CISCO

Catalyst 2960-S Switch Hardware Installation Guide

August 2012

Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000
800 553-NETS (6387)
Fax: 408 527-0883

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The following information is for FCC compliance of Class A devices: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio-frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case users will be required to correct the interference at their own expense

The following information is for FCC compliance of Class B devices: The equipment described in this manual generates and may radiate radio-frequency energy. If it is not installed in accordance with Cisco's installation instructions, it may cause interference with radio and television reception. This equipment has been tested and found to comply with the limits for a Class B digital device in accordance with the specifications in part 15 of the FCC rules. These specifications are designed to provide reasonable protection against such interference in a residential installation. However, there is no guarantee that interference will not occur in a particular installation.

Modifying the equipment without Cisco's written authorization may result in the equipment no longer complying with FCC requirements for Class A or Class B digital devices. In that event, your right to use the equipment may be limited by FCC regulations, and you may be required to correct any interference to radio or television communications at your own expense.

You can determine whether your equipment is causing interference by turning it off. If the interference stops, it was probably caused by the Cisco equipment or one of its peripheral devices. If the equipment causes interference to radio or television reception, try to correct the interference by using one or more of the following measures:

- Turn the television or radio antenna until the interference stops.
- Move the equipment to one side or the other of the television or radio.
- Move the equipment farther away from the television or radio.
- Plug the equipment into an outlet that is on a different circuit from the television or radio. (That is, make certain the equipment and the television or radio are on circuits controlled by different circuit breakers or fuses.)

Modifications to this product not authorized by Cisco Systems, Inc. could void the FCC approval and negate your authority to operate the product.
The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB's public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED "AS IS" WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses used in this document are not intended to be actual addresses. Any examples, command display output, and figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses in illustrative content is unintentional and coincidental.

Catalyst 2960-S Switch Hardware Installation Guide
© 2010-2012 Cisco Systems, Inc. All rights reserved.

CONTENTS

Preface vii

Related Publications viii

Obtaining Documentation and Submitting a Service Request viii
CHAPTER 1 Product Overview 1-1
Switch Models 1-1
Front Panel 1-2
10/100 PoE+ Ports 1-5
10/100/1000 PoE+ Ports 1-5
10/100 Ports 1-6
10/100/1000 Ports 1-6
Management Ports 1-7
USB Type A Port 1-8
SFP and SFP+ Module Slots 1-8
LEDs 1-11
System LED 1-11
RPS LED 1-12
Master LED 1-12
Port LEDs and Modes 1-12
Stack LED 1-15
Console LEDs 1-16
Ethernet Management Port LED 1-17
Rear Panel 1-17
FlexStack Ports 1-19
RPS Connector 1-19
Cisco RPS 2300 1-19
AC Power Connector 1-20
Management Options 1-20
Network Configurations 1-21
chapter 2Switch Installation2-1
Preparing 2-1
Safety Warnings 2-1
Installation Guidelines 2-4

Box Contents 2-4
Tools and Equipment 2-4
Verifying Switch Operation 2-5
Planning a Switch Stack 2-5
Stack Guidelines 2-5
Installing the FlexStack Module 2-7
Stack Cabling 2-8
Stack Bandwidth and Partitioning Examples 2-8
Power-On Sequence for Switch Stacks 2-10
Installing the Switch 2-10
Rack-Mounting 2-10
Attaching the Rack-Mount Brackets 2-11
Mounting in a Rack 2-13
Wall-Mounting 2-14
Attaching the Brackets for Wall-Mounting 2-14
Attaching the RPS Connector Cover 2-15
Mounting on a Wall 2-16
Table- or Shelf-Mounting 2-17
After Switch Installation 2-17
Connecting the FlexStack Cables 2-17
Installing the Power Cord Retainer (Optional) 2-18
Installing SFP and SFP+ Modules 2-20
Installing an SFP or SFP+ Module 2-21
Removing an SFP or SFP+ Module $\quad \mathbf{2 - 2 1}$
Connecting to SFP and SFP+ Modules $\quad \mathbf{2 - 2 2}$
Connecting to Fiber-Optic SFP and SFP+ Modules 2-22
Connecting to 1000BASE-T SFP 2-23
10/100 and 10/100/1000 PoE+ Port Connections 2-24
10/100 and 10/100/1000 Port Connections 2-26
Where to Go Next 2-26

CHAPTER 3 Troubleshooting 3-1
Diagnosing Problems 3-1
Switch POST Results 3-1
Switch LEDs 3-1
Switch Connections 3-2
Bad or Damaged Cable 3-2
Ethernet and Fiber-Optic Cables 3-2
Link Status 3-2
10/100 or 10/100/1000 Port Connections 3-3
10/100 or 10/100/1000 PoE Port Connections 3-3
SFP and SFP+ Module 3-3
Interface Settings 3-3
Ping End Device 3-4
Spanning Tree Loops 3-4
Switch Performance 3-4
Speed, Duplex, and Autonegotiation 3-4
Autonegotiation and Network Interface Cards 3-4
Cabling Distance 3-5
Clearing the Switch IP Address and Configuration 3-5
Finding the Switch Serial Number 3-5
Replacing a Failed Stack Member 3-9
appendix AAPPEndix B
Connector and Cable Specifications B-1
Connector Specifications B-1
10/100 Ports (Including PoE) B-1
B-2
10/100/1000 Ports (Including PoE) B-2
SFP Module Connectors B-2
Cables and Adapters B-3
SFP Module Cables B-3
Cable Pinouts B-5
Console Port Adapter Pinouts B-6
appendix CConfiguring the Switch with the CLI-Based Setup ProgramC-1
Accessing the CLI Through Express Setup C-1
Accessing the CLI Through the Console Port C-1
Connecting the RJ-45 Console Port or USB Console Port C-2
Installing the Cisco Microsoft Windows USB Device Driver C-3
Installing the Cisco Microsoft Windows XP USB Driver C-3
Installing the Cisco Microsoft Windows 2000 USB Driver C-4
Installing the Cisco Microsoft Windows Vista USB Driver C-4
Uninstalling the Cisco Microsoft Windows USB Driver C-5
Uninstalling the Cisco Microsoft Windows XP and 2000 USB Driver C-5
Uninstalling the Cisco Microsoft Windows Vista USB Driver C-5

Entering the Initial Configuration Information C-6
IP Settings C-6
Completing the Setup Program c-6

INDEX

Preface

This guide is for the networking or computer technician installing the Catalyst 2960-S switch. It documents the physical characteristics of the switch, explains how to install the switch, and provides troubleshooting information.

This guide does not describe system messages that you might receive or how to configure your switch. See the switch software configuration guide, the switch command reference, and the switch system message guide on Cisco.com. For information about the standard Cisco IOS Release 15.0(2)SE commands, see the Cisco IOS documentation on Cisco.com.

Means reader take note. Notes contain helpful suggestions or references to materials not contained in this manual.

Means reader be careful. In this situation, you might do something that could result in equipment damage or loss of data.

IMPORTANT SAFETY INSTRUCTIONS

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071

SAVE THESE INSTRUCTIONS

The safety warnings for this product are translated into several languages in the Regulatory Compliance and Safety Information for the Catalyst 2960 and 2960-S Switches that ships with the product. The EMC regulatory statements are also included in that guide.

Related Publications

These documents provide information about the switch and are available from these Cisco.com sites: http://www.cisco.com/en/US/products/ps6406/tsd_products_support_series_home.html

- Catalyst 2960-S Switch Getting Started Guide
- Regulatory Compliance and Safety Information for the Catalyst 2960 and 2960-S Switches
- Release Notes for the Catalyst 2960-S Switch
- Catalyst 2960 and 2960-S Switch Software Configuration Guide
- Catalyst 2960 and 2960-S Switch Command Reference
- Catalyst 3750, 3560, 3550, 2975, 2970, 2960, and 2960-S Switch System Message Guide
- Device manager online help (available on the switch)
http://www.cisco.com/en/US/products/hw/routers/ps2883/prod_installation_guides_list.html
- Cisco Redundant Power System 2300 Hardware Installation Guide
http://www.cisco.com/en/US/products/hw/modules/ps5000/tsd_products_support_series_home.html
- Cisco Small Form-Factor Pluggable Modules Installation Notes
http://www.cisco.com/en/US/products/hw/modules/ps5455/products_device_support_tables_list.html
- Cisco Gigabit Ethernet Transceiver Modules Compatibility Matrix
- Cisco 100-Megabit Ethernet SFP Modules Compatibility Matrix
- Cisco Small Form-Factor Pluggable Modules Compatibility Matrix
- Compatibility Matrix for 1000BASE-T Small Form-Factor Pluggable Modules
- Cisco CWDM SFP Transceiver Compatibility Matrix

Obtaining Documentation and Submitting a Service Request

For information on obtaining documentation, submitting a service request, and gathering additional information, see the monthly What's New in Cisco Product Documentation, which also lists all new and revised Cisco technical documentation, at:
http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS) feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds are a free service and Cisco currently supports RSS Version 2.0.

CHAPTER

Product Overview

The Catalyst 2960-S family of switches, also referred to as the switch, are Ethernet switches to which you can connect devices such as Cisco IP Phones, Cisco Wireless Access Points, workstations, and other network devices such as servers, routers, and other switches.

Some models of the switches support stacking through the Cisco FlexStack technology. Unless otherwise noted, the term switch refers to a standalone switch and to a switch stack.

- Switch Models, page 1-1
- Front Panel, page 1-2
- Rear Panel, page 1-17
- Management Options, page 1-20

Switch Models

Table 1-1
Switch Models and Descriptions

Switch Model	Supported Software Image	Description
Catalyst 2960S-48FPD-L ${ }^{1}$	LAN Base	48 10/100/1000 Power over Ethernet Plus (PoE+) ports (PoE budget of 740 W) and 2 small form-factor pluggable (SFP) $+{ }^{2}$ module slots.
Catalyst 2960S-48LPD-L ${ }^{1}$	LAN Base	48 10/100/1000 PoE+ ports (PoE budget of 370 W) and 2 SFP+ module slots
Catalyst 2960S-24PD-L ${ }^{1}$	LAN Base	24 10/100/1000 PoE+ ports (PoE budget of 370 W) and 2 SFP+ module slots
Catalyst 2960S-48TD-L ${ }^{1}$	LAN Base	$4810 / 100 / 1000$ ports and 2 SFP+ module slots
Catalyst 2960S-24TD-L ${ }^{1}$	LAN Base	$2410 / 100 / 1000$ ports and 2 SFP+ module slots
Catalyst 2960S-48FPS-L ${ }^{1}$	LAN Base	48 10/100/1000 PoE+ ports (PoE budget of 740 W) and $4 \mathrm{SFP}^{3}$ module slots
Catalyst 2960S-48LPS-L ${ }^{1}$	LAN Base	48 10/100/1000 PoE+ ports (PoE budget of 370 W) and 4 SFP module slots
Catalyst 2960S-24PS-L ${ }^{1}$	LAN Base	24 10/100/1000 PoE+ ports (PoE budget of 370 W) and 4 SFP module slots
Catalyst 2960S-48TS-L ${ }^{1}$	LAN Base	48 10/100/1000 ports and 4 SFP module slots

Table 1-1 Switch Models and Descriptions (continued)

Switch Model	Supported Software Image	Description
Catalyst 2960S-24TS-L		
Catalyst 2960S-48TS-S	LAN Base	$2410 / 100 / 1000$ ports and 4 SFP module slots
Catalyst 2960S-24TS-S	LAN Lite	$4810 / 100 / 1000$ ports and 2 SFP module slots
Catalyst 2960S-F48FPS-L	LAN Lite	$2410 / 100 / 1000$ ports and 2 SFP module slots
Catalyst 2960S-F48LPS-L	LAN Base	$4810 / 100$ PoE+ ports (PoE budget of 740 W) and 4 SFP module slots
Catalyst 2960S-F48TS-L		
Catalyst 2960S-F24PS-L	LAN Base	$4810 / 100$ PoE+ ports (PoE budget of 370 W) and 4 SFP module slots
Catalyst 2960S-F24TS-L		
Catalyst 2960S-F48TS-S	LAN Base	$4810 / 100$ ports and 4 SFP module slots
Catalyst 2960S-F24TS-S	LAN Base	$2410 / 100$ PoE+ ports (PoE budget of 370 W) and 2 SFP module slots

1. Support Cisco FlexStack technology.
2. $\mathrm{SFP}+=10$ Gigabit uplink.
3. $\mathrm{SFP}=1$ Gigabit uplink.

Front Panel

The 24- and 48-port switch front panels include the $10 / 100$ or the $10 / 100 / 1000$ Ethernet ports, or the $10 / 100$ or $10 / 100 / 1000$ PoE ports, SFP or SFP+ module slots, the universal serial bus (USB) ports, the console ports, and the LEDs. All the 24- and 48-port switches have similar components. See Figure 1-1, Figure 1-2, Figure 1-3, and Figure 1-4 for examples.

Figure 1-1 Catalyst 2960S-48FPD-L Front Panel

$\mathbf{1}$	Mode button and switch LEDs	$\mathbf{5}$	USB mini-Type B (console) port
$\mathbf{2}$	$10 / 100 / 1000$ PoE+ ports 1	$\mathbf{6}$	RJ-45 console port
$\mathbf{3}$	SFP+ module slots	$\mathbf{7}$	Ethernet management port
$\mathbf{4}$	USB Type A port		

1. Port numbering is from left to right, with port 1 on the far left. The first member of the pair (port 1) is above the second member (port 2). Module slot numbers are 1 and 2 .

