• last_year—Four digits (nnnn) representing the end of a range of years. If left blank, all years
from first_year on are assumed.

• exact_year—Four digits (nnnn) representing an exact year.

Note: To test against an inverted range of years, the following shorthand expression is available.
While year=(..1998|2003..) specifies years up to and including 1998, and from 2003 on, the
policy language also recognizes year=2003..1998 as equivalent.

Layer and Transaction Notes

• Use in all layers.

• Using time-related conditions to control caching behavior in a <Cache> layer may cause thrashing
of the cached objects.

• Applies to all transactions.

Examples

; Tests for the years 2003 through 2005.

year=2003..2005

See Also

• Conditions: date[.utc]=, day=, hour=, minute=, month=, time=, weekday=, year=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

152

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

A property is a variable that can be set to a value. At the beginning of a transaction, all properties are set
to their default values. As each layer in the policy is evaluated in sequence, it can set a property to a
particular value. A property retains the final value setting when evaluation ends, and the transaction
is processed accordingly. Properties that are not set within the policy maintain their default values.

Property Reference
The remainder of this chapter lists the properties and their accepted values. It also provides tips as to
where each property can be used and examples of how to use them.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

154

access_log()

Selects the access log used for this transaction. Multiple access logs can be selected to record a single
transaction. Individual access logs are referenced by the name given in configuration. Configuration also
determines the format of the each log. For more information on logging, refer to Chapter 19: “Access
Logging,” in the ProxySG Configuration and Management Guide.

To record entries in the event log, see "log_message()" on page 232.

Syntax

access_log(auto|no|log_name_list)
access_log.log_name(yes|no)
access_log.[log_name_list](yes|no)

The default value is auto.

where:

• auto—use the default log for this protocol.

• no—turns off logging, either for this transaction or to the specified log_name or log_name_list.

• yes—turns on logging for this transaction to the specified log_name or log_name_list.

• log_name—an access log name as defined in configuration

• log_name_list—a list of access log names as defined in configuration, of the form:

log_name_1, log_name_2, ...

Discussion

Each of the syntax variants has a different role in selecting the list of access logs used to record the
transaction:

• access_log() overrides any previous access log selections for this transaction.

• access_log.log_name() selects or de-selects the named log, according to the specified value.
Any other log selections for the transaction are unaltered.

• access_log.[log_name_list]() selects or de-selects all the logs named in the list, according to
the specified value. The selection of logs not named in the list is unaffected.

Layer and Transaction Notes

• Use in all but <Admin> layers.

• Applies to proxy transactions.

See Also

• Properties: log.suppress.field-id, log.rewrite.field-id()

• Actions: log_message()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

155

access_server()

Determines whether the client can receive streaming content directly from the origin content server or
other upstream device. Set to no to serve only cached content.

Note: Since part of a stream can be cached, and another part of the same stream can be uncached,
access_server(no) can cause a streaming transaction to be terminated after some of the
content has been served from the cache.

Syntax

access_server(yes|no)

The default value is yes.

Layer and Transaction Notes

• Use in <Forward> layers to replace allow | deny(). The access_server(no) property is
equivalent to deny() for a <Forward> layer.

• Use in <Proxy>, <Cache>, and <Forward> layers.

• Applies to HTTP, SOCKS, and streaming transactions.

See Also

• Conditions: bitrate=, live=, streaming.client=, streaming.content=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

156

action()

Selectively enables or disables a specified define action block. The default value is no.

Note: Several define action blocks may be enabled for a transaction. If more than one action selected
rewrites the URL or header a specific header, the actions are deemed to conflict and only one
will be executed. When detected at runtime, action conflicts will be reported in the event log
as a severe event. Action conflicts may also be reported at compilation time.

Replaces: action(action_label) replaces label(action_label)

Syntax

action(action_label)
action.action_label(yes|no)

The default value is no for all defined actions.

where action_label is the label of the define action block to be enabled or disabled.

Discussion

Each of the different syntax variants has a different role in selecting the list of actions applied to the
transaction:

• action() enables the specified action block and disables all other actions blocks.

• action.action_label() enables or disables the specific action block. Any other action block
selections for the transaction are unaltered.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Exception> layers. The actions specified in the action block must
be appropriate to the referencing layer.

See Also

• Definitions: define action

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

157

advertisement()

Determines whether to treat the objects at a particular URL as banner ads to improve performance. If
the content is not specific to a particular user or client, then the hit count on the origin server is
maintained while the response time is optimized using the following behavior:

• Always serve from the cache if a cached response is available. Ignore any request headers that
bypass the cache; for example, Pragma: No-Cache.

• Always cache the response from the origin server, similar to force_cache(all).

• If the request was served from the cache, request the object from the origin server in the
background to maintain the origin server's hit count on the ad and also allow ad services to
deliver changing ads.

A number of CPL properties affect caching behavior, as listed in the “See Also” section below.
Remember that any conflict between their settings is resolved by CPL’s evaluation logic, which uses
the property value that was last set when evaluation ends.

Syntax

advertisement (yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Cache> layers.

• Do not use in <Proxy> layers.

• Applies to HTTP transactions, except FTP over HTTP transactions.

See Also

• Properties: always_verify(), cache(), cookie_sensitive(), pipeline(), refresh(),
ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

158

allow

Allows the transaction to be served.

Allow can be overridden by the access_server(), deny(), force_deny(), authenticate(),
exception(), or force_exception() properties or by the redirect() action.

Allow overrides deny() and exception() properties.

Note: Caution should be exercised when using allow in layers evaluated after layers containing
deny, to ensure that security is not compromised.

Replaces: service(yes)

Syntax

allow

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Admin> layers.

• Do not use in <Forward> layers. Use "access_server()" on page 155.

• Applies to all transactions.

See Also

• Properties: access_server(), deny(), force_deny(), authenticate(), exception(),
force_exception()

• Actions: redirect()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

159

always_verify()

Determines whether each request for the objects at a particular URL must be verified with the origin
server. This property provides a URL-specific alternative to the global caching setting
always-verify-source. If there are multiple simultaneous accesses of an object, the requests are
reduced to a single request to the origin server.

Syntax
always_verify(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP proxy transactions, except FTP over HTTP transactions.

See Also

• Properties: advertisement(), bypass_cache(), cache(), cookie_sensitive(),
force_cache(), pipeline(), refresh(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

160

authenticate()

Identifies the realm used to authenticate the user associated with the current transaction.
Authentication realms are referenced by the name given in configuration.

If the transaction has already been authenticated in the same realm by the SOCKS proxy, no new
authentication challenge is issued. If the realms identified in the socks.authenticate() and
authenticate() actions differ however, a new challenge is issued.

How authentication is performed is a function of the capabilities of the realm, the protocol involved,
and the setting of the authenticate.mode() property.

The authenticate() action has higher precedence than allow, so a subsequent allow does not
prevent an authentication challenge.

The relation between authentication and denial is controlled through the authenticate.force()
property. The default setting no implies that denial overrides authenticate(), with the result that
user names may not appear for denied requests if that denial could be determined without
authentication. To ensure that user names appear in access logs, use authenticate.force(yes).

Syntax

authenticate(no)
authenticate(realm_name[, display_name])

The default value is no.

where:

• no—User authentication is not required for this transaction. No authentication challenge is issued.

• realm_name—A realm that must be authenticated against. An authentication challenge may be
issued.

• display_name—A string that is displayed in the Web browser when credentials are requested in
place of realm_name.

Discussion

The authenticate() property may result in the following exceptions, testable with the
exception.id= trigger in an <Exception> layer.

• authentication_failed—The offered credentials were not valid in this authentication realm.

• authentication_failed_password_expired—Authentication failed due to password expiry.

• configuration_error—Authentication failed due to a realm configuration error.

Layer and Transaction Notes

• Use in <Proxy> and <Admin> layers.

• Applies to proxy and administrator transactions.

Example

; Require authentication for internet access.

<proxy>

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

161

url.domain = !corporate.com authenticate(OurRealm, “log in for internet access”)

The next example illustrates the relation between authentication and denial. All users outside an
allowed subnet are denied before authentication. They are not allowed to submit credentials to the
authentication server. Users within the allowed subnet are authenticated regardless of whether they
will eventually be allowed or denied, so their user names are available for the access log.

define allowed_source_ip
10.1.2.0/24 ; my subnet(s)
;...

end

<proxy>

authenticate(myrealm)

<proxy>

deny client.address=!allowed_source_ip ; denied before authentication
authenticate.force(yes) ; all others denied after

<proxy>

deny category=(Sports, Gambling) ; would deny before auth except for force.

See Also

• Conditions: authenticated=, exception.id=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user_domain=

• Properties: authenticate.force(), authenticate.mode(),
authenticate.use_url_cookie(), check_authorization(), socks.authenticate(),
socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

162

authenticate.force()

This property controls the relation between authentication and denial.

Syntax

authenticate.force(yes|no)

The default value is no.

where:

• yes —Makes an authenticate() higher priority than deny()or exception(). Use yes to
ensure that userID's are available for access logging (including denied requests).

• no—deny() and exception() have a higher priority than authenticate(). This setting
allows early denial.

Layer and Transaction Notes

• Use in <Proxy> and <Admin> layers and transactions.

• Does not apply to <Cache> layers or transactions.

See Also

• Conditions: authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user_domain=

• Properties: authenticate(), check_authorization(), socks.authenticate(),
socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

163

authenticate.mode()

Using the authentication.mode() property selects a combination of challenge type and surrogate
credentials.

Challenge type is what kind of challenge (proxy, origin or origin-redirect) is issued.

Surrogate credentials are credentials accepted in place of the user’s real credentials. They are used for a
variety of reasons. Blue Coat supports three kinds of surrogate credentials.

• IP surrogate credentials authenticate the user based on the IP address of the client. Once any client
has been successfully authenticated, all future requests from that IP address are assumed to be
from the same user.

• Cookie surrogate credentials use a cookie constructed by the ProxySG as a surrogate. The cookie
contains information about the user, so multiple users from the same IP address can be
distinguished. The cookie contains a temporary password to authenticate the cookie; this
password expires when the credential cache entry expires.

• Connection surrogate credentials use the TCP/IP connection to authenticate the user. Once
authentication is successful, the connection is marked authenticated and all future requests on that
connection are considered to be from the same user.

In SGOS 3.1.x, the connection’s authentication information includes the realm in which it was
authenticated. The surrogate credentials are accepted only if the current transaction’s realm matches
the realm in which the session was authenticated.

Syntax

authenticate.mode(mode_type)

where mode_type is one of the following, shown followed by the implied challenge type and surrogate
credential:

• auto—Allows the ProxySG to make a best effort to determine a suitable authentication
mechanism for the transaction. For streaming transactions, authenticate.mode(auto) uses
origin mode.

• legacy—The default for systems upgraded from SGOS 2.x.

• proxy (proxy/connection)—Specifies a normal forward proxy. In some situations proxy challenges
will not work; origin challenges are then issued.

• proxy-ip (proxy/IP)—Specifies an insecure forward proxy, possibly suitable for LANs of
single-user workstations. Mode switching occurs as for proxy.

• origin (origin/connection)—Acts as a normal Web server. In this case, no forwarding of
credentials is needed.

• origin-ip (origin/IP)—Used to support NTLM authentication to the upstream device, and the
client cannot handle cookie credentials. This mode is primarily used for automatic downgrading,
but it can be selected for specific situations.

This mode is insecure: after a user has authenticated from an IP address, all further requests from
that IP address are treated as from that user. If the client is behind a NAT, or on a multi-user
system, this can present a serious security problem.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

164

• origin-cookie (origin/cookie)—Used in forward proxies to support pass-through
authentication more securely than origin-ip if the client understands cookies. Only the HTTP
and HTTPS protocols support cookies; other protocols are automatically downgraded to
origin-ip.

This mode could also be used in reverse proxy situations if impersonation is not possible and the
origin server requires authentication.

• origin-cookie-redirect (origin-redirect/cookie)—The SGOS 2.x transparent cookie mode, it is
intended to be used in forward proxies. The ProxySG authenticates the user to a separate virtual
host. BASIC and NTLM authentication can be forwarded, but the client must support both
redirects and cookies.

The default value is auto.

Layer and Transaction Notes

• Use in <Proxy> layers

• Applies to proxy transactions.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

165

authenticate.use_url_cookie()

This property is used to authenticate users who have third party cookies explicitly disabled.

Note: With a value of yes, if there is a problem loading the page (you get an error page or you cancel
an authentication challenge), the cfauth cookie is displayed. You can also see the cookie in
packet traces, but not in the browser URL window or history under normal operation.

Syntax

authenticate.use_url_cookie(yes|no)

The default is no.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP proxy transactions.

See Also

Properties: authenticate.mode()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

166

block_category()

This property has been deprecated.

In current CPL, the use of block_category(category_list) has been replaced by

category=category_list exception(content_filter_denied)

However, block_category() will be overridden by content_filter_override(yes), while this is
not the case for the replacement CPL code shown above. Note that content_filter_override() is
also deprecated.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

167

bypass_cache()

Determines whether the cache is bypassed for a request. If set to yes, the cache is not queried and the
response is not stored in the cache. Set to no to specify the default behavior, which is to follow
standard caching behavior.

While static and dynamic bypass lists allow traffic to bypass the cache based on the destination IP
address, the bypass_cache property is intended to allow a bypass based on the properties of the
client; for example, you might use it to allow specific users or user groups to bypass the cache.

This property has no effect on streaming objects.

Syntax

bypass_cache(yes|no)

The default is no.

Layer and Transaction Notes

• Use only in <Proxy> layers.

• Applies to HTTP, HTTPS, FTP over HTTP, and transparent FTP transactions.

Example

; Bypass the cache for requests from this client IP address.

client.address=10.25.198.0 bypass_cache(yes)

See Also

• Properties: advertisement(), always_verify(), cache(), cookie_sensitive(),
direct(), dynamic_bypass, force_cache(), pipeline(), refresh(), ttl(),
ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

168

cache()

Controls HTTP and FTP caching behavior. A number of CPL properties affect caching behavior.

• If bypass_cache(yes) is set, then the cache is not accessed and the value of cache() is
irrelevant.

• If cache(yes) is set, then the force_cache(all) property setting modifies the definition of what
is considered a cacheable response.

• The properties cookie_sensitive(yes) and ua_sensitive(yes) have the same effect on
caching as cache(no).

Other CPL properties that affect caching behavior are listed in the “See Also” section below.
Remember that any conflict between their settings is resolved by CPL’s evaluation logic, which uses
the property value that was last set when evaluation ends.

Syntax
cache(yes|no)

The default is yes.

where:

• yes—Specifies the default behavior: cache responses from the origin server if they are cacheable.

• no—Do not store the response in the cache, and delete any object that was previously cached for
this URL.

Layer and Transaction Notes

• Use only in <Cache> layers.

• Applies to proxy transactions.

Example

; Prevent objects at this URL from being added to the cache.

url=http://www.example.com/docs cache(no)

; This example shows use of cache(yes) in an exception to broader no-cache policy.

define url.domain condition non_cached_sites

http://example1.com
http://example2.com

end

<cache>

condition=non_cached_sites cache(no)

<cache>

url.extension=(gif, jpg) cache(yes) ; OK to cache these filetypes regardless.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

169

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cookie_sensitive(),
direct(), dynamic_bypass, force_cache(), pipeline(), refresh(), ttl(),
ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

170

check_authorization()

In connection with CAD (Caching Authenticated Data) and CPAD (Caching Proxy-Authenticated
Data) support, check_authorization() is used when you know that the upstream device
sometimes (not always or never) requires the user to authenticate and be authorized for this object.

Setting the value to yes results in a GIMS (Get If Modified Since) to check authorization upstream,
and the addition of a “Cache-Control: must-revalidate” header to the downstream response.

Syntax

check_authorization(yes|no)

The default is no.

Layer and Transaction Notes

• Use in <Proxy> and <Cache> layers.

• Applies to HTTP and RTSP proxy transactions.

See Also

• Conditions: authenticated=, group=, has_attribute.name=,
http.transparent_authentication=, realm=, user=, user_domain=

• Properties: authenticate(), authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

171

content_filter_override()

This property has been deprecated.

content_filter_override(yes) has two effects:

• It prevents the request from being sent to the off-box content filter, if off-box content filtering is
configured. In this case, it is equivalent to request.filter_service(no).

• It suppresses denial of service based on on-box content filter categories specified using
block_category(), another deprecated command. However, it has no effect on denial of service
specified by CPL rules using the category= condition combined with exception() or deny.

The default value is no.

If you use content_filter_override(yes) to disable off-box content filtering, switch to
request.filter_service(no) instead.

However, if you use content_filter_override(yes) to disable on-box content filtering that is
specified using block_category(...), rewrite your policy to replace content_filter_override() and
block_category() with category=, exception(content_filter_denied), and allow.

For more information, see "request.filter_service()" on page 210.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

172

cookie_sensitive()

Used to modify caching behavior by declaring that the object served by the request varies based on
cookie values. Set to yes to specify this behavior, or set to no for the default behavior, which caches
based on HTTP headers.

Using cookie_sensitive(yes) has the same effect as cache(no).

There are a number of CPL properties that affect caching behavior, as listed in the “See Also” section
below. Remember that any conflict between their settings is resolved by CPL’s evaluation logic, which
uses the property value that was last set when evaluation ends.

Syntax

cookie_sensitive(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP proxy transactions, except FTP over HTTP transactions.

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cache(), direct(),
force_cache(), pipeline(), refresh(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

173

delete_on_abandonment()

If set to yes, specifies that if all clients who may be simultaneously requesting a particular object close
their connections before the object is delivered, the object fetch from the origin server is abandoned,
and any prior instance of the object is deleted from the cache.

Syntax

delete_on_abandonment(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to proxy transactions.

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cache(),
cookie_sensitive(), direct(), dynamic_bypass(), force_cache(), pipeline(),
refresh(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

174

deny()

Denies service.

Denial can be overridden by allow or exception(). To deny service in a way that cannot be
overridden by a subsequent allow, use force_deny() or force_exception().

The relation between authenticate() and deny() is controlled by the authenticate.force()
property. By default, deny() overrides authenticate(). Recall that this means that a transaction
can be denied before authentication occurs, resulting in no user indentification available for logging.

Similarly, the relation between socks.authenticate() and deny() is controlled by the
socks.authenticate.force() property. By default, deny() overrides
socks.authenticate().

Replaces: service(no)

Syntax

deny
deny(details)

where details is a string defining a message to be displayed to the user. The details string may
contain CPL substitution variables.

Discussion

The deny(details) property is equivalent to exception(policy_denied, details). The identity
of an exception being returned can be tested in an <Exception> layer using exception.id=.

For HTTP, a policy_denied exception results in a 403 Forbidden response. This is appropriate when
the denial does not depend on the user identity. When the denial does depend on user identity, use
deny.unauthorized() instead to give the user an opportunity to retry the request with different
credentials.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Admin> layers. In <Forward> layers, use "access_server()" on
page 155.

• Applies to all transactions.

Example

deny url.address=10.25.100.100

See Also

• Condition: exception.id=

• Properties: allow, authenticate.force(), deny.unauthorized(), force_deny(),
never_refresh_before_expiry(), never_serve_after_expiry(), remove_IMS_from_GET(
), remove_PNC_from_GET(), remove_reload_from_IE_GET(), request.filter_service(),
socks.authenticate(), socks.authenticate.force()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

175

deny.unauthorized()

The deny.unauthorized property instructs the ProxySG to issue a challenge (401 Unauthorized or 407
Proxy authorization required). This indicates to the client that the resource cannot be accessed with
their current identity, but might be accessible using a different identity. The browsers typically
respond by bringing up a dialog box so the user can change their identity. (The details string appears
in the challenge page so that if the user cancels, there is some additional help information provided).

Typically, use deny() if the policy rule forbids everyone access, but use deny.unauthorized if the
policy rule forbids only certain people.

Syntax

deny.unauthorized
deny.unauthorized(details)

where details is a string defining a message to be displayed to the user. The details string may
contain CPL substitution variables.

Discussion

If current policy contains rules that use the authenticate() or authenticate.force() properties,
the deny.unauthorized() property is equivalent to exception(authorization_failed). If policy
does not contain any rules that require authentication, deny.unauthorized() is equivalent to
exception(policy_denied).

The identity of the exception being returned can be tested in an <Exception> layer using
exception.id=.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP transactions. For other protocols, the property is the equivalent to deny().

See Also

Conditions: exception.id=

Properties: deny(), exception(), force_deny(), force_exception()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

176

direct()

Used to prevent requests from being forwarded to a parent proxy or SOCKS server, when the ProxySG
is configured to forward requests.

When set to yes, <Forward> layer policy is not evaluated for the transaction.

Syntax

direct(yes|no)

The default value is no, which allows request forwarding.

Layer and Transaction Notes

• Use in <Proxy> and <Cache> layers.

• Does not apply to FTP over HTTP or transparent FTP transactions.

See Also

• Properties: bypass_cache(), dynamic_bypass, force_cache(), forward(), reflect_ip()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

177

dynamic_bypass()

Used to indicate that a particular transparent request is not to be handled by the proxy, but instead be
subjected to ProxySG dynamic bypass methodology.

The dynamic_bypass(yes) property takes precedence over authenticate(); however, a committed
denial takes precedence over dynamic_bypass(yes).

Syntax

dynamic_bypass(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to transparent HTTP transactions only.

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cache(),
cookie_sensitive(), delete_on_abandonment(), direct(), force_cache(), pipeline(),
refresh(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

178

exception()

Selects a built-in or user-defined response to be returned to the user.

The exception() property is overridden by allow or deny(). To set an exception that cannot be
overridden by allow, use force_exception().

The identity of the exception being returned can be tested in an <Exception> layer using
exception.id=.

Note: When the exception response selected would have a Content-Length of 512 or fewer bytes,
Internet Explorer may substitute “friendly” error messages. To prevent this behaviour use
exception.autopad(yes).

Syntax

exception(exception_id, details)

where:

• exception_id—Either the name of a built-in exception (refer to Chapter 14: “Advanced Policy”
in the ProxySG Configuration and Management Guide for the list of built-in exceptions), or a name of
the form user_defined.exception_id that refers to a user-defined exception page.

• details—A text string that is substituted for $(exception.details) within the selected
exception.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Admin> layers.

• Applies to all transactions.

See Also

• Conditions: exception.id=

• Properties: allow, deny(), deny.unauthorized(), exception.autopad(), force_deny(),
force_exception()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

179

exception.autopad()

Pad an HTTP exception response by including trailing whitespace in the response body so that
Content-Length is at least 513 characters.

A setting of yes is used to prevent Internet Explorer from substituting friendly error messages in place
of the exception response being returned, when the exception as configured would have a
Content-Length of less than 512 characters.

Syntax

exception.autopad(yes|no)

where:

• yes—Enables auto-padding.

• no—Disables auto-padding.

The default value is yes.

Layer and Transaction Notes

• Use in <Exception> layers only.

• Applies to HTTP transactions.

See Also

• Conditions: exception.id=

• Properties: exception(), force_exception()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

180

force_cache()

Used to force caching of HTTP responses that would otherwise be considered uncacheable. The
default HTTP caching behavior is restored using force_cache(no). The value of the
force_cache() property is ignored unless all of the following property settings are in effect:
bypass_cache(no), cache(yes), cookie_sensitive(no), and ua_sensitive(no).

Syntax

force_cache(all|no)

The default value is no.

Layer and Transaction Notes

• Use only in <Cache> layers.

• Applies to proxy transactions, which execute both <Cache> and <Proxy> layers.

Example

; Ensure objects at this URL are cached.

url=http://www.example.com/docs force_cache(all)

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cache(),
cookie_sensitive(), dynamic_bypass, pipeline(), refresh(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

181

force_deny()

The force_deny() property is similar to deny() except that it:

• Cannot be overridden by an allow.

• Overrides any pending termination (that is, if a deny() has already been matched, and a
force_deny or force_exception is subsequently matched, the latter commits.

• Commits immediately (that is, the first one matched applies).

The force_deny() property is equivalent to force_exception(policy_denied).

