Compaq

Technical Reference Guide

For the

Compaq iPAQ Internet Device

This hardcopy is designed to be placed into a standard 3-ring binder. Provided below is a title block that can be copied and cut out and placed into the slip or taped onto the edge of the binder.

COMPAQ. iPAQ Internet Device

TRG

Reader Feedback

Please feel free to send any questions, suggestions, corrections, or comments regarding this document please to the following email address:

Desktop.training.feedback@Compaq.com

When responding, please state the title of the referenced document.

NOTICE

The information in this document is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. IT IS THE RESPONSIBILITY OF MANUFACTURERS TO ENSURE THAT DEVICES DESIGNED TO BE USED WITH COMPAQ PRODUCTS COMPLY WITH FCC CLASS B EMISSIONS REQUIREMENTS.

This guide contains information protected by copyright. Except for use as a reference for the described Compaq product, no part of this document may be photocopied or reproduced in any form without prior written consent from Compaq Computer Corporation.

©2000 Compaq Computer Corporation All rights reserved.

Compaq and the Compaq logo are registered in the U.S. Patent and Trademark Office. iPAQ is a trademark of Compaq Information Technologies Group, L.P.

Microsoft, Windows, Windows NT, and other names of Microsoft products referenced herein are trademarks or registered trademarks of Microsoft Corporation.

Intel and Pentium are registered trademarks of Intel Corporation. Celeron and MMX are trademarks of Intel Corporation.

Product names mentioned in this document may be trademarks and/or registered trademarks of other companies.

For more information regarding specifications and Compaq-specific parts please contact Compaq Computer Corporation at <u>http://www.compaq.com</u>.

Technical Reference Guide For the **Compag iPAQ Internet Device**

First Edition – March 2000 Document Number 127M-0300A-WWEN

i

TABLE OF CONTENTS

CHAPTER	1 INTRODUCTION	•••••
1.1 AB	BOUT THIS GUIDE	
1.1.1	USING THIS GUIDE	
1.1.2	ADDITIONAL INFORMATION SOURCES	
MODEL N	NUMBERING CONVENTION	
1.3 NC	DTATIONAL CONVENTIONS	
1.3.1	VALUES	
1.3.2	RANGES	
1.3.3	SIGNAL LABELS	
1.3.4	REGISTER NOTATION AND USAGE	
1.3.5	BIT NOTATION	
1.4 CC	OMMON ACRONYMS AND ABBREVIATIONS	

CHAPTER 2	2 SYSTEM OVERVIEW	•••••
2.1 IN	FRODUCTION	
2.2 FE	ATURES AND OPTIONS	
2.2.1	STANDARD FEATURES	
2.2.2	OPTIONS	
2.3 ME	ECHANICAL DESIGN	
2.3.1	CABINET LAYOUTS	
2.3.2	CHASSIS LAYOUT	
2.3.3	SYSTEM BOARD LAYOUTS	
2.4 SY	STEM ARCHITECTURE	
2.4.1	PROCESSORS	
2.4.2	CHIPSET	
2.4.3	SUPPORT COMPONENTS	
2.4.4	SYSTEM MEMORY	
2.4.5	MASS STORAGE	
2.4.6	SERIAL AND PARALLEL INTERFACES	
2.4.7	UNIVERSAL SERIAL BUS INTERFACE	
2.4.8	GRAPHICS SUBSYSTEM	
2.4.9	AUDIO SUBSYSTEM	
2.5 SPI	ECIFICATIONS	

CHAPTER 3 PROCESSOR/MEMORY SUBSYSTEM	•••••
3.1 INTRODUCTION	
3.2 PROCESSOR	
3.2.1 CELERON PROCESSOR	
3.2.2 PENTIUM III PROCESSOR	
3.2.3 PROCESSOR UPGRADING	
3.3 MEMORY SUBSYSTEM	
3.4 SUBSYSTEM CONFIGURATION	