Figure 1-2 Catalyst 2960S-48TS-L Front Panel

$\mathbf{1}$	Mode button and switch LEDs	$\mathbf{5}$	USB mini-Type B (console) port
$\mathbf{2}$	$10 / 100 / 1000$ ports ${ }^{1}$	$\mathbf{6}$	RJ-45 console port
$\mathbf{3}$	SFP module slots	$\mathbf{7}$	Ethernet management port
$\mathbf{4}$	USB Type A port		

1. Port numbering is from left to right, with port 1 on the far left. The first member of the pair (port 1) is above the second member (port 2). Module slot numbers are 49,50,51, and 52.

Figure 1-3 Catalyst 2960S-48TS-S Front Panel

$\mathbf{1}$	Mode button and switch LEDs	$\mathbf{5}$	USB mini-Type B (console) port
$\mathbf{2}$	$10 / 100 / 1000$ ports ${ }^{1}$	$\mathbf{6}$	RJ-45 console port
$\mathbf{3}$	SFP module slots	$\mathbf{7}$	Ethernet management port
$\mathbf{4}$	USB Type A port		

1. Port numbering is from left to right, with port 1 on the far left. The first member of the pair (port 1) is above the second member (port 2). Module slot numbers are 49 and 50.

Figure 1-4 Catalyst 2960S-F48FPS-L Front Panel

$\mathbf{1}$	Mode button and switch LEDs	$\mathbf{5}$	USB mini-Type B (console) port
$\mathbf{2}$	$10 / 100$ POE+ ports ${ }^{1}$	$\mathbf{6}$	RJ-45 console port
$\mathbf{3}$	SFP module slots	$\mathbf{7}$	Ethernet management port
$\mathbf{4}$	USB Type A port		

1. Port numbering is from left to right, with port 1 on the far left. The first member of the pair (port 1) is above the second member (port 2). Module slot numbers are 49, 50, 51, and 52.

10/100 PoE+ Ports

The ports provide PoE+ support for devices compliant with IEEE 802.3af, IEEE 802.3at, and ePoE and also provide Cisco prestandard PoE support for Cisco IP Phones and Cisco Aironet Access Points.
The maximum switch power output is either 740 W or 370 W , depending on the switch model. Intelligent power management allows flexible power allocation across all ports.
For switches with a 740 W power budget, you can budget the PoE and PoE+:

- 15.4 W of PoE output on all ports
- 30 W of PoE+ on 24 ports

For switches with a 370 W power budget, you can budget the PoE and PoE+:

- 15.4 W of PoE output on 24 ports
- 7.7 W of PoE output on 48 ports
- 30 W of PoE+ on 12 ports
- Total power budget can be allocated among the ports

On a per-port basis, you control whether or not a port automatically provides power when an IP phone or an access point is connected.

The 10/100 PoE ports use RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 10BASE-T and 100BASE-TX traffic requires Category 5, Category 5e, or Category 6 unshielded twisted pair (UTP) cable. The 10BASE-T traffic can use Category 3 or Category 4 UTP cable.
Cisco intelligent power management capabilities include enhanced power negotiation, power reservation, and per-port power policing. For information about configuring and monitoring PoE ports, see the switch software configuration guide on Cisco.com.
For information about port connections and port specifications, see the " $10 / 100$ and 10/100/1000 PoE+ Port Connections" section on page 2-24 and Appendix B, "Connector and Cable Specifications."

The output of the PoE circuit has been evaluated as a Limited Power Source (LPS) per IEC 60950-1.

10/100/1000 PoE+ Ports

The ports provide PoE+ support for devices compliant with IEEE 802.3af, IEEE 802.3at, and ePoE and also provide Cisco prestandard PoE support for Cisco IP Phones and Cisco Aironet Access Points.

The maximum switch power output is either 740 W or 370 W , depending on the switch model. Intelligent power management allows flexible power allocation across all ports.
For switches with a 740 W power budget, you can budget the PoE and PoE+:

- 15.4 W of PoE output on all ports
- 30 W of PoE+ on 24 ports

For switches with a 370 W power budget, you can budget the PoE and PoE+:

- 15.4 W of PoE output on 24 ports
- 7.7 W of PoE output on 48 ports
- 30 W of PoE+ on 12 ports
- Total power budget can be allocated among the ports

On a per-port basis, you control whether or not a port automatically provides power when an IP phone or an access point is connected.

The $10 / 100 / 1000$ PoE ports use RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 100BASE-TX and 1000BASE-T traffic requires Category 5, Category 5e, or Category 6 unshielded twisted pair (UTP) cable. The 10BASE-T traffic can use Category 3 or Category 4 UTP cable.
Cisco intelligent power management capabilities include enhanced power negotiation, power reservation, and per-port power policing. For information about configuring and monitoring PoE ports, see the switch software configuration guide on Cisco.com.

For information about port connections and port specifications, see the "10/100 and 10/100/1000 PoE+ Port Connections" section on page 2-24 and Appendix B, "Connector and Cable Specifications."

Note The output of the PoE circuit has been evaluated as a Limited Power Source (LPS) per IEC 60950-1.

10/100 Ports

The $10 / 100$ ports use RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 100BASE-TX traffic requires Category 5, Category 5e, or Category 6 unshielded twisted pair (UTP) cable. The 10BASE-T traffic can use Category 3 or Category 4 UTP cable.

For information about port connections and port specifications, see the "10/100 and 10/100/1000 Port Connections" section on page 2-26 and Appendix B, "Connector and Cable Specifications."

10/100/1000 Ports

The 10/100/1000 ports use RJ-45 connectors with Ethernet pinouts. The maximum cable length is 328 feet (100 meters). The 100BASE-TX and 1000BASE-T traffic requires Category 5, Category 5e, or Category 6 unshielded twisted pair (UTP) cable. The 10BASE-T traffic can use Category 3 or Category 4 UTP cable.
For information about port connections and port specifications, see the " $10 / 100$ and 10/100/1000 Port Connections" section on page 2-26 and Appendix B, "Connector and Cable Specifications."

Management Ports

- Ethernet management port
- RJ-45 console port (EIA/TIA-232)
- USB mini-Type B console port (5-pin connector)

You can connect the switch to a host such as a Windows workstation or a terminal server through the Ethernet management port, the RJ-45 console port, or the USB console port (USB mini-Type B port). The 10/100 Ethernet management port connection uses a standard RJ-45 crossover or straight-through cable. The RJ-45 console port connection uses the supplied RJ-45-to-DB-9 female cable. The USB console port connection uses a USB Type A to 5-pin mini-Type B cable. The USB console interface speeds are the same as the RJ-45 console interface speeds.

If you use the USB console port, the Cisco Windows USB device driver must be installed on any PC connected to the console port (for operation with Microsoft Windows).

For information about downloading the Cisco USB device driver, see the "Installing the Cisco Microsoft Windows USB Device Driver" section on page C-3.

With the Cisco Windows USB device driver, you can connect and disconnect the USB cable from the console port without affecting Windows HyperTerminal operations. Mac OS X or Linux require no special drivers.

The console output always goes to both the RJ-45 and the USB console connectors, but the console input is active on only one of the console connectors at any one time. The USB console takes precedence over the RJ-45 console. When a cable is connected into the USB console port, the RJ-45 console port becomes inactive. Conversely, when the USB cable is disconnected from the USB console port, the RJ-45 port becomes active.

The 4-pin mini-Type B connectors resemble 5-pin mini-Type B connectors. They are not compatible. Use only the 5 -pin mini-Type B. See Figure 1-5.

Figure 1-5 USB Mini-Type B Port

You can use the command-line interface (CLI) to configure an inactivity timeout which reactivates the RJ-45 console if the USB console has been activated and no input activity has occurred on the USB console for a specified time period.

After the USB console deactivates due to inactivity, you cannot use the CLI to reactivate it. Disconnect and reconnect the USB cable to reactivate the USB console. For information on using the CLI to configure the USB console interface, see the switch software guide.

USB Type A Port

The USB Type A interface provides access to external USB FLASH devices (also known as thumb drives or USB keys).

The interface supports Cisco USB flash drives with capacities from 64 MB to 1 GB .
Cisco IOS software provides standard file system access to the flash device: read, write, erase, and copy, as well as the ability to format the flash device with a FAT file system.
For more information about the switch management ports, see the switch software configuration guide and the command reference on Cisco.com and the "Connector and Cable Specifications" section on page $\mathrm{B}-1$.

SFP and SFP+ Module Slots

The switch has either two or four 1-Gigabit SFP or two 10-Gigabit SFP+ module slots. The slots marked $S F P+$ support both SFP and SFP+ modules. The SFP slots support only the SFP modules. Figure 1-6 shows a switch with the $\mathrm{SFP}+$ slots.

1 SFP+ module slots

Table 1-2 lists the switches that support the SFP modules. Table 1-3 lists the switches that support the $\mathrm{SFP}+$ modules.

Table 1-2 Supported SFP Modules

Switch Models	Supported SFP Modules
All 2960-S models	$\begin{aligned} & \text { GLC-LH-SM= } \\ & \text { GLC-SX-MM= } \end{aligned}$
Catalyst 2960S-48FPS-L Catalyst 2960S-48LPS-L Catalyst 2960S-24PS-L Catalyst 2960S-48TS-L Catalyst 2960S-24TS-L Catalyst 2960S-F48FPS-L Catalyst 2960S-F48LPS-L Catalyst 2960S-F24PS-L Catalyst 2960S-F48TS-L Catalyst 2960S-F24TS-L Catalyst 2960S-48FPD-L Catalyst 2960S-48LPD-L Catalyst 2960S-24PD-L Catalyst 2960S-48TD-L Catalyst 2960S-24TD-L	GLC-BX-D= GLC-BX-U= GLC-ZX-SM= CWDM-SFP-1470= CWDM-SFP-1490= CWDM-SFP-1510= CWDM-SFP-1530= CWDM-SFP-1550= CWDM-SFP-1570= CWDM-SFP-1590= CWDM-SFP-1610=
Catalyst 2960S-48FPS-L Catalyst 2960S-48LPS-L Catalyst 2960S-24PS-L Catalyst 2960S-48TS-L Catalyst 2960S-24TS-L Catalyst 2960S-F48FPS-L Catalyst 2960S-F48LPS-L Catalyst 2960S-F24PS-L Catalyst 2960S-F48TS-L Catalyst 2960S-F24TS-L	$\begin{aligned} & \text { GLC-FE-100BX-D= } \\ & \text { GLC-FE-100BX-U= } \\ & \text { GLC-FE-100LX= } \end{aligned}$
Catalyst 2960S-48FPS-L Catalyst 2960S-48LPS-L Catalyst 2960S-24PS-L Catalyst 2960S-48TS-L Catalyst 2960S-24TS-L Catalyst 2960S-48TS-S Catalyst 2960S-24TS-S Catalyst 2960S-F48FPS-L Catalyst 2960S-F48LPS-L Catalyst 2960S-F24PS-L Catalyst 2960S-F48TS-L Catalyst 2960S-F24TS-L Catalyst 2960S-F48TS-S Catalyst 2960S-F24TS-S	GLC-GE-100FX= GLC-FE-100FX= GLC-T=
Catalyst 2960S-48TS-S Catalyst 2960S-24TS-S Catalyst 2960S-F48TS-S Catalyst 2960S-F24TS-S	GLC-ZX-SM=

Table 1-3 Supported SFP+ Modules

Switch Models	Supported SFP+ Modules
Catalyst 2960S-48FPD-L	SFP-10G-LR=
Catalyst 2960S-48LPD-L	SFP-10G-SR=
Catalyst 2960S-24PD-L	SFP-10G-LRM=
Catalyst 2960S-48TD-L	SFP-H10GB-CU1M=
Catalyst 2960S-24TD-L	SFP-H10GB-CU3M=
	SFP-H10GB-CU5M=

For information about SFP modules, see the SFP module documentation and the "Installing SFP and SFP+ Modules" section on page 2-20. For cable specifications, see Appendix B, "Connector and Cable Specifications."

LEDs

You can use the switch LEDs to monitor switch activity and its performance. Figure 1-7 shows the switch LEDs and the Mode button that you use to select a port mode.

Figure 1-7 Switch LEDs and Mode Button

$\mathbf{1}$	System LED	$\mathbf{6}$	Speed LED
$\mathbf{2}$	RPS 1 LED	$\mathbf{7}$	Stack LED 2
$\mathbf{3}$	Master LED 2	$\mathbf{8}$	PoE LED 3
$\mathbf{4}$	Status LED	$\mathbf{9}$	Mode button
$\mathbf{5}$	Duplex LED		

1. $\mathrm{RPS}=$ redundant power system-only on switch models that support RPS.
2. Only on switch models that support stacking.
3. Only on switch models that support PoE.

Table 1-4 System LED

Color	System Status
Off	System is not powered on.
Green	System is operating normally.
Amber	System is receiving power but is not functioning properly.

For information on the System LED colors during power-on self-test (POST), see the "Switch POST Results" section on page 3-1.

RPS LED

The RPS LED is not present on the Catalyst 2960S-F48FPS-L, 2960S-F48LPS-L, 2960S-F24PS-L, 2960S-F48TS-L, 2960S-F24TS-L, 2960S-F48TS-S, and 2960S-F24TS-S switches-these models do not support RPS.

Table 1-5 RPS LED

Color	RPS Status
Off	RPS is off or not properly connected.
Green	RPS is connected and can provide back-up power.
Blinking green	RPS is connected but is unavailable. It is providing power to another device (redundancy has been allocated to the other device).
Amber	The RPS is in standby mode or in a fault condition. See the RPS documentation.
Blinking amber	The power supply in a switch has failed, and the RPS is providing power to the switch (redundancy has been allocated to this device).

For information about the Cisco RPS 2300, see the "Related Publications" section.

Master LED

Table 1-6 Master LED

Port Mode	Description
Off	Switch is not the stack master.
Green	Switch is the stack master or a standalone switch.
Amber	An error occurred when the stack was electing the stack master switch, or another type of stack error occurred.