Syntax

force_deny
force_deny(details)

where details is a text string that will be substituted for $(exception.details) within the
policy_denied exception. The details string may also contain CPL substitution patterns.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Admin> layers.

• Do not use in <Forward> layers.

• Applies to all transactions.

See Also

• Conditions: exception.id=

• Properties: deny(), force_exception()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

182

force_exception()

The force_exception() property is similar to exception except that it:

• Cannot be overridden by an allow.

• Overrides any pending termination (that is, if a deny() has already been matched, and a
force_deny() or force_exception() is subsequently matched, the latter commits.

• Commits immediately (that is, the first one matched applies).

Syntax

force_exception(exception_id)
force_exception(details)

where details is a text string that will be substituted for $(exception.details) within the specified
exception. The details string may also contain CPL substitution patterns.

Layer and Transaction Notes

• Use in <Cache>, <Proxy>, and <Admin> layers.

• Applies to all transactions.

See Also

• Conditions: exception.id=

• Properties: deny(), exception(), exception.autopad(), force_deny()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

183

force_patience_page()

This property provides control over the application of the default patience page logic.

Syntax

force_patience_page(yes|no)
force_patience_page(reason)
force_patience_page.reason(yes|no)
force_patience_page[reason, ...](yes|no)

where:

reason—Takes one of the following values, corresponding to the overridable portions of the default
logic that suppresses patience pages.

• user-agent—Overrides the suppression of patience pages for non-graphical browsers (any user
agent string beginning with mozilla or opera is considered graphical).

• extension—Overrides the suppression of patience pages for graphical file extensions or
extensions indicating cascading stylesheets, javscript, vbscript, vbx, or java applet, or flash
animation content.

• content-type—Overrides the suppression of patience pages for content similar to that listed
under extension, but based on the content-type header of the HTTP response.

The default is force_patience_page(no).

Discussion

Each of the syntax variants has a different role in selecting the portions of patience page logic that will
be overridden for the transaction:

• force_patience_page(yes|no) sets (yes) or clears (no) all reasons.

• force_patience_page(reason, ..) sets the listed reasons and clears any reasons not listed.

• force_patience_page.reason() sets (yes) or clears (no) the specified reason.

• force_patience_page.[reason, ...]() sets (yes) or clears (no) the listed reasons.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP proxy transactions.

See Also

• Properties: patience_page()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

184

forward()

Determines forwarding behavior.

There is a box-wide configuration setting (config>forwarding>sequence) for the default forwarding
failover sequence. The forward() property is used to override the default forwarding failover
sequence with a specific list of host and/or group aliases. The list of aliases might contain the special
token default, which expands to include the default forward failover sequence defined in
configuration.

Duplication is allowed in the specified alias list only in the case where a host or group named in the
default failover sequence is also named explicitly in the alias_list.

In addition, there is a box-wide configuration setting (config>forwarding>failure-mode) for the
default forward failure mode. The forward.fail_open() property overrides the configured default.

Syntax

forward(alias_list|no)

where:

• alias_list—Forward this request through the specified alias list, which might refer to both
forward hosts and groups. The ProxySG attempts to forward this request through the specified
hosts or groups, in the order specified by the list. It proceeds to the next alias as necessary when
the current host or group is down, as determined by health checks.

• no—Do not forward this request through a forwarding host. A SOCKS gateway or ICP host may
still be used, depending on those properties. If neither are set, the request is sent directly to the
origin server. Note that no overrides the default sequence defined in configuration.

The default value is default, as the only token in the alias_list.

Layer and Transaction Notes

• Use only in <Forward> layers.

• Applies to all transactions except administrator, instant messaging, and SOCKS.

See Also

• Properties: direct(), dynamic_bypass(), icp(), reflect_ip(), refresh(),
socks_gateway(), socks_gateway.fail_open(), streaming.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

185

forward.fail_open()

Controls whether the ProxySG terminates or continues to process the request if the specified
forwarding host or any designated backup or default cannot be contacted.

There is a box-wide configuration setting (config>forwarding>failure-mode) for the default
forward failure mode. The forward.fail_open() property overrides the configured default.

Syntax

forward.fail_open(yes|no)

where:

• yes—Continue to process the request if the specified forwarding host or any designated backup or
default cannot be contacted. This may result in the request being sent through a SOCKS gateway
or ICP, or may result in the request going directly to the origin server.

• no—Terminate the request if the specified forwarding host or any designated backup or default
cannot be contacted.

The default value is no.

Layer and Transaction Notes

• Use only in <Forward> layers.

• Applies to all transactions except administrator, instant messaging, and SOCKS.

See Also

• Properties: bypass_cache(), dynamic_bypass, forward(), reflect_ip(),
socks_gateway(), socks_gateway.fail_open()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

186

ftp.server_connection()

Determines when the control connection to the server is established. If set to deferred, the proxy
defers establishing the control connection to the server.

Syntax

ftp.server_connection(deferred|immediate)

The default value is immediate.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to FTP transactions.

See Also

• Properties: ftp.server_data(), ftp.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

187

ftp.server_data()

Determines the type of data connection to be used with this FTP transaction.

Syntax

ftp.server_data(auto|passive|port)

where:

• auto—First attempt a PASV data connection. If this fails, switch to PORT.

• passive—Use a PASV data connection. PASV data connections are not allowed by some firewalls.

• port—Use a PORT data connection. FTP servers can be configured to not support PORT
connections.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to FTP transactions.

See Also

• Properties: ftp.server_connection(), ftp.transport()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

188

ftp.transport()

Determines the upstream transport mechanism.

This setting is not definitive. It depends on the capabilities of the selected forwarding host.

Syntax
ftp_transport(auto|ftp|http)

The default value is auto.

where:

• auto—Use the default transport for the upstream connection, as determined by the originating
transport and the capabilities of any selected forwarding host.

• ftp—Use FTP as the upstream transport mechanism.

• http—Use HTTP as the upstream transport mechanism.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies only to WebFTP transactions where the client uses the HTTP protocol to request a URL
with an ftp: schema.

See Also

• Properties: ftp.server_connection(), ftp.server_data()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

189

http.force_ntlm_for_server_auth()

Turns on/off NTLM cloaking on a per-request basis. Refer to Appendix A: “NTLM and CAASNT” in
the ProxySG Configuration and Management Guide for a discussion of NTLM cloaking.

Syntax

http.force_ntlm_for_server_auth(yes|no)

This property overrides the default specified in configuration.

where:

• yes—Enables NTLM cloaking.

• no—Disables NTLM cloaking.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP Proxy transactions.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

190

http.request.version()

The http.request.version() property sets the version of the HTTP protocol to be used in the
request to the origin content server or upstream proxy.

Syntax
http.request.version(1.0|1.1)

The default is taken from the CLI configuration setting http version, which can be set to either 1.0 or
1.1. Changing this value in the CLI changes the default for both http.request.version() and
http.response.version().

Layer and Transaction Notes

• Use in <Proxy> and <Cache> layers.

• Applies to HTTP transactions.

See Also

• Conditions: http.request.version=

• Properties: http.response.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

191

http.response.version()

The http.response.version() property sets the version of the HTTP protocol to be used in the
response to the client's user agent.

Syntax
http.response.version(1.0|1.1)

The default is taken from the CLI configuration setting http version, which can be set to either 1.0 or
1.1. Changing this value in the CLI changes the default for both http.request.version() and
http.response.version().

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP transactions.

See Also

• Conditions: http.response.version=

• Properties: http.request.version()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

192

icp()

Determines whether to consult ICP when forwarding requests. Any forwarding host or SOCKS
gateway identified as an upstream target takes precedence over consulting ICP.

Syntax

icp(yes|no)

The default is yes if ICP hosts are configured, no otherwise.

where:

• yes—Consult ICP unless forward() or socks_gateway() properties are set. If no ICP hosts are
configured, yes has no effect.

• no—Do not consult ICP hosts, even if configured.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to all but SOCKS transactions.

See Also

• Properties: direct(), forward(), reflect_ip(), socks_gateway()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

193

im.strip_attachments()

Determines whether attachments are stripped from instant messages. If set to yes, attachments are
stripped from instant messages.

Syntax

im.strip_attachments(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to instant messaging transactions.

See Also

• Conditions: im.buddy_id=, im.chat_room.conference=, im.chat_room.id=,
im.chat_room.invite_only=, im.chat_room.type=, im.chat_room.member=,
im.chat_room.voice_enabled=, im.file.extension=, im.file.name=, im.file.path=,
im.file.size=, im.message.route=, im.message.size=, im.message.text=,
im.message.type=, im.method=, im.user_id=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

194

integrate_new_hosts()

Determines whether to add new host addresses to health checks and load balancing.

Syntax

integrate_new_hosts(yes|no)

The default is no. If it is set to yes, any new host addresses encountered during DNS resolution of
forwarding hosts are added to health checks and load balancing.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to everything but SOCKS and administrator transactions.

See Also

• Properties: forward()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

195

label()

This deprecated property is provided for backward compatibility with CacheOS 4.x filter files. For
more information, see "action()" on page 156.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

196

log.rewrite.field-id()

The log.rewrite.field-id property controls rewrites of a specific log field in one or more access
logs. Individual access logs are referenced by the name given in configuration. Configuration also
determines the format of the each log. For more information on logging, refer to Chapter 19: “Access
Logging” in the ProxySG Configuration and Management Guide.

Syntax

log.rewrite.field-id(“substitution”|no)
log.rewrite.field-id[log_name_list](“substitution”|no)

where:

• field-id—Specifies the log field to rewrite. Some field-ids have embedded parentheses, for
example cs(User-agent). These field-ids must be enclosed in quotes. There are two choices for
quoting, either of which are accepted by the CPL compiler:

log.rewrite."cs(User-agent)”(...)
“log.rewrite.cs(User-agent)(...)”

Either single or double quotes may be used.

• log_name_list—A comma separated list of configured access logs, of the form:

log_name_1, log_name_2, ...

• substitution—A quoted string containing replacement text for the field. The substitution string
can contain CPL substitution variables.

• no—Cancels any previous substitution for this log field.

Discussion

Each of the syntax variants has a different role in specifying the rewrites for the access log fields used
to record the transaction:

• log.rewrite.field-id() specifies a rewrite of the field_id field in all access logs selected for
this transaction.

• log.rewrite.field-id[log_name_list]() specifies a rewrite of the field_id field in all
access logs named in log_name_list. The field_id field in any logs not named in the list is
unaffected.

Layer and Transaction Notes

• Use in all layers.

• Applies to all proxy transactions.

See Also

• Properties: access_log(), log.suppress.field-id()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

197

log.suppress.field-id()

The log.suppress.field-id() property controls suppression of the specified field-id in one or
more access logs. Individual access logs are referenced by the name given in configuration.
Configuration also determines the format of the each log. For more information on logging, refer to
Chapter 19: “Access Logging” in the ProxySG Configuration and Management Guide.

Syntax

log.suppress.field-id(yes|no)
log.suppress.field-id[log_name_list](yes|no)

where:

• field-id—Specifies the log field to suppress. Some field-ids have embedded parentheses, for
example cs(User-agent). These field-ids must be enclosed in quotes. There are two choices for
quoting, either of which are accepted by the CPL compiler:

log.suppress."cs(User-agent)"(yes|no)
"log.suppress.cs(User-agent)(yes|no)"

Either single or double quotes may be used.

• log_name_list—A comma separated list of configured access logs, of the form:

log_name_1, log_name_2, ...

• yes— Suppresses the specified field-id

• no—Turns suppression off for the specified field-id

Discussion

Each of the syntax variants has a different role in suppressing the access log fields used to record the
transaction:

• log.suppress.field-id() controls suppression of the field_id field in all access logs selected
for this transaction.

• log.suppress.field-id[log_name_list]() controls suppression of the field_id field in all
access logs named in log_name_list. The field_id field in any logs not named in the list is
unaffected.

Layer and Transaction Notes

• Use in all layers.

• Applies to all proxy transactions.

See Also

• Properties: access_log(), log.rewrite.field-id()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

198

max_bitrate()

Enforces upper limits on the instantaneous bandwidth of the current streaming transaction. This
policy is enforced during initial connection setup. If the client requests a higher bit rate than allowed
by policy, the request is denied.

Note: Under certain network conditions, a client may receive a stream that temporarily exceeds the
specified bit rate.

Replaces: max_bitrate(no) replaces max_bitrate(0)

Syntax

max_bitrate(bitrate|no)

The default value is no.

where:

• bitrate—Maximum bit rate allowed. Specify using an integer, in bits, kilobits (1000x), or
megabits (1,000,000x), as follows: integer | integerk | integerm.

• no—Allows any bitrate.

Layer and Transaction Notes

• Use in <Proxy> and <Cache> layers.

• Applies to streaming transactions.

Example

; Client bit rate for streaming media cannot exceed 56 kilobits.

max_bitrate(56k)

See Also

• Conditions: bitrate=, live=, streaming.content=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

199

never_refresh_before_expiry()

The never_refresh_before_expiry() property is similar to the CLI command:

SGOS#(config) http strict-expiration refresh

except that it provides per-transaction control to allow overriding the box-wide default set by the
command.

Syntax

never_refresh_before_expiry(yes|no)

The default value is taken from configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to proxy transactions.

See Also

• Properties: never_serve_after_expiry(), remove_IMS_from_GET(),
remove_PNC_from_GET(), remove_reload_from_IE_GET()

• The ProxySG Command Line Reference for information on the http strict-expiration command.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

200

never_serve_after_expiry()

The never_serve_after_expiry() property is similar to the CLI command:

SGOS#(config) http strict-expiration serve

except that it provides per transaction control to allow overriding the box-wide default set by the
command.

Syntax

never_serve_after_expiry(yes|no)

The default value is taken from configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to proxy transactions.

See Also

• Properties: always_verify(), never_refresh_before_expiry()

• The ProxySG Command Line Reference for information on the http strict-expiration
command.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

201

patience_page()

Controls whether or not a patience page can be served, and if so, the delay interval before serving.

If no patience_page property is explicitly set, the decision about whether to serve a patience page
and the delay before a patience page is presented are taken from the ICAP service configuration (but
are still subject to default patience page policy). To control the application of default patience page
policy, use force_patience_page().

Syntax

patience_page(no|delay)

The default value is taken from configuration.

where:

• no—A patience page will not be served.

• delay —(number of seconds, in the range 5-65535). Subject to default patience page policy, a
patience page is served after the specified number of seconds.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to HTTP proxy transactions only.

See Also

• Properties: force_patience_page()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

202

pipeline()

Determines whether an object embedded within an HTML container object is pipelined. Set to yes to
force pipelining, or set to no to prevent the embedded object from being pipelined. Note that this
property affects processing of the individual URLs embedded within a container object. It does not
prevent parsing of the container object itself.

If this property is used with a URL access condition, such as url.host=, each embedded object on a
page is evaluated against that policy rule to determine pipelining behavior. For example, a rule that
disallows pipelining for a particular host would still allow pipelining for images on the host's pages
that come from other hosts.

Replaces: prefetch()

Syntax

pipeline(yes|no)

The default value is yes.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP proxy transactions.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

203

prefetch()

This deprecated property has been replaced by pipeline(). For more information, see "pipeline()"
on page 202.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

204

reflect_ip()

Determines how the client IP address is presented to the origin server for explicitly proxied requests.

Replaces:

• reflect_ip(vip) replaces reflect_vip(yes).

• reflect_ip(auto) replaces reflect_vip(no).

Syntax

reflect_ip(auto|no|client|vip|ip_address)

The default value is auto.

where:

• auto—Might reflect the client IP address, based on a config setting for spoofing.

• no—The appliance's IP address is used to originate upstream connections.

• client—The client's IP address is used in initiating upstream connections.

• vip—The appliance's VIP on which the client request arrived is used to originate upstream traffic.

• ip_address—A specific IP address, which must be an address (either physical or virtual)
belonging to the ProxySG . If not, at runtime this is converted to auto.

Layer and Transaction Notes

• Use in <Proxy> and <Forward> layers.

• Applies to proxy transactions.

Example

; For requests from a specific client, use the virtual IP address.

<proxy>

client.address=10.1.198.0 reflect_vip(yes)

See Also

• Properties: forward()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

205

reflect_vip()

This deprecated syntax has been replaced by the reflect_ip() property. For more information, see
"reflect_ip()" on page 204.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

206

refresh()

Controls refreshing of requested objects. Set to no to prevent refreshing of the object if it is cached. Set
to yes to allow the cache to behave normally.

Syntax

refresh(yes|no)

The default value is yes.

Layer and Transaction Notes

• Use in <Cache> layers.

• Do not use in <Proxy> layers.

See Also

• Properties: advertisement(), always_verify(), bypass_cache(), cache(),
cookie_sensitive(), direct(), force_cache(), never_refresh_before_expiry(),
Never_serve_after_expiry(), ttl(), ua_sensitive()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

207

remove_IMS_from_GET()

The remove_IMS_from_GET() property is similar to the CLI command:

SGOS#(config) http substitute if-modified-since

except that it provides per transaction control to allow overriding the box-wide default set by the
command.

Syntax

remove_IMS_from_GET(yes|no)

The default value is taken from configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP proxy transactions.

See Also

• Properties: never_refresh_before_expiry(), never_serve_after_expiry(),
remove_PNC_from_GET(), remove_reload_from_IE_GET()

• The ProxySG Command Line Reference for information on the http substitute command.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

208

remove_PNC_from_GET()

The remove_PNC_from_GET property is similar to the CLI command:

SGOS#(config) http substitute pragma-no-cache

except that it provides per transaction control to allow overriding the box-wide default set by the
command.

Syntax

remove_PNC_from_GET(yes|no)

The default value is taken from configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP proxy transactions.

See Also

• Properties: never_refresh_before_expiry(), never_serve_after_expiry(),
remove_IMS_from_GET(), remove_reload_from_IE_GET()

• The ProxySG Command Line Reference for information on the http substitute command.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

209

remove_reload_from_IE_GET()

The remove_reload_from_IE_GET() property is similar to the CLI command:

SGOS#(config) http substitute ie-reload

except that it provides per transaction control to override the box-wide default set by the command.

Syntax

remove_reload_from_IE_GET(yes|no)

The default value is taken from configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP proxy transactions.

See Also

• Properties: never_refresh_before_expiry(), never_serve_after_expiry(),
remove_IMS_from_GET(), remove_PNC_from_GET()

• The ProxySG Command Line Reference for information on the http substitute command.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

210

request.filter_service()

Controls whether the request is processed by an external content filter service. The ProxySG currently
supports Websense Enterprise Server external content filtering.

Directing the request to an external content filter service does not affect policy based on categories
determined through an on-box vendor or CPL category definitions.

Categories determined by Websense Enterprise Server are not available to the category= condition,
although they appear in access logs. Effectively, all policy based on the Websense determined
categories must be implemented on the Websense server.

Note: This property might be overridden by the deprecated content_filter_override(yes)
property.

Replaces: content_filter_override(yes)

Syntax

request.filter_service(servicename[, fail_open|fail_closed])
request.filter_service(no)

The default values are no and fail_closed.

where:

• servicename—A configured external content filter service that supports request modification.
Currently only Websense Enterprise Server is supported. On upgrade, the service name
websense is automatically generated.

• fail_open—If servicename is unavailable, the request is processed and a response may be
delivered, subject to other policy.

• fail_closed—If the servicename is unavailable, the request is denied.

• no—Prevents the request from being sent from the ProxySG to the external content filter service.

Layer and Transaction Notes

• Use in <Cache> and <Proxy> layers.

• Applies to FTP and HTTP transactions.

Example

The following example directs requests to the Websense server, but allows processing to continue if
the service in unavailable:

<proxy>

request_filter_service(websense, fail_open)

The following policy establishes a general rule that all request are processed by the external filter
service named filter. It then specifies some exceptions to this general rule in a later layer:

<proxy> ; All request are content-filtered by default

request.filter_service(filter)

<proxy> request.filter_servce(no) ; exceptions to content-filtering

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

211

url.address=10.0.0.0/8 ; don't filter internal network
client.address=10.1.2.3 ; don't filter this client

See Also

• The ProxySG Command Line Reference for information on configuring Websense off-box services.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

212

request.icap_service()

Determines whether a request from a client should be processed by an external ICAP service before
going out. Typical applications include content filtering and virus scanning.

Syntax

request.icap_service(servicename [, fail_open | fail_closed])
request.icap_service(no)

The default values are no and fail_closed.

where:

• servicename—A configured ICAP service that supports request modification.

• fail_open—If the ProxySG cannot communicate with the ICAP service, the request is processed
and a response delivered (subject to other policies).

• fail_closed —If the ProxySG cannot communicate with the ICAP service, the request is denied.
This is the default and need not be specified to be in effect.

• no—Disables ICAP processing for this request, regardless of whether there is an ICAP service
name defined in configuration. This is useful when ICAP processing is generally desired, but
specific exceptions are required.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to FTP and HTTP transactions.

See Also

• Properties: response.icap_service()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

213

response.icap_service()

Determines whether a response to a client request is first sent to an ICAP service before being given to
the client. Depending on the ICAP service, the response may be allowed, denied, or altered. Typical
applications include virus scanning.

Syntax

response.icap_service(servicename [, fail_open | fail_closed])
response.icap_service(no)

The default values are no and fail_closed.

where:

• servicename—A configured ICAP service that supports response modification.

• fail_open —If the ProxySG cannot communicate with the ICAP service, the response may be
delivered (subject to other policies).

• fail_closed —If the ProxySG cannot communicate with the ICAP service, the request is denied.
This is the default and need not be specified to be in effect.

• response.icap_service (no)—Disables ICAP processing for this response, regardless of
whether there is an ICAP service name defined in configuration. This is useful when ICAP
processing is generally desired, but specific exceptions are required.

Layer and Transaction Notes

• Use in <Cache> layers.

• Applies to HTTP, FTP, proxy, and cache transactions.

See Also

• Properties: request.icap_service()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

214

service()

This deprecated syntax has been replaced by the allow, deny() and exception() properties.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

215

socks.accelerate()

The socks.accelerate property controls the SOCKS proxy handoff to other protocol agents.

Syntax

socks.accelerate(no|auto|http|aol_im|msn_im|yahoo_im)

The default value is auto.

where:

• no—The SOCKS proxy does not hand off the transaction to another proxy agent, but tunnels the
SOCKS transaction.

• auto—The handoff is determined by the URL scheme.

Any other value forces the SOCKS proxy to hand off the transaction to the agent for the indicated
protocol.

The socks.accelerated= condition can be used to test which agent was selected for handoff. The
tunneled= condition can be used to test for unaccelerated (tunneled) SOCKS transactions.

After the handoff, the transaction is subject to policy as a proxy transaction for the appropriate
protocol. Within that policy, the socks= condition can be used to test for transactions use SOCKS for
client communication.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to SOCKS proxy transactions.

See Also

• Properties: socks_gateway(), socks.authenticate(), socks.authenticate.force()

• Conditions: socks=, socks.accelerated=, socks.destination_address=,
socks.destination_port=, socks.method=, socks.tunneled=, socks.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

216

socks.authenticate()

The same realms can be used for SOCKS proxy authentication as can be used for regular proxy
authentication. This form of authentication applies only to SOCKS transactions.

The regular authenticate() property does not apply to SOCKS transactions. However, if an
accelerated SOCKS transaction has already been authenticated in the same realm by the SOCKS proxy,
no new authentication challenge is issued. If the realms identified in the socks.authenticate()
and authenticate() properties differ, however, a new challenge is issued by the proxy agent used
to accelerate the SOCKS transaction.

Note: There is no optional display name.

Following SOCKS proxy authentication, the standard user=, group=, and realm= tests are available.

The relation between SOCKS authentication and denial is controlled through the
socks.authenticate.force() property. The default setting no implies that denial overrides
socks.authenticate(), with the result that user names may not appear for denied requests if that
denial could be determined without authentication. To ensure that user names appear in access logs,
use socks.authenticate.force(yes).

Syntax

socks.authenticate(realmname)

where:

• realmname—One of the already-configured realms.

• Consider that socks.authenticate() depends exclusively on a limited number of triggers:

❐ proxy_address=

❐ proxy_card=

❐ proxy_port=

❐ client_address=

❐ socks.version=

Date and time triggers, while available, are not recommended.