Compaq iPAQ Family of Internet Devices iii

CHAPTER 4 SYSTEM SUPPORT	
4.1 INTRODUCTION	
4.2 PCI BUS OVERVIEW	
4.2.1 PCI BUS TRANSACTIONS	
4.2.2 PCI INTERRUPT MAPPING	
4.2.3 PCI POWER MANAGEMENT SUPPORT	
4.2.4 PCI SUB-BUSSES	
4.2.5 PCI CONFIGURATION	
4.3 AGP BUS OVERVIEW	
4.3.1 BUS TRANSACTIONS	
4.3.2 AGP CONFIGURATION	
4.4 INTERRUPTS	
4.4.1 MASKABLE INTERRUPTS	
4.4.2 NON-MASKABLE INTERRUPTS	
4.5 INTERVAL TIMER	
4.6 SYSTEM CLOCK DISTRIBUTION	
4.7 REAL-TIME CLOCK AND CONFIGURATION MEMORY	
4.7.1 CMOS ARCHIVE	
4.7.2 STANDARD CMOS LOCATIONS	
4.7.3 CMOS FEATURE BITS	
4.8 SYSTEM MANAGEMENT	
4.8.1 SECURITY FUNCTIONS	
4.8.2 POWER MANAGEMENT	
4.8.3 THERMAL SENSING AND COOLING	
4.9 SYSTEM I/O MAP	

CHAPTER 5 INPUT/OUTPUT INTERFACES

5.1 IN	FRODUCTION	
5.2 EN	HANCED IDE INTERFACE	
5.2.1	IDE PROGRAMMING	
5.2.2	IDE CONNECTOR	
5.3 DI	SKETTE DRIVE INTERFACE	
5.4 SE	RIAL INTERFACE	
5.4.1	RS-232 INTERFACE	
5.4.2	SERIAL TEST INTERFACE	
5.4.3	SERIAL INTERFACE PROGRAMMING	
5.5 PA	RALLEL INTERFACE	
5.5.1	STANDARD PARALLEL PORT MODE	
5.5.2	ENHANCED PARALLEL PORT MODE	
5.5.3	EXTENDED CAPABILITIES PORT MODE	
5.5.4	PARALLEL INTERFACE PROGRAMMING	
5.5.5	PARALLEL INTERFACE CONNECTOR	5-14
5.6 KE	YBOARD/POINTING DEVICE INTERFACE	
5.6.1	KEYBOARD INTERFACE OPERATION	
5.6.2	POINTING DEVICE INTERFACE OPERATION	
5.6.3	KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING	
5.6.4	KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR	

5.7	UNIVERSAL SERIAL BUS INTERFACE	
5.7.1	USB DATA FORMATS	
5.7.2	USB PROGRAMMING	
5.7.3	USB CONNECTOR	
5.7.4	USB CABLE DATA	
5.8	AUDIO SUBSYSTEM	
5.8.1	FUNCTIONAL ANALYSIS	
5.8.2	AC97 AUDIO CONTROLLER	
5.8.3	AC97 LINK BUS	
5.8.4	AUDIO CODEC	
5.8.5	5 AUDIO PROGRAMMING	
5.8.6	AUDIO SPECIFICATIONS	
5.9	NETWORK INTERFACE CONTROLLER	
5.9.1	WAKE ON LAN	
5.9.2	2 ALERT ON LAN	
5.9.3	POWER MANAGEMENT SUPPORT	
5.9.4	NIC PROGRAMMING	

CHAPTER 6 GRAPHICS SUBSYSTEM	••••••
6.1 INTRODUCTION	6-1
6.2 FUNCTIONAL DESCRIPTION	
6.2.1 FEATURE SUMMARY	
6.3 DISPLAY MODES	
6.4 UPGRADING	
6.5 PROGRAMMING	
6.5.1 CONFIGURATION	
6.5.2 CONTROL	
6.6 MONITOR POWER MANAGEMENT CONTROL	
6.7 MONITOR CONNECTOR	

CHAPTER 7 POWER SUPPLY AND DISTRIBUTION.....

7.1 INTRODUCTION	
7.2 POWER SUPPLY ASSEMBLY/CONTROL	
7.2.1 POWER SUPPLY ASSEMBLY	
7.2.2 POWER CONTROL	
7.3 POWER DISTRIBUTION	
7.3.1 3.3/5/12 VDC DISTRIBUTION	7-4
7.3.2 LOW VOLTAGE DISTRIBUTION	7-4
7.4 SIGNAL DISTRIBUTION	7-5