Port LEDs and Modes

The port and module slots each has a port LED. As a group or individually, the LEDs show information about the switch and about the ports. Table 1-7 lists the mode LEDs and their associated port modes and meanings.

Table 1-7 Port Mode LEDs

Mode LED	Port Mode	Description
STAT	Port status	The port status. This is the default mode.
DUPLX	Port duplex	The port duplex mode: full duplex or half duplex. Note The ports operate only in full-duplex mode.

Table 1-7 Port Mode LEDs (continued)

Mode LED	Port Mode	Description
SPEED	Port speed	The port operating speed: $10,100,1000 \mathrm{Mb} / \mathrm{s}$, or $10 \mathrm{~Gb} / \mathrm{s}$.
STACK	Stack member status Stack port status	The stack member status. The stack port status. See the "Stack LED" section on page 1-15 information.
PoE	PoE port power	The PoE status.

Table 1-8 PoE Mode LED

Color	PoE Status
Off	PoE mode is not selected. No port has been denied power or is in a fault condition.
Green	PoE mode is selected, and the port LEDs show the PoE status.
Blinking amber	PoE mode is not selected. At least one port was denied power, or at least one port has a PoE fault.

To select or change a mode, press the Mode button until the desired mode is highlighted. When you change port modes, the meanings of the port LED colors also change.

Table 1-9 Meanings of LED Colors in Different Modes

Port Mode	Port LED Color	Meaning
PoE	Off	PoE is off. If the powered device is receiving power from an AC power source, the port LED is off even if the powered device is connected to the switch port.
	Green	PoE is on. The port LED is green only when the switch port is providing power.
	Alternating green and amber	PoE is denied because providing power to the powered device will exceed the switch power capacity.
	Blinking amber	PoE is off due to a fault.
		Caution Noncompliant cabling or powered devices can cause a PoE port fault. Use only standard-compliant cabling to connect Cisco prestandard IP Phones and wireless access points or IEEE 802.3af-compliant devices. You must remove any cable or device that causes a PoE fault.
	Amber	PoE for the port is disabled. (PoE is enabled by default.)

Table 1-9 Meanings of LED Colors in Different Modes (continued)

Port Mode	Port LED Color	Meaning
STAT (port status)	Off	No link or port was administratively shut down.
	Green	Link present.
	Blinking green	Activity. Interface is sending or receiving data.
	Alternating green-amber	Link fault. Error frames can affect connectivity, and errors such as excessive collisions, cyclic redundancy check (CRC) errors, and alignment and jabber errors are monitored for a link-fault indication.
	Amber	Port is blocked by Spanning Tree Protocol (STP) and is not forwarding data. After a port is reconfigured, the port LED can remain amber for up to 30 seconds as STP searches the switch for possible loops.
	Blinking amber	Port is blocked by STP and is sending and receiving packets.
DUPLX (duplex)	Off	Port is operating in half duplex.
	Green	Port is operating in full duplex.
SPEED	10/100 and 10/100/1000 ports	
	Off	Port is operating at $10 \mathrm{Mb} / \mathrm{s}$.
	Green	Port is operating at $100 \mathrm{Mb} / \mathrm{s}$.
	Blinking green	Port is operating at $1000 \mathrm{Mb} / \mathrm{s}$.
	SFP module ports	
	Off	Port is operating at $10 \mathrm{Mb} / \mathrm{s}$.
	Green	Port is operating at $100 \mathrm{Mb} / \mathrm{s}$.
	Blinking green	Port is operating at $1000 \mathrm{Mb} / \mathrm{s}$.
	SFP+ module ports	
	Off	Port is not operating.
	Blinking green	Port is operating at $10 \mathrm{~Gb} / \mathrm{s}$.
	Green	Port is operating at $1 \mathrm{~Gb} / \mathrm{s}$.
STACK (stack member)	Off	No stack member has that member number.
	Blinking green	Stack member number.
	Green	Member numbers of other stack member switches.

If your switches are stacked and you press the Mode button on any switch, all the switches display the same selected mode. For example, if you press the mode button on the stack master to display SPEED, all the other stack members display SPEED.
Even if PoE mode is not selected, this LED still shows PoE problems if they are detected.

The stack LED shows the sequence of member switches in a stack. Up to four switches can be members of a stack. The first four port LEDs show the switch member number. Figure $1-8$ shows the LEDs on the first switch, which is stack member number 1 . For example, if you press the Mode button and select Stack, the port LED 1 blinks green. The LEDs for port 2 and 3 are solid green, as these represent the member numbers of other stack members. The other port LEDs are off because there are no more members in the stack.

Figure 1-8 Stack LED

$\mathbf{1}$	Stack member 1	$\mathbf{3}$	Stack member 3
$\mathbf{2}$	Stack member 2		

When you select the Stack LED, the respective Stack LEDs are green when the stack ports (on the switch rear panel) are up, and the respective Stack LEDs are amber when the ports are down. SFP+ module port LEDs 1 and 2 on the switch show the status for stack ports 1 and 2, respectively.
If the port LEDs are green on all the switches in the stack, the stack is operating at full bandwidth. If any port LED is not green, the stack is not operating at full bandwidth.

Console LEDs

The console LEDs show which console port is in use.

Figure 1-9 Console LEDs

$\mathbf{1}$	USB console LED
$\mathbf{2}$	RJ-45 console LED

If you connect a cable to a console port, the switch automatically uses that port for console communication. If you connect two console cables, the USB console port has priority.
Table 1-10 lists the console and USB port LED colors and their meanings.

Table 1-10 RJ-45 and USB Console LEDs

LED	Color	Description
RJ-45 console port	Green	RJ-45 console port is active. When this LED is on, the USB console port LED is off.
	Off	The port is not active, and the USB console port is active.
USB console port	Green	USB console port is active. When this LED is on, the RJ-45 console port LED is off.
	Off	The port is not active, and the RJ-45 console port is active.

Ethernet Management Port LED

Table 1-11 Ethernet Management Port LED

Color	Description
Green	Active link to PC.
Off	Inactive link.
Amber	POST failure.

Rear Panel

The rear panel of the stacking-capable switches have a FlexStack module slot, a fan exhaust, and an AC power connector. The stacking-capable switch is available with or without an RPS connector. See Figure 1-10 and Figure 1-11.

Figure 1-10 Catalyst 2960-S Switch Rear Panel with Stacking Module Slot and RPS connector

$\mathbf{1}$	FlexStack module slot and cover	$\mathbf{3}$	RPS connector
$\mathbf{2}$	Fan exhaust	$\mathbf{4}$	AC power connector

Figure 1-11 Catalyst 2960-S Switch Rear Panel with Stacking Module Slot and without RPS connector

$\mathbf{1}$	FlexStack module slot and cover	$\mathbf{3}$	AC power connector
$\mathbf{2}$	Fan exhaust		

The rear panel of the nonstacking-capable switches have a fan exhaust, and an AC power connector. The nonstacking-capable switch is available with or without an RPS connector. See Figure 1-12 and Figure 1-13.

Figure 1-12 Catalyst 2960-S Switch Rear Panel with an RPS connector

$\mathbf{1}$	Fan exhaust	$\mathbf{3}$	AC power connector
$\mathbf{2}$	RPS connector		

Figure 1-13 Catalyst 2960-S Switch Rear Panel without an RPS connector


```
\mathbf{1}}\mathrm{ Fan exhaust 2 AC power connector
```


FlexStack Ports

The stacking-capable switch models support stacking with the optional stack kit. It has the FlexStack module (hot-swappable) to insert in the slot in the switch rear panel, and a 0.5 -meter FlexStack cable to connect the FlexStack module ports.

For FlexStack module installation, see "Installing the FlexStack Module" section on page 2-7. For stack cabling, see "Connecting the FlexStack Cables" section on page 2-17.

Caution Use only approved cables, and connect only to other Catalyst 2960-S switches. Equipment might be damaged if connected to other nonapproved Cisco cables or equipment.

RPS Connector

RPS is not supported on the Catalyst 2960S-F48FPS-L, 2960S-F48LPS-L, 2960S-F24PS-L, 2960S-F48TS-L, 2960S-F24TS-L, 2960S-F48TS-S, and 2960S-F24TS-S switches.

The Cisco RPS 2300 (model PWR-RPS2300) supports the Catalyst 2960-S switch.

Warning

Attach only the following Cisco RPS model to the RPS receptacle: RPS2300. Statement 370
Connect the switch and the redundant power system to different AC power sources.
Use this cable for the RPS: CAB-RPS2300-E.

Cisco RPS 2300

The Cisco RPS 2300 is a redundant power system that can support six external network devices and provide power to one or two failed devices at a time. It senses when the internal power supply of a connected device fails and provides power to the failed device, preventing loss of network traffic. For information, see the "Related Publications" section.

The Cisco RPS 2300 has two output levels: -52 V and 12 V with a total maximum output power of 2300 W.

All supported and connected switches can simultaneously communicate with the RPS 2300. You can configure these RPS 2300 features through the switch software:

- Enable RPS active or standby mode for each connected switch
- Configure switch priority for RPS support
- List the connected switches and the power-supply module sizes
- Obtain reports when a switch is powered by the RPS
- Obtain status reports for the RPS power-supply module
- Read and monitor backup, failure, and exception history

AC Power Connector

The switch is powered through the internal power supply. The internal power supply is an autoranging unit that supports input voltages between 100 and 240 VAC . Use the supplied AC power cord to plug it into an AC power outlet.

Management Options

- Cisco Network Assistant

Cisco Network Assistant is a PC-based network management GUI application for LANs of small and medium-sized businesses. You can use the GUI to configure and manage switch clusters or standalone switches. Cisco Network Assistant is available at no cost and can be downloaded from this URL:
http://www.cisco.com/pcgi-bin/tablebuild.pl/NetworkAssistant
For information on starting the Network Assistant application, see the Getting Started with Cisco Network Assistant guide on Cisco.com.

- Device manager

You can use the device manager in the switch memory to manage individual and standalone switches. This web interface provides configuration and monitoring from anywhere in your network. For information, see the switch getting started guide and the device manager online help.

- Cisco IOS CLI

You can configure and monitor the switch and switch cluster members from the CLI. Access the CLI by connecting your management station to the switch console port or by using Telnet from a remote management station. See the switch command reference on Cisco.com for information.

- CiscoWorks application

The CiscoWorks LAN Management Solution (LMS) is a suite of management tools that simplify the configuration, administration, monitoring, and troubleshooting of Cisco networks. See the LMS documentation for information:
http://cisco.com/go/lms

- CiscoView application

The CiscoView device-management application displays the switch image that you can use to view switch status and performance information and set configuration parameters. The CiscoView application, which you purchase separately, can be a standalone application or part of a Simple Network Management Protocol (SNMP) platform. For information, see the CiscoView documentation at this URL:
http://www.cisco.com/en/US/products/sw/cscowork/ps4565/tsd_products_support_series_home.ht ml

- Cisco Configuration Engine

The Cisco Configuration Engine is network management software that automates initial configurations and configuration updates. It generates device-specific configuration changes, sends them to the device, executes the configuration change, and logs the results. For information about Cisco Configuration Engine, see the software configuration guide on Cisco.com.

- SNMP network management

You can manage switches from a Simple Network Management Protocol (SNMP)-compatible management station that is running platforms such as HP OpenView or SunNet Manager. The switch supports a comprehensive set of Management Information Base (MIB) extensions and four Remote Monitoring (RMON) groups. See the switch software configuration guide on Cisco.com and the documentation that came with your SNMP application for information.

- Cisco Security Manager

Cisco Security Manager (Security Manager) manages security policies on Cisco security devices. Security Manager supports integrated provisioning of firewall, IPS, and VPN (site-to-site, remote access, and SSL) services across devices. For information, see the User Guide for Cisco Security Manager 3.2.2.

- Catalyst Smart Operations

The Smart Install feature provides a single point of management (director) in a network. You can use it to provide a zero touch image and configuration upgrade of newly deployed switches and image and configuration downloads for any client switches. For information, see the Cisco Smart Install Configuration Guide on Cisco.com.
Auto Smartports macros dynamically configure ports based on the device type detected on the port. When the switch detects a new device, it applies the appropriate Auto Smartports macro on the port. For information about configuring Auto Smartports, see the switch software configuration guide on Cisco.com.

Network Configurations

See the switch software configuration guide on Cisco.com for network configuration concepts and examples of using the switch to create dedicated network segments and interconnecting the segments through Fast Ethernet and Gigabit Ethernet connections.

CHAPTER

Switch Installation

Read these topics and perform the procedures in this order:

- Preparing, page 2-1
- Planning a Switch Stack, page 2-5
- Installing the Switch, page 2-10
- Connecting the FlexStack Cables, page 2-17
- Installing the Power Cord Retainer (Optional), page 2-18
- Installing SFP and SFP+ Modules, page 2-20
- Connecting to SFP and SFP+ Modules, page 2-22
- 10/100 and 10/100/1000 PoE+ Port Connections, page 2-24
- 10/100 and 10/100/1000 Port Connections, page 2-26

For initial switch setup, assigning the switch IP address, and powering on information, see the switch getting started guide on Cisco.com.

Preparing

- Safety Warnings, page 2-1
- Installation Guidelines, page 2-4
- Box Contents, page 2-4
- Tools and Equipment, page 2-4

Safety Warnings

This section includes the basic installation caution and warning statements. Read this section before you start the installation procedure. Translations of the warning statements appear in the Regulatory Compliance and Safety Information for the Catalyst 2960 and 2960-S Switches guide on the documentation CD and online at Cisco.com.