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to SOCKS proxy transactions.

See Also

• Properties: authenticate(), socks_gateway(), socks.accelerate(),
socks.authenticate.force()

• Conditions: socks=, socks.destination_address=, socks.destination_port=,
socks.method=, socks.tunneled=, socks.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

217

socks.authenticate.force()

This property controls the relation between SOCKS authentication and denial.

Syntax
socks.authenticate.force(yes|no)

The default value is no.

where:

• yes—Makes socks.authenticate() higher priority than deny() or exception(). Use yes to
ensure that userID's are available for access logging, even of denied requests.

• no—deny() and exception() have a higher priority than socks.authenticate(). This
setting allows early denial (based on proxy card, address or port, client address, or SOCKS
version, for example). That is, the denial preempts any authentication requirement.

Note: This does not affect regular authenticate().

Layer and Transaction Notes

• Use in <Proxy> layers.

• Applies to SOCKS proxy transactions.

See Also

• Properties: socks.authenticate(), socks_gateway(), socks.accelerate()

• Conditions: socks.destination_address=, socks.destination_port=, socks.method=,
socks.tunneled=, socks.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

218

socks_gateway()

Controls whether or not the request associated with the current transaction is sent through a SOCKS
gateway.

There is a box-wide configuration setting (config>socks-gateways>sequence) for the default
SOCKS gateway failover sequence. The socks_gateway() property is used to override the default
SOCKS gateway failover sequence with a specific list of SOCKS gateway aliases. The list of aliases
might contain the special token default, which expands to include the default SOCKS gateway
failover sequence defined in configuration.

Duplication is allowed in the specified alias list only in the case where a gateway named in the default
failover sequence is also named explicitly in alias_list.

In addition, there is a box-wide configuration setting (config>socks-gateways>failure-mode) for
the default SOCKS gateway failure mode. The socks_gateway.fail_open() property overrides the
configured default.

Syntax

socks_gateway(alias_list|no)

The default value is no.

where:

• alias_list—Send this request through the specified alias list. The ProxySG attempts to send this
request through the specified gateways in the order specified by the list. It proceeds to the next
gateway alias as necessary when the gateway is down, as determined by health checks.

• no—Do not send this request through a SOCKS gateway. A forwarding host or ICP host may still
be used, depending on those properties. If neither are set, the request is sent directly to the origin
server. A setting of no overrides the default sequence defined in configuration.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to all except administrator transactions.

See Also

• Properties: direct(), forward(), socks.accelerate(), socks.authenticate(),
socks.authenticate.force()

• Conditions: socks.destination_address=, socks.destination_port=, socks.method=,
socks.tunneled=, socks.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

219

socks_gateway.fail_open()

Controls whether the ProxySG terminates or continues to process the request if the specified SOCKS
gateway or any designated backup or default cannot be contacted.

There is a box-wide configuration setting (config>socks-gateways>failure-mode) for the default
SOCKS gateway failure mode. The socks_gateway.fail_open() property overrides the configured
default.

Syntax

socks_gateway.fail_open(yes|no)

The default value is no.

where:

• yes—Continue to process the request if the specified SOCKS gateway or any designated backup
or default cannot be contacted. This may result in the request being forwarded through a
forwarding host or ICP, or may result in the request going direct to the origin server.

• no—Terminates the request if the specified SOCKS gateway or any designated backup or default
cannot be contacted.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to all except administrator transactions.

See Also

• Properties: socks.accelerate(), socks.authenticate(), socks.authenticate.force(),
socks_gateway()

• Conditions: socks.destination_address=, socks.destination_port=, socks.method=,
socks.tunneled=, socks.version=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

220

streaming.transport()

Determines the upstream transport mechanism to be used for this streaming transaction. This setting
is not definitive. The ability to use the specified transport mechanism depends on the capabilities of
the selected forwarding host.

Syntax

streaming.transport(auto|tcp|http)

where:

• auto—Use the default transport for the upstream connection, as determined by the originating
transport and the capabilities of any selected forwarding host.

• tcp—Use TCP as the upstream transport mechanism.

• http—Use HTTP as the upstream transport mechanism.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to streaming transactions.

See Also

• Conditions: bitrate=, live=, streaming.client=, streaming.content=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

221

terminate_connection()

The terminate_connection() property is used in an <Exception> layer to drop the connection
rather than return the exception response. The yes option terminates the connection instead of
returning the response. (This property provides backwards compatible support with the
TERMINATE_CONNECTION error pages directive supported in SGOS 2.x.)

Syntax

terminate_connection(yes|no)

The default is no.

Layer and Transaction Notes

• Use in <Exception> layers.

• Applies to HTTP transactions.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

222

trace.destination()

Used to change the default path to the trace output file. By default, policy evaluation trace output is
written to an object in the cache accessible using a console URL of the following form:

http://ProxySG_IP_address:8081/Policy/Trace/path

Syntax
trace.destination(path)

where path is, by default, default_trace.html. You can change path to a filename or directory path,
or both. If only a directory is provided, the default trace filename is used.

Layer and Transaction Notes

• Use in any layer.

• Applies to all transactions.

Example

; Change directory location of trace output file to

; http://ProxySG_IP_address:8081/Policy/Trace/test/default_trace.html

trace.destination(test/)

; Change trace output file location to

; http://ProxySG_IP_address:8081/Policy/Trace/test/phase_2.html

trace.destination(test/phase_2.html)

See Also

• Properties: trace.request(), trace.rules()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

223

trace.request()

Determines whether detailed trace output is generated for the current request. The default value is no,
which produces no output. Trace output is generated at the end of a request, and includes request
parameters, property settings, and the effects of all actions taken. Output tracing can be set
conditionally by creating a rule that combines this property with conditions such as url= or
client.address=.

By default, trace output is written to an object accessible using the following console URL:

http://ProxySG_IP_address:8081/Policy/Trace/default_trace.html

The trace output location can be controlled using the trace.destination() property.

Note: Tracing is best used temporarily, such as for troubleshooting; the log_message() action is
best for on-going monitoring.

Syntax

trace.request(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in any layer.

• Applies to all transactions.

Example

; Generate trace details when a specific URL is requested.

url=//www.example.com/confidential trace.request(yes)

See Also

• Properties: trace.destination(), trace.rules()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

224

trace.rules()

Determines whether trace output is generated showing policy rule evaluation for the transaction.

By default, trace output is written to an object accessible using the following console URL:

http://ProxySG_IP_address:8081/Policy/Trace/default_trace.html

The trace output location can be controlled using the trace.destination() property.

Note: Tracing is best used temporarily, such as for troubleshooting; the log_message() action is
best for on-going monitoring.

Syntax

trace.rules(yes|no|all)

where:

• yes—Generates output only for rules that match the request.

• all—Additionally shows which rules were skipped because one or more of their conditions were
false or not applicable to the current transaction; displays the specific condition in the rule that
failed.

• no—Suppresses output associated with policy rule evaluation.

The default value is no.

Layer and Transaction Note

• Use in <Cache> and <Forward> layers.

Example

; Generate trace messages.

<proxy>

trace.rules(yes) trace.request(yes)

See Also

• Properties: trace.destination(), trace.request()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4: Property Reference

225

ttl()

Sets the time-to-live (TTL) value of an object in the cache, in seconds. Upon expiration, the cached
copy is considered stale and will be re-obtained from the origin server when next accessed. However,
this property has an effect only if the following HTTP command line option is enabled: Force
explicit expirations: Never serve after.

If the above option is not set, the ProxySG’s freshness algorithm determines the time-to-live value.

Note: advertisement(yes) overrides any ttl() value.

Syntax

ttl(seconds)

where seconds is an integer, specifying the number of seconds an object remains in the cache before it
is deleted. The maximum value is 4294967295, or about 136 years.

The default value is specified by configuration.

Layer and Transaction Notes

• Use in <Cache> layers.

• Do not use in <Proxy> layers.

Example

; Delete the specified cached objects after 30 seconds.

url=//www.example.com/dyn_images ttl(30)

See Also

• Properties: advertisement(), cache()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

226

ua_sensitive()

Used to modify caching behavior by declaring that the response for a given object is expected to vary
based on the user agent used to retrieve the object. Set to yes to specify this behavior.

Using ua_sensitive(yes) has the same effect as cache(no).

Note: Remember that any conflict among CPL property settings is resolved by CPL’s evaluation
logic, which uses the property value that was last set when evaluation ends.

Syntax
ua_sensitive(yes|no)

The default value is no.

Layer and Transaction Notes

• Use in <Cache> layers.

• Do not use in <Proxy> layers.

• Applies to proxy transactions, which execute both <Cache> and <Proxy> layers.

• Does not apply to FTP over HTTP transactions.

See Also

Properties: advertisement(), always_verify(), bypass_cache(), cache(),
cookie_sensitive(), delete_on_abandonment(), direct(), dynamic_bypass(),
force_cache(), pipeline(), refresh(), ttl()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

An action takes arguments and is wrapped in a user-named action definition block. When the action
definition is called from a policy rule, any actions it contains operate on their respective arguments.
Within a rule, named action definitions are enabled and disabled using the action()property.

Actions take the following general form:

action(argument1, ...)

An action block is limited to the common subset among the allowed layers of each of the actions it
contains. Actions appear only within action definitions. They cannot appear in <Admin> layers.

Argument Syntax
The allowed syntax for action arguments depends on the action.

• String—A string argument must be quoted if it contains whitespace or other special characters.
For example: log_message(“Access alert”).

• Enumeration—Actions such as delete() use as an argument a token specifying the transaction
component on which to act. For example: a header name such as request_header.Referer.

• Regular expression—Several actions take regular expressions. For more information about writing
regular expressions, refer to Appendix E, “Using Regular Expressions,” in the Blue Coat ProxySG
Configuration and Management Guide.

• Variable substitution—The quoted strings in some action arguments can include variable
substitution substrings. These include the various versions of the replacement argument of the
redirect(), rewrite(), and rewrite() actions, and the string argument in the append(),
log_message(), and set(header, string) actions. A variable substitution is a substring of the
form:

$(name)

where name is one of the allowed substitution variables.

For a complete list of substitutions, see Appendix D: "CPL Substitutions".

Action Reference
The remainder of this chapter lists the actions and their accepted values. It also provides the context in
which each action can be used and examples of how to use them.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

228

append()

Appends a new component to the specified header.

Note: An error results if two header modification actions modify the same header. This results in a
compile time error if the conflicting actions are within the same action definition block. A
runtime error is recorded in the event log if the conflicting actions are defined in different
blocks.

Syntax

append(header, string)
append(im.message.text, string)

where:

• header—A header specified using the following form. For a list of recognized headers, including
headers that support field repetition, see Appendix C.

❐ request.header.header_name—Identifies a recognized HTTP request header.

❐ response.header.header_name—Identifies a recognized HTTP response header.

❐ request.x_header.header_name—Identifies any request header, including custom headers.

❐ response.x_header.header_name—Identifies any response header, including custom
headers.

• string—A quoted string that can optionally include one or more variable substitutions.

• im.message.text—Appends the specified string to the end of the instant message text.

Layer and Transaction Notes

• Do not use from <Admin> or <Forward> layers.

• Use from <Proxy> or <Cache> layers

See Also

• Actions: delete(), delete_matching(), rewrite(header, regex_pattern,
replacement_component), set(header, string)

• Conditions: request.header.header_name=, request.header.header_name.address=,
request.x_header.header_name=, request.x_header.header_name.address=,
response.header.header_name=, response.x_header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

229

delete()

Deletes all components of the specified header.

Note: An error results if two header modification actions modify the same header. The error is noted
at compile time if the conflicting actions are within the same action definition block. A
runtime error is recorded in the event log if the conflicting actions are defined in different
blocks.

Syntax

delete(header)

where:

header—A header specified using the following form. For a list of recognized headers, see Appendix
C.

• request.header.header_name—Identifies a recognized HTTP request header.

• response.header.header_name—Identifies a recognized HTTP response header.

• request.x_header.header_name—Identifies any request header, including custom headers.

• response.x_header.header_name—Identifies any response header, including custom headers.

• exception.response.header.header_name—Identifies a recognized HTTP response header
from the exception response.

Layer and Transaction Notes

• Use with exception.response.header.header_name in <Proxy> or <Exception> layers.

• Use with request or response headers in <Proxy> or <Cache> layers.

• Do not use in <Admin> or <Forward> layers.

• Applies to HTTP transactions.

Example

; Delete the Referer request header, and also log the action taken.

define action DeleteReferer
log_message("Referer header deleted: $(request.header.Referer)")
delete(request.header.Referer)

end action DeleteReferer

See Also

• Actions: append(), delete_matching(), rewrite(header, regex_pattern,
replacement_component), set(header, string)

• Conditions: request.header.header_name=, request.header.header_name.address=,
request.x_header.header_name=, request.x_header.header_name.address=,
response.header.header_name=, response.x_header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

230

delete_matching()

Deletes all components of the specified header that contain a substring matching a regular-expression
pattern.

Note: An error results if two header modification actions modify the same header. The error is noted
at compile time if the conflicting actions are within the same action definition block. A
runtime error is recorded in the event log if the conflicting actions are defined in different
blocks.

Syntax

delete_matching(header, regex_pattern)

where:

• header—A header specified using the following form. For a list of recognized headers, see
Appendix C.

❐ request.header.header_name— Identifies a recognized HTTP request header.

❐ response.header.header_name—Identifies a recognized HTTP response header.

❐ request.x_header.header_name—Identifies any request header, including custom headers.

❐ response.x_header.header_name—Identifies any response header, including custom
headers.

• regex_pattern—A quoted regular-expression pattern. For more information, refer to Appendix
E, “Using Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

Layer and Transaction Notes

Do not use in <Exception>, <Forward>, or <Admin> layers.

See Also

• Actions: append(), delete(), rewrite(header, regex_pattern,
replacement_component), set(header, string)

• Conditions: request.header.header_name=, request.header.header_name.address=,
request.x_header.header_name=, request.x_header.header_name.address=,
response.header.header_name=, response.x_header.header_name=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

231

im.alert()

Deliver a message in-band to the instant messaging user. The text appears in the instant message
window.

This action is similar to log_message(), except that it appends entries to a list in the instant
messaging transaction that the IM protocol renders in an appropriate way. Multiple alerts can be
appended to a transaction. The protocol determines how multiple alerts appear to the user.

Syntax

im.alert(text)

where text is a quoted string that can optionally include one or more variable substitutions.

Layer and Transaction Notes

Use in <Proxy> and <Cache> layers.

See Also

• Actions: log_message()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

232

log_message()

Writes the specified string to the ProxySG event log.

Events generated by log_message() are viewed by selecting the Policy messages event logging
level in the Management Console.

Note: This is independent of access logging.

Syntax

log_message(string)

Where string is a quoted string that can optionally include one or more variable substitutions.

Layer and Transaction Notes

Can be referenced by any layer.

Example

; Log the action taken, and include the original value of the Referer header.

define action DeleteReferer
log_message("Referer header deleted: $(request.header.Referer)")
delete(request.header.Referer)

end action DeleteReferer

See Also

• Actions: notify_email(), notify_snmp()

• Properties: access_log(), log.rewrite(), log.suppress()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

233

notify_email()

Sends an email notification to the list of recipients specified in the Event Log mail configuration. The
sender of the email appears as Primary_ProxySG_IP_address - configured_appliance_hostname>.
You can specify multiple notify_email actions, which may result in multiple mail messages for a
single transaction.

The email is sent when the transaction terminates. The email is sent to the list of recipients specified in
the Event Log mail configuration.

Syntax

notify_email(subject, body)

where subject and body are quoted strings that can optionally include one or more variable
substitutions.

Layer and Transaction Notes

Can be referenced by any layer.

Example

define condition restricted_sites
url.domain=a_very_bad_site

...

end

<proxy>

condition=restricted_sites action.notify_restricted(yes)

define action notify_restricted

notify_email(“restricted: ”, \
”$(client.address) accessed url: $(url)”)

end

See Also

• Actions: log_message(), notify_snmp()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

234

notify_snmp()

Multiple notify_snmp actions may be specified, resulting in multiple SNMP traps for a single
transaction.

The SNMP trap is sent when the transaction terminates.

Syntax

notify_snmp(message)

where message is a quoted string that can optionally include one or more variable substitutions.

Layer and Transaction Notes

Can be referenced by any layer.

See Also

• Actions: log_message(), notify_email()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

235

redirect()

Ends the current HTTP transaction and returns an HTTP redirect response to the client by setting the
policy_redirect exception. Use this action to specify an HTTP 3xx response code, optionally set
substitution variables based on the request URL, and generate the new Location response-header URL
after performing variable substitution.

FTP over HTTP requests are redirected for Netscape Navigator clients, but not Microsoft Internet
Explorer clients. To avoid this issue, do not use the redirect() action when the url.scheme=ftp
condition is true. For example, if the http_redirect action definition contains a redirect() action,
you can use the following rule:

url.scheme=ftp action.http_redirect(no)

Note: An error results if two redirect() actions conflict. The error is noted at compile time if the
conflicting actions are within the same action definition block. A runtime error is recorded in
the event log if the conflicting actions are defined in different blocks.

Important: It is possible to put the browser into an infinite redirection loop if the URL that the
browser is being redirected to also triggers a policy-based redirect response.

Syntax

redirect(response_code, regex_pattern, replacement_url)

where:

• response_code—An HTTP redirect code used as the HTTP response code; supported codes are
301, 302, 305, and 307.

• regex_pattern—A quoted regular-expression pattern that is compared with the request URL
based on an anchored match. If the regex_pattern does not match the request URL, the redirect
action is ignored. A regex_pattern match sets the values for substitution variables. If no variable
substitution is performed by the replacement_url string, specify ".* " for regex_pattern to
match all request URLs. For more information about regular expressions, refer to Appendix E,
“Using Regular Expressions,” in the Blue Coat ProxySG Configuration and Management Guide.

• replacement_url—A quoted string that can optionally include one or more variable
substitutions, which replaces the entire URL once the substitutions are performed. The resulting
URL is considered complete, and replaces any URL that contains a substring matching the
regex_pattern substring. Sub-patterns of the regex_pattern matched can be substituted in
replacement_url using the $(n) syntax, where n is an integer from 1 to 32, specifying the
matched sub-pattern. For more information, see Appendix D: "CPL Substitutions".

Layer and Transaction Notes

• Use in <Proxy> or <Cache> layers.

• Do not use in <Admin>, <Forward>, or <Exception> layers.

See Also

• Actions: rewrite(url.host, host_regex_pattern, replacement_host), rewrite(url,
regex_pattern, replacement_url), set(url.port, port_number)

• Conditions: exception.id=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

236

replace()

This deprecated action has been replaced by rewrite(). For more information, see "rewrite()" on
page 237.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

237

rewrite()

Rewrites the request URL, URL host, or components of the specified header if it matches the
regular-expression pattern. This action is often used in conjunction with the URL rewrite form of the
transform action in a server portal application.

Note: The URL form of the rewrite() action does not rewrite some URL components for Windows
Media (MMS) transactions. The URL scheme, host, and port are restored to their original
values and an error logged if the URL specified by replacement_url attempts to change
these components.

An error results if the URL or URL host form of this action conflicts with another URL
rewriting action. The error is noted at compile time if the conflicting actions are within the
same action definition block. A runtime error is recorded in the event log if the conflicting
actions are defined in different blocks.

Similarly, an error results if two header modifications act on the same header.

HTTPS Limitation

Only the host and port are available for rewriting by the URL or URL host form when the client
browser is using a proxy for an HTTPS connection and the CONNECT or TUNNEL method is used.
This is because the URL path is encrypted and unavailable for rewriting.

Syntax

rewrite(url, regex_pattern, replacement_url[, URL_form1, ...])
rewrite(url.host, regex_pattern, replacement_host[, URL_form1, ...])
rewrite(header, regex_pattern, replacement_component)

where:

• url—Specifies a rewrite of the entire URL.

• url.host—Specifies a rewrite of the host portion of the URL.

• header—Specifies the header to rewrite, using the following form. For a list of recognized
headers, see Appendix C.

❐ request.header.header_name—Identifies a recognized HTTP request header.

❐ response.header.header_name—Identifies a recognized HTTP response header.

❐ request.x_header.header_name—Identifies any request header, including custom headers.

❐ response.x_header.header_name—Identifies any response header, including custom
headers.

• regex_pattern—A quoted regular-expression pattern that is compared with the URL, host or
header as specified, based on an anchored match. If the regex_pattern does not match, the
rewrite action is ignored. A regex_pattern match sets the values for substitution variables. If the
rewrite should always be applied, but no variable substitution is required for the replacement
string, specify ".* " for regex_pattern. For more information about regular expressions, refer to
Appendix E, “Using Regular Expressions,” in the Blue Coat ProxySG Configuration and Management
Guide.

• replacement_url—A quoted string that can optionally include one or more variable
substitutions, which replaces the entire URL once the substitutions are performed. The resulting

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

238

URL is considered complete, and replaces any URL that contains a substring matching the
regex_pattern substring. Sub-patterns of the regex_pattern matched can be substituted in
replacement_url using the $(n) syntax, where n is an integer from 1 to 32, specifying the
matched sub-pattern. For more information, see Appendix D: "CPL Substitutions".

• replacement_host—A quoted string that can optionally include one or more variable
substitutions, which replaces the host portion of the URL once the substitutions are performed.
Note that the resulting host is considered complete, and it replaces the host in the URL forms
specified. Sub-patterns of the regex_pattern matched can be substituted in replacement_host
using the $(n) syntax, where n is an integer from 1 to 32, specifying the matched sub-pattern. For
more information, see Appendix D: "CPL Substitutions".

• URL_form1, ...—An optional list of up to three forms of the request URLs that will have the
URL or host replaced. If this parameter is left blank, all three forms are rewritten. The following
are the possible values:

❐ log—Request URL used when generating log messages.

❐ cache—Request URL used to address the object in the local cache .

❐ server—Request URL sent to the origin server.

• replacement_component—A quoted string that can optionally include one or more variable
substitutions, which replaces the entire component of the header matched by the regex_pattern
substring. Sub-patterns of the regex_pattern matched can be substituted in
replacement_component using the $(n) syntax, where n is an integer from 1 to 32, indicating the
matched sub-pattern. For more information, see Appendix D: "CPL Substitutions".

Discussion

Any rewrite of the server form of the request URL must be respected by policy controlling upstream
connections. The server form of the URL is tested by the server_url= conditions, which are the only
URL tests allowed in <Forward> layers.

All forms of the URL are available for access logging. The version of the URL that appears in a specific
access log is selected by including the appropriate substitution variable in the access log format:

• c-uri—The original URL

• cs-uri—The log URL, used when generating log messages

• s-uri—The cache URL, used to address the object in the local cache

• sr-uri—The server URL, used in the upstream request

In the absence of actions that modify the URL, all of these substitution variables represent the same
value.

Layer and Transaction Notes

• Use in <Proxy> and <Cache> layers.

• Do not use in <Exception>, <Forward>, or <Admin> layers.

• URL and host rewrites apply to all transactions. Header rewrites apply to HTTP transactions.

Example

rewrite(url, "^http://www\.ijk\.com/(.*)", "http://www.server1.ijk.com/$(1)")

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

239

See Also

• Actions: append(), delete(), delete_matching(), redirect(), set(), transform

• Conditions: request.header.header_name=, request.header.header_name.address=,
request.x_header.header_name=, request.x_header.header_name.address=,
response.header.header_name=, response.x_header.header_name=, server_url=

• Definitions: transform url.rewrite

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

240

set()

Sets the specified header to the specified string after deleting all components of the header.

Note: An error results if two header modification actions modify the same header. The error is noted
at compile time if the conflicting actions are within the same action definition block. A
runtime error is recorded in the event log if the conflicting actions are defined in different
blocks.

HTTPS Limitation

Only the host and port are available for setting when the client browser is using a proxy for an HTTPS
connection and the CONNECT or TUNNEL method is used. This is because the URL path is
encrypted and unavailable for setting.