v

CHAPTER 8	BIOS ROM	
8.1 INT	RODUCTION	
	SKTOP MANAGEMENT SUPPORT	
8.2.1	SYSTEM ID	
8.2.2	SYSTEM INFORMATION TABLE	
8.2.3	EDID RETRIEVE	
8.2.4	DRIVE FAULT PREDICTION	8-5
8.2.5	SYSTEM MAP RETRIEVAL	8-6
8.2.6	FLASH ROM FUNCTIONS	
8.2.7	POWER BUTTON FUNCTIONS	
8.2.8	ACCESSING CMOS	
8.2.9	ACCESSING CMOS FEATURE BITS	
8.2.10	SECURITY FUNCTIONS	
	MORY DETECTION AND CONFIGURATION	
8.4 PNI	P SUPPORT	
8.4.1	SMBIOS	
8.5 PO	WER MANAGEMENT FUNCTIONS	8-14
8.5.1	INDEPENDENT PM SUPPORT	
8.5.2	ACPI SUPPORT	
8.5.3	APM 1.2 SUPPORT	8-15
	B LEGACY SUPPORT	
8.7 BIC	OS UPGRADING	8-18

APPENDIX A ERROR MESSAGES AND CODES.....

A 1	NTRODUCTION	A 1
A.1	INTRODUCTION	
A.2	POWER-ON MESSAGES	
A.3	BEEP/KEYBOARD LED CODES	A-1
A.4	POWER-ON SELF TEST (POST) MESSAGES	
A.5	PROCESSOR ERROR MESSAGES (1xx-xx)	A-3
A.6	MEMORY ERROR MESSAGES (2xx-xx)	
A.7	KEYBOARD ERROR MESSAGES (30x-xx)	
A.8	PRINTER ERROR MESSAGES (4xx-xx)	A-5
A.9	VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)	
A.10	DISKETTE DRIVE ERROR MESSAGES (6xx-xx)	A-6
A.11	SERIAL INTERFACE ERROR MESSAGES (11xx-xx)	
A.12	MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)	
A.13	SYSTEM STATUS ERROR MESSAGES (16xx-xx)	A-8
A.14	HARD DRIVE ERROR MESSAGES (17xx-xx)	
A.15	HARD DRIVE ERROR MESSAGES (19xx-xx)	A-9
A.16	VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)	
A.17	AUDIO ERROR MESSAGES (3206-xx)	
A.18	DVD/CD-ROM ERROR MESSAGES (33xx-xx)	
A.19	NETWORK INTERFACE ERROR MESSAGES (60xx-xx)	A-10
A.20	SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)	A-11
A.21	POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)	A-11
A.22	CEMM PRIVILEDGED OPS ERROR MESSAGES	
A.23	CEMM EXCEPTION ERROR MESSAGES	A-12

APPEN	DIX B	ASCII (CHARAC	FER SET	•••••	•••••	•••••	•••••	••••••	•••••
B .1	INTR	ODUCT	ON							B-1

APPEN	DIX C KEYBOARD	
C.1	INTRODUCTION	C-1
C.2	KEYSTROKE PROCESSING	C-2
C.2	.1 PS/2-TYPE KEYBOARD TRANSMISSIONS	C-3
C.2	.2 USB-TYPE KEYBOARD TRANSMISSIONS	C-4
C.2	.3 KEYBOARD LAYOUTS	C-5
C.2	.4 KEYS	C-8
C.2	.5 KEYBOARD COMMANDS	C-11
C.2	.6 SCAN CODES	C-11
C.3	CONNECTORS	C-15