Warning Do not stack the chassis on any other equipment. If the chassis falls, it can cause severe bodily injury and equipment damage. Statement 48

Ethernet cables must be shielded when used in a central office environment. Statement 171

If a redundant power system (RPS) is not connected to the switch, install an RPS connector cover on the back of the switch. Statement 265

Attach only the following Cisco RPS model to the RPS receptacle:
PWR-RPS2300 Statement 370

Warning Read the wall-mounting instructions carefully before beginning installation. Failure to use the correct hardware or to follow the correct procedures could result in a hazardous situation to people and damage to the system. Statement 378

Read the installation instructions before connecting the system to the power source. Statement 1004

[^0]Warning This unit is intended for installation in restricted access areas. A restricted access area can be accessed only through the use of a special tool, lock and key, or other means of security. Statement 1017

This equipment must be grounded. Never defeat the ground conductor or operate the equipment in the absence of a suitably installed ground conductor. Contact the appropriate electrical inspection authority or an electrician if you are uncertain that suitable grounding is available. Statement 1024

This unit might have more than one power supply connection. All connections must be removed to de-energize the unit. Statement 1028

Warning Only trained and qualified personnel should be allowed to install, replace, or service this equipment. Statement 1030

Ultimate disposal of this product should be handled according to all national laws and regulations. Statement 1040

For connections outside the building where the equipment is installed, the following ports must be connected through an approved network termination unit with integral circuit protection: 10/100/1000 Ethernet. Statement 1044

Warning To prevent the system from overheating, do not operate it in an area that exceeds the maximum recommended ambient temperature of: $<\mathbf{1 1 3}^{\circ} \mathbf{F}\left(\mathbf{4 5}^{\circ} \mathrm{C}\right)$. Statement 1047

This warning symbol means danger. You are in a situation that could cause bodily injury. Before you work on any equipment, be aware of the hazards involved with electrical circuitry and be familiar with standard practices for preventing accidents. Use the statement number provided at the end of each warning to locate its translation in the translated safety warnings that accompanied this device. Statement 1071

Voltages that present a shock hazard may exist on Power over Ethernet (PoE) circuits if interconnections are made using uninsulated exposed metal contacts, conductors, or terminals. Avoid using such interconnection methods, unless the exposed metal parts are located within a restricted access location and users and service people who are authorized within the restricted access location are made aware of the hazard. A restricted access area can be accessed only through the use of a special tool, lock and key or other means of security. Statement 1072

No user-serviceable parts inside. Do not open. Statement 1073

Installation of the equipment must comply with local and national electrical codes. Statement 1074

Warning To prevent airflow restriction, allow clearance around the ventilation openings to be at least:
3 inches ($\mathbf{7 . 6} \mathbf{~ c m}$). Statement 1076

Installation Guidelines

When determining where to install the switch, verify that these guidelines are met:

- Clearance to the switch front and rear panel meets these conditions:
- Front-panel LEDs can be easily read.
- Access to ports is sufficient for unrestricted cabling.
- AC power cord can reach from the AC power outlet to the connector on the switch rear panel.
- Access to the rear of the rack is sufficient for connecting StackWise cables to stacked switches, or connecting the optional Cisco Redundant Power Supply (RPS) 2300
- Cabling is away from sources of electrical noise, such as radios, power lines, and fluorescent lighting fixtures. Make sure the cabling is safely away from other devices that might damage the cables.
- Airflow around the switch and through the vents is unrestricted.
- Temperature around the unit does not exceed $113^{\circ} \mathrm{F}\left(45^{\circ} \mathrm{C}\right)$. If the switch is installed in a closed or multirack assembly, the temperature around it might be greater than normal room temperature. Operating environment is within the ranges listed in Appendix A, "Technical Specifications."
- Humidity around the switch does not exceed 85 percent.
- Altitude at the installation site is not greater than 10,000 feet.
- For $10 / 100$ and $10 / 100 / 1000$ fixed ports, the cable length from a switch to a connected device cannot exceed 328 feet (100 meters).
- For cable lengths for SFP-module connections, see the "Cables and Adapters" section on page B-3.
- Cooling mechanisms, such as fans and blowers in the switch, can draw dust and other particles causing contaminant buildup inside the chassis, which can result in system malfunction. You must install this equipment in an environment as free from dust and foreign conductive material (such as metal flakes from construction activities) as is possible.

Box Contents

The switch getting started guide describes the box contents. If any item is missing or damaged, contact your Cisco representative or reseller for support.

Tools and Equipment

Obtain these necessary tools and equipment:

- A number-2 Phillips screwdriver to rack-mount the switch.
- A flathead screwdriver to remove the stack module cover, if applicable.

Verifying Switch Operation

Before you install the switch in a rack, on a wall, or on a table or shelf, power on the switch and verify that it passes POST.

To power on the switch, plug one end of the AC power cord into the switch AC power connector, and plug the other end into an AC power outlet.
As the switch powers on, it begins the POST, a series of tests that runs automatically to ensure that the switch functions properly. LEDs can blink during the test. POST lasts approximately 1 minute. When the switch begins POST, the System, RPS, Status, Duplex, and Speed LEDs turn green. The System LED blinks green, and the other LEDs remain solid green.

When the switch completes POST successfully, the System LED remains green. The RPS LED remains green for some time and then reflects the switch operating status. The other LEDs turn off and then reflect the switch operating status. If a switch fails POST, the System LED turns amber.
POST failures are usually fatal. Call Cisco technical support representative if your switch fails POST.
After a successful POST, unplug the power cord from the switch. Install the switch in a rack, on a wall, on a table, or on a shelf as described in the "Installing the Switch" section on page 2-10.

If your configuration has an RPS, connect the switch and the RPS to different AC power sources. See the Cisco RPS documentation for information.

Note When you connect the RPS to the switch, put the RPS in standby mode. Set the RPS to active mode during normal operation.

Warning Attach only the following Cisco RPS model to the RPS receptacle: PWR-RPS2300 = Statement 370

Planning a Switch Stack

Note
This section applies only to the Catalyst 2960-S stacking-capable switches.

Stack Guidelines

- Connect only Catalyst 2960-S switches in a switch stack. You cannot stack the Catalyst 2960-S with other switches such as the Catalyst $2975,3550,3560$, or 3750 switches.
- Stack only up to four switches.
- Install the FlexStack module and the FlexStack cable. You can order them from your Cisco sales representative: C2960S-STACK=.

Note The FlexStack module is hot-swappable and can be inserted while the switch is powered on.

- Order the appropriate cable from your Cisco sales representative. The length of FlexStack cable depends on your configuration. These are the different sizes available:
- CAB-STK-E-0.5M $=$ ($0.5-$ meter cable $)$
- CAB-STK-E-1M= (1-meter cable)
- CAB-STK-E-3M $=$ (3-meter cable)
- Access to the switch rear panel and to the rear of the rack.

Installing the FlexStack Module

Step 1 Use a flat-blade screwdriver to remove the FlexStack module blank cover on the switch back panel.

Figure 2-1 Removing the Blank Cover

Step 2 Grasp the FlexStack module on the sides, and insert it into the module slot. Push the module in completely until you feel it snap into place.

Figure 2-2 Inserting the FlexStack Module

Step 3 Secure the screws tightly on each side of the module.

Figure 2-3 Securing the FlexStack Module

\qquad

Stack Cabling

Figure 2-5 and Figure 2-6 show the switches stacked in a vertical rack or on a table. The connections are redundant.

Figure 2-4 Stacking Switches with the 0.5-meter FlexStack Cable

Figure 2-5 Stacking Switches with 0.5-meter and 3-meter FlexStack Cables

Stack Bandwidth and Partitioning Examples

Figure 2-6 shows a stack that provides full bandwidth with redundant connections.

Figure 2-6 Stack with Full Bandwidth Connections

Figure 2-7 shows a stack with incomplete stack cabling connections. This stack provides only half bandwidth and does not have redundant connections.

Figure 2-7 Stack with Half Bandwidth Connections

Figure 2-8 shows a stack with a bad FlexStack cable in link B. This stack provides only half bandwidth and does not have redundant connections.

Figure 2-8 Stack with a Failover Condition

Figure 2-9 shows a stack with a bad link B. This stack partitions into two stacks, and switch 1 and switch 3 are stack masters.

Figure 2-9 Partitioned Stack with a Failover Condition

Power-On Sequence for Switch Stacks

Consider these guidelines before you power on the switches in a stack:

- The sequence in which the switches are first powered on might affect the switch that becomes the stack master.
- If you want a particular switch to be the stack master, power on that switch first. This switch becomes the stack master and remains the stack master until a master re-election. After 2 minutes, power on the other stack switches.
- If you have no preference as to which switch becomes the stack master, power on all the switches in the stack within a 1-minute timeframe. These switches participate in the stack master election. Switches powered on after the 1-minute timeframe do not participate in the election.
- Power off a switch before you add it to or remove it from an existing switch stack.

For conditions that can cause a stack master re-election or to manually elect the stack master, see the "Managing Switch Stacks" chapter in the switch software configuration guide on Cisco.com.

Installing the Switch

- Rack-Mounting, page 2-10
- Wall-Mounting, page 2-14
- Table- or Shelf-Mounting, page 2-17
- After Switch Installation, page 2-17

Rack-Mounting

Installation in other than 19-inch racks requires a bracket kit not included with the switch. Figure 2-10 shows the standard 19-inch brackets and ETSI mounting brackets. You can order the ETSI bracket from your Cisco sales representative:700-19781XX

Warning

[^1]Figure 2-10 Rack-Mounting Brackets

Attaching the Rack-Mount Brackets

To rack-mount the switch, first remove the screws from the switch chassis so that the mounting brackets can be attached.

Figure 2-11 Removing Screws from the Switch

Use four Phillips flat-head screws to attach the long side of the bracket to each side of the switch (Figure 2-12).

Figure 2-12 Attaching Brackets for 19-inch Racks

$\mathbf{1}$	Front-mounting position	$\mathbf{3}$	Mid-mounting position
$\mathbf{2}$	Number-8 Phillips flat-head screws $(48-0655-01)$	$\mathbf{4}$	Rear-mounting position

Mounting in a Rack

After the brackets are attached, use the four supplied Phillips machine screws to attach the brackets to the rack (Figure 2-13). Use the black Phillips machine screw to attach the cable guide to the left or right bracket.

When you complete the switch installation, see the "After Switch Installation" section on page 2-17 for information on switch configuration.

Figure 2-13 Mounting in a Rack

$\mathbf{1}$	Cable guide	$\mathbf{4}$	Number-12 Phillips pan-head screws $(48-0523-01)$
$\mathbf{2}$	Phillips machine screw, black (48-0654-01)	$\mathbf{5}$	Mid-mounting position
$\mathbf{3}$	Front-mounting position	$\mathbf{6}$	Rear-mounting position

Wall-Mounting

- Attaching the Brackets for Wall-Mounting, page 2-14
- Attaching the RPS Connector Cover, page 2-15
- Mounting on a Wall, page 2-16

Read the wall-mounting instructions carefully before beginning installation. Failure to use the correct hardware or to follow the correct procedures could result in a hazardous situation to people and damage to the system. Statement 378

Attaching the Brackets for Wall-Mounting

Figure 2-14 shows how to attach a 19 -inch bracket to one side of the switch. Follow the same steps to attach the second bracket to the opposite side.

Figure 2-14 Attaching the 19-inch Brackets for Wall-Mounting

[^2]
Attaching the RPS Connector Cover

Note The Catalyst 2960S-F48FPS-L, 2960S-F48LPS-L, 2960S-F24PS-L, 2960S-F48TS-L, 2960S-F24TS-L, 2960S-F48TS-S, and 2960S-F24TS-S switches do not have an RPS connector and a cover is not needed. These models do not support RPS.

If you are not using an RPS with your switch, use the two Phillips pan-head screws to attach the RPS connector cover to the back of the switch (Figure 2-15).

If an RPS is not connected to the switch, install an RPS connector cover on the back of the switch. Statement 265

Figure 2-15 Attaching the RPS Connector Cover

$\mathbf{1}$	Phillips pan-head screws (48-0482-01)	$\mathbf{3}$	RPS connector
$\mathbf{2}$	RPS connector cover		

Mounting on a Wall

For the best support of the switch and cables, make sure that the switch is attached securely to wall studs or to a firmly attached plywood-mounting backboard. Mount the switch with the front panel facing up or front facing down (Figure 2-16).

Figure 2-16 Mounting on a Wall

$\mathbf{1}$ User-supplied screws

When you complete the switch installation, see the "After Switch Installation" section on page 2-17 for information on switch configuration.

Table- or Shelf-Mounting

To install the switch on a table or shelf, locate the adhesive strip with the rubber feet in the mounting-kit envelope. Attach the four rubber feet to the recessed areas on the bottom of the chassis. Place the switch on the table or shelf near an AC power source.

When you complete the switch installation, see the "After Switch Installation" section on page 2-17 for information on switch configuration.

After Switch Installation

- Configure the switch by running Express Setup to enter the initial switch configuration. See the switch getting started guide in the "Related Publications" section.
- Use the CLI setup program to enter the initial switch configuration. See Appendix C, "Configuring the Switch with the CLI-Based Setup Program."
- Connect to the stack ports. See the "Connecting the FlexStack Cables" section on page 2-17.
- Install the power cord retainer (optional). See the "Installing the Power Cord Retainer (Optional)" section on page 2-18.
- Connect to the front-panel ports. See the "Installing SFP and SFP+ Modules" section on page 2-20, the " $10 / 100$ and $10 / 100 / 1000$ PoE+ Port Connections" section on page 2-24, and the " $10 / 100$ and 10/100/1000 Port Connections" section on page 2-26.

Connecting the FlexStack Cables

Always use a Cisco-approved FlexStack cable to connect the switches.

Connect only Catalyst 2960-S switches in a switch stack.

Step 1 Remove the dust covers from the FlexStack cables, and store them for future use.