Syntax

set(header, string)
set(im.message.text, value)
set(url.port, port_number [, URL_form1, URL_form2, ...])

where:

• header—A header specified using the following form. For a list of recognized headers, see
Appendix C in this manual.

❐ request.header.header_name—Identifies a recognized HTTP request header.

❐ response.header.header_name—Identifies a recognized HTTP response header.

❐ request.x_header.header_name—Identifies any request header, including custom headers.

❐ response.x_header.header_name—Identifies any response header, including custom
headers.

❐ exception.response.header.header_name—Identifies a recognized HTTP response header
from the exception response.

❐ exception.response.x_header.header_name—Identifies any response header from the
exception response, including custom headers.

• string—A quoted string that can optionally include one or more variable substitutions, which
replaces the specified header components once the substitutions are performed.

• im.message.text, value—Sets the instant message text to the specified value.

• port_number—The port number that the request URL is set to. The range is an integer between 1
and 65535.

• URL_form1, URL_form2, ...—An optional list of up to three forms of the request URLs that
have the port number set. If this parameter is left blank, all three forms of the request URL are
rewritten. The possible values are the following:

❐ log—Request URL used when generating log messages.

❐ cache—Request URL used to address the object in the local cache.

❐ server—Request URL sent to the origin server.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

241

Discussion

Any change to the server form of the request URL must be respected by policy controlling upstream
connections. The server form of the URL is tested by the server_url= conditions, which are the only
URL tests allowed in <Forward> layers.

All forms of the URL are available for access logging. The version of the URL that appears in a specific
access log is selected by including the appropriate substitution variable in the access log format:

• c-uri—The original URL.

• cs-uri—The log URL, used when generating log messages.

• s-uri—The cache URL, used to address the object in the local cache.

• sr-uri—The server URL, used in the upstream request.

In the absence of actions that modify the URL, all of these substitution variables represent the same
value.

Layer and Transaction Notes

• Do not use in <Admin> or <Forward> layers.

• Use with exception.response.header.header_name in <Proxy> or <Exception> layers;
otherwise use only from <Proxy> or <Cache> layers.

• When used with headers, applies to HTTP transactions.

• When used with im.message.text, applies to IM transactions.

• When used with url.port, applies to all transactions.

Example

; Modifies the URL port component to 8081 for requests sent to the server and cache.

set(url.port, 8081, server, cache)

See Also

• Actions: append(), delete(), delete_matching(), redirect(), rewrite(url.host,
regex_pattern, replacement_host), rewrite(url, regex_pattern, replacement_url)

• Conditions: request.header.header_name=, request.header.header_name.address=,
request.x_header.header_name=, request.x_header.header_name.address=,
response.header.header_name=, response.x_header.header_name=, server_url=

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

242

transform

Invokes an active content or URL rewrite transformer. The invoked transformer takes effect only if the
transform action is used in a define action definition block, and that block is in turn enabled by an
action() property.

See chapters 11 and 13 in the Configuration and Management Guide for examples of how this action is
used with the active content and URL rewrite transformers.

Note: Any transformed content is not cached, in contrast with content that has been sent to a virus
scanning server. This means the transform action can be safely triggered based on any
condition, including client identity and time of day.

Syntax

transform transformer_id

where transformer_id is a user-defined identifier for a transformer definition block. This identifier is
not case-sensitive.

Layer and Transaction Notes

• Use in <Proxy> or <Cache> layers.

• Do not use in <Admin>, <Forward>, or <Exception> layers.

Example

; The transform action is part of an action block enabled by a rule.

<proxy>
url.domain=!my_site.com action.strip_active_content(yes)

; transformer definition

define active_content strip_with_indication

tag_replace applet <<EOT
APPLET content has been removed

EOT

tag_replace embed <<EOT
APPLET content has been removed

EOT

tag_replace object <<EOT
OBJECT content has been removed

EOT

tag_replace script <<EOT
SCRIPT content has been removed

EOT
end

define action strip_active_content
; the transform action invokes the transformer

 transform strip_with_indication
end

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 5: Action Reference

243

See Also

• Properties: action()

• Definitions: define action, transform active_content, transform url.rewrite

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

244

virus_check()

This deprecated action sends the requested document to a virus scanning server. For more
information, see "response.icap_service()" on page 213.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

In policy files, definitions serve to bind a set of conditions, actions, or transformations to a
user-defined label.

Two types of definitions exist:

• Named definitions—Explicitly referenced by policy.

• Anonymous definitions—Apply to all policy evaluation and are not referenced directly in rules.

There are two types of anonymous definitions: DNS and RDNS restrictions.

Definition Names
There are various types of named definitions. Each of these definitions is given a user-defined name
that is then used in rules to refer to the definitions. The user-defined labels used with definitions are
not case-sensitive. Characters in labels may include the following:

• letters

• numbers

• space

• period

• underscore

• hyphen

• forward slash

• ampersand

The first character of the name must be a letter or underscore. If spaces are included, the name must be
a quoted string.

Only alphanumeric, underscore, and dash characters can be used in the name given to a defined
action.

The remainder of this chapter lists the definitions and their accepted values. It also provides tips as to
where each definition can be used and examples of how to use them.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

246

define action

Binds a user-defined label to a sequence of action statements. The action() property has syntax that
allows for individual action definition blocks to be enabled and disabled independently, based on the
policy evaluation for the transaction. When an action definition block is enabled, any action
statements it contains operate on the transaction as indicated by their respective arguments. See
Chapter 5: "Action Reference" for more information about the various action statements available.

Note: Action statements that must be performed in a set sequence and cannot overlap are best listed
within a single action definition block

Syntax

define action label
list of action statements

end [action label]

where:

• label—A user-defined identifier for an action definition. Only alphanumeric, underscore, and
dash characters can be used in the label given to a defined action.

• list of action statements—A list of actions to be carried out in sequence. See Chapter 5
Action Reference for the available actions.

Layer and Transaction Notes

Each action statement has its own timing requirements and layer applicability. The timing
requirements for the overall action are the strictest required by any of the action statements contained
in the definition block.

Similarly, the layers that can reference an action definition block are the layers common to all the
action statements in the block.

Action statements that are not appropriate to the transaction will be ignored.

Example

The following is a sample action given the name scrub_private_info, that clears the From and
Referer headers (which normally could be used to identify the user and where they clicked from) in
any request going to servers not in the internal domain.

<cache>
url.domain=!my_internal_site.com action.scrub_private_info(yes)

define action scrub_private_info
set(request.header.From, "")
set(request.header.Referer, "")

end

Notice that the object on which the set() action operates is given in the first argument, and then
appropriate values follow, in this case, the new value for the specified header. This is common to
many of the actions.

See Also

• Properties: action()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

247

• Definitions: transform active_content, transform url_rewrite

• Chapter 5: "Action Reference".

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

248

define active_content

Defines rules for removing or replacing active content in HTML or ASX documents. This definition
takes effect only if it is invoked by a transform action in a define action definition block, and that
block is in turn enabled an action() property as a result of policy evaluation.

Active content transformation acts on the following four HTML elements in documents: <applet>,
<embed>, <object>, and <script>. In addition, a script transformation removes any JavaScript
content on the page. For each tag, the replacement can either be empty (thus deleting the tag and its
content) or new text that replaces the tag. Multiple tags can be transformed in a single active content
transformer. Pages served over an HTTPS tunneled connection are encrypted so the content cannot be
modified.

Note: Transformed content is not cached, in contrast with content that has been sent to a virus
scanning server. Therefore, a transformer can be safely triggered based on any condition,
including client identity and time of day.

Replaces: transform active_content

Syntax

define active_content transformer_id
tag_replace HTML_tag_name << text_end_delimiter
[replacement_text]
text_end_delimiter
[tag_replace ...]
...

end

where:

• transformer_id—A user-defined identifier for a transformer definition block. Used to invoke the
transformer using the transform action in a define action definition block.

• HTML_tag_name—The name of an HTML tag to be removed or replaced, as follows:

❐ applet—Operates on the <applet> element, which places a Java applet on a web page.

❐ embed—Operates on the <embed> element, which embeds an object, such as a multimedia file,
on a web page.

❐ object—Operates on the <object> element, which places an object, such as an applet or
media file, on a web page.

❐ script—Operates on the <script> element, which adds a script to a web page. Also removes
any JavaScript entities, strings, or events that may appear on the page.

If the tag_replace keyword is repeated within the body of the transformer, multiple HTML tags
can be removed or replaced.

• text_end_delimiter—A user-defined token that does not appear in the replacement text and
does not use quotes or whitespace. The delimiter is defined on the first line, after the required
double angle brackets (<<). All text that follows, up to the second use of the delimiter, is used as
the replacement text.

• replacement_text—Either blank, to remove the specified tag, or new text (including HTML
tags) to replace the tag.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

249

Layer and Transaction Notes

• Applies to proxy transactions.

• Only alphanumeric, underscore, dash, and slash characters can be used with the define action
name.

Example

<proxy>

url.domain=!my_site.com action.strip_active_content(yes)

define active_content strip_with_indication
 tag_replace applet <<EOT

APPLET content has been removed
EOT
tag_replace embed <<EOT

APPLET content has been removed
EOT
tag_replace object <<EOT

OBJECT content has been removed
EOT
tag_replace script <<EOT

SCRIPT content has been removed
EOT

end

define action strip_active_content
 transform strip_with_indication

end

See Also

• Actions: transform

• Definitions: define action, define url.rewrite

• Properties: action()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

250

define category
Category definitions are used to extend vendor content categories or to create your own. The
category_name definition can be used anywhere a content filter category name would normally be
used, including in category= tests.

Definitions can include other definitions to create a hierarchy. For example, sports could include
football by including category=football in the definition for sports. A defined category can have at
most one parent category (multiple inheritance is not allowed).

Multiple definitions using the same category_name are coalesced together.

When policy tests a request URL to determine if it is in one of the categories specified by a trigger, all
sub-categories are also checked (see Examples).

Syntax

define category category_name
urlpaths

end [category_name]

where:

• category_name—If category_name matches the name of an existing category from the
configured content filtering service, this is used to extend the coverage of that category; otherwise
it defines a new user defined category. category_name can be used anywhere a content filter
category name would normally be used, including in category= tests.

• urlpaths—A list of domain suffix or path prefix expressions, as used in the url.domain=
condition.You only need to specify a partial URL:

❐ Hosts and subdomains within the domain you specify are automatically included.

❐ If you specify a path, all paths with that prefix will be included (if you specify no path, the
entire site is included).

Layer and Transaction Notes

• Use in <Proxy> and <Cache> Layers.

• Applies to all transactions.

Examples

The following example illustrates some of the variations allowed in a category definition:

define category Grand_Canyon
kaibab.org
www2.nature.nps.gov/ard/parks/grca/
nps.gov/grca/
grandcanyon.org

end

The following definitions define the categories sports and football, and make football a sub-category
of sports:

define category sports
sports.com

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

251

sportsworld.com
category=football ; include subcategory

end

define category football
nfl.com
cfl.ca

end

The following policy needs only to refer to the sports category to also test the sub-category football:

<Proxy>
deny category=sports ; includes subcategories

For more information on using category= tests, including examples, refer to Chapter 17: “Content
Filtering,” in the ProxySG Configuration and Management Guide.

See Also

• Conditions: category=

• Properties: action()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

252

define condition

Binds a user-defined label to a set of conditions for use in a condition= expression.

For condition definitions, the manner in which the condition expressions are listed is significant.
Multiple condition expressions on one line, separated by whitespace, are considered to have a Boolean
AND relationship. However, the lines of condition expressions are considered to have a Boolean OR
relationship.

Performance optimized condition definitions are available for testing large numbers of URLs. See
define url condition, define url.domain condition, and define server_url.domain
condition.

Syntax

define condition label
condition_expression ...

...
end [condition labe]

where:

• label—A user-defined identifier for a condition definition. Used to call the definition from an
action.action_label() property.

• condition_expression—Any of the conditions available in a rule. The layer and timing
restrictions for the defined condition depend on the layer and timing restrictions of the contained
expressions.

The condition=condition is one of the expressions that can be included in the body of a define
condition definition block. In this way, one condition definition block can call another
condition-related definition block, so that they are in effect nested. Circular references generate a
compile error.

Layer and Transaction Notes

The layers that can reference a condition definition are the layers common to all the condition
statements in the block.

A condition can be evaluated for any transaction. The condition evaluates to true if all the condition
expressions on any line of the condition definition apply to that transaction and evaluate to true.
Condition expressions that do not apply to the transaction evaluate to false.

Example

This example illustrates a simple virus scanning policy designed to prevent some traffic from going to
the scanner. Some file types are assumed to be at low risk of infection (some virus scanners will not
scan certain file types), and some are assumed to have already been scanned when they were loaded
on the company’s servers.

Note: The following policy is not a security recommendation, but an illustration of a technique. If
you choose to selectively direct traffic to your virus scanner, you should make your own
security risk assessments based on current information and knowledge of your virus scanning
vendor’s capabilities.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

253

define condition extension_low_risk ; file types assumed to be low risk.
url.extension=(asf,asx,gif,jpeg,mov,mp3,ram,rm,smi,smil,swf,txt,wax,wma,wmv,wvx)

end

define condition internal_prescanned ; will be prescanned so we can assume safe
server_url.domain=internal.myco.com server_url.extension=(doc,dot,hlp,html)
server_url.domain=internal.myco.com \

response_header.Content-Type=(text, application/pdf)
end

define condition white_list
 condition=extension_low_risk
 condition=internal_prescanned

end

<cache>
condition=!internal_white_list action.virus_scan(true)

define action virus_scan
response.icap_service("ICAP_server") ; configured service name

end

See Also

• Conditions: category=, condition=

• Properties: action.action_label()

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

254

define domain
This deprecated syntax has been replaced by the url.domain condition. For more information see
"define url.domain condition" on page 263.

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

255

define javascript
A javascript definition is used to define a javascript transformer, which adds javascript that you supply
to HTML responses.

Syntax

define javascript transformer_id
 javascript-statement
 [javascript-statement]
 …
end

where:

• transformer_id—A user-defined identifier for a transformer definition block. Used to invoke the
transformer using the transform action in a define action definition block.

• A javascript-statement has the following syntax:

javascript-statement ::= section-type replacement
section-type ::= prolog | onload | epilog
replacement ::= << endmarker newline lines-of-text newline endmarker

This allows you to specify a block of javascript to be inserted at the beginning of the HTML page
(prolog), to be inserted at the end of the HMTL page (epilog), and to be executed when parsing is
complete and the page is loaded (onload). Each of the section types is optional.

Layer and Transaction Notes

Applies to proxy transactions.

Example

The following is an example of a javascript transformer that adds a message to the top of each Web
page, used as part of a simple content filtering application:

define javascript js_transformer
 onload <<EOS
 var msg = "This site is restricted. Your access has been logged.";
 var p = document.createElement("p");
 p.appendChild(document.createTextNode(msg));
 document.body.insertBefore(p, document.body.firstChild);
 EOS
end

define action js_action
 transform js_transformer
end

<proxy>
 category=restricted action.js_action(yes)

The VPM uses javascript transformers to implement popup ad blocking.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

256

See Also

• Actions: transform

• Definitions: define action

• Properties: action()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

257

define prefix condition

This deprecated syntax has been replaced by the define url condition. For more information see
"define url condition" on page 261.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

258

define server_url.domain condition
Binds a user-defined label to a set of domain-suffix patterns for use in a condition= expression. Using
this definition block allows you to quickly test a large set of server_url.domain= conditions.
Although the define condition definition block could be used in a similar way to encapsulate a set
of domain suffix patterns, this specialized definition block provides a substantial performance boost.

The manner in which the URL patterns and any condition expressions are listed is significant. Each
line begins with a URL pattern and, optionally, one or more condition expressions, all of which have a
Boolean AND relationship. Each line inside the definition block is considered to have a Boolean OR
relationship with other lines in the block.

For more information about choosing the best way to test a request URL, see “Denying Access to
URLs” in Chapter 9 of the Configuration and Management Guide.

Note: This condition is for use in the <Forward> layers and takes into account the effect of any
rewrite() actions on the URL. Because any rewrites of the URL intended for servers or
other upstream devices must be respected by <Forward> layer policy, conditions that test the
unrewritten URL are not allowed in <Forward> layers. Instead, this condition is provided.

Syntax

define server_url.domain condition label
domain_suffix_pattern [condition_expression ...]
...

end [server_url.domain condition label]

where:

• label—A user-defined identifier for a domain condition definition. Used in a condition=
condition.

• domain_suffix_pattern—A URL pattern that includes a domain name (domain), as a
minimum. See the url= condition reference for a complete description.

• condition_expression ...—An optional condition expression, using any of the conditions
available in a rule, that are allowed in a <Forward> layer. For more information, see Chapter 3:
"Condition Reference".

The condition= condition is one of the expressions that can be included in the body of a define
server_url.domain condition definition block, following a URL pattern. In this way, one
server_url.domain definition block can call another condition-related definition block, so that they
are in effect nested. See the example in the define condition definition block topic. Any referenced
condition must be valid in a <Forward> layer.

Layer and Transaction Notes

• Use in <Forward> layers.

• Applies to all transactions.

Example

define server_url.domain condition allowed
 inventory.example.com

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

259

 affinityclub.example.com
end

<Forward>
 condition=!allowed access_server(no)

See Also

Condition: condition=, server_url.domain=

Definitions: define url.domain condition

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

260

define subnet

Binds a user-defined label to a set of IP addresses or IP subnet patterns. Use a subnet definition label
with any of the conditions that test part of the transaction as an IP address, including:
client.address=, proxy.address=, request.header.header_name.address=,
request.x_header.header_name.address, and server_url.address=.

The listed IP addresses or subnets are considered to have a Boolean OR relationship, no matter
whether they are all on one line or separate lines.

Syntax

define subnet label
{ ip_address | subnet } { ip_address | subnet } ...
...

end [subnet label]

where:

• label—A user-defined identifier for this subnet definition.

• ip_address—IP address; for example, 10.1.198.0.

• subnet—Subnet specification; for example, 10.25.198.0/16.

Example

define subnet local_net
 1.2.3.4 1.2.3.5 ; can list individual IP addresses
 2.3.4.0/24 2.3.5.0/24 ; or subnets

end

<proxy>
 client.address=!local_subnet deny

See Also

• Conditions: client.address=, proxy.address=, request.header.header_name.address=,
request.x_header.header_name.address, and server_url.address=

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

261

define url condition

Binds a user-defined label to a set of URL prefix patterns for use in a condition= expression. Using
this definition block allows you to quickly test a large set of url= conditions. Although the define
condition definition block could be used in a similar way to encapsulate a set of URL prefix patterns,
this specialized definition block provides a substantial performance boost.

The manner in which the URL patterns and any condition expressions are listed is significant. Each
line begins with a URL pattern suitable to a url= condition and, optionally, one or more condition
expressions, all of which have a Boolean AND relationship. Each line inside the definition block is
considered to have a Boolean OR relationship with other lines in the block.

Syntax

define url condition label
url_prefix_pattern [condition_expression ...]
...

end [url condition label]

where:

• label—A user-defined identifier for a prefix condition definition.

• url_prefix_pattern ... —A URL pattern that includes at least a portion of the following:

scheme://host:port/path

❐ scheme—A URL scheme (http, https, ftp, mms, or rtsp) followed by a colon (:).

❐ host—A host name or IP address, optionally preceded by two forward slashes (//). Host
names must be complete; for example, url=http://www will fail to match a URL such as
http://www.example.com. This use of a complete host instead of simply a domain name
(such as example.com) marks the difference between the prefix and domain condition
definition blocks.

❐ port—A port number, between 1 and 65535.

❐ path—A forward slash (/) followed by one or more full directory names.

Accepted prefix patterns include the following:

scheme://host
scheme://host:port
scheme://host:port/path
scheme://host/path
//host
//host:port
//host:port/path
//host/path
host
host:port
host:port/path
host/path
/path

• condition_expression ...—An optional condition expression, using any of the conditions
available in a rule. For more information, see Chapter 3: "Condition Reference". The layer and

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

262

timing restrictions for the defined condition will depend on the layer and timing restrictions of
the contained expressions.

The condition= condition is one of the expressions that can be included in the body of a define url
condition definition block, following a URL pattern. In this way, one prefix definition block can call
another condition-related definition block, so that they are in effect nested. See the example in the
define condition definition block topic.

Example

define url condition allowed
 http://www.inventory.example.com method=GET
 www.affinityclub.example.com/public ; any scheme allowed

end

<proxy>
 condition=allowed allow

See Also

Conditions: category=, condition=, url=

Definitions: define url.domain condition

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

263

define url.domain condition
Binds a user-defined label to a set of domain-suffix patterns for use in a condition= expression.
Using this definition block allows you to test a large set of server_url.domain= conditions very
quickly. Although the define condition definition block could be used in a similar way to
encapsulate a set of domain suffix patterns, this specialized definition block provides a substantial
performance boost.

For domain and prefix definitions, the manner in which the URL patterns and any condition
expressions are listed is significant. Each line begins with a URL pattern and, optionally, one or more
condition expressions, all of which have a Boolean AND relationship. Each line inside the definition
block is considered to have a Boolean OR relationship with other lines in the block.

Syntax

define url.domain condition label
domain_suffix_pattern [condition_expression ...]
...

end [url.domain condition label]

where:

• label—A user-defined identifier for a domain condition definition. Used in a condition=
condition.

• domain_suffix_pattern—A URL pattern suitable to the url.domain= condition, that includes
a domain name (domain), as a minimum. See the url= condition reference for a complete
description.

• condition_expression ...—An optional condition expression, using any of the conditions
available in a rule. For more information, see Chapter 3: "Condition Reference". The layer and
timing restrictions for the defined condition will depend on the layer and timing restrictions of the
contained expressions.

The condition= condition is one of the expressions that can be included in the body of a define
url.domain condition definition block, following a URL pattern. In this way, one domain definition
block can call another condition-related definition block, so that they are in effect nested. See the
example in the define condition definition block topic.

Layer and Transaction Notes

• Use in <Proxy>, <Cache>, and <Exception> layers.

• Applies to all transactions.

Example

define domain condition allowed
 inventory.example.com method=GET
 affinityclub.example.com

end

<proxy>
 condition=allowed allow

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

264

See Also

• Condition: condition=, server_url.domain=

• Definitions: define url condition, define server_url.domain condition

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

265

define url_rewrite

Defines rules for rewriting URLs embedded in tags within HTML, CSS, JavaScript or ASX documents.
This transformer takes effect only if it is also invoked by a transform action in a define action
definition block, and that block is in turn called from an action() property.

For each url found within an HTTP response, a url_rewrite transformer first converts the URL into
absolute form, then finds the first subst_embedded or subst_prefix statement whose
server_URL_substring matches the URL being considered. If such a match is found, then that
substring is replaced by the client_url_substring.

Matching is case-sensitive by default; use the optional caseless keyword for case-insensitive
matching. All subst_embedded statements after the first occurrence of the caseless keyword use
case-insensitive string matching.

Multiple URL prefix substitutions can be made in a single define url_rewrite definition block. This
type of transformation is often used in conjunction with the request URL form of the rewrite()
action in a server portal application.

To find URLs within an HTTP response, the ProxySG looks for Location:, Content-Location:, and
Refresh: headers, and parses HTML, JavaScript, CSS, and ASX files. The ProxySG does not search for,
nor rewrite relative URLs embedded within Javascript.

Note: Pages served over an HTTPS tunneled connection are encrypted, so URLs embedded within
them cannot be rewritten.

Transformed content is not cached (although the original object may be), in contrast with
content that has been sent to a virus scanning server. This means any transformer can be safely
triggered based on any condition, including client identity and time of day.

Replaces: transform url_rewrite

Syntax

define url_rewrite transformer_id
[caseless]
subst_embedded "client_url_substring" "server_url_substring"
subst_prefix "client_url_substring" "server_url_substring"
...

end

where:

• transformer_id—A user-defined identifier for a transformer definition block. Used to invoke the
transformer using the transform action in a define action definition block.

• subst_embedded—Matches server_url_substring anywhere in the URL.

• subst_prefix—Matches server_url_substring as a prefix of the URL.