Figure 2-17 Connect the FlexStack Cables

Step 2 Insert one end of the FlexStack cable into the stack port of the first switch. Insert the other end of the cable into the stack port on the other switch. Make sure you insert the cables in completely until you feel them snap into place.

When you connect the FlexStack cable to the STACK 1 port, the tab should be above the connector. When you connect the FlexStack cable to the STACK 2 port, the tab should be below the connector.

To remove a FlexStack cable, grasp the tab on the cable connector and gently pull straight out. When you remove the FlexStack cables from the connectors, replace the dust covers to protect them from dust.

Caution Removing and installing the FlexStack cable can shorten its useful life. Do not remove and insert the cable more often than is absolutely necessary.

Installing the Power Cord Retainer (Optional)

The power cord retainer part number (PWR-CLP=) is optional. You can order it when you order your switch, or you can order it later from your Cisco representative.

Step 1 Choose the sleeve size of the power cord retainer based on the thickness of the cord. The smaller sleeve can be snapped off and used for thin cords. See Figure 2-21.
Step 2 Slide the retainer around the AC power cord, and pass it around the loop on the switch. See Figure 2-18.

Figure 2-18 Inserting the Retainer through the Lanced Loop

$\mathbf{1}$	AC power cord	$\mathbf{3}$	Sleeve for thinner power cords
$\mathbf{2}$	Power cord retainer	$\mathbf{4}$	Loop

Step 3 Slide the retainer through the first latch. See Figure 2-19.

Figure 2-19 Sliding the Retainer Through the Latch

$\mathbf{1}$	AC power cord	$\mathbf{3}$	Latch
$\mathbf{2}$	Smaller sleeve for thin power cords		

Step 4 Slide the retainer through the other latches to lock it. See Figure 2-20.

Figure 2-20 Locking the Retainer

$\mathbf{1}$	AC power cord	$\mathbf{3}$	Latches
$\mathbf{2}$	Sleeve for thin power cords		

Step 5 (Optional) Use the small sleeve for thin power cords. Use the small sleeve to provide greater stability for thin cords. Detach the sleeve, and slide it over the power cord. See Figure 2-21.

Figure 2-21
Sleeve Around the Power Cord

$\stackrel{\infty}{\infty}$
$\stackrel{\sim}{\sim}$
$\stackrel{\sim}{\sim}$

$\mathbf{1}$	Sleeve for thin power cords

2 AC power cord

Step 6 Secure the AC power cord by pressing on the retainer. See Figure 2-22.

Figure 2-22 Securing the Power Cord in the Retainer

Installing SFP and SFP+ Modules

Some switch models support SFP modules, SFP+ modules, or both. The SFP slots support only the SFP modules. The slots marked $S F P+$ slots support both SFP and SFP+ modules.
See the "SFP and SFP+ Module Slots" section on page 1-8 and the switch release notes on Cisco.com for the list of supported SFP modules. Use only Cisco SFP modules on the switch. Each Cisco module has an internal serial EEPROM that is encoded with security information. This encoding provides a way for Cisco to identify and validate that the module meets the requirements for the switch.

For information about installing, removing, cabling, and troubleshooting SFP modules, see the module documentation that shipped with your device. For module cable specifications, see Appendix B, "Connector and Cable Specifications."

Installing an SFP or SFP+ Module

When installing SFP or SFP+ modules, observe these guidelines:

- Do not remove the dust plugs from the modules or the rubber caps from the fiber-optic cable until you are ready to connect the cable. The plugs and caps protect the module ports and cables from contamination and ambient light.
- Removing and installing an SFP or SFP+ module can shorten its useful life. Do not remove and insert any module more often than is absolutely necessary.
- To prevent ESD damage, follow your normal board and component handling procedures when connecting cables to the switch and other devices.

Step 1 Attach an ESD-preventive wrist strap to your wrist and to a bare metal surface.
Step 2 Find the send (TX) and receive (RX) markings on the module top.
On some SFP or SFP+ modules, the send and receive (TX and RX) markings might be replaced by arrows that show the direction of the connection, either send or receive (TX or RX).

Step 3 If the module has a bale-clasp latch, move it to the open, unlocked position.
Step 4 Align the module in front of the slot opening, and push until you feel the connector snap into place.
Step 5 If the module has a bale-clasp latch, close it.
Step 6 For fiber-optic SFP or SFP+ modules, remove the dust plugs and save.
Step 7 Connect the SFP cables.

Figure 2-23 Installing an SFP Module

Removing an SFP or SFP+ Module

Step 1 Attach an ESD-preventive wrist strap to your wrist and to a bare metal surface.
Step 2 Disconnect the cable from the SFP module. For reattachment, note which cable connector plug is send (TX) and which is receive (RX).

Step 3 Insert a dust plug into the optical ports of the SFP or SFP+ module to keep the optical interfaces clean.
Step 4 If the module has a bale-clasp latch, pull the bale out and down to eject the module. If the latch is obstructed and you cannot use your finger, use a small, flat-blade screwdriver or other long, narrow instrument to open the latch.

Step 5 Grasp the SFP or SFP+ module, and carefully remove it from the module slot.
Step 6 Place the module in an antistatic bag or other protective environment.

Connecting to SFP and SFP+ Modules

For instructions on how to connect to fiber-optic SFP modules, see the "Connecting to Fiber-Optic SFP and SFP+ Modules" section. For instructions on how to connect to copper 1000BASE-T SFP modules, see the "Connecting to 1000BASE-T SFP" section.
For instructions about how to install or remove an SFP module, see the "Installing SFP and SFP+ Modules" section on page 2-20.

Connecting to Fiber-Optic SFP and SFP+ Modules

Class 1 laser product. Statement 1008

Caution

Do not remove the rubber plugs from the SFP or SFP+ module port or the rubber caps from the fiber-optic cable until you are ready to connect the cable. The plugs and caps protect the SFP module ports and cables from contamination and ambient light.
Before connecting to the SFP module, be sure that you understand the port and cabling stipulations in the "Installation Guidelines" section on page 2-4 and in the "SFP and SFP+ Module Slots" section on page 1-8. See Appendix B, "Connector and Cable Specifications" for information about the LC on the SFP module.

Step 1 Remove the rubber plugs from the module port and fiber-optic cable, and store them for future use.
Step 2 Insert one end of the fiber-optic cable into the SFP or SFP+ module port (see Figure 2-24).

Figure 2-24 Connecting to a Fiber-Optic SFP Module Port

1 LC connector

Step 3 Insert the other cable end into a fiber-optic receptacle on a target device.
Step 4 Observe the port status LED.
The LED turns green when the switch and the target device have an established link.
The LED turns amber while the STP discovers the network topology and searches for loops. This process takes about 30 seconds, and then the port LED turns green.
If the LED is off, the target device might not be turned on, there might be a cable problem, or there might be problem with the adapter installed in the target device. See Chapter 3, "Troubleshooting," for solutions to cabling problems.

Step 5 If necessary, reconfigure and restart the switch or target device.

Connecting to 1000BASE-T SFP

Caution To prevent ESD damage, follow your normal board and component handling procedures.

Step 1 Connect one end of the cable to the SFP module port (see Figure 2-25). When connecting to servers, workstations, and routers, use a four twisted-pair, straight-through cable. When connecting to switches or repeaters, use a four twisted-pair, crossover cable.
When connecting to a 1000BASE-T device, be sure to use a four twisted-pair, Category 5 or higher cable.

Figure 2-25 Connecting to a 1000BASE-T SFP Module

[^3]Step 2 Connect the other end of the cable to an RJ-45 connector on the other device.
Step 3 Observe the port status LED.
The LED turns green when the switch and the other device have an established link.
The LED turns amber while the STP discovers the network topology and searches for loops. This process takes about 30 seconds, and then the port LED turns green.
If the LED is off, the other device might not be turned on, there might be a cable problem, or there might be a problem with the adapter in the other device. See Chapter 3, "Troubleshooting," for solutions to cabling problems.

Step 4 If necessary, reconfigure and restart the switch or other device.

10/100 and 10/100/1000 PoE+ Port Connections

See the "10/100 PoE+ Ports" section on page 1-5 and the "10/100/1000 PoE+ Ports" section on page 1-5 for information on the cables and connectors.

The ports provide PoE support for devices compliant with IEEE 802.3af and also provide Cisco prestandard PoE support for Cisco IP Phones and Cisco Aironet Access Points.
On a per-port basis, you can control whether or not a port automatically provides power when an IP phone or an access point is connected.

To access an advanced PoE planning tool, use the Cisco Power Calculator available on Cisco.com at this URL:
http://tools.cisco.com/cpc/launch.jsp
You can use this application to calculate the power supply requirements for a specific PoE configuration. The results show output current, output power, and system heat dissipation.

Voltages that present a shock hazard may exist on Power over Ethernet (PoE) circuits if interconnections are made using uninsulated exposed metal contacts, conductors, or terminals. Avoid using such interconnection methods, unless the exposed metal parts are located within a restricted access location and users and service people who are authorized within the restricted access location are made aware of the hazard. A restricted access area can be accessed only through the use of a special tool, lock and key or other means of security. Statement 1072

Caution Category 5e and Category 6 cables can store high levels of static electricity. Always ground the cables to a suitable and safe earth ground before connecting them to the switch or other devices.

Step 1 Connect one end of the cable (Table 2-1) to the switch PoE port.
Step 2 Connect the other end of the cable to an RJ-45 connector on the other device. The port LED turns on when both devices have established link.

The port LED is amber while STP discovers the topology and searches for loops. This process takes about 30 seconds, and then the port LED turns green. If the LED is off, the other device might not be turned on, there might be a cable problem, or there might be a problem with the adapter in the other device. See Chapter 3, "Troubleshooting," for solutions to cabling problems.

Caution Noncompliant cabling or powered devices can cause a PoE port fault. Use only standard-compliant cabling to connect Cisco prestandard IP Phones and wireless access points or IEEE 802.3af-compliant devices. You must remove any cable or device that causes a PoE fault.

Step 3 Reconfigure and reboot the connected device if needed.
Step 4 Repeat Steps 1 through 3 to connect each device.

Many legacy powered devices, including older Cisco IP phones and access points that do not fully support IEEE 802.3af, might not support PoE when connected to the switches by a crossover cable.

The autonegotiation and the auto-MDIX features are enabled by default on the switch.
With autonegotiation, the switch port configurations change to operate at the speed of the attached device. If the attached device does not support autonegotiation, you can manually set the switch interface speed and duplex parameters.
With auto-MDIX, the switch detects the required cable type for copper Ethernet connections and configures the interface accordingly. If auto-MDIX is disabled, use Table 2-1 to select the correct cable.

See the "Cables and Adapters" section on page B-3 for pinout descriptions.
Table 2-1 Recommended Ethernet Cables (When Auto-MDIX is Disabled)

Device	Crossover Cable 1	Straight-Through Cable 1
Switch to switch	Yes	No
Switch to hub	Yes	No

Table 2-1 Recommended Ethernet Cables (When Auto-MDIX is Disabled) (continued)

Device	Crossover Cable ${ }^{\mathbf{1}}$	Straight-Through Cable $^{\mathbf{1}}$
Switch to computer or server	No	Yes
Switch to router	No	Yes
Switch to IP phone	No	Yes

1. 100BASE-TX and 1000BASE-T traffic requires twisted four-pair, Category 5, Category 5e, or Category 6 cable. 10BASE-T traffic can use Category 3 or Category 4 cable.

10/100 and 10/100/1000 Port Connections

The switch $10 / 100$ and $10 / 100 / 1000$ port configuration changes to operate at the speed of the attached device. If the attached ports do not support autonegotiation, you can manually set the speed and duplex parameters. Connecting devices that do not autonegotiate or that have the speed and duplex parameters manually set can reduce performance or result in no linkage.
To maximize performance, choose one of these methods for configuring the Ethernet ports:

- Let the ports autonegotiate both speed and duplex.
- Set the interface speed and duplex parameters on both ends of the connection.

Use the guidelines in Table 2-1 to select the correct cable for connecting the switch 10/100 and 10/100/1000 ports to other devices. See the "Connector and Cable Specifications" section on page B-1 for cable-pinout descriptions.

Where to Go Next

To change the switch settings, you can use the switch default configuration or use any of the management options described in the "Management Options" section.

CHAPTER

Troubleshooting

- Diagnosing Problems, page 3-1
- Clearing the Switch IP Address and Configuration, page 3-5
- Finding the Switch Serial Number, page 3-5
- Replacing a Failed Stack Member, page 3-9

Diagnosing Problems

The LEDs on the front panel provide troubleshooting information about the switch. They show POST failures, port-connectivity problems, and overall switch performance. You can also get statistics from the device manager, from the CLI, or from an SNMP workstation. See the software configuration guide, the switch command reference guide on Cisco.com, or the documentation that came with your SNMP application for details.

Switch POST Results

See the "Verifying Switch Operation" section on page 2-5 for information on POST.

Note POST failures are usually fatal. Contact your Cisco technical support representative if your switch does not pass POST.

Switch LEDs

If you have physical access to the switch, look at the port LEDs for troubleshooting information about the switch. See the "LEDs" section on page 1-11 for a description of the LED colors and their meanings.

Switch Connections

Bad or Damaged Cable

Always examine the cable for marginal damage or failure. A cable might be just good enough to connect at the physical layer, but it could corrupt packets as a result of subtle damage to the wiring or connectors. You can identify this situation because the port has many packet errors or the port constantly flaps (loses and regains link).

- Examine or exchange the copper or fiber-optic cable with a known, good cable.
- Look for broken or missing pins on cable connectors.
- Rule out any bad patch panel connections or media convertors between the source and the destination. If possible, bypass the patch panel, or eliminate faulty media convertors (fiber-optic-to-copper).
- Try the cable in another port or interface, if possible, to see if the problem follows the cable.
- Remove and inspect the stack cable and stack port for bent pins or damaged connectors. If the cable is bad, replace it with a known good cable.

Ethernet and Fiber-Optic Cables

Make sure that you have the correct cable for the connection

- For Ethernet, use Category 3 copper cable for $10 \mathrm{Mb} / \mathrm{s}$ UTP connections. Use either Category 5, Category 5 e , or Category 6 UTP for $10 / 100$ or $10 / 100 / 1000 \mathrm{Mb} / \mathrm{s}$ connections.
- For fiber-optic cables, verify that you have the correct cable for the distance and port type. Make sure that the connected device ports both match and use the same type encoding, optical frequency, and fiber type.
- For copper connections, determine if a crossover cable was used when a straight-through was required or the reverse. Enable auto-MDIX on the switch, or replace the cable. See Table 2-1 for recommended Ethernet cables.

Link Status

Verify that both sides have link. A single broken wire or a shutdown port can cause one side to show link even though the other side does not have link.
A port LED that is on does not guarantee that the cable is fully functional. The cable might have encountered physical stress that causes it to function at a marginal level. If the port LED does not turn on:

- Connect the cable from the switch to a known good device.
- Make sure that both ends of the cable are connected to the correct ports.
- Verify that both devices have power.
- Verify that you are using the correct cable type. See Appendix B, "Connector and Cable Specifications" for information.
- Look for loose connections. Sometimes a cable appears to be seated, but is not. Disconnect the cable and then reconnect it.

10/100 or 10/100/1000 Port Connections

A port appears to malfunction:

- Use the Mode button to show the status for all ports. See Table 1-8 and Table 1-9 for descriptions of the LEDs and their meanings.
- Use the show interfaces privileged EXEC command to see if the port is error-disabled, disabled, or shutdown. Re-enable the port if necessary.

10/100 or 10/100/1000 PoE Port Connections

A powered device connected to PoE port does not receive power:

- Use the Mode button to show the PoE status for all ports. See Table 1-8 and Table 1-9 for descriptions of the LEDs and their meanings.
- Use the show interfaces privileged EXEC command to see if the port is in error-disabled, disabled, or shutdown. Re-enable the port if necessary.
- Verify that the power supply installed in the switch meets the power requirements of your connected devices. See the "10/100 PoE+ Ports" section on page 1-5 and the "10/100/1000 PoE+ Ports" section on page 1-5.
- Verify the cable type. Many legacy powered devices, including older Cisco IP phones and access points that do not fully support IEEE 802.3af, might not support PoE when connected to the switch by a crossover cable. Replace the crossover cable with a straight-through cable.

Noncompliant cabling or powered devices can cause a PoE port fault. Use only standard-compliant cabling to connect Cisco prestandard IP Phones and wireless access points or IEEE 802.3af-compliant devices. You must remove any cable or device that causes a PoE fault.

SFP and SFP+ Module

Use only Cisco SFP or SFP+ modules in the switch. Each Cisco module has an internal serial EEPROM that is encoded with security information. This encoding provides a way for Cisco to identify and validate that the module meets the requirements for the switch.

- Inspect the SFP module. Exchange the suspect module with a known good module. Verify that the module is supported on this platform. (The switch release notes on Cisco.com list the SFP modules that the switch supports.)
- Use the show interfaces privileged EXEC command to see if the port or module is error-disabled, disabled, or shutdown. Re-enable the port if needed.
- Make sure that all fiber-optic connections are properly cleaned and securely connected.

Interface Settings

Verify that the interface is not disabled or powered off. If an interface is manually shut down on either side of the link, it does not come up until you re-enable the interface. Use the show interfaces privileged EXEC command to see if the interface is error-disabled, disabled, or shutdown on either side of the connection. If needed, re-enable the interface.

Ping End Device

Ping from the directly connected switch first, and then work your way back port by port, interface by interface, trunk by trunk, until you find the source of the connectivity issue. Make sure that each switch can identify the end device MAC address in its Content-Addressable Memory (CAM) table.

Spanning Tree Loops

STP loops can cause serious performance issues that look like port or interface problems.
A unidirectional link can cause loops. It occurs when the traffic sent by the switch is received by its neighbor, but the traffic from the neighbor is not received by the switch. A broken fiber-optic cable, other cabling problems, or a port issue could cause this one-way communication.
You can enable UniDirectional Link Detection (UDLD) on the switch to help identify unidirectional link problems. For information about enabling UDLD on the switch, see the "Understanding UDLD" section in the switch software configuration guide on Cisco.com.

Switch Performance

Speed, Duplex, and Autonegotiation

If the port statistics show a large amount of alignment errors, frame check sequence (FCS), or late-collisions errors, this might mean a speed or duplex mismatch.
A common issue with speed and duplex occurs when duplex and speed settings are mismatched between two switches, between a switch and a router, or between the switch and a workstation or server. Mismatches can happen when manually setting the speed and duplex or from autonegotiation issues between the two devices.
To maximize switch performance and to ensure a link, follow one of these guidelines when changing the duplex or the speed settings.

- Let both ports autonegotiate both speed and duplex.
- Manually set the speed and duplex parameters for the interfaces on both ends of the connection.
- If a remote device does not autonegotiate, use the same duplex settings on the two ports. The speed parameter adjusts itself even if the connected port does not autonegotiate.

Autonegotiation and Network Interface Cards

Problems sometimes occur between the switch and third-party network interface cards (NICs). By default, the switch ports and interfaces autonegotiate. Laptops or other devices are commonly set to autonegotiate, yet sometimes autonegotiation issues occur.
To troubleshoot autonegotiation problems, try manually setting both sides of the connection. If this does not solve the problem, there could be a problem with the firmware or software on your NIC. You can resolve this by upgrading the NIC driver to the latest version.

Cabling Distance

If the port statistics show excessive FCS, late-collision, or alignment errors, verify that the cable distance from the switch to the connected device meets the recommended guidelines. See the "Cables and Adapters" section on page B-3.

Clearing the Switch IP Address and Configuration

If you have configured a new switch with a wrong IP address, or if all of the switch LEDs start blinking when you are trying to enter Express Setup mode, you can clear the configured IP address. The switch returns to the factory default settings.

This procedure clears the IP address and all configuration information stored on the switch. Do not follow this procedure unless you want to completely reconfigure the switch.

1. Press and hold the Mode button (Figure 1-1 on page 1-2).
2. The switch LEDs blink after about 2 seconds. If the switch is not configured, the LEDs above the Mode button turn green. You can omit the next step.
3. Continue holding down the Mode button. The LEDs stop blinking after 8 seconds, and then the switch reboots.

You can now configure the switch by using Express Setup as described in the switch getting started guide.
You can also configure the switch by using the CLI setup procedure described in the "Configuring the Switch with the CLI-Based Setup Program" appendix.

Finding the Switch Serial Number

If you contact Cisco Technical Assistance, you need to know the switch serial number. Figure 3-1 and Figure 3-2 show the serial number locations. Figure 3-6 shows the FlexStack module serial number location. You can also use the show version privileged EXEC command to see the switch serial number.

Figure 3-1 Serial Number Location for the Catalyst 2960S-48FPD-L, 2960S-48LPD-L, 2960S-24PD-L,2960S-48FPS-L, 2960S-48LPS-L, and 2960S-24PS-L Switches

Figure 3-2 Serial Number Location for the Catalyst 2960S-48TD-L, 2960S-24TD-L, 2960S-48TS-L, 2960S-24TS-L, 2960S-48TS-S, and 2960S-24TS-S Switches

Figure 3-3 Serial Number Location for the Catalyst 2960S-F48FPS-L, 2960S-F48LPS-L, and 2960S-F24PS-L Switches

Figure 3-4
Serial Number Location for the Catalyst 2960S-F48TS-L and 2960S-F24TS-L Switches

Figure 3-5

Figure 3-6

Figure 3-7 Serial Number Location for the C2960S-F-STACK Module

Replacing a Failed Stack Member

1. Get a replacement switch that has the same model number as the failed switch.
2. Power down the failed switch.
3. Make sure that the replacement switch is off and that the FlexStack module is installed.
4. Connect the switch to the stack.
5. Make the same connections on the replacement switch that were on the failed switch.
6. Reinstall any modules, and make cable connections.
7. Power on the replacement switch.

The replacement switch has the same configuration for all the interfaces as the failed switch and functions the same as the failed switch.

If you had manually set the member numbers for any stack members, you need to manually assign the replacement switch with the same member number as the failed switch. See the switch software configuration guide on Cisco.com.

APPENDIX

Technical Specifications

Table A-1
Environmental Specifications for All Catalyst 2960-S Switches

Environmental Ranges	
Operating temperature	23 to $113^{\circ} \mathrm{F}\left(-5\right.$ to $\left.45^{\circ} \mathrm{C}\right)$ up to $5,000 \mathrm{ft}(1500 \mathrm{~m})$ 23 to $104^{\circ} \mathrm{F}\left(-5\right.$ to $\left.40^{\circ} \mathrm{C}\right)$ up to $10,000 \mathrm{ft}(3000 \mathrm{~m})$
Storage temperature	-13 to $158^{\circ} \mathrm{F}\left(-25\right.$ to $\left.70^{\circ} \mathrm{C}\right)$
Relative humidity	10 to 85% (noncondensing)
Storage altitude	Up to $15,000 \mathrm{ft}(4573 \mathrm{~m})$

Table A-2 Catalyst 2960S-48FPD-L, 2960S-48LPD-L, 2960S-24PD-L, 2960S-48FPS-L, 2960S-F48FPS-L, 2960S-48LPS-L, 2960S-F48LPS-L, 2960S-24PS-L, and 2960S-F24PS-L Switch Specifications

Power Requirements	
AC input voltage	100 to 240 VAC (autoranging) 9 to $4 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48FPD-L) 5 to $2 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48LPD-L) 5 to $2 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-24PD-L) 9 to $4 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48FPS-L) 9 to $4 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F48FPS-L) 5 to $2 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48LPS-L) 5 to 2 A, 50 to 60 Hz (Catalyst 2960S-F48LPS-L) 5 to $2 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-24PS-L) 5 to $2 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F24PS-L)
DC input voltage for RPS 2300	
Power consumption ${ }^{1}$	129 W, 440 BTUs per hour (Catalyst 2960S-48FPD-L) 100 W, 341 BTUs per hour (Catalyst 2960S-48LPD-L) 84 W, 286 BTUs per hour (Catalyst 2960S-24PD-L) 131 W, 447 BTUs per hour (Catalyst 2960S-48FPS-L) 61 W, 208 BTUs per hour (Catalyst 2960S-F48FPS-L) 100 W, 341 BTUs per hour (Catalyst 2960S-48LPS-L) 54 W, 184 BTUs per hour (Catalyst 2960S-F48LPS-L) 84 W, 286 BTUs per hour (Catalyst 2960S-24PS-L) 47 W, 160 BTUs per hour (Catalyst 2960S-F24PS-L)
Power rating ${ }^{2}$	$\begin{aligned} & \text { 0.89 KVA (Catalyst 2960S-48FPD-L) } \\ & \text { 0.48 KVA (Catalyst 2960S-48LPD-L) } \\ & \text { 0.46 KVA (Catalyst 2960S-24PD-L) } \\ & 0.89 \text { KVA (Catalyst 2960S-48FPS-L) } \\ & \text { 0.89 KVA (Catalyst 2960S-F48FPS-L) } \\ & \text { 0.48 KVA (Catalyst 2960S-48LPS-L) } \\ & \text { 0.48 KVA (Catalyst 2960S-F48LPS-L) } \\ & \text { 0.46 KVA (Catalyst 2960S-24PS-L) } \\ & \text { 0.46 KVA (Catalyst 2960S-F24PS-L) } \end{aligned}$
PoE+	
30 W-per-port maximum, 740-W switch maximum (Catalyst 2960S-48FPD-L, 2960S-48FPS-L, and 2960S-F48FPS-L switches) 15.4 W-per-port maximum, 370-W switch maximum (Catalyst 2960S-48LPD-L, 2960S-24PD-L, 2960S-48LPS-L, 2960S-F48LPS-L, 2960S-24PS-L, and 2960S-F24PS-L switches)	

Table A-2 Catalyst 2960S-48FPD-L, 2960S-48LPD-L, 2960S-24PD-L, 2960S-48FPS-L, 2960S-F48FPS-L, 2960S-48LPS-L, 2960S-F48LPS-L, 2960S-24PS-L, and 2960S-F24PS-L Switch Specifications

Physical Dimensions	
Weight	$13 \mathrm{lb}(5.89 \mathrm{~kg})($ Catalyst 2960S-48FPD-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-48LPD-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-24PD-L)
	$13 \mathrm{lb}(5.89 \mathrm{~kg})($ Catalyst 2960S-48FPS-L)
	$13 \mathrm{lb}(5.89 \mathrm{~kg})($ Catalyst 2960S-F48FPS-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-48LPS-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-F48LPS-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-24PS-L)
	$12.5 \mathrm{lb}(5.66 \mathrm{~kg})$ (Catalyst 2960S-F24PS-L)
Dimensions (H x D x W)	$1.75 \times 15.19 \times 17.5$ in. (4.45 x $38.6 \times 44.5 \mathrm{~cm})$. Applies to all PoE
	switches.

1. Power consumption values for the power consumed internally by the switch at 120 VAC 60 Hz .
2. Power rating values for the switch input power.