• client_url_substring—A string that will replace server_url_substring when that string is
matched for a URL in the retrieved document. The portion of the URL that is not substituted is
unchanged.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

266

• server_url_substring—A string that, if found in the server URL, will be replaced by the
client_url_substring. The comparison is done against original normalized URLs embedded in
the document.

Note: Both client_url_substring and server_url_substring are literal strings. Wildcard
characters and regular expression patterns are not supported.

Discussion

If there are a series of subst_embedded and subst_prefix statements in a url_rewrite definition,
the first statement to match a URL takes effect and terminates processing for that URL.

Layer and Transaction Notes

Applies to proxy transactions.

Example

<Proxy> ; server portal for IJK
 url=ijk.com/ action.ijk_server_portal(yes)

; This transformation provides server portaling for IJK non video content

define url_rewrite ijk_portal
 caseless
 subst_embedded "http://www.ijk.com/" "http://www.server1.ijk.com/"

end

; This action runs the transform for IJK server portaling for http content
; Note that the action is responsible for rewriting related headers

define action ijk_server_portal
 ; request rewriting
 rewrite(url, "^http://www\.ijk\.com/(.*)", "http://www.server1.ijk.com/`(1)")
 rewrite(request.header.Referer, "^http://www\.ijk\.com/(.*)",

 "http://www.server1.ijk.com/`(1)")
 ; response rewriting
 transform ijk_portal
 rewrite(response.header.Location, "^http://www\.server1\.ijk\.com/(.*)",

 "http://www.ijk.com/`(1)")
end

See Also

• Actions: transform

• Definitions: define action, define active_content

• Properties: action()

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

267

restrict dns

This definition restricts DNS lookups and is useful in installations where access to DNS resolution is
limited or problematic. The definition has no name because it is not directly referenced by any rules. It
is global to policy evaluation and intended to prevent any DNS lookups caused by policy. It does not
suppress DNS lookups that might be required to make upstream connections.

If the domain specified in a URL matches any of the domain patterns specified in domain_list, no
DNS lookup is done for any category=, url=, url.address=, url.domain=, or url.host= test.

The special domain "." matches all domains, and therefore can be used to restrict all policy-based
DNS lookups.

If a lookup is required to evaluate the trigger, the trigger evaluates to false.

A restrict dns definition may appear multiple times in policy. The compiler attempts to coalesce
these definitions, and may emit various errors or warnings while coalescing if the definition is
contradictory or redundant.

Syntax

restrict dns
restricted_domain_list

except
exempted_domain_list

end

where

• restricted_domain_list—Domains for which DNS lookup is restricted.

• exempted_domain_list—Domains exempt from the DNS restriction. Policy is able to use DNS
lookups when evaluating policy related to these domains.

Layer and Transaction Notes

Applies to all layers and transactions.

Example

The following definition restricts DNS resolution to all but mydomain.com:

restrict dns
. ; meaning “all”

except
mydomain.com

end

See Also

• Conditions: category=, url=, server_url=

• Definitions: restrict rdns

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

268

restrict rdns

This definition restricts reverse DNS lookups and is useful in installations where access to reverse
DNS resolution is limited or problematic. The definition has no name. It is global to policy evaluation
and is not directly referenced by any rules.

If the requested URL specifies the host in IP form, no reverse DNS lookup is performed to match any
category=, url=, url.domain=, or url.host= condition.

The special token all matches all subnets, and therefore can be used to restrict all policy-based reverse
DNS lookups.

If a lookup is required to evaluate the trigger, the trigger evaluates to false.

A restrict rdns definition may appear multiple times in policy. The compiler attempts to coalesce
these definitions, and may emit various errors or warnings while coalescing if the definition is
contradictory or redundant.

Syntax

restrict rdns
restricted_subnet_list

except
exempted_subnet_list

end

where

• restricted_subnet_list—Subnets for which reverse DNS lookup is restricted.

• exempted_subnet_list—Subnets exempt from the reverse DNS restriction. Policy is able to use
reverse DNS lookups when evaluating policy related to these subnets.

Layer and Transaction Notes

Applies to all layers and transactions.

Example

The following definition restricts reverse DNS resolution for all but the 10.10.100.0/24 subnet:

restrict rdns
all

except
10.10.100.0/24

end

See Also

• Conditions: category=, url=, server_url=

• Definitions: restrict dns

Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 6: Definition Reference

269

transform active_content

This deprecated syntax has been replaced by define active_content. For more information see
"define active_content" on page 248.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

270

transform url_rewrite

This deprecated syntax has been replaced by define url_rewrite. For more information see "define
url_rewrite" on page 265.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A: Glossary

actions A class of definitions. CPL has two general classes of actions: request or response
modifications and notifications. An action takes arguments (such as the portion of the
request or response to modify) and is wrapped in a named action definition block. When
the action definition is turned on by the policy rules, any actions it contains operate on
their respective arguments.

<Admin> layer One of the five layer types allowed in a policy. Used to define policy rules that control
access to the Management Console and command line interface (CLI).

admin transaction Encapsulation of a request to manage the ProxySG for the purposes of policy evaluation.
Policy in <Admin> layers applies to admin transactions. Additionally, if the user is
explicitly proxied to the ProxySG, a proxy transaction will also be created for the request.

allow The preferred short form of exception(no), a property setting that indicates that the
request should be granted.

A default rule for the proxy policy layer. You have two choices: allow or deny. Deny
prevents any access to the ProxySG; allow permits full access to the ProxySG.

<Cache> layer One of the five layer types allowed in a policy. Used to list policy rules that are evaluated
during a cache or proxy transaction.

cache transaction Encapsulation of a request, generated by the ProxySG and directed at an upstream
device, for the purposes of maintaining content in the local object store.

Central Policy File A file provided by Blue Coat Technical Support to ensure that the ProxySG behaves
correctly and efficiently when accessing certain sites. You can adapt this file to include
policies you want to share among multiple appliances.

condition A boolean combination of trigger expressions that yields true or false when evaluated.

default policy The default settings for various transaction properties taken from configuration. An
important example is the default proxy policy that is configurable to either allow or deny

definition A definition binds a user-defined label to a condition, a content category, a
transformation or a group of actions.

deny The preferred short form of exception(policy_denied), a property setting that
indicates that the request should be refused.

Evaluation order The order in which the four policy files—Central, Local, VPM, and Forward—are
evaluated. When a file is evaluated last, the policy rules and the related configuration
settings it specifies can override any settings triggered in the other files.

The order of evaluation of the Central, Local, and VPM policy files is configurable using
the policy order CLI command or the Management Console. The Forward file is
always last in the evaluation order.

Exception layer One of the five layer types allowed in a policy. Exception layers are evaluated when an
exception property is set, forcing transaction termination. Policy in an exception layer
gives the administrator a final chance to modify the properties (such as headers) of the
response (exception) object, just as they would get a chance to modify the properties of
an object returned from the origin server or from cache.

<Forward> layer One of the five layer types allowed in a policy. <Forward> layers are only evaluated
when the current transaction requires an upstream connection.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

272

Forward Policy File A file you create or that might be created during an upgrade from prior SGOS versions,
and that you maintain to supplement any policy described in the other three policy files.
It is normally used for forwarding policy. The Forward policy file is always last in the
evaluation order.

Forwarding policy is generally distinct and independent of other policies, and is often
used as part of maintaining network topologies.

Forwarding policy can also be created and maintained through the Visual Policy
Manager.

layer A CPL construct for expressing the rules for a single policy decision. Multiple layers can
be used to make multiple decisions. Layers are evaluated in top to bottom order.
Decisions made by later layers can override decisions made by earlier layers. Layer
evaluation terminates on the first rule match.

Five layer types exist. The layer type defines the transactions evaluated against this
policy and restricts the triggers and properties allowed in the rules used in the layer.

Each of the five types of layers are allowed in any policy file.

Local Policy File A file you create and maintain on your network for policy specific to one or more
ProxySG appliances. This is the file you would normally create when writing CPL
directly with a text editor, for use on some subset of the ProxySG appliances in your
organization.

On upgrade from a CacheOS 4.x system, the local file will contain any filter rules
configured under the old system.

Match When a rule is evaluated, if all triggers evaluate to true, then all properties specified are
set. This is often referred to as a rule Match (for example in policy tracing.)

Miss When a rule is evaluated, if any trigger evaluates to false, all properties specified are
ignored. This is often referred to as a rule Miss (for example in policy tracing.)

N/A The rule can't be evaluated for this transaction and is being skipped. N/A happens, for
example, when you try to apply a streaming condition to an FTP transaction.

policy files Any one of four files that contain CPL: Central, Local, VPM, or Forward. When the policy
is installed, the contents of each of the files is concatenated according to the evaluation
order.

policy trace A listing of the results of policy evaluation. Policy tracing is useful when troubleshooting
policy.

property A CPL setting that controls some aspect of transaction processing according to its value.
CPL properties have the form property(setting).

At the beginning of a transaction, all properties are set to their default values, many of
which come from the configuration settings.

<Proxy> layer One of the five layer types allowed in a policy, used to list policy rules that control access
to proxy services configured on the ProxySG.

Rules in the <Proxy> layer include user authentication and authorization requirements,
time of day restrictions, and content filtering.

proxy transaction A transaction created for each request received over the proxy service ports configured
on the ProxySG. The proxy transaction covers both the request and its associated
response, whether fetched from the origin server or the local object store.

request
transformation

A modification of the request for an object (either the URL or Headers). This modification
might result in fetching a different object, or fetching the object through a different
mechanism.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A: Glossary

273

response
transformation

a modification of the object being returned. This modification can be to either the
protocol headers associated with the response sent to the client, or a transformation of
the object contents itself, such as the removal of active content from HTML pages.

rule A list of triggers and property settings, written in any order. A rule can be written on
multiple lines using a line continuation character.

If the rule matches (all triggers evaluate to true), all properties will be set as specified. At
most one rule per layer will match. Layer evaluation terminates on the first rule match.

section A way of grouping rules of like syntax together. Sections consist of a section header that
defines the section type, followed by policy rules.The section type determines the
allowed syntax of the rules, and an evaluation strategy.

transaction An encapsulation of a request to the ProxySG together with the resulting response that
can be subjected to policy evaluation.

The version of policy current when the transaction starts is used for evaluation of the
complete transaction, to ensure consistent results.

trigger A named test of some aspect of a transaction. CPL triggers have the form
trigger_name=value.

Triggers are used in rules, and in condition definitions.

Visual Policy Manager
file

A file created and stored on an individual ProxySG by the Visual Policy Manager. The
VPM allows you to create policies without writing CPL directly. Since the VPM supports
a subset of CPL functionality, you might want to supplement any policy in a VPM file
with rules in the Local policy file. If you have a new ProxySG, the VPM file is empty.
VPM files can be shared among various ProxySG appliances by copying the VPM files to
a Web server and then using the Management Console or the CLI from another ProxySG
to download and install the files.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

274

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix B: Testing and Troubleshooting

If you are experiencing problems with your policy files or would like to monitor evaluation for brief
periods of time, consider using the policy tracing capabilities of the policy language.

Tracing allows you to examine how the ProxySG policy is applied to a particular request. To configure
tracing in a policy file, you use several policy language properties to enable tracing, set the verbosity
level, and specify the path for output. Using appropriate conditions to guard the tracing rules, you can
be specific about the requests for which you gather tracing information.

Note: Use policy tracing for troubleshooting only. Tracing is best used temporarily for
troubleshooting, while the log_message() action is best for on-going monitoring. For more
information about the log_message() action, see "log_message()" on page 232. If tracing is
enabled in a production setting, ProxySG performance degrades. After you complete
troubleshooting, be sure to remove policy tracing.

CPL provides the following trace-related properties:

• trace.rules()—Controls the tracing of rule evaluation. Trace can show which rules missed,
which matched, and which were not applicable (N/A), meaning the rule cannot be evaluated for
this transaction and is being skipped. N/A occurs, for example, when you try to apply a streaming
trigger to an FTP transaction.

• trace.request()—Enables tracing and includes a description of the transaction being
processed in the trace. No trace output is generated if this is set to no.

• trace.destination()—Directs the trace output to a user-named trace log.

Enabling Rule Tracing

Use the trace.rules() property to enable or disable rule tracing. Rule tracing shows you which
rules are executed during policy evaluation. This property uses the following syntax:

trace.rules(yes|no|all)

where

• yes enables rule tracing but shows matching rules only.

• no disables rule tracing.

• all enables tracing, with added detail about conditions that failed to match.

Example

The following enables tracing:

<proxy>
 trace.rules(yes) tracewhere:request(yes)

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

276

Enabling Request Tracing

Use the trace.request() property to enable request tracing. Request tracing logs a summary of
information about the transaction: request parameters, property settings, and the effects of all actions
taken. This property uses the following syntax:

trace.request(yes|no)

where:

• yes—Includes request parameters, property settings, and the effects of all actions taken.

• no—Produces no tracing information, even if trace.rules() is set.

Example

The following enables full tracing information for all transactions:

<cache>
 trace.rules(all) trace.request(yes)

Configuring the Path

Use the trace.destination() property to configure where the ProxySG saves trace information.
The trace destination can be set and reset repeatedly. It takes effect (and the trace is actually written)
only when the ProxySG has finished processing the request and any associated response. Trace output
is saved to an object that is accessible using a console URL in the following form:

https://ProxySG_IP_address:8081/Policy/Trace/path

where path is, by default, default.trace.html. This property allows you to change the destination.
The property uses the following syntax:

trace.destination(path)

where path is a filename, directory path, or both. If you specify only a directory, the default trace
filename is used.

You can view policy statistics through the Management Console: Statistics>Advanced>Policy>List of
policy URLs.

Example

In the following example, two destinations are configured for policy tracing information:

<proxy>
 client_address=10.25.0.0/16 trace.destination(internal_trace.html)
 client_address=10.0.0.0/8 trace.destination(external_trace.html)

The console URLs for retrieving the information would be

http://<ProxySG_IP_address>:8081/Policy/Trace/internal_trace.html
http://<ProxySG_IP_address>:8081/Policy/Trace/external_trace.html

Using Trace Information to Improve Policies

To help you understand tracing, this section shows annotated trace output. These traces show the
evaluation of specific requests against a particular policy. The sample policy used is not intended as
suitable for any particular purpose, other than to illustrate most aspects of policy trace output.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix B: Testing and Troubleshooting

277

Here are the relevant policy requirements to be expressed:

• DNS lookups are restricted except for a site being hosted.

• There is no access to reverse DNS so that is completely restricted.

• Any requests not addressed to the hosted site either by name or subnet should be rejected.

• FTP POST requests should be rejected.

• Request URLs for the hosted site are to be rewritten and a request header on the way into the site.

The Sample Policy

; DNS lookups are restricted except for one site that is being hosted
restrict dns

.
except

my_site.com
end

; No access to RDNS
restrict rdns

all
end

define subnet my_subnet
10.11.12.0/24

end

<proxy>
trace.request(yes) trace.rules(all)

proxy>
;
deny url.host.is_numeric=no url.domain=!my_site.com
deny url.address=!my_subnet

<proxy>
deny ftp.method=STOR

<proxy>
url.domain=my_site.com action.test(yes)

define action test
set(request.x_header.test, “test”)
rewrite(url, “(.*)\.my_site.com”, “$(1).his_site.com”)
end

Since trace.request() is set to yes, a policy trace is performed when client requests are evaluated.
Since trace.rules() is set to all, all rule evaluations for misses and matched rules are displayed.

The following is the trace output produced for an HTTP GET request for
http://www.my_site.com/home.html.

Note: The line numbers shown at the left do not appear in actual trace output. They are added here
for annotation purposes.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

278

1 start transaction ------------------------------
2 CPL Evaluation Trace:
3 <Proxy>
4 MATCH: trace.rules(all) trace.request(yes)
5 <Proxy>
6 miss: url.domain=!//my_site.com/
7 miss: url.address=!my_subnet
8 <Proxy>
9 n/a : ftp.method=STOR
10 <Proxy>
11 MATCH: url.domain=//my_site.com/ action.foo(yes)
12 connection: client_address=10.10.0.10 proxy_port=36895
13 time: 2003-09-11 19:36:22 UTC
14 GET http://www.my_site.com/home.html
15 DNS lookup was unrestricted
16 rewritten URL(s):
17 cache_url/server_url/log_url=http://www.his_site.com/
18 User-Agent: Mozilla 8.6 (Non-compatible)
19 user: unauthenticated
20 set header= (request)
21 value='test'
22 end transaction --------------------------------

Notes:

• Lines 1 and 22 are delimiters indicating where the trace for this transaction starts and ends.

• Line 2 introduces the rule evaluation part of the trace. A rule evaluation part is generated when
trace.rules() is set to yes or all.

• Lines 3 to 4 and 10 to 11 show rule matches, and are included when trace.rules() is set to either
yes or all.

• Lines 5 to 9 come only with trace.rules(all). That is, trace.rules(yes) shows only layers
and rules that match. To include rules that do not match, use trace.rules(all).

• Line 9 shows how a rule (containing an FTP specific condition) that is not applicable to this
transaction (HTTP) is marked as n/a.

• Lines 12 to 21 are generated as a result of trace.request(yes). Using trace.rules() without
trace.request(yes) does not result in a trace.

• Line 12 show client related information.

• Line 13 shows the time the transaction was processed.

• Line 14 is a summary of the request line.

• Line 15 indicates that DNS lookup was attempted during evaluation, and was unrestricted. This
line only appears if there is a DNS restriction and a DNS lookup was required for evaluation.

• Lines 16 and 17 indicate that the request URL was rewritten, and show the effects.

• Line 19 indicates that the user was not required to authenticate. If authentication had been
required, the user identity would be displayed.

• Lines 20 and 21 show the results of the header modification action.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix B: Testing and Troubleshooting

279

The following is a trace of the same policy, but for a transaction in which the request URL has an IP
address instead of a hostname.

1 start transaction ------------------------------
2 CPL Evaluation Trace:
3 <Proxy>
4 MATCH: trace.rules(all) trace.request(yes)
5 <Proxy>
6 miss: url.host.is_numeric=no
7 miss: url.address=!my_subnet
8 <Proxy>
9 n/a : ftp.method=STOR
10 <Proxy>
11 miss: url.domain=//my_site.com/
12 connection: client_address=10.10.0.10 proxy_port=36895
13 time: 2003-09-11 19:33:34 UTC
14 GET http://10.11.12.13/home.html
15 DNS lookup was restricted
16 RDNS lookup was restricted
17 User-Agent: Mozilla 8.6 (Non-compatible)
18 user: unauthenticated
19 end transaction --------------------------------

This shows many of the same features as the earlier trace, but has the following differences:

• Line 12—The URL requested had a numeric host name.

• Lines 15 and 16—Both DNA and RDNS lookups were restricted for this transaction.

• Line 11—Because RDNS lookups are restricted, the rule missed; no rewrite action was used for the
transaction and no rewrite action is reported in the transaction summary (lines 12-18).

Trace output can be used to determine the cause of action conflicts that may be reported in the event
log. For example, consider the following policy fragment:

<proxy>
trace.request(yes) trace.rules(all)

<proxy> action.set_header_1(yes)
[Rule] action.set_header_2(yes)

action.set_header_3(yes)

define action set_header_1
set(request.x_header.Test, "one")

|end

define action set_header_2
set(request.x_header.Test, "two")

end

define action set_header_3
set(request.x_header.Test, "three")

end

Because they all set the same header, these actions will conflict. In this example, the conflict is obvious
because all the actions are enabled in the same layer. However, conflicts can also arise when actions are
enabled by completely independent portions of policy. If an action conflict occurs, one of the actions is
dropped and an event log entry is made similar to the following:

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

280

Policy: Action discarded, 'set_header_1' conflicts with an action already committed

The conflict is reflected in the following trace of a request for //www.my_site.com/home.html:

1 start transaction ------------------------------
2 CPL Evaluation Trace:
3 <Proxy>
4 MATCH: trace.rules(all) trace.request(yes)
5 <Proxy> action.set_header_1(yes)
6 [Rule] action.set_header_2(yes)
7 MATCH: action.set_header_1(yes)
8 MATCH: action.set_header_2(yes)
9 MATCH: action.set_header_3(yes)
10 connection: client_address=10.10.0.10 proxy_port=36895
11 time: 2003-09-12 15:56:39 UTC
12 GET http://www.my_site.com/home.html
13 User-Agent: Mozilla 8.6 (Non-compatible)
14 user: unauthenticated
15 Discarded Actions:
16 set_header_1
17 set_header_2
18 set header=set_header_3 (request)
19 value='three'
20 end transaction --------------------------------

Notes:

• Layer and section guard expressions are indicated in the trace (lines 7 and 8) before any rules
subject to the guard (line 9).

• Line 15 indicates that actions were discarded due to conflicts.

• Lines 16 and 17 show the discarded actions.

• Line 18 shows the remaining action, while line 19 shows the effect of the action on the header
value.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix C: Recognized HTTP Headers

The tables provided in this appendix list all recognized HTTP 1.1 headers and indicate how the
ProxySG is able to interact with them. For each header, columns show whether the header appears in
request or response forms, and whether the append(), delete(), rewrite(), or set() actions
can be used to change the header.

Recognized headers can be used with the request.header.header_name= and
response.header.header_name= conditions. Headers not shown in these tables must be tested with
the request.x_header.header_name= and response.x_header.header_name= conditions. In
addition, the following three header fields take address values, so they can be used with the condition
request.header.header_name.address= Client-IP, Host, X-Forwarded-For.

Table C.1: HTTP Headers Recognized by the ProxySG

Header Field Request/Response Form Allowed Actions

rewrite()
set()

append() delete()

Accept Request X X X

Accept-Charset Request X X X

Accept-Encoding Request X X X

Accept-Language Request X X X

Accept-Ranges Response X X X

Age Response

Allow Request/Response X X X

Authorization Request

Cache-Control Request/Response X X X

Client-IP Request X X

Connection Request/Response X

Content-Encoding Request/Response X

Content-Language Request/Response X

Content-Length Request/Response

Content-Location Request/Response X X

Content-MD5 Request/Response

Content-Range Request/Response

Content-Type Request/Response

Cookie Request X X X

Cookie2 Request X X

Date Request/Response

ETag Response X X

Expect Request X

Expires Request/Response X X

From Request X X

Host Request

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

282

The following table lists custom headers that are recognized by the ProxySG.

If-Match Request X

If-Modified-Since Request

If-None-Match Request X

If-Range Request

If-Unmodified-Since Request

Last-Modified Request/Response

Location Response X X

Max-Forwards Request

Meter Request/Response X X

Pragma Request/Response X X

Proxy-Authenticate Response X

Proxy-Authorization Request X

Proxy-Connection Request X

Range Request X X

Referer Request X X

Retry-After Response X X

Server Response X X

Set-Cookie Response X X X

Set-Cookie2 Response X X X

TE Request X

Trailer Request/Response X

Transfer-Encoding Request/Response X

Upgrade Request/Response X

User-Agent Request X X

Vary Response X X X

Via Request/Response X X X

Warning Request/Response X X X

WWW-Authenticate Response

Table C.2: Custom HTTP Headers Recognized by the ProxySG

Header Field Request/Response Form Allowed Actions

Authentication-Info Response append()

Front-End-Https Request/Response rewrite(), set(), delete()

P3P Request/Response rewrite(), set(), delete()

Refresh Request/Response rewrite(), set(), delete()

X-BlueCoat-Error Request/Response Cannot be modified.

X-BlueCoat-Via Request/Response delete()

X-Forwarded-For Request rewrite(), set(), delete()

Table C.1: HTTP Headers Recognized by the ProxySG

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

This appendix lists all substitution variables available in CPL.

To use a variable in CPL, it is expressed as: $(<field-id>, such as $(cs-bodylength).
For fields that have both ELFF and CPL tokens, either token can be used. For example, $(cs-ip) and
$(proxy.address) are equivalent.

Note that $(request.x_header.<x-header-name>) and $(response.x_header.<x-header-name>)
are also valid substitutions, but are not included in the tables below, because they have no
corresponding ELFF tokens.