Table A-3 Catalyst 2960S-48TD-L, 2960S-24TD-L, 2960S-48TS-L, 2960S-F48TS-L, 2960S-24TS-L, 2960S-F24TS-L, 2960S-48TS-S, 2960S-F48TS-S, 2960S-24TS-S, and 2960S-F24TS-S Switch Specifications

Power Requirements	
AC input voltage	100 to 240 VAC (autoranging) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48TD-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-24TD-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48TS-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F48TS-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-24TS-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F24TS-L) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-48TS-S) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F48TS-S) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-24TS-S) 1 to $0.5 \mathrm{~A}, 50$ to 60 Hz (Catalyst 2960S-F24TS-S)
DC input voltage for RPS 2300	
Power consumption ${ }^{1}$	$55 \mathrm{~W}, 188$ BTUs per hour (Catalyst 2960S-48TD-L) 40 W, 136 BTUs per hour (Catalyst 2960S-24TD-L) $52 \mathrm{~W}, 177$ BTUs per hour (Catalyst 2960S-48TS-L) 35 W, 119 BTUs per hour (Catalyst 2960S-F48TS-L) 40 W, 136 BTUs per hour (Catalyst 2960S-24TS-L) 27 W, 92 BTUs per hour (Catalyst 2960S-F24TS-L) 53 W, 181 BTUs per hour (Catalyst 2960S-48TS-S) 35 W, 119 BTUs per hour (Catalyst 2960S-F48TS-S) 36 W, 123 BTUs per hour (Catalyst 2960S-24TS-S) 27 W, 92 BTUs per hour (Catalyst 2960S-F24TS-S)
Power rating ${ }^{2}$	$\begin{aligned} & \text { 0.09 KVA (Catalyst 2960S-48TD-L) } \\ & 0.09 \text { KVA (Catalyst 2960S-24TD-L) } \\ & 0.13 \text { KVA (Catalyst 2960S-48TS-L) } \\ & 0.13 \text { KVA (Catalyst 2960S-F48TS-L) } \\ & 0.09 \text { KVA (Catalyst 2960S-24TS-L) } \\ & 0.09 \text { KVA (Catalyst 2960S-F24TS-L) } \\ & 0.10 \text { KVA (Catalyst 2960S-48TS-S) } \\ & 0.10 \text { KVA (Catalyst 2960S-F48TS-S) } \\ & 0.08 \text { KVA (Catalyst 2960S-24TS-S) } \\ & 0.08 \text { KVA (Catalyst 2960S-F24TS-S) } \end{aligned}$

Table A-3 Catalyst 2960S-48TD-L, 2960S-24TD-L, 2960S-48TS-L, 2960S-F48TS-L, 2960S-24TS-L, 2960S-F24TS-L, 2960S-48TS-S, 2960S-F48TS-S, 2960S-24TS-S, and 2960S-F24TS-S Switch Specifications (continued)

Physical Dimensions	
Weight	$9.5 \mathrm{lb}(4.30 \mathrm{~kg})$ (Catalyst 2960S-48TD-L, Catalyst 2960S-24TD-L, 2960S-48TS-S, and 2960S-F48TS-S) $10.5 \mathrm{lb}(4.76 \mathrm{~kg})$ (Catalyst 2960S-48TS-L and 2960S-F48TS-L) $10 \mathrm{lb}(4.53 \mathrm{~kg})$ (Catalyst 2960S-24TS-L, 2960S-F24TS-L, 2960S-24TS-S, and 2960S-F24TS-S)
Dimensions (Hx D x W)	- Catalyst 2960S-48TD-L, 2960S-24TD-L, 2960S-48TS-L, 2960S-24TS-L, 2960S-48TS-S, 2960S-24TS-S models: $1.75 \times 11.77 \times 17.50 \mathrm{in} .(4.45 \times 29.9 \times 44.5 \mathrm{~cm})$ - Catalyst 2960S-F48TS-L, 2960S-F24TS-L, 2960S-F48TS-S, and 2960S-F24TS-S models: $1.75 \times 12.37 \times 17.50$ in. ($4.45 \times 31.4 \times 44.5 \mathrm{~cm}$)

[^4]

APPENDIX
B

Connector and Cable Specifications

Connector Specifications

- 10/100 Ports (Including PoE), page B-1
- 10/100/1000 Ports (Including PoE), page B-2
- SFP Module Connectors, page B-2

10/100 Ports (Including PoE)

All the 10/100 ports use standard RJ-45 connectors and Ethernet pinouts.

Figure B-1 10/100 Port Pinouts

Pin	Label	12345678
1	RD+	
2	RD-	
3	TD+	
4	NC	
5	NC	
6	TD-	
7	NC	
8	NC	

10/100/1000 Ports (Including PoE)

All the $10 / 100 / 1000$ ports use standard RJ-45 connectors and Ethernet pinouts.

Figure B-2 10/100/1000 Port Pinouts

Pin	Label	12345678
1	TP0+	
2	TP0-	
3	TP1+	
4	TP2+	
5	TP2-	
6	TP1-	
7	TP3+	
8	TP3-	

SFP Module Connectors

Figure B-3 Duplex LC Cable Connector

Figure B-4
Simplex LC Cable Connector

Figure B-5 Copper SFP Module RJ-45 Connector

Pin	Label	12345678
1	TP0+	
2	TPO-	
3	TP1+	\geqslant,
4	TP2+	
5	TP2-	
6	TP1-	
7	TP3+	
8	TP3-	

Cables and Adapters

- SFP Module Cables, page B-3
- Cable Pinouts, page B-5
- Console Port Adapter Pinouts, page B-6

SFP Module Cables

Each port must match the wave-length specifications on the other end of the cable, and the cable must not exceed the stipulated cable length. Copper 1000BASE-T SFP module transceivers use standard four twisted-pair, Category 5 cable at lengths up to 328 feet (100 meters).

Table B-1
Fiber-Optic SFP Module Port Cabling Specifications

	Wavelength (nanometers)	Cable Type	Core Size/Cladding Size (micron)	Modal Bandwidth (MHz/km)	Cable Distance

Table B-1
Fiber-Optic SFP Module Port Cabling Specifications (continued)

| | Wavelength
 (nanometers) | Cable Type | Core
 Size/Cladding
 Size (micron) | Modal
 Bandwidth
 (MHz/km) | Cable Distance |
| :--- | :--- | :--- | :--- | :--- | :--- | | SFP Module |
| :--- |

1. Modal bandwidth applies only to multimode fiber.
2. A mode-field diameter/cladding diameter $=9$ micrometers $/ 125$ micrometers.
3. A mode-conditioning patch cord is required. Using an ordinary patch cord with MMF, or 1000BASE-LX/LH SFP modules and a short link distance can cause transceiver saturation, and an elevated bit error rate (BER). When using the LX/LH SFP module with 62.5-micron diameter MMF, you must also install a mode-conditioning patch cord between the SFP module and the MMF cable on both the sending and receiving ends of the link. The mode-conditioning patch cord is required for link distances greater than 984 feet (300 m).
4. 1000BASE-ZX SFP modules can send data up to 62 miles (100 km) by using dispersion-shifted SMF or low-attenuation SMF; the distance depends on the fiber quality, the number of splices, and the connectors.

Cable Pinouts

Figure B-6 Four Twisted-Pair Straight-Through Cable Schematic

Figure B-7 Four Twisted-Pair Crossover Cable Schematic
Switch Switch
$\begin{array}{ll}1 & \mathrm{TPO}+ \\ 2 & \mathrm{TPO}- \\ 3 & \mathrm{TP} 1+ \\ 6 & \mathrm{TP} 1- \\ \longrightarrow\end{array}$

Figure B-8 Two Twisted-Pair Straight-Through Cable Schematic

Switch	Router or PC
3 TD+	$\rightarrow 3 \mathrm{RD}+$
6 TD-	$\rightarrow 6 \mathrm{RD}-$
1 RD+	1 TD+
2 RD-	- 2 TD-

Figure B-9 Two Twisted-Pair Crossover Cable Schematic

Figure B-10 Identifying a Crossover Cable

Console Port Adapter Pinouts

The RS-232 console port uses an 8-pin RJ-45 connector. Use an RJ-45-to-DB-9 adapter cable to connect the switch console port to a console PC. You need to provide a RJ-45-to-DB-25 female DTE adapter to connect the switch console port to a terminal. You can order the kit (part number ACS-DSBUASYN=) from Cisco.

Table B-2 Console Port Signaling with a DB-9 Adapter

Switch Console Port (DTE)	RJ-45-to-DB-9 Terminal Adapter	Console Device
Signal	DB-9 Pin	Signal
RTS	8	CTS
DTR	6	DSR
TxD	2	RxD
GND	5	GND
GND	5	GND
RxD	3	TxD
DSR	4	DTR
CTS	7	RTS

Table B-3 Console Port Signaling with a DB-25 Adapter

Switch Console Port (DTE)	RJ-45-to-DB-25 Terminal Adapter	Console Device
Signal	DB-25 Pin	Signal
RTS	5	CTS
DTR	6	DSR
TxD	3	RxD
GND	7	GND
GND	7	GND
RxD	2	TxD
DSR	20	DTR
CTS	4	RTS

APPENDIX

Configuring the Switch with the CLI-Based Setup Program

This appendix provides a CLI-based setup procedure for a Catalyst 2960-S standalone switch or a switch stack. Before you turn on the switch power, review the safety warnings in Chapter 2, "Switch Installation."

Accessing the CLI Through Express Setup

You can access the CLI on an unconfigured switch. Set the switch in Express Setup mode and connect a switch Ethernet port to an Ethernet port on your PC or workstation. Follow the steps described in the getting started guide for turning on the switch and using Express Setup.
When the switch is in Express Setup mode, open a Telnet session to the switch by entering the IP address 10.0.0.1. Enter the setup user EXEC command. Enter the information described in the "IP Settings" section on page C-6 and the "Completing the Setup Program" section on page C-6.

After you have entered the configuration information for the switch, save it to flash memory by using the write memory privileged EXEC command.

Note In Express Setup mode, the IP address 10.0.0.1 remains active on the switch until you enter the write memory command. You lose the Telnet connection after entering the write memory command.

For information about using the CLI, see the switch command reference for this release.

Accessing the CLI Through the Console Port

You can access the CLI on a configured or unconfigured switch by connecting the RJ-45 console port or USB console port of the switch to your PC or workstation and accessing the switch through a terminal emulation program.

If you have stacked your switches, connect to the console port of one of the switches in the stack. You can initially configure the entire stack from any member switch.

Connecting the RJ-45 Console Port or USB Console Port

Step 1 If you are connecting the switch USB console port to a Windows-based PC for the first time, install the USB driver according to these instructions. See Figure C-1.

- "Installing the Cisco Microsoft Windows XP USB Driver" section on page C-3
- "Installing the Cisco Microsoft Windows 2000 USB Driver" section on page C-4
- "Installing the Cisco Microsoft Windows Vista USB Driver" section on page C-4

If you do not want to use the switch USB console port, you can use an RJ-45-to-DB-9 adapter cable to connect the switch RJ-45 console port to a PC or terminal port.

Figure C-1 Connecting the USB Console Cable to the Catalyst 2960-S Switch

$\mathbf{1}$	USB console port (5-pin mini-Type B)
$\mathbf{2}$	USB Type A to 5-pin mini-Type B cable
$\mathbf{3}$	USB Type A connection on laptop

Step 2 Start the terminal-emulation program on the PC or the terminal. The program, frequently a PC application such as HyperTerminal or ProcommPlus, makes communication between the switch and your PC or terminal possible.

Step 3 Configure the baud rate and character format of the PC or terminal to match the console port default characteristics:

- 9600 baud
- 8 data bits
- 1 stop bit
- No parity
- None (flow control)

Step 4 Power on the switch as described in the switch getting started guide.
Step 5 The PC or terminal displays the bootloader sequence. Press Enter to display the setup prompt. Follow the steps in the "Completing the Setup Program" section on page C-6.

Installing the Cisco Microsoft Windows USB Device Driver

A USB device driver must be installed the first time a Microsoft Windows-based PC is connected to the switch USB console port.

Installing the Cisco Microsoft Windows XP USB Driver

Step 1 Obtain the file Cisco_usbconsole_driver.zip from the Cisco.com web site and unzip it.

Note You can download the driver file from the Cisco.com site where you download the switch software.

Step 2 If using 32-bit Windows XP, double-click the file setup.exe from the Windows_32 folder. If using 64-bit Windows XP, double-click the file setup(x64).exe from the Windows_64 folder.
Step 3 The Cisco Virtual Com InstallShield Wizard begins.
Step 4 The Ready to Install the Program window appears, Click Install.
Step 5 The InstallShield Wizard Completed window appears. Click Finish.
Step 6 Connect the USB cable to the PC and switch console port. The LED for the USB console port turns green (see Table 1-10), and within a few seconds a series of Found New Hardware Wizard windows appear. Follow the instructions to complete the driver installation.

The USB console is ready for use.

Installing the Cisco Microsoft Windows 2000 USB Driver

Step 1 Obtain the file Cisco_usbconsole_driver.zip from the Cisco.com web site and unzip it.

Note You can download the driver file from the Cisco.com site where you download the switch software.

Step 2 Double-click the file setup.exe.
Step 3 The Cisco Virtual Com InstallShield Wizard begins. Click Next.
Step 4 The Ready to Install the Program window appears, Click Install.
Step 5 The InstallShield Wizard Completed window appears. Click Finish.
Step 6 Connect the USB cable to the PC and switch console port. The LED for the USB console port turns green (see Table 1-10), and within a few seconds a series of Found New Hardware Wizard windows appear. Follow the instructions to complete the driver installation.

The USB console is ready for use.

Installing the Cisco Microsoft Windows Vista USB Driver

Step 1 Obtain the file Cisco_usbconsole_driver.zip from the Cisco.com web site and unzip it.

Note You can download the driver file from the Cisco.com site where you download the switch software.

Step 2 If using 32-bit Windows Vista, double-click the file setup.exe from the Windows_ 32 folder. If using 64-bit Windows Vista, double-click the file setup(x64).exe from the Windows_64 folder.
Step 3 The Cisco Virtual Com InstallShield Wizard begins. Click Next.
Step 4 The Ready to Install the Program window appears, Click Install.