The available substitutions are organized in the following categories

• bytes • streaming

• connection • time

• instant messaging (im) • url

• req_rsp_line • user

• special_token • ci_request_header

• status • si_response_header

Category: bytes

ELFF CPL Description

cs-bodylength Number of bytes in the body (excludes
header) sent from client to appliance.

cs-bytes Number of bytes sent from client to
appliance.

cs-headerlength Number of bytes in the header sent from
client to appliance.

rs-bodylength Number of bytes in the body (excludes
header) sent from upstream host to
appliance.

rs-bytes Number of bytes sent from upstream host to
appliance.

rs-headerlength Number of bytes in the header sent from
upstream host to appliance.

sc-bodylength Number of bytes in the body (excludes
header) sent from appliance to client.

sc-bytes Number of bytes sent from appliance to
client.

sc-headerlength Number of bytes in the header sent from
appliance to client.

sr-bodylength Number of bytes in the body (excludes
header) sent from appliance to upstream
host.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

284

sr-bytes Number of bytes sent from appliance to
upstream host.

sr-headerlength Number of bytes in the header sent from
appliance to upstream host.

Category: connection

ELFF CPL Description

cs-ip proxy.address IP address of the destination of the client's
connection.

c-connect-type The type of connection made by the client to
the appliance—'Transparent' or 'Explicit'.

c-dns Hostname of the client (uses the client's IP
address to avoid reverse DNS).

c-ip client.address IP address of the client.

r-dns Hostname from the outbound server URL.

r-ip IP address from the outbound server URL.

r-port Port from the outbound server URL.

r-supplier-dns Hostname of the upstream host (not available
for a cache hit).

r-supplier-ip IP address used to contact the upstream host
(not available for a cache hit).

r-supplier-port Port used to contact the upstream host (not
available for a cache hit).

sc-adapter proxy.card Adapter number of the client's connection to
the appliance.

sc-connection Unique identifier of the client's connection
(for example, SOCKET) .

x-bluecoat-server-
connection-socket-
errno

server_connection.
socket_errno

Error message associated with a failed
attempt to connect to an upstream host.

s-computername proxy.name Configured name of the appliance.

s-connect-type Upstream connection type (Direct, SOCKS
gateway, etc.).

s-dns Hostname of the appliance (uses the primary
IP address to avoid reverse DNS).

s-ip IP address of the appliance on which the
client established its connection.

s-port proxy.port Port of the appliance on which the client
established its connection.

s-sitename Service used to process the transaction.

s-supplier-ip IP address used to contact the upstream host
(not available for a cache hit).

s-supplier-name Hostname of the upstream host (not available
for a cache hit).

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

285

x-bluecoat-
transaction-id

transaction.id Unique per-request identifier generated by
the appliance (note: this value is not unique
across multiple appliances).

x-bluecoat-appliance-
name

appliance.name Configured name of the appliance.

x-bluecoat-appliance-
primary-address

appliance.
primary_address

Primary IP address of the appliance.

x-bluecoat-proxy-
primary-address

proxy.primary_address Primary IP address of the appliance.

x-client-address IP address of the client.

x-client-ip IP address of the client.

Category: im

ELFF CPL Description

x-im-buddy-id Instant Messaging buddy ID.

x-im-buddy-name Instant Messaging buddy display name.

x-im-buddy-state Instant Messaging buddy state.

x-im-chat-room-id Instant Messaging identifier of the chat room
in use.

x-im-chat-room-members The list of chat room member IDs.

x-im-chat-room-type The chat room type, one of 'public' or 'public',
and possibly 'invite_only', 'voice' and/or
'conference'.

x-im-client-info The Instant Messaging client information.

x-im-file-path Path of the file associated with an instant
message.

x-im-file-size Size of the file associated with an instant
message.

x-im-message-opcode im.message.opcode The opcode utilized in the instant message.

x-im-message-route The route of the instant message.

x-im-message-size Length of the instant message.

x-im-message-text Text of the instant message.

x-im-message-type The type of the instant message.

x-im-method The method associated with the instant
message.

x-im-user-id Instant Messaging user identifier.

x-im-user-name Display name of the client.

x-im-user-state Instant Messaging user state.

Category: req_rsp_line

ELFF CPL Description

cs-method method Request method used from client to
appliance.

cs-protocol lient.protocol Protocol used in the client's request.

cs-request-line First line of the client's request.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

286

cs-version request.version Protocol and version from the client's
request; for example, HTTP/1.1.

x-bluecoat-proxy-via-
http-version

proxy.via_http_version Default HTTP protocol version of the
appliance without protocol decoration (e.g.
1.1 for HTTP/1.1).

x-bluecoat-redirect-
location

redirect.location Redirect location URL specified by a redirect
CPL action.

rs-response-line First line (a.k.a. status line) of the response
from an upstream host to the appliance.

rs-status response.code Protocol status code of the response from an
upstream host to the appliance.

rs-version response.version Protocol and version of the response from an
upstream host to the appliance; for example,
HTTP/1.1.

sc-status Protocol status code from appliance to client.

x-bluecoat-ssl-
failure-reason

ssl_failure_reason Upstream SSL negotiation failure reason.

x-cs-http-version http.request.version HTTP protocol version of request from the
client. Does not include protocol qualifier, for
example, 1.1 for HTTP/1.1.

x-cs-socks-ip socks.
destination_address

Destination IP address of a proxied SOCKS
request.

x-cs-socks-port socks.destination_port Destination port of a proxied SOCKS request.

x-cs-socks-method socks.method Method of a proxied SOCKS request.

x-cs-socks-version socks.version Version of a proxied SOCKS request.

x-sc-http-status http.response.code HTTP response code sent from appliance to
client.

x-rs-http-version http.response.version HTTP protocol version of response from the
upstream host. Does not include protocol
qualifier; for example, 1.1 for HTTP/1.1.

x-sc-http-version HTTP protocol version of response to client.
Does not include protocol qualifier; for
example, 1.1 for HTTP/1.1.

x-sr-http-version HTTP protocol version of request to the
upstream host. Does not include protocol
qualifier; for example, 1.1 for HTTP/1.1.

Category: special_token

ELFF CPL Description

x-bluecoat-special-amp amp The ampersand character.

x-bluecoat-special-
apos

apos The apostrophe character (’).

x-bluecoat-special-cr cr Resolves to the carriage return character .

x-bluecoat-special-
crlf

crlf Resolves to a carriage return/line feed
sequence.

x-bluecoat-special-
empty

empty Resolves to an empty string.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

287

x-bluecoat-special-esc esc Resolves to the escape character (ASCII HEX
1B).

x-bluecoat-special-gt gt The greater-than character.

x-bluecoat-special-lf lf The line feed character.

x-bluecoat-special-lt lt The less-than character.

x-bluecoat-special-
quot

quot The double quote character.

x-bluecoat-special-
slash

slash The forward slash character.

Category: status

ELFF CPL Description

x-bluecoat-release-id release.id The release ID of the ProxySG operating
system.

cs-categories All content categories of the request URL.

cs-categories-external All content categories of the request URL that
are defined by an external service.

cs-categories-policy All content categories of the request URL that
are defined by CPL.

cs-categories-provider All content categories of the request URL that
are defined by the current provider.

cs-categories-qualified All content categories of the request URL,
qualified by the provider of the category.

cs-category Single content category of the request URL
(sc-filter-category).

r-hierarchy How and where the object was retrieved in
the cache hierarchy.

sc-filter-category category Content filtering category of the request
URL.

sc-filter-result Content filtering result: Denied, Proxied or
Observed.

s-action What type of action the Appliance took to
process this request.

s-cpu-util Average load on the proxy's processor
(0%-100%).

s-hierarchy How and where the object was retrieved in
the cache hierarchy.

s-icap-info ICAP response information.

s-icap-status ICAP response status.

x-bluecoat-surfcontrol-
category-id

The SurfControl specific content category ID.

x-bluecoat-surfcontrol-
is-denied

1 if the transaction was denied, else 0.

x-bluecoat-surfcontrol-
is-proxied

0 if transaction is explicitly proxied, 1 if
transaction is transparently proxied.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

288

x-bluecoat-surfcontrol-
reporter-id

Specialized value for SurfControl reporter.

x-bluecoat-websense-
category-id

The Websense specific content category ID.

x-bluecoat-websense-
keyword

The Websense specific keyword.

x-bluecoat-websense-
reporter-id

The Websense specific reporter category ID.

x-bluecoat-websense-
status

The Websense specific numeric status.

x-bluecoat-websense-
user

The Websense form of the username.

x-exception-company-
name

exception.company_name The company name configured under
exceptions.

x-exception-contact exception.contact Describes who to contact when certain
classes of exceptions occur, configured under
exceptions (empty if the transaction has not
been terminated).

x-exception-details exception.details The configurable details of a selected
policy-aware response page (empty if the
transaction has not been terminated).

x-exception-header exception.header The header to be associated with an
exception response (empty if the transaction
has not been terminated).

x-exception-help exception.help Help text that accompanies the exception
resolved (empty if the transaction has not
been terminated).

x-exception-id exception.id Identifier of the exception resolved (empty if
the transaction has not been terminated).

x-exception-last-error exception.last_error The last error recorded for the current
transaction. This can provide insight when
unexpected problems are occurring (empty if
the transaction has not been terminated).

x-exception-reason exception.reason Indicates the reason why a particular request
was terminated (empty if the transaction has
not been terminated).

x-exception-sourcefile xception.sourcefile Source filename from which the exception
was generated (empty if the transaction has
not been terminated).

x-exception-sourceline exception.sourceline Source file line number from which the
exception was generated (empty if the
transaction has not been terminated).

x-exception-summary xception.summary Summary of the exception resolved (empty if
the transaction has not been terminated).

x-patience-javascript patience_javascript Javascript required to allow patience
responses.

x-patience-progress patience_progress The progress of the patience request.

x-patience-time patience_time The elapsed time of the patience request.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

289

x-patience-url patience_url The url to be requested for more patience
information.

x-virus-id Identifier of a virus if one was detected.

Category: streaming

ELFF CPL Description

x-cs-streaming-client streaming.client Type of streaming client in use
(windows_media, real_media, or quicktime).

x-rs-streaming-content streaming.content Type of streaming content served; for
example, windows_media, quicktime).

x-streaming-bitrate bitrate The reported client-side bitrate for the
stream.

Category: time

ELFF CPL Description

connect-time Total MS required to connect to the origin
server.

date date.utc GMT Date in YYYY-MM-DD format.

dnslookup-time Total ms cache required to perform the DNS
lookup.

duration Time taken (in seconds) to process the
request.

gmttime GMT date and time of the user request in
format: [DD/MM/YYYY:hh:mm:ss GMT].

x-bluecoat-day-utc day.utc GMT/UTC day (as a number) formatted to
take up two spaces; for example, 07 for the
7th of the month.

x-bluecoat-hour-utc hour.utc GMT/UTC hour formatted to always take up
two spaces; for example, 01 for 1AM.

x-bluecoat-minute-utc minute.utc GMT/UTC minute formatted to always take
up two spaces; for example, 01 for 1 minute
past.

x-bluecoat-month-utc month.utc GMT/UTC month (as a number) formatted
to take up two spaces; for example, 01 for
January.

x-bluecoat-monthname-utc monthname.utc GMT/UTC month in the short-form string
representation; for example, Jan for January.

x-bluecoat-second-utc second.utc GMT/UTC second formatted to always take
up two spaces; for example, 01 for 1 second
past.

x-bluecoat-weekday-utc weekday.utc GMT/UTC weekday in the short-form string
representation; for example, Mon for
Monday.

x-bluecoat-year-utc year.utc GMT/UTC year formatted to always take up
four spaces.

localtime Local date and time of the user request in
format: [DD/MMM/YYYY:hh:mm:ss +nnnn].

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

290

x-bluecoat-day day Localtime day (as a number) formatted to
take up two spaces; for example, 07 for the
7th of the month.

x-bluecoat-hour hour Localtime hour formatted to always take up
two spaces; for example, 01 for 1AM.

x-bluecoat-minute minute Localtime minute formatted to always take
up two spaces; for example, 01 for 1 minute
past.

x-bluecoat-month month Localtime month (as a number) formatted to
take up two spaces; for example, 01 for
January.

x-bluecoat-monthname monthname Localtime month in the short-form string
representation; for example, Jan for January.

x-bluecoat-second second Localtime second formatted to always take
up two spaces; for example, 01 for 1 second
past.

x-bluecoat-weekday weekday Localtime weekday in the short-form string
representation; for example, Mon for
Monday.

x-bluecoat-year year Localtime year formatted to always take up
four spaces.

time time.utc GMT time in HH:MM:SS format.

timestamp Unix-type timestamp.

time-taken Time taken (in milliseconds) to process the
request.

x-bluecoat-end-time-wft End local time of the transaction represented
as a windows file time.

x-bluecoat-start-time-wft Start local time of the transaction represented
as a windows file time.

x-cookie-date cookie_date Current date in Cookie time format.

x-http-date http_date Current date in HTTP time format.

x-timestamp-unix Seconds since UNIX epoch (Jan 1, 1970) (local
time) .

x-timestamp-unix-utc Seconds since UNIX epoch (Jan 1, 1970)
(GMT/UTC).

Category: url

ELFF CPL Description

cs-host Hostname from the client's request URL. If
URL rewrite policies are used, this field's
value is derived from the 'log' URL. See
x-s-log-uri-host.

cs-uri log_url The 'log' URL.

cs-uri-address log_url.address IP address from the 'log' URL. DNS is used if
URL uses a hostname.

cs-uri-extension log_url.extension Document extension from the 'log' URL.

cs-uri-host log_url.host Hostname from the 'log' URL.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

291

cs-uri-hostname log_url.hostname Hostname from the 'log' URL. RDNS is used
if the URL uses an IP address.

cs-uri-path log_url.path Path from the 'log' URL. Does not include
query.

cs-uri-pathquery log_url.pathquery Path and query from the 'log' URL.

cs-uri-port log_url.port Port from the 'log' URL.

cs-uri-query log_url.query Query from the 'log' URL.

cs-uri-scheme log_url.scheme Scheme from the 'log' URL.

cs-uri-stem Stem from the 'log' URL. The stem includes
everything up to the end of path, but does
not include the query.

c-uri url The original URL requested.

c-uri-address url.address IP address from the original URL requested.
DNS is used if the URL is expressed as a
hostname.

c-uri-cookie-domain url.cookie_domain The cookie domain of the original URL
requested

c-uri-extension url.extension Document extension from the original URL
requested

c-uri-host url.host Hostname from the original URL requested

c-uri-hostname url.hostname Hostname from the original URL requested.
RDNS is used if the URL is expressed as an IP
address

c-uri-path url.path Path of the original URL requested without
query.

c-uri-pathquery url.pathquery Path and query of the original URL requested

c-uri-port url.port Port from the original URL requested

c-uri-query url.query Query from the original URL requested

c-uri-scheme url.scheme Scheme of the original URL requested

c-uri-stem Stem of the original URL requested

sr-uri server_url URL of the upstream request

sr-uri-address server_url.address IP address from the URL used in the
upstream request. DNS is used if the URL is
expressed as a hostname.

sr-uri-extension server_url.extension Document extension from the URL used in
the upstream request

sr-uri-host server_url.host Hostname from the URL used in the
upstream request

sr-uri-hostname server_url.hostname Hostname from the URL used in the
upstream request. RDNS is used if the URL is
expressed as an IP address.

sr-uri-path server_url.path Path from the upstream request URL

sr-uri-pathquery server_url.pathquery Path and query from the upstream request
URL

sr-uri-port server_url.port Port from the URL used in the upstream
request.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

292

sr-uri-query server_url.query Query from the upstream request URL.

sr-uri-scheme server_url.scheme Scheme from the URL used in the upstream
request.

sr-uri-stem Path from the upstream request URL

s-uri cache_url The URL used for cache access.

s-uri-address cache_url.address IP address from the URL used for cache
access. DNS is used if the URL is expressed as
a hostname.

s-uri-extension cache_url.extension Document extension from the URL used for
cache access.

s-uri-host cache_url.host Hostname from the URL used for cache
access.

s-uri-hostname cache_url.hostname Hostname from the URL used for cache
access. RDNS is used if the URL uses an IP
address.

s-uri-path cache_url.path Path of the URL used for cache access

s-uri-pathquery cache_url.pathquery Path and query of the URL used for cache
access.

s-uri-port cache_url.port Port from the URL used for cache access.

s-uri-query cache_url.query Query string of the URL used for cache
access.

s-uri-scheme cache_url.scheme Scheme from the URL used for cache access.

s-uri-stem Stem of the URL used for cache access.

x-cs(Referer)-uri request.header.Referer.
url

The URL from the Referer header.

x-cs(Referer)-uri-address request.header.Referer.
url.address

IP address from the 'Referer' URL. DNS is
used if URL uses a hostname.

x-cs(Referer)-uri-
extension

request.header.Referer.
url.extension

Document extension from the 'Referer' URL.

x-cs(Referer)-uri-host request.header.Referer.
url.host

Hostname from the 'Referer' URL.

x-cs(Referer)-uri-
hostname

request.header.Referer.
url.hostname

Hostname from the 'Referer' URL. RDNS is
used if the URL uses an IP address.

x-cs(Referer)-uri-path request.header.Referer.
url.path

Path from the 'Referer' URL. Does not include
query.

x-cs(Referer)-uri-
pathquery

request.header.Referer.
url.pathquery

Path and query from the 'Referer' URL.

x-cs(Referer)-uri-port request.header.Referer.
url.port

Port from the 'Referer' URL.

x-cs(Referer)-uri-
query

request.header.Referer.
url.query

Query from the 'Referer' URL.

x-cs(Referer)-uri-
scheme

request.header.Referer.
url.scheme

Scheme from the 'Referer' URL.

x-cs(Referer)-uri-stem Stem from the 'Referer' URL. The stem
includes everything up to the end of path,
but does not include the query.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

293

Category: user

ELFF CPL Description

cs-auth-group group One group that an authenticated client is a
member of. The group selected is determined
by either a group.log_order definition in
policy or the order groups are referenced in
policy

cs-auth-groups groups Groups that an authenticated client is a
member of.

cs-auth-type Client-side: authentication type (such as
BASIC, NTLM, LDAP)

cs-realm realm Authentication realm that the user was
challenged in.

cs-userdn user Full username of a client authenticated to the
proxy (fully distinguished).

cs-username user.name Relative username of a client authenticated to
the proxy; for example, not fully
distinguished.

sc-auth-status Client-side: Authorization status.

x-cache-user Relative username of a client authenticated to
the proxy; for example, not fully
distinguished (same as cs-username).

x-cs-username-or-ip Used to identify the user using either their
authenticated proxy username or, if that is
unavailable, their IP address.

x-radius-splash-

session-id

Session ID made available through RADIUS
when configured for session management

x-radius-splash-
username

Username made available through RADIUS
when configured for session management

x-user-x509-issuer user.x509.issuer If the user was authenticated through an
X.509 certificate, this is the issuer of the
certificate as an RFC2253 DN.

x-user-x509-serial-
number

user.x509.serialNumber If the user was authenticated through an
X.509 certificate, this is the serial number
from the certificate as a hexadecimal number.

x-user-x509-subject user.x509.subject If the user was authenticated through an
X.509 certificate, this is the subject of the
certificate as an RFC2253 DN.

Category: ci_request_header

ELFF CPL Description

cs(Accept) request.header.Accept Request header: Accept

cs(Accept-Charset) request.header.Accept-
Charset

Request header: Accept-Charset

cs(Accept-Encoding) request.header.Accept-
Encoding

Request header: Accept-Encoding

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

294

cs(Accept-Language) request.header.Accept-
Language

Request header: Accept-Language

cs(Accept-Ranges) request.header.Accept-
Ranges

Request header: Accept-Ranges

cs(Age) request.header.Age Request header: Age

cs(Allow) request.header.Allow Request header: Allow

cs(Authentication-
Info)

request.header.
Authentication-Info

Request header: Authentication-Info

cs(Authorization) request.header.
Authorization

Request header: Authorization

cs(Cache-Control) request.header.
Cache-Control

Request header: Cache-Control

cs(Client-IP) request.header.
Client-IP

Request header: Client-IP

cs(Connection) request.header.
Connection

Request header: Connection

cs(Content-Encoding) request.header.
Content-Encoding

Request header: Content-Encoding

cs(Content-Language) request.header.
Content-Language

Request header: Content-Language

cs(Content-Length) request.header.
Content-Length

Request header: Content-Length

cs(Content-Location) request.header.
Content-Location

Request header: Content-Location

cs(Content-MD5) request.header.
Content-MD5

Request header: Content-MD5

cs(Content-Range) request.header.
Content-Range

Request header: Content-Range

cs(Content-Type) request.header.
Content-LType

Request header: Content-Type

cs(Cookie) request.header.Cookie Request header: Cookie

cs(Cookie2) request.header.Cookie2 Request header: Cookie2

cs(Date) request.header.Date Request header: Date

cs(Etag) request.header.Etag Request header: Etag

cs(Expect) request.header.Expect Request header: Expect

cs(Expires) request.header.Expires Request header: Expires

cs(From) request.header.From Request header: From

cs(Front-End-HTTPS) request.header.Front-
End-HTTPS

Request header: Front-End-HTTPS

cs(Host) request.header.Host Request header: Host

cs(If-Match) request.header.If-Match Request header: If-Match

cs(If-Modified-Since) request.header.If-
Modified-Since

Request header: If-Modified-Since

cs(If-None-Match) request.header.If-None-
Match

Request header: If-None-Match

cs(If-Range) request.header.If-Range Request header: If-Range

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

295

cs(If-Unmodified-
Since)

request.header.If-
Unmodified-Since

Request header: If-Unmodified-Since

cs(Last-Modified) request.header.Last-
Modified

Request header: Last-Modified

cs(Location) request.header.Location Request header: Location

cs(Max-Forwards) request.header.
Max-Forwards

Request header: Max-Forwards

cs(Meter) request.header.Meter Request header: Meter

cs(P3P) request.header.P3P Request header: P3P

cs(Pragma) request.header.Pragma Request header: Pragma

cs(Proxy-Authenticate) request.header.
Proxy-Authenticate

Request header: Proxy-Authenticate

cs(Proxy-
Authorization)

request.header.
Proxy-Authorization

Request header: Proxy-Authorization

cs(Proxy-Connection) request.header.Proxy-
Connection

Request header: Proxy-Connection

cs(Range) request.header.Range Request header: Range

cs(Referer) request.header.Referer Request header: Referer

cs(Refresh) request.header.Refresh Request header: Refresh

cs(Retry-After) request.header.
Retry-After

Request header: Retry-After

cs(Server) request.header.Server Request header: Server

cs(Set-Cookie) request.header.
Set-Cookie

Request header: Set-Cookie

cs(Set-Cookie2) request.header.
Set-Cookie2

Request header: Set-Cookie2

cs(TE) request.header.TE Request header: TE

cs(Trailer) request.header.Trailer Request header: Trailer

cs(Transfer-Encoding) request.header.
Transfer-Encoding

Request header: Transfer-Encoding

cs(Upgrade) request.header.Upgrade Request header: Upgrade

cs(User-Agent) request.header.
User-Agent

Request header: User-Agent

cs(Vary) request.header.Vary Request header: Vary

cs(Via) request.header.Via Request header: Via

cs(WWW-Authenticate) request.header.
WWW-Authenticate

Request header: WWW-Authenticate

cs(Warning) request.header.Warning Request header: Warning

cs(X-BlueCoat-Error) request.header.X-
BlueCoat-Error

Request header: X-BlueCoat-Error

cs(X-BlueCoat-MC-
Client-Ip)

request.header.X-
BlueCoat-MC-Client-Ip

Request header: X-BlueCoat-MC-Client-Ip

cs(X-BlueCoat-Via) request.header.
X-BlueCoat-Via

Request header: X-BlueCoat-Via

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

296

cs(X-Forwarded-For) request.header.
X-Forwarded-For

Request header: X-Forwarded-For

Category: si_response_header

ELFF CPL Description

rs(Accept) response.header.Accept Response header: Accept

rs(Accept-Charset) response.header.
Accept-Charset

Response header: Accept-Charset

rs(Accept-Encoding) response.header.
Accept-Encoding

Response header: Accept-Encoding

rs(Accept-Language) response.header.
Accept-Language

Response header: Accept-Language

rs(Accept-Ranges) response.header.
Accept-Ranges

Response header: Accept-Ranges

rs(Age) response.header.Age Response header: Age

rs(Allow) response.header.Allow Response header: Allow

rs(Authentication-
Info)

response.header.
Authentication-Info

Response header: Authentication-Info

rs(Authorization) response.header.
Authorization

Response header: Authorization

rs(Cache-Control) response.header.
Cache-Control

Response header: Cache-Control

rs(Client-IP) response.header.
Client-IP

Response header: Client-IP

rs(Connection) response.header.
Connection

Response header: Connection

rs(Content-Encoding) response.header.
Content-Encoding

Response header: Content-Encoding

rs(Content-Language) response.header.
Content-Language

Response header: Content-Language

rs(Content-Length) response.header.
Content-Length

Response header: Content-Length

rs(Content-Location) response.header.
Content-Location

Response header: Content-Location

rs(Content-MD5) response.header.
Content-MD5

Response header: Content-MD5

rs(Content-Range response.header.
Content-Range

Response header: Content-Range

rs(Content-Type) response.header.
Content-Type

Response header: Content-Type

rs(Cookie) response.header.Cookie Response header: Cookie

rs(Cookie2) response.header.Cookie2 Response header: Cookie2

rs(Date) response.header.Date Response header: Date

rs(Etag) response.header.Etag Response header: Etag

rs(Expect) response.header.Expect Response header: Expect

rs(Expires) response.header.Expires Response header: Expires

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D: CPL Substitutions

297

rs(From) response.header.From Response header: From

rs(Front-End-HTTPS) response.header.
Front-End-HTTPS

Response header: Front-End-HTTPS

rs(Host) response.header.Host Response header: Host

rs(If-Match) response.header.
If-Match

Response header: If-Match

rs(If-Modified-Since) response.header.
If-Modified-Since

Response header: If-Modified-Since

rs(If-None-Match) response.header.
If-None-Match

Response header: If-None-Match

rs(If-Range) response.header.
If-Range

Response header: If-Range

rs(If-Unmodified-
Since)

response.header.
If-Unmodified-Since

Response header: If-Unmodified-Since

rs(Last-Modified) response.header.
Last-Modified

Response header: Last-Modified

rs(Location) response.header.
Location

Response header: Location

rs(Max-Forwards) response.header.
Max-Forwards

Response header: Max-Forwards

rs(Meter) response.header.Meter Response header: Meter

rs(P3P) response.header.P3P Response header: P3P

rs(Pragma) response.header.Pragma Response header: Pragma

rs(Proxy-Authenticate) response.header.
Proxy-Authenticate

Response header: Proxy-Authenticate

rs(Proxy-
Authorization)

response.header.
Proxy-Authorization

Response header: Proxy-Authorization

rs(Proxy-Connection) response.header.
Proxy-Connection

Response header: Proxy-Connection

rs(Range) response.header.Range Response header: Range

rs(Referer) response.header.Referer Response header: Referer

rs(Refresh) response.header.Refresh Response header: Refresh

rs(Retry-After) response.header.
Retry-After

Response header: Retry-After

rs(Server) response.header.Server Response header: Server

rs(Set-Cookie) response.header.
Set-Cookie

Response header: Set-Cookie

rs(Set-Cookie2) response.header.
Set-Cookie2

Response header: Set-Cookie2

rs(TE) response.header.TE Response header: TE

rs(Trailer) response.header.Trailer Response header: Trailer

rs(Transfer-Encoding) response.header.
Transfer-Encoding

Response header: Transfer-Encoding

rs(Upgrade) response.header.Upgrade Response header: Upgrade

rs(User-Agent) response.header.
User-Agent

Response header: User-Agent

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

298

rs(Vary) response.header.Vary Response header: Vary

rs(Via) response.header.Via Response header: Via

rs(WWW-Authenticate) response.header.
WWW-Authenticate

Response header: WWW-Authenticate

rs(Warning) response.header.Warning Response header: Warning

rs(X-BlueCoat-Error) response.header.
X-BlueCoat-Error

Response header: X-BlueCoat-Error

rs(X-BlueCoat-MC-Client-I
p)

response.header.
X-BlueCoat-MC-Client-Ip

Response header: X-BlueCoat-MC-Client-Ip

rs(X-BlueCoat-Via) response.header.
X-BlueCoat-Via

Response header: X-BlueCoat-Via

rs(X-Forwarded-For) response.header.
X-Forwarded-For

Response header: X-Forwarded-For

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E: Filter File Syntax

This appendix provides a summary of the syntax and evaluation order used in CacheOS version 4.x
filter files. While it is recommended that you convert any filter file to take advantage of the policy
features of ProxySG, it is possible to use a CacheOS 4.x filter file in the place of a policy file, and have it
work with a few differences. However, using a CacheOS 4.x filter file causes deprecation warnings to
be emitted by the CPL compiler. For more information about modifications needed to use a filter file
with ProxySG, see the “Upgrading and Downgrading” section of Chapter 1.

Filter File Overview
The ProxySG can filter requests made by clients using a filter list. When a filter list is loaded, all
requested URLs are compared to the list and processed based on the results.

A filter list can be used to assign the following actions for a URL:

• access direct

• bypass LDAP authentication

• cache advertising objects

• case-insensitive matching

• content-filter override

• deny service

• do not cache

• do not refresh

• time to live (TTL)

• version control

• URL rewriting

• Active Content Management

Important: The ProxySG does not evaluate items in a filter file by the order in which they appear;
instead, prefix filters are evaluated first, then domain suffix filters, and lastly, regular
expression filters. For more details about evaluation, see "Evaluation Order" on page 306.

Filter File Structure
A CacheOS 4.x filter file consists of two parts, both of which are optional. The two parts are divided by
a define_actions line. The first part, which can be considered the filter part, consists of filters and
access-control list (ACL) definitions. The second part, or action part, contains action and transformer
definitions. All filters must be written above the define_actions line. All action and transformer
definitions must be written below the define_actions line.

By contrast, CPL action and transformer definitions may appear anywhere in the policy file.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

300

Filter-Part Components

The filter part of a filter file can contain the following:

• Filters that are not part of a section

• Sections

• ALL statements

• default_filter_properties statements

• Access-control list (ACL) definitions

Filters that are not part of a section must occur before the first section. The
default_filter_properties statements must be written after the last filter or section. The ALL
statements and ACL definitions can be written anywhere before the define_actions line. All of these
components are optional.

Filters

In CPL, the concept of a filter has been replaced by the concept of a rule.

A filter is a line that includes, at a minimum, a URL pattern. The filter is considered to be a match if
the requested URL matches the URL pattern. It can also include a tag specifying whether the match
will be case-sensitive, an acl condition expression for specifying a defined access-control list, and a
property setting. Multiple acl conditions and property settings can be listed. A filter line has the
following general syntax:

url_pattern [case_insensitive = { yes | no }] [acl=expression] [property=value]
...

url_pattern

where url_pattern is either a prefix-style pattern (like the prefix_pattern used in the url=
condition) or a regular-expression pattern (as is used in the url_regex= condition, see
"Sections" on page 303). For more information on URLs, see "url=" on page 137.

case_insensitive= {yes|no}

where case_insensitive is an optional property that can specify whether URLs matches are
case-sensitive. By default, matching is case-sensitive. For more information, see "Properties"
on page 301.

acl=expression

where acl= can include an IP address or subnet, or the label of a define acl definition
block. For more information, see "Conditions" on page 301.

property=value

where property= is an optional property setting. For a list of properties available in filter
files, see "Properties" on page 301.

The following are differences with CPL:

• Property settings have the form property=value in filter files, instead of the CPL form
property(value).

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E: Filter File Syntax

301

• The only condition available in filter lines is the acl= condition, which is a synonym for the CPL
condition client.address=.

• The only way to specify case-sensitivity is with case_insensitive={yes|no}.

The following are requirements for filter lines:

• A line break is considered to be a new filter line.

• Each line lists a unique URL.

• Comment lines begin with a semicolon (;).

• The maximum length of a line is 4096 bytes.

Important: If you include a period at the beginning of the domain name in a filter, it might not
produce the expected match, for example, .company.com will not match company.com.
This also holds true for filters that specify only the ending part of the domain name; for
example, org works as expected, but .org does not work as you might expect. If you are
using a regular-expression pattern for the filter, a period can be matched by using "\." For
more information about using regular expressions, refer to Appendix E: “Using Regular
Expressions,” in the ProxySG Configuration and Management Guide.

Conditions

In CacheOS 4.x filter files, the only condition is the acl= condition. This condition can be used in a
filter line to test the IP address of the client. The expression can include an IP address or subnet, or the
label of a define acl definition block. (In CPL, this condition is deprecated; use the synonym
client.address= condition along with the define subnet definition block.)

acl={ip_address|acl_label}

where :

• ip_address —The client IP address or subnet; for example, 10.1.198.0.

• subnet_label—Label of a define ACL definition block that binds a number of IP addresses or
subnets.

Properties

Properties in filter files take the following general form: property=value. The following table lists the
property settings that are available.

Table F.1: Properties available in CacheOS 4.x filter files

Property Value Description

always_verify yes | no When set to yes, acts as the equivalent of
always-verify-source configurable through caching settings,
but on a per-URL basis instead of globally. A verification is
performed with the origin server for every request matching the
filter. If there are multiple simultaneous accesses of an object, the
requests are reduced to a single request to the origin server.

advertisement yes | no When set to yes, cache objects at this URL, and request the objects in
the background to maintain the hit count.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

302

ALL Statements

An ALL statement is a line beginning with the keyword ALL, followed by zero or more conditions and
property settings. There are two conditions available in an ALL statement: acl= and protocol=. The
ALL statement acts as a match of first resort, before any filters are matched. An ALL statement has the
following general syntax:

ALL [acl=expression] [protocol=identifier] [property=value] ...

where

• acl=expression—An optional acl= condition expression. For more information, see
"Conditions" on page 301.

cache yes | no When set to no, do not cache the object. When set to yes, cache
certain objects that would not normally be cached. For more
information, see "force_cache()" on page 180.

case_insensitive yes | no When set to yes, match URLs without regard to case-sensitivity. By
default, all URLs are matched in a case-sensitive manner. This filter
should be set to match URLs served by operating systems such as
Windows, which is case-insensitive.

If case-insensitivity is to be used with a regular expression, you must
use (?i) to start the expression to be evaluated.

Note: In CPL, url= conditions have an optional .case_sensitive
modifier.

direct yes | no When set to yes, do not forward requests to a parent proxy or
SOCKS server. This property only applies when the device is
configured to forward requests.

label label_name Invokes a labeled definition. Acceptable characters are:
[a-zA-Z][a-zA-Z0-9]*

Note: In CPL, use the action() property. Label() is deprecated.

prefetch yes | no When set to yes, forces pipelining for an object. Set to no to prevent
the object from being pipelined. The default value is yes.

Note: In CPL, use the synonym pipeline() property.
Prefetch() is deprecated.

proxy_authentication yes | no When set to no, bypasses authentication for the URLs specified.

Note: In CPL, use the authenticate() property.
Proxy_authentication() is deprecated.

refresh yes | no When set to no, do not refresh the object if it is cached.

service yes | no When set to no, deny service to the URL.

Note: In CPL, use allow and deny. Service() is deprecated.

ttl seconds Sets the expiration time of a URL or object.

Notes:

• The advertisement property overrides the TTL.

• The HTTP command-line option "Force explicit
expirations: Never serve after" must be enabled. If
disabled, the CacheOS probabilistic refresh overrides the TTL
value.

Table F.1: Properties available in CacheOS 4.x filter files

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E: Filter File Syntax

303

• protocol=value—An optional protocol= condition expression. Available values are http,
https, ftp, mms, rtsp, tcp, aol-im, msn-im, or yahoo-im. For details, see "url=" on page 137.

• property=value—An optional property setting. For a list of properties available in filter files, see
Table 1, “Properties available in CacheOS 4.x filter files,” on page 301.

Access-Control List (ACL) Definitions

The only definition appearing in the filter part of a filter file is the define acl definition block, which
defines access-control lists. It does this by binding a user-defined label to a set of IP addresses or IP
subnet patterns. This label can then be used in an acl= expression on a filter line.

This definition block has the same syntax and semantics as a CPL define subnet definition block,
except that the keyword subnet is replaced by the keyword acl. The IP addresses or subnets are
considered to have a Boolean OR relationship, no matter whether they are all on one line or separate
lines. The syntax for the define acl definition block is as follows:

define acl label
{ip_address|subnet} {ip_address|subnet}...
...
end acl label

where:

• label—A user-defined identifier for this subnet definition.

• ip_address—IP address; for example, 10.1.198.0.

• subnet—Subnet specification; for example, 10.25.198.0/16.

Sections

Filter files support three kinds of sections:

• Prefix sections, for prefix-pattern filters (CPL equivalent: [url]).

• Domain-suffix sections, for domain-suffix filters (CPL equivalent: [url.domain]).

• Regular-expression sections, for regular-expression filters (CPL equivalent: [url.regex]).

A section within a filter file is similar to the equivalent section that appears in a standard CPL policy
file; however, filter-file sections do not support guard expressions, and they cannot include [Rule]
sections.

The appearance of a section header within a filter file indicates that all subsequent filter entries are to
be interpreted as specified within the section header. In addition, sections may contain ALL
statements and define acl definition blocks, but these do not affect the semantics of the section or the
way in which the ALL statement and definitions are evaluated.

Note that in the absence of filter section headers, filters are considered to be prefix filters unless they
contain one or more regular expression metacharacters. If a filter entry does contain regular expression
metacharacters, it is considered to be a regular expression. If section headers are used, the ProxySG
automatically checks to ensure that regular expression filter entries only appear within the
[Regular-Expression] filter section.

Prefix Sections

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

304

While prefix-pattern filters are commonly used outside of any section, the Prefix section is provided to
help differentiate these type of filters when domain-suffix and regular-expression filters are also used.
The filters in a prefix section follow the pattern used in a CPL url= condition. For more information,
see "url=" on page 137.

Prefix section headers have the following syntax. They are not case-sensitive.

[Prefix]

Note: In CPL, use [url] sections. [Prefix] sections are deprecated.

Domain-Suffix Sections

If the filter file includes domain-suffix filters, then those filter lines must be placed within a
domain-suffix section. Domain-suffix filters can be used in place of certain regular expression filters
and provide better performance than the equivalent regular-expression filters. Domain-suffix filters
are intended to replace regular expression filters of the form: http://.*\.?domain/ and match all objects
from the domain and its sub-domains. ProxySG supports a filter list containing many domain-suffix
filters with minimal system overhead.

Domain-suffix section headers have the following syntax. They are not case-sensitive.

[Domain-Suffix]

Note: In CPL, use [url.domain] sections. [Domain-Suffix] sections are deprecated.

Regular-Expression Sections

Regular-expression filters are powerful but they are difficult to write correctly and have a
performance penalty. The domain-suffix section is provided to improve performance when processing
domain-suffix-style regular-expressions. The filters in a regular-expression section follow the pattern
used in a CPL url.regex= condition. For more information, see "url=" on page 137.

Regular-expression section headers have the following syntax. They are not case-sensitive.

[Regular-Expression]

Note: In CPL, use [Rule] sections and url.regex= conditions. [url.regex] sections are
supported in CPL and are equivalent to filter file [Regular-Expression] sections, but
provide no performance advantage. [Regular-Expression] sections are deprecated.

Section Example

The following example shows a filter list containing all three types of sections. Filter lists that include
domain-suffix filters must follow a structure that explicitly identifies the filter types.

[Prefix]
http://www.confidential.com/ deny

[Domain-Suffix]
http://company.com/ deny

[Regular-Expression]
http://.*xyz.com/ deny

The above three filter lines all result in denial of service to a group of distinct URLs:

• The prefix filter http://www.confidential.com/ denies service to all URLs exactly matching the
domain www.confidential.com and any path relative to the aforementioned domain, including
the null path.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E: Filter File Syntax

305

• The domain-suffix filter http://company.com/ denies service to all URLs where company.com is
a proper super-domain and any path relative to the matched domain, including the null path. For
example, service is denied to the URL http://www.intranet.company.com/, but not
http://mycompany.com/ since mycompany.com is not a proper subdomain of company.com.

• The regular expression filter line http://.*xyz.com/ will deny service to any URL containing a
domain ending in the string xyz.com. Regular expression filters should only be used when prefix
or domain suffix filters are insufficient since processing of regular expression filters requires more
system resources.

default_filter_properties Statement

A default_filter_properties statement consists of the keyword default_filter_properties
followed by one or more property settings. This statement acts as the match of last resort, and it must
follow any filters or sections. This statement has the following syntax:

default_filter_properties property=value ...

where property=value is a property setting. For a list of properties available in filter files, see Table 1,
“Properties available in CacheOS 4.x filter files,” on page 301.

Action-Part Components

The action part of a filter file contains all action and transformer definitions used in the filter file. The
actions available are limited to replace(), which has been deprecated in CPL in favour of a
rewrite() action targeting the URL.

Active content transformers are available but use the following syntax:

transform active_content transformer_id
{

tag_replace HTML_tag_name << text_end_delimiter
[replacement_text]
text_end_delimiter
[tag_replace ...]
...

}

Where the body of the definition has the same form as the CPL define active_content definition
block.

URL rewrite transformers are available but use the following syntax:

transform url_rewrite transformer_id
{

[caseless]
subst_embedded “external_URL_prefix” “internal_URL_prefix”
...

}

Where the body of the definition has the same form as the CPL define url_rewrite definition
block.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

306

Evaluation Order

CacheOS 4.x filter files have a different order of evaluation than CPL files.

A compiled filter file behaves as if it had a single [Prefix] section, a single [Domain-Suffix]
section, and a single [Regular-Expression] section. The filter file is rewritten during file
compilation, as follows:

• Any naked filter line that contains regular-expression metacharacters is moved into a virtual
[Regular-Expression] section.

• Any remaining naked filter lines are moved into a virtual [Prefix] section.

• All explicit [Prefix] sections are appended to the virtual [Prefix] section, in the order they are
written.

• All explicit [Domain-Suffix] sections are appended to the virtual [Domain-Suffix] section, in
the order they are written.

• All explicit [Regular-Expression] sections are appended to the virtual [Regular-Expression]
section, in the order they are written.

After all of this rewriting is performed, the filter file has the following order of evaluation:

1. The ALL statements.

2. The virtual [Prefix] section. Within this section, it is the longest match that wins, not the first
match.

3. The virtual [Domain-Suffix] section. Within this section, it is the longest match that wins, not the
first match.

4. The virtual [Regular-Expression] section. Within this section, it is the first match that wins.

5. The default_filter_properties statements.

Within the above order of evaluation, the first statement that matches wins, or determines how the
transaction is handled. At most, one statement is executed. The filter file policy is executed by both
proxy and cache transactions, so it is as if the filter file represented a single CPL <Cache> layer.

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix F: Upgrading from CacheOS

When upgrading from CacheOS version 4.x to the ProxySG, the default policy files are created as
follows:

• The CacheOS 4.x central filter file is copied to the ProxySG central policy file with no changes.

• The CacheOS 4.x local filter file is copied to the ProxySG local policy file with no changes.

• In addition, parts of the CacheOS 4.x security configuration are translated into CPL rules that are
placed into the Visual Policy Manager (VPM) policy file.

When downgrading from ProxySG to CacheOS 4.x, the system reverts to the most recent version of the
configuration that was in effect before you upgraded. This includes any filter files that were used
before the upgrade.

Using Backward-Compatibility Mode

The Content Policy Language (CPL) is almost completely backward compatible with the filter file
language used in CacheOS version 4.x. This means that a CacheOS 4.x filter file can be used in the
place of a policy file, and it will work, with a few differences. This is known as backward-compatibility
mode. Before putting the ProxySG into production, decide whether to continue to use the copied
CacheOS 4.x filter files and run in backward-compatibility mode or convert your files to use standard
CPL syntax. This distinction is on a per-file basis; for example, your central file could use standard
CPL syntax while your local file remains a filter-style file.

Consider that the CPL compiler processes files in two different ways, depending on whether the file
has the structure and syntax of a CacheOS 4.x filter file or a standard policy file. For filter-style files,
the filter lines are rewritten into appropriate sections, then the statements and sections are evaluated in
a specific order that is not determined by their ordering within the file. The compiler is then operating
in backward-compatibility mode. For standard CPL-style policy files, layer ordering is important, with
later layers overriding earlier layers.

When using the copied CacheOS 4.x filter files in the place of standard policy files, consider the
following differences:

• The filter-file-specific version_control property is not supported.

• In CacheOS 4.x, filter patterns are case-sensitive unless case_insensitive=yes is specified.
When the CPL compiler in ProxySG processes the file, filter patterns are case-insensitive, unless
case_insensitive=no or case_sensitive=yes is specified.

• A CacheOS 4.x filter file containing a default_filter_properties statement in the middle of a
list of filters is be interpreted correctly by CPL. CacheOS 4.x only supported the use of
default_filter_properties at the beginning and end of the filter list.

• In CacheOS 4.x, a prefix or domain-suffix filter pattern with a missing URL scheme is interpreted
as an HTTP URL pattern. When processed by the CPL compiler, the same filter pattern matches a
URL with any URL scheme (HTTP, HTTPS, FTP, MMS, RTSP).

• In a CacheOS 4.x filter file, if there is more than one prefix or domain-suffix filter with the same
URL pattern, then all but the last filter is ignored, even if the filters have different ACL conditions.

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Content Policy Language Guide

308

For the CPL compiler, the correct filter will be selected at run time based on the ACL if the filters
are distinguished by having different ACL conditions.

Converting Filter-Style Files to CPL Syntax

When converting your filter-style files, do not insert snippets of CPL syntax to take advantage of the
new policy features, while leaving the bulk of the file unchanged. CPL and the CacheOS 4.x filter
language have different orders of evaluation. If you insert CPL syntax into a filter file, then the CPL
compiler assumes it is processing a standard policy file and switches to using the CPL order of
evaluation.

To avoid this problem, convert your filter-style file to CPL syntax before modifying it to take
advantage of CPL features. Do this using the following procedure.

To convert a filter-style file to use CPL syntax:

1. Load the filter file into the ProxySG as the local policy file.

2. Issue the view policy command using the Management Console, or issue the show policy CLI
command. This displays all of the loaded policy in CPL syntax: from the central, local, and VPM
policy files.

3. Copy the section of the output of the show policy command corresponding to the filter file that
you loaded into the local policy file.

Download from Www.Somanuals.com. All Manuals Search And Download.