Note If a User Account Control warning appears, click "Allow - I trust this program..." to proceed.
Step 5 The InstallShield Wizard Completed window appears. Click Finish.
Step 6 Connect the USB cable to the PC and the switch console port. The LED for the USB console port turns green (see Table 1-10), and within a few seconds a series of Found New Hardware Wizard windows appear. Follow the instructions to complete the driver installation.
The USB console is ready for use.

Uninstalling the Cisco Microsoft Windows USB Driver
 Uninstalling the Cisco Microsoft Windows XP and 2000 USB Driver

The driver can be removed using the Windows Add or Remove Programs utility or the setup.exe program.

Using the Add or Remove Programs Utility

Note Disconnect the switch console terminal before uninstalling the driver.

Step 1 Click Start > Control Panel > Add or Remove Programs.
Step 2 Scroll to Cisco Virtual Com and click Remove.
Step 3 When the Program Maintenance window appears, select the Remove radio button. Click Next.

Using the Setup.exe Program

Note Disconnect the switch console terminal before uninstalling the driver.

Step 1 Run setup.exe for Windows 32-bit or setup(x64).exe for Windows-64bit. Click Next.
Step 2 The InstallShield Wizard for Cisco Virtual Com appears. Click Next.
Step 3 When the Program Maintenance window appears, select the Remove radio button. Click Next.
Step 4 When the Remove the Program window appears, click Remove.
Step 5 When the InstallShield Wizard Completed window appears, click Finish.

Uninstalling the Cisco Microsoft Windows Vista USB Driver

Note Disconnect the switch console terminal before uninstalling the driver.

Step 1 Run the setup.exe for Windows 32-bit or setup(x64).exe for Windows-64bit. Click Next.
Step 2 The InstallShield Wizard for Cisco Virtual Com appears. Click Next.
Step 3 When the Program Maintenance window appears, select the Remove radio button. Click Next.
Step 4 When the Remove the Program window appears, click Remove.
Step 5 If a User Account Control warning appears, click "Allow - I trust this program..." to proceed.
Step 6 When the InstallShield Wizard Completed window appears, click Finish.

Entering the Initial Configuration Information

To set up the switch, you need to complete the setup program, which runs automatically after the switch is powered on. You must assign an IP address and other configuration information necessary for the switch to communicate with the local routers and the Internet. This information is also needed to use the device manager or Cisco Network Assistant to configure and manage the switch.

IP Settings

Obtain this information from your network administrator before you start the setup program:

- Switch IP address
- Subnet mask (IP netmask)
- Default gateway (router)
- Enable secret password
- Enable password
- Telnet password

Completing the Setup Program

If your switches are stacked and there are multiple console connections to individual switches in the stack, the initial setup dialog appears at the console where you first press Enter.

Step 1 Enter Yes at these two prompts.

```
Would you like to enter the initial configuration dialog? [yes/no]: yes
At any point you may enter a question mark '?' for help.
Use ctrl-c to abort configuration dialog at any prompt.
Default settings are in square brackets '[]'.
Basic management setup configures only enough connectivity
for management of the system, extended setup will ask you
to configure each interface on the system.
Would you like to enter basic management setup? [yes/no]: yes
```

Step 2 Enter a host name for the switch, and press Return.
On a command switch, the host name is limited to 28 characters; on a member switch to 31 characters. Do not use $-n$, where n is a number, as the last character in a host name for any switch.

Enter host name [Switch]: host_name
Step 3 Enter an enable secret password, and press Return.
The password can be from 1 to 25 alphanumeric characters, can start with a number, is case sensitive, allows spaces, but ignores leading spaces. The secret password is encrypted, and the enable password is in plain text.

```
Enter enable secret: secret_password
```

Step 4 Enter an enable password, and press Return.
Enter enable password: enable_password
Step 5 Enter a virtual terminal (Telnet) password, and press Return.
The password can be from 1 to 25 alphanumeric characters, is case sensitive, allows spaces, but ignores leading spaces.

```
Enter virtual terminal password: terminal-password
```

Step 6 (Optional) Configure Simple Network Management Protocol (SNMP) by responding to the prompts. You can also configure SNMP later through the CLI, the device manager, or the Network Assistant application. To configure SNMP later, enter no.

Configure SNMP Network Management? [no]: no
Step 7 Enter the interface name (physical interface or VLAN name) of the connection to the management network, and press Return. For this release, always use vlan1 as that interface.

```
Enter interface name used to connect to the
management network from the above interface summary: vlan1
```

Step 8 Configure the interface by entering the switch IP address and subnet mask and pressing Return. The IP address and subnet masks shown are examples.

```
Configuring interface vlan1:
Configure IP on this interface? [yes]: yes
IP address for this interface: 10.4.120.106
Subnet mask for this interface [255.0.0.0]: 255.0.0.0
```

Step 9 Enter \mathbf{Y} to configure the switch as the cluster command switch. Enter \mathbf{N} to configure it as a member switch or as a standalone switch.

If you enter \mathbf{N}, the switch appears as a candidate switch in the Network Assistant GUI. You can configure the switch as a command switch later through the CLI, the device manager, or the Network Assistant application. To configure it later, enter no.

```
Would you like to enable as a cluster command switch? [yes/no]: no
```

You have now completed the initial configuration of the switch and the switch. This is an example of the configuration output that appears:

```
The following configuration command script was created:
hostname switch1
enable secret 5 $1$Ulq8$DlA/OiaEbl90WcBPd9cOn1
enable password enable_password
line vty 0 15
password terminal-password
no snmp-server
!
no ip routing
!
interface Vlan1
no shutdown
ip address 10.4.120.106 255.0.0.0
!
interface GigabitEthernet1/0/1
!
interface GigabitEthernet1/0/2
interface GigabitEthernet1/0/3
!
...<output abbreviated>
```

!
interface GigabitEthernet1/0/23
!
end
Step 10 These choices appear:
[0] Go to the IOS command prompt without saving this config.
[1] Return back to the setup without saving this config.
[2] Save this configuration to nvram and exit.
Choose (2) to save the configuration to NVRAM to use it the next time the switch reboots.

Enter your selection [2]:2
Make your selection, and press Return.

The switch now runs this default configuration. If you want to change this configuration or perform other management tasks, see the "Management Options" section on page 1-20.

INDEX

Numerics

10/100/1000 PoE ports
numbering 1-3,1-4
pinouts B-2
recommended cables 2-25
10/100/1000 ports
cabling 1-6
connecting to $\mathbf{2 - 2 6}$
numbering 1-2
overview 1-6
10/100 and 10/100/1000 PoE+ Port Connections 2-24
10/100 and 10/100/1000 Port Connections 2-26
10/100 Ports (Including PoE) B-1
19- and 24 -inch racks 2-13

A

AC power
connecting to 2-5
adapter pinouts, terminal
RJ-45-to-DB-25 B-7
RJ-45-to-DB-9 B-6
attaching the Cisco RPS warning 1-19, 2-2, 2-5
auto-MDIX 2-23
autonegotiation
default setting 2-25
troubleshooting 3-4

B

brackets
See mounting brackets

C
cable guide, attaching 2-13
cables
crossover
four twisted-pair pinout B-5
two twisted-pair pinout B-5
recommended 2-25
SFP modules
1000BASE-T module 2-23
stack cable part numbers $\quad \mathbf{1 - 1 9}$
straight-through
four twisted-pair pinout B-5
two twisted-pair pinout B-5
cables caution 1-19
cabling
auto-MDIX 2-23
cautions i-vii
PoE faults 1-13
using approved cables 1-19
Cisco IOS command-line interface $\mathbf{1 - 2 0}$
Cisco IP Phones, connecting to 2-25, 2-26
Cisco Network Assistant 1-20
Cisco Power Calculator 2-24
CiscoView 1-20, 1-21
Class 1 laser warning 2-2
CLI 1-20
accessing by using Express Setup C-1
accessing through console port $\mathbf{C - 1}$
code compliance warning 2-3
command-line interface
See CLI
connecting
to SFP and SFP+ modules 2-22 to 2-24

D

```
device manager
    described 1-20
    related documentation i-viii
diagnosing problems 3-1
document conventions i-vii
duplex
    default setting 2-25
    LED 1-12
    troubleshooting 3-4
E
electrical noise, avoiding 2-4
Ethernet and fiber cable troubleshooting 3-2
Ethernet cable warning
    24- and 48-port switches 2-2
ethernet management port LED 1-17
Express Setup
    accessing CLI by using C-1
    for initial switch configuration 2-17
    using to clear switch IP address 3-5
```

 F
 features 1-2 to 1-20

L

LEDs

color meanings $\quad \mathbf{1 - 1 3}$
console 1-16
duplex 1-12
front panel 1-11
interpreting 1-13
master 1-12
PoE 1-13
port 1-12 to 1-15
port mode 1-12 to 1-14
POST results 2-5, 3-1
RPS 1-12
speed 1-13
stack 1-15
STATUS 1-12
system 1-11
troubleshooting with 3-1
link status troubleshooting 3-2
local and national electrical codes compliance 2-3

M

management options 1-20
management ports 1-7
Mode button 1-11
mounting, table or shelf 2-17
mounting brackets
rack-mount 2-13
table- or shelf-mounting 2-17
wall-mounting 2-14

N
network configurations 1-21
noise, electrical 2-4

0

outside connections warning 2-3

P

pinouts

10/100/1000 PoE ports B-2
adapters B-6 to B-7
console port B-7
crossover cable B-6
crossover cables
four twisted-pair B-5
two twisted-pair B-5
RJ-45-to-DB-25 terminal adapter B-7
RJ-45-to-DB-9 terminal adapter B-6
SFP module ports B-2
straight-through cables
four twisted-pair B-5
two twisted-pair B-5
PoE
10/100/1000 PoE
pinouts B-2
recommended cables 2-25
cable lengths 1-5, 1-6
faults caution 1-13
LED 1-13
ports described 1-5, 1-6
power planning tool \quad 2-24
shock hazard warning 2-3, 2-25
troubleshooting 3-3
port LEDs 1-12 to 1-15
port modes
changing 1-11
LEDs 1-12
See also Mode button
ports
10/100/1000 PoE
See also PoE

POST

LEDs 2-5, 3-1
results 2-5
running at power on 2-5
power
AC power outlet $\mathbf{1 - 2 0}$
connecting to 2-5
connectors 1-17
power connection warning 2-2
power cord retainer
installation 2-18 to 2-20
power on 2-5
power-on self test
See POST
Power over Ethernet
See PoE
procedures
connection 2-20 to 2-25
installation 2-10 to 2-17
product disposal warning 2-3
publications, related \mathbf{i}-viii

R

rack-mounting 2-10 to 2-13
rear panel
clearance 2-4
description 1-17 to 1-20
FlexStack ports 1-19
redundant power supply
See RPS
restricted access area warning 2-2
RJ-45 console port B-6
RPS
attachment warning 1-19, 2-2, 2-5
connecting to 2-5
connector 1-19
connector cover warning 2-2,2-15
LED 1-12

S

safety 2-1
serial number location 3-5
servicing equipment warning 2-3
SFP and SFP+ modules
bale-clasp latch removal 2-22
connecting to 2-22 to 2-24
connectors B-2
described 1-8
installation 2-20 to 2-22
supported 1-8
shelf-mounting 2-17
Simple Network Management Protocol
See SNMP
SNMP network management platforms 1-21
software switch management 1-20
specifications A-1
speed
default setting 2-25
troubleshooting 3-4
stacking equipment warning 2-1
stacking powering considerations $\quad \mathbf{2 - 1 0}$
stack ports $\quad \mathbf{1 - 1 9}$
straight-through cable pinout
four twisted-pair B-5
two twisted-pair B-5
SunNet Manager 1-21
switch powering on 2-5
switch stack
guidelines 2-5
planning 2-5
power-on sequence 2-10
system LED 1-11

T

table-mounting 2-17
technical specifications A-1
telco racks 2-13
Telnet, and accessing the CLI 1-20
temperature, operating A-1
troubleshooting
bad or damaged cable 3-2
connection problems 3-2
diagnosing problems 3-1
Ethernet and fiber cables 3-2
link status 3-2
ping end device 3-4
PoE connections 3-3
POST 3-1
serial number location 3-5
spanning tree loops 3-4
speed, duplex, and autonegotiation 3-4
switch performance 3-4
with LEDs 3-1
U
uninstalling the Cisco Microsoft Windows USB driver C-5
USB console port
connecting C-1
installing drivers C-3
overview 1-7
USB Type A interface 1-8
W
wall-mounting 2-14
warnings
attaching the Cisco RPS 1-19, 2-2, 2-5
Class 1 laser 2-2
code compliance 2-3
connecting outside of building 2-3
connecting the power 2-2
defined i-vii
disposal of product 2-3
Ethernet cables 2-2
ground connection 2-2
installation 2-1
PoE shock hazard 2-3, 2-25
restricted access area 2-2
RPS connector cover 2-2, 2-15
servicing equipment 2-3
stacking equipment 2-1
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

 - This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
 - When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
 - If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. Statement 1006

[^1]: To prevent bodily injury when mounting or servicing this unit in a rack, you must take special precautions to ensure that the system remains stable. The following guidelines are provided to ensure your safety:

 - This unit should be mounted at the bottom of the rack if it is the only unit in the rack.
 - When mounting this unit in a partially filled rack, load the rack from the bottom to the top with the heaviest component at the bottom of the rack.
 - If the rack is provided with stabilizing devices, install the stabilizers before mounting or servicing the unit in the rack. Statement 1006

[^2]: 1 Phillips truss-head screws (48-0656-01)

[^3]: 1
 RJ-45 connector

[^4]: 1. Power consumption values for the power consumed internally by the switch at 120 VAC 60 Hz .
 2. Power rating values for the switch input power.