Index

A
<Admin> layers, understanding 37
access_log() property 154
access_server() property 155
action definition block 246
action part, filter file 305
action.action_label() property 156
actions

append() 228
argument syntax in 227
conflicting 47
delete() 229
delete_matching() 230
log_message() 232
notify_email 233, 234
redirect() 235
rewrite(url, regex_pattern, replacement_url) 237
set(header, string) 240
transform 242
virus_check() 244

active content transformer 248
admin.access= condition 53
administrator transactions

understanding 33
adminstrator transactions

 33
advertisement property, filter file 301
Advertisement transactions 35
advertisement() property 157
ALL statements 302
allow property 158
always_verify property, filter file 301
always_verify() property 159
append() action 228
attribute.name= condition 54
authenticate() 55
authenticate() property 160
authenticate.force() property 162
authenticate.mode() property 163
authenticated= condition 56

B
backward-compatibility mode 307
bitrate= condition 57
bypass_cache() property 167

C
cache property, filter file 302
cache transactions 33, 271

understanding 35
cache() property 168
case_insensitive property, filter file 302
category= condition 59
<Cache> layer, understanding 38
check_authorization() property 170
client.address= condition 60
client.protocl= condition 61
comments, understanding 21
condition definition block 252
condition evaluation 35
condition= condition 62
conditions

pattern-expression in 49
trigger in 49
user.x509.issuer= 147

conditions, filter file 301
conflicting actions 47
console_access= condition 64
Content Policy Language, see CPL ix
content pull transactions 35
content_filter_override(). See request_filter_service

property
content_management= condition 66
converting files to CPL syntax 308
cookie_sensitive() property 172
CPL

concepts 19
language basics 21

comments 21
definitions 25
layers 22, 24
notes 22
quoting 22
referential integrity 26
rules 21
sections 24
substitutions 27

policy model, understanding 20
transaction overview 19
upgrade/downgrade issues 30

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Configuration and Management Guide

310

D
date= condition 67
day= condition 68
define acl definition block, filter file 303
define action definition block 246
define category definition 250
define condition definition block 252
define prefix condition definition block 257, 261
define server_url.domain condition name definition

258
define subnet definition block 260
definition blocks

define action 246
define condition 252
define prefix condition 257, 261
define subnet 260
transform active_content 248
transform url_rewrite 270

definitions
anonymous, overview 26
define category 250
define server_url.domain condition name 258
overview 25

delete() action 229
delete_matching() action 230
delete_on_abandonment() property 173
deny() property 174
deny.unauthorized() property 175
deprecated syntax

acl. See client.address=
content_admin=. See content_management
define domain. See url.domain 254
protocol=. See client.protocol=
socks.destination_address=. See socks=

direct property, filter file 302
direct() property 176
document

conventions x
organization ix
related Blue Coat documentation x

domain-suffix filtering, filter file 304
Domain-Suffix section, filter file 304
downgrading 307
dynamic_bypass() property 177

E
earliest available time 35
<Exception> layers, understanding 39
evaluation order

layers in CacheOS 4.x filter files 307
layers in standard CPL-style policy files 307
policy layers 307

evaluation order, filter file 306
exception() property 178
exception.autopad() property 179
exception.id=condition 69
exceptions

layer ordering 46
policies, using in 45
using rule order 45

F
<Forward> layers, understanding 39
filter file

acl definition block 303
action part 305
conditions 301
default_filter_properties 305
Domain-Suffix section 304
evaluation order 306
filter line 300
filter part 300
overview 299
Prefix section 303
properties 301
Regular-Expression section 304
section example 304
sections 303
structure 299
syntax 299

filter file, ALL statements 302
filter line, filter file 300
force_cache() property 180
force_deny() property 181
force_exception() property 182
force_patience_page() property 183
forward 185
forward() property 184
forward.fail_open() property 185
forwarding transactions, understanding 36
ftp.method= condition 71
ftp.server_connection() property 186
ftp.server_data() propert 187
ftp_transport() property 188

G
group= condition 72

Download from Www.Somanuals.com. All Manuals Search And Download.

Index

311

H
has_attribute.name= condition 74
has_client= condition 76
hour= condition 77
HTTP cache transactions 36
http.method= condition 79
http.request.version() property 190
http.request.version=condition 80
http.response.code=condition 81
http.response.version() property 191
http.response.version=condition 82
http.transparent_authentication=condition 83
http.x_method= condition 84

I
icp() property 192
If-modified-since transactions 35
im.buddy_id= condition 85
im.chat_room.conference= condition 86
im.chat_room.id= condition 87
im.chat_room.invite_only= condition 88
im.chat_room.member= condition 90
im.chat_room.type= condition 89
im.chat_room.voice_enabled= condition 91
im.file.extension= condition 92
im.file.name=condition 93
im.file.path= condition 94
im.file.size=condition 95
im.message.opcode= condition 96
im.message.route= condition 97
im.message.size= condition 98
im.message.text.contains= condition 99
im.message.type= condition 100
im.method=condition 101
im.strip_attachments() property 193
im.user_id= condition 102
integrate_new_hosts() property 194
Internet Explorer x
IP address 204, 260
IP subnet 260

J
Java Runtime Environment x
JRE x

L
label property, filter file 302
label() property. See action.action_label() property
label() property 195

latest commit time 35
layer guards, understanding 40
layers

<Admin>, understanding 37
<Cache> 38
<Exception> 39
<Forward> 39
<Proxy> 40
layer guards, understanding 40
overview 24
timing 41
understanding 22, 37

live= condition 103
log.rewrite.field-id() property 196
log.suppress.field-id() property 197
log_message() action 232

M
max_bitrate() property 198
method= condition

discussion 104
protocols accepted 104

Microsoft Internet Explorer x
minute= condition 106
month= condition 107
Mozilla x

N
Netscape Communicator x
network interface card (NIC) 110
never_refresh_before_expiry() property 199
never_serve_after_expiry() property 200
notify_email action 233, 234

P
patience_page() property 201
pattern-expression 49
pipeline transactions 35
pipeline() property 202
policies

best practices 44, 48
blacklists 45
defining 44
definitive, making 47
exceptions 45
exceptions, layer ordering for 46
exceptions, rule order for 45
general use characters 29
policy tracing 275

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Configuration and Management Guide

312

rules, conflicting 47
statistics, example 276
testing 275
tips on writing 44
troubleshooting 275
whitelists 45

policy ix
authentication/denial, setting 28
installing, overview 29
troubleshooting, overview 30
writing, overview 27

policy model, understanding 20
policy rules

order 45
policy tracing

enabling 275
example 276
request tracing, enabling 276

<Proxy> layers, understanding 40
prefetch property, filter file 302
prefetch property. See pipeline()
prefix definition block 257, 261
prefix filtering, filter file 303
Prefix section, filter file 303
properties

access_log() 154
access_server() 155
action.action_label() 156
advertisement() 157
allow 158
always_verify() 159
authenticate() 160
authenticate.force() 162
authenticate.mode() 163
bypass_cache() 167
cache() 168
check_authorization() 170
cookie_sensitive() 172
delete_on_abandonment() 173
deny() 174
deny.unauthorized() 175
direct() 176
dynamic_bypass() 177
exception() 178
exception.autopad() 179
force_cache() 180
force_deny() 181
force_exception() 182
force_patience_page() 183

forward() 184
forward.fail_open() 185
ftp.server_connection() 186
ftp.server_data() 187
ftp_transport() 188
http.request.version() 190
http.response.version() 191
icp() 192
im.strip_attachments() 193
integrate_new_hosts() 194
label() 195
log.rewrite.field-id() 196
log.suppress.field-id() 197
max_bitrate() 198
never_refresh_before_expiry() 199
never_serve_after_expiry() 200
patience_page() 201
pipeline() 202
reflect_ip() 204
refresh() 206
remove_IMS_from_GET() 207
remove_PNC_from_GET() 208
remove_reload_from_IE_GET() 209
requesst.filter_service() 210
request.icap_service () 212
response.icap_service () 213
service() 214
socks.accelerate() 215
socks.authenticate() 216
socks.authenticate.force() 217
socks_gateway() 218
socks_gateway.fail_open() 219
streaming.transport() 220
trace.destination() 222
trace.request() 223
trace.rules() 224
ttl() 225
ua_sensitive() 226

properties, filter file 301
protocol= condition. See url.scheme
proxy transactions 33

policy evaluation 34
understanding 33

proxy.address= condition 109
proxy.card= condition 110
proxy.port= condition 111
proxy_authentication property, filter file 302
ProxySG, browsers supported ix

Download from Www.Somanuals.com. All Manuals Search And Download.

Index

313

Q
quoting, understanding 22

R
realm= condition 112
redirect() action 235
references

related Blue Coat documentation x
referential integrity, understanding 26
reflect_ip() property 204
reflect_vip() property. See reflect_ip() property
refresh property, filter file 302
refresh transactions 35
refresh() property 206
regular-expression filtering, filter file 304
Regular-Expression section, filter file 304
release.id= condition 114, 115
remove_IMS_from_GET() property 207
remove_PNC_from_GET() property 208
remove_reload_from_IE_GET() property 209
request.filter_service() property 210
request.header.address.header_name= condition 117
request.header.header_name= condition 116
request.icap_service () property 212
request.tracing

enabling 276
request.x_header.header_name= condition 121
request_header_address.header_name=. See

request.header.header_name.address=
request_x_header_address.header_name= condition

122
response.header.header_name= condition 123
response.icap_service () property 213
response.x_header.header_name= condition 124
rewrite(url, regex_pattern, replacement_url) action

237
[Rule] section, understanding 42
rule tracing

enabling 275
See<Default Parra Font> policy tracing

rules, overview 21

S
section guards, understanding 44
section types

[Rule] 42
[server_url.domain] 43
[url.domain] 43
[url.regex];[url.regex]

section types, understanding 43
[url] 43
understanding 41

sections
Domain-Suffix 304
filter file example 304
overview 24
Prefix 303
Regular-Expression 304
section guards, understanding 44
section types 41
understanding 41

sections, filter file 303
[server_url.domain], section types, understanding 43
server_url.address condition 118, 125
server_url.domain= condition 118, 125
server_url.extension= condition 118, 125
server_url.host= condition 118, 125
server_url.path.regex= condition 118, 125
server_url.path= condition 118, 125
server_url.port= condition 118, 125
server_url.query.regex= condition 118, 125
server_url.regex= condition 118, 125
server_url.scheme= condition 118, 125
server_url= condition 118, 125
service property, filter file 302
service() property. See allow, deny(), and exception(

) properties.
service() property 214
set(header, string) action 240
socks.accelerate() property 215
socks.accelerated= condition 129
socks.authenticate() property 216
socks.authenticate.force() property 217
socks.method=condition 129, 130
socks.version= condition 131
socks= condition 128
socks_gateway () property 218
socks_gateway.fail_open() property 219
streaming

troubleshoooting 220
troubleshooting 167

streaming.client= condition 132
streaming.content= condition 133
streaming.transport() property 220
subnet 260
subnet definition block 260
substitutions, overview 27

Download from Www.Somanuals.com. All Manuals Search And Download.

ProxySG Configuration and Management Guide

314

T
time= condition 134
timing

in layers, understanding 41
understanding 36

trace.destination() 276
trace.destination() property 222
trace.request() property 223
trace.rules

enabling 275
trace.rules() property 224
trace.rules, enabling. 275
transactions

administrator 33
cache 33, 35, 271
forwarding 36
overview 19
proxy 33
timing, understanding 36
understanding 33

transform action 242
transform active_content definition block 248
transform url_rewrite definition block 270
trigger 49
troubleshooting

can’t use transport mechanism 220
degraded performance 275
Novell servers 74
object isn’t deleted 225
policy tracing, using 275
streaming 167
telnet sessions 64

troubleshooting policies 275
ttl() property 225
tunneled= condition 136

U
ua_sensitive() property 226

upgrade/downgrade issues
conditional compilation 31
CPL syntax deprecations 30
understanding 30

upgrading 307
[url], section type, understanding 43
URL rewrite transformer 270
url.address= condition 137
[url.domain], section types, understanding 43
url.domain= condition 137
url.extension= condition 137
url.host.is_numeric= condition 137
url.host.no_name= condition 137
url.host.regex= condition 137
url.host= condition 137
url.path.regex= condition 137
url.path= condition 137
url.port= condition 137
url.query.regex= condition 137
url.regex= condition 137
url= condition 137
user.domain= condition 146
user.x509.issuer= condition 147
user.x509.serialNumber= condition 148
user.x509.subject= condition 149
user= condition 144
Using CPL ix

V
virtual IP address 204
virus_check() action 244

W
weekday= condition 150

Y
year= condition 151

Download from Www.Somanuals.com. All Manuals Search And Download.

Free Manuals Download Website
h�p://myh66.com

h�p://usermanuals.us
h�p://www.somanuals.com

h�p://www.4manuals.cc
h�p://www.manual-lib.com
h�p://www.404manual.com
h�p://www.luxmanual.com

h�p://aubethermostatmanual.com
Golf course search by state

h�p://golfingnear.com
Email search by domain

h�p://emailbydomain.com
Auto manuals search

h�p://auto.somanuals.com
TV manuals search

h�p://tv.somanuals.com

http://myh66.com/
http://usermanuals.us/
http://www.somanuals.com/
http://www.4manuals.cc/
http://www.manual-lib.com/
http://www.404manual.com/
http://www.luxmanual.com/
http://aubethermostatmanual.com/
http://www.golfingnear.com/
http://emailbydomain.com/
http://auto.somanuals.com/
http://tv.somanuals.com/

	Preface: Introducing the Content Policy Language
	About the Document Organization
	Supported Browsers
	Related Blue Coat Documentation
	Document Conventions

	Contents
	Chapter 1: Overview of Content Policy Language
	Chapter 2: Managing Content Policy Language
	Chapter 3: Condition Reference
	Chapter 4: Property Reference
	Chapter 5: Action Reference
	Chapter 6: Definition Reference

	Chapter 1: Overview of Content Policy Language
	Concepts
	Transactions
	Policy Model
	Role of CPL
	CPL Language Basics

	Comments
	Rules
	Notes
	Quoting
	Layers
	Sections
	Definitions
	Referential Integrity
	Substitutions
	Writing Policy Using CPL

	Authentication and Denial
	Installing Policy
	CPL General Use Characters and Formatting
	Troubleshooting Policy
	Upgrade/Downgrade Issues

	CPL Syntax Deprecations
	Conditional Compilation

	Chapter 2: Managing Content Policy Language
	Understanding Transactions and Timing
	Administrator Transactions
	Proxy Transactions
	Cache Transactions
	Forwarding Transactions
	Timing
	Understanding Layers

	<Admin> Layers
	<Cache> Layers
	<Exception> Layers
	<Forward> Layers
	<Proxy> Layers
	Layer Guards
	Timing
	Understanding Sections

	[Rule]
	[url]
	[url.domain]
	[url.regex]
	[server_url.domain]
	Section Guards
	Defining Policies

	Blacklists and Whitelists
	General Rules and Exceptions to a General Rule
	Best Practices

	Chapter 3: Condition Reference
	Condition Syntax
	Pattern Types
	Unavailable Triggers
	Layer Type Restrictions
	Global Restrictions
	Condition Reference
	acl=
	admin.access=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	attribute.name=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	authenticated=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	bitrate=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	category=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	client.address=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	client.protocol=
	syntax
	Layer and Transaction Notes
	See Also

	condition=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	console_access=
	Syntax
	Layer and Transaction Notes
	See Also

	content_admin=
	content_management
	Syntax
	Layer and Transaction Notes
	See Also

	date[.utc]=
	syntax
	Layer and Transaction Notes
	See Also

	day=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	exception.id=
	syntax
	Layer and Transaction Notes
	Examples
	See Also

	ftp.method=
	Syntax
	Layer and Transaction Notes
	See Also

	group=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	has_attribute.name=
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	has_client=
	Syntax
	Layer and Transaction Notes
	See Also

	hour=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	http.method=
	Syntax
	Layer and Transaction Notes
	See Also

	http.request.version=
	syntax
	Layer and Transaction Notes
	See Also

	http.response.code=
	syntax
	Layer and Transaction Notes
	See Also

	http.response.version=
	Syntax
	Layer and Transaction Notes
	See Also

	http.transparent_authentication=
	Syntax
	Layer and Transaction Notes
	See Also

	http.x_method=
	Syntax
	Layer and Transaction Notes
	See Also

	im.buddy_id=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.chat_room.conference=
	Syntax
	Layer and Transaction Notes
	See Also

	im.chat_room.id=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.chat_room.invite_only=
	Syntax
	Layer and Transaction Notes
	See Also

	im.chat_room.type=
	Syntax
	Layer and Transaction Notes
	See Also

	im.chat_room.member=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.chat_room.voice_enabled=
	Syntax
	Layer and Transaction Notes
	See Also

	im.file.extension=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.file.name=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.file.path=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	im.file.size=
	Syntax
	Layer and Transaction Notes
	See Also

	im.message.opcode=
	Syntax
	Layer and Transaction Notes

	im.message.route=
	Syntax
	Layer and Transaction Notes
	See Also

	im.message.size=
	Syntax
	Layer and Transaction Notes
	See Also

	im.message.text=
	Syntax
	Layer and Transaction Notes
	See Also

	im.message.type=
	Syntax
	Layer and Transaction Notes
	See Also

	im.method=
	Syntax
	Layer and Transaction Notes
	See Also

	im.user_id=
	Syntax
	Notes
	Layer and Transaction Notes
	See Also

	live=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	method=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	minute=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	month=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	protocol=
	See Also

	proxy.address=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	proxy.card=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	proxy.port=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	realm=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	release.id=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	release.version=
	Syntax
	Layer and Transaction Notes
	Examples

	request.header.header_name=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	request.header.header_name.address=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	request.header.Referer.url=
	Syntax
	Discussion
	Layer and Transaction Notes
	Examples
	See Also

	request.x_header.header_name=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	request.x_header.header_name.address=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	response.header.header_name=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	response.x_header.header_name=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	server_url=
	Syntax
	Discussion
	Layer and Transaction Notes
	Examples
	See Also

	socks=
	Syntax
	Layer and Transaction Notes
	See Also

	socks.accelerated=
	Syntax
	Layer and Transaction Notes
	See Also

	socks.method=
	Syntax
	Layer and Transaction Notes
	See Also

	socks.version=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	streaming.client=
	Syntax
	Layer and Transaction Notes
	See Also

	streaming.content=
	Syntax
	Layer and Transaction Notes
	See Also

	time=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	tunneled=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	url=
	Syntax
	Discussion
	Layer and Transaction Notes
	Examples
	See Also

	user=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	user.domain=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	user.x509.issuer=
	Syntax
	Layer and Transaction Notes
	See Also

	user.x509.serialNumber=
	Syntax
	Layer and Transaction Notes
	See Also

	user.x509.subject=
	Syntax
	Layer and Transaction Notes
	See Also

	weekday=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	year=
	Syntax
	Layer and Transaction Notes
	Examples
	See Also

	Chapter 4: Property Reference
	Property Reference
	access_log()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	access_server()
	Syntax
	Layer and Transaction Notes
	See Also

	action()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	advertisement()
	Syntax
	Layer and Transaction Notes
	See Also

	allow
	Syntax
	Layer and Transaction Notes
	See Also

	always_verify()
	Syntax
	Layer and Transaction Notes
	See Also

	authenticate()
	Syntax
	Discussion
	Layer and Transaction Notes
	Example
	See Also

	authenticate.force()
	Syntax
	Layer and Transaction Notes
	See Also

	authenticate.mode()
	Syntax
	Layer and Transaction Notes

	authenticate.use_url_cookie()
	Syntax
	Layer and Transaction Notes
	See Also

	block_category()
	bypass_cache()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	cache()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	check_authorization()
	Syntax
	Layer and Transaction Notes
	See Also

	content_filter_override()
	cookie_sensitive()
	Syntax
	Layer and Transaction Notes
	See Also

	delete_on_abandonment()
	Syntax
	Layer and Transaction Notes
	See Also

	deny()
	Syntax
	Discussion
	Layer and Transaction Notes
	Example
	See Also

	deny.unauthorized()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	direct()
	Syntax
	Layer and Transaction Notes
	See Also

	dynamic_bypass()
	Syntax
	Layer and Transaction Notes
	See Also

	exception()
	Syntax
	Layer and Transaction Notes
	See Also

	exception.autopad()
	Syntax
	Layer and Transaction Notes
	See Also

	force_cache()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	force_deny()
	Syntax
	Layer and Transaction Notes
	See Also

	force_exception()
	Syntax
	Layer and Transaction Notes
	See Also

	force_patience_page()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	forward()
	Syntax
	Layer and Transaction Notes
	See Also

	forward.fail_open()
	Syntax
	Layer and Transaction Notes
	See Also

	ftp.server_connection()
	Syntax
	Layer and Transaction Notes
	See Also

	ftp.server_data()
	Syntax
	Layer and Transaction Notes
	See Also

	ftp.transport()
	Syntax
	Layer and Transaction Notes
	See Also

	http.force_ntlm_for_server_auth()
	Syntax
	Layer and Transaction Notes

	http.request.version()
	Syntax
	Layer and Transaction Notes
	See Also

	http.response.version()
	Syntax
	Layer and Transaction Notes
	See Also

	icp()
	Syntax
	Layer and Transaction Notes
	See Also

	im.strip_attachments()
	Syntax
	Layer and Transaction Notes
	See Also

	integrate_new_hosts()
	Syntax
	Layer and Transaction Notes
	See Also

	label()
	log.rewrite.field-id()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	log.suppress.field-id()
	Syntax
	Discussion
	Layer and Transaction Notes
	See Also

	max_bitrate()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	never_refresh_before_expiry()
	Syntax
	Layer and Transaction Notes
	See Also

	never_serve_after_expiry()
	Syntax
	Layer and Transaction Notes
	See Also

	patience_page()
	Syntax
	Layer and Transaction Notes
	See Also

	pipeline()
	Syntax
	Layer and Transaction Notes

	prefetch()
	reflect_ip()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	reflect_vip()
	refresh()
	Syntax
	Layer and Transaction Notes
	See Also

	remove_IMS_from_GET()
	Syntax
	Layer and Transaction Notes
	See Also

	remove_PNC_from_GET()
	Syntax
	Layer and Transaction Notes
	See Also

	remove_reload_from_IE_GET()
	Syntax
	Layer and Transaction Notes
	See Also

	request.filter_service()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	request.icap_service()
	Syntax
	Layer and Transaction Notes
	See Also

	response.icap_service()
	Syntax
	Layer and Transaction Notes
	See Also

	service()
	socks.accelerate()
	Syntax
	Layer and Transaction Notes
	See Also

	socks.authenticate()
	Syntax
	Layer and Transaction Notes
	See Also

	socks.authenticate.force()
	Syntax
	Layer and Transaction Notes
	See Also

	socks_gateway()
	Syntax
	Layer and Transaction Notes
	See Also

	socks_gateway.fail_open()
	Syntax
	Layer and Transaction Notes
	See Also

	streaming.transport()
	Syntax
	Layer and Transaction Notes
	See Also

	terminate_connection()
	Syntax
	Layer and Transaction Notes

	trace.destination()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	trace.request()
	Syntax
	The default value is no.
	Layer and Transaction Notes
	Example
	See Also

	trace.rules()
	Syntax
	Layer and Transaction Note
	Example
	See Also

	ttl()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	ua_sensitive()
	Syntax
	Layer and Transaction Notes
	See Also

	Chapter 5: Action Reference
	Argument Syntax
	Action Reference
	append()
	Syntax
	Layer and Transaction Notes
	See Also

	delete()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	delete_matching()
	Syntax
	Layer and Transaction Notes
	See Also

	im.alert()
	Syntax
	Layer and Transaction Notes
	See Also

	log_message()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	notify_email()
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	notify_snmp()
	Syntax
	Layer and Transaction Notes
	See Also

	redirect()
	Syntax
	Layer and Transaction Notes
	See Also

	replace()
	rewrite()
	Syntax
	Discussion
	Layer and Transaction Notes
	Example
	See Also

	set()
	Syntax
	Discussion
	Layer and Transaction Notes
	Example
	See Also

	transform
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	virus_check()

	Chapter 6: Definition Reference
	Definition Names
	define action
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	define active_content
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	define category
	Syntax
	Layer and Transaction Notes
	Examples
	See Also
	define condition
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	define domain
	define javascript
	Syntax
	Layer and Transaction Notes
	Example
	See Also
	define prefix condition

	define server_url.domain condition
	Syntax
	Layer and Transaction Notes
	Example
	See Also
	define subnet
	Syntax
	Example
	See Also

	define url condition
	Syntax
	Example
	See Also

	define url.domain condition
	Syntax
	Layer and Transaction Notes
	Example
	See Also
	define url_rewrite
	Syntax
	Discussion
	Layer and Transaction Notes
	Example
	See Also

	restrict dns
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	restrict rdns
	Syntax
	Layer and Transaction Notes
	Example
	See Also

	transform active_content
	transform url_rewrite

	Appendix A: Glossary
	Appendix B: Testing and Troubleshooting
	Enabling Rule Tracing
	Enabling Request Tracing
	Using Trace Information to Improve Policies

	Appendix C: Recognized HTTP Headers
	Appendix D: CPL Substitutions
	Appendix E: Filter File Syntax
	Filter File Overview
	Filter File Structure
	Filter-Part Components
	Action-Part Components
	Evaluation Order

	Appendix F: Upgrading from CacheOS
	Index