LIST OF FIGURES

FIGURE 2–1.	COMPAQ IPAQ INTERNET DEVICE WITH MONITOR	2-1
	COMPAQ IPAQ INTERNET DEVICE, FRONT VIEW	
	COMPAQ IPAQ INTERNET DEVICE, REAR VIEWS	
	COMPAQ IPAQ INTERNET DEVICE CHASSIS LAYOUT, RIDE SIDE VIEW	
	COMPAQ IPAQ SYSTEM BOARD LAYOUTS	
	Compaq iPAQ Architecture, Block diagram	
	PROCESSOR ASSEMBLY AND MOUNTING	
FIGURE 3–1.	PROCESSOR/MEMORY SUBSYSTEM ARCHITECTURE	3-1
FIGURE 3–2.	CELERON PROCESSOR INTERNAL ARCHITECTURE	3-2
FIGURE 3–3.	PENTIUM III PROCESSOR INTERNAL ARCHITECTURE	3-3
	System Memory Map	
FIGURE 4-1.	PCI BUS DEVICES AND FUNCTIONS	4-2
FIGURE 4-2.	TYPE 0 CONFIGURATION CYCLE	4-4
FIGURE 4-3.	PCI CONFIGURATION SPACE MAP	4-5
FIGURE 4-4.	AGP 1X DATA TRANSFER (PEAK TRANSFER RATE: 266 MB/s)	4-9
	AGP 2X DATA TRANSFER (PEAK TRANSFER RATE: 532 MB/s)	
	MASKABLE INTERRUPT PROCESSING, BLOCK DIAGRAM	
	CONFIGURATION MEMORY MAP.	
FIGURE 5-1.	40-PIN PRIMARY IDE CONNECTOR (ON SYSTEM BOARD)	5-3
	50-PIN SECONDARY IDE CONNECTOR (ON SYSTEM AND DAUGHTER BOARDS)	
	SERIAL INTERFACE CONNECTOR (MALE DB-9 AS VIEWED FROM REAR OF CHASSIS)	
	SERIAL INTERFACE HEADER (ON LEGACY-FREE SYSTEM BOARD)	
	PARALLEL INTERFACE CONNECTOR (FEMALE DB-25 AS VIEWED FROM REAR OF CHASSIS).	
	8042-To-Keyboard Transmission of Code EDH, Timing Diagram	
	KEYBOARD OR POINTING DEVICE INTERFACE CONNECTOR	
	USB I/F, BLOCK DIAGRAM	
	USB PACKET FORMATS	
FIGURE 5-10.	. UNIVERSAL SERIAL BUS CONNECTOR	5-25
	. AUDIO SUBSYSTEM FUNCTIONAL BLOCK DIAGRAM	
	. AC'97 Link Bus Protocol	
	. AD1881 AUDIO CODEC FUNCTIONAL BLOCK DIAGRAM	
	. 10/100 TX NETWORK INTERFACE CONTROLLER BLOCK DIAGRAM	
	. ETHERNET TPE CONNECTOR (RJ-45, VIEWED FROM CARD EDGE)	
FIGURE 6-1.	GRAPHICS SUBSYSTEM BLOCK DIAGRAM	6-2
	82810e/DC-100 INTEGRATED GRAPHICS CONTROLLER	
FIGURE 7–1.	POWER DISTRIBUTION AND CONTROL, BLOCK DIAGRAM	7-1
	POWER CABLE DIAGRAM	
FIGURE 7–3.	SIGNAL DISTRIBUTION DIAGRAM	7-5
FIGURE 7–4.	Header Pinouts	7-6
FIGURE B-1.	ASCII CHARACTER SET	B-1

FIGURE C-1.	KEYSTROKE PROCESSING ELEMENTS, BLOCK DIAGRAM	C-2
FIGURE C-2.	PS/2 Keyboard-To-System Transmission, Timing Diagram	C-3
FIGURE C-3.	U.S. ENGLISH (101-KEY) KEYBOARD KEY POSITIONS	C-5
FIGURE C-4.	NATIONAL (102-KEY) KEYBOARD KEY POSITIONS	C-5
FIGURE C-5.	U.S. ENGLISH WINDOWS (101W-KEY) KEYBOARD KEY POSITIONS	C-6
FIGURE C-6.	NATIONAL WINDOWS (102W-KEY) KEYBOARD KEY POSITIONS	C-6
FIGURE C-7.	EASY ACCESS KEY POSITIONS	C-7
FIGURE C-8.	PS/2 Keyboard Cable Connector (Male)	C-15
FIGURE C-9.	USB KEYBOARD CABLE CONNECTOR (MALE)	C-15

LIST OF TABLES

TABLE 1–1. ACRONYMS AND ABBREVIATIONS	1-3
TABLE 2-1. FEATURE DIFFERENCE MATRIX	2-2
TABLE 2-2. ARCHITECTURAL COMPARISON	2-8
TABLE 2-3. INTEL 810e Chipset Comparison	. 2-12
TABLE 2-4. SUPPORT COMPONENT FUNCTIONS	. 2-13
TABLE 2-5. ENVIRONMENTAL SPECIFICATIONS	. 2-15
TABLE 2-6. ELECTRICAL SPECIFICATIONS	. 2-15
TABLE 2-7. PHYSICAL SPECIFICATIONS.	. 2-16
TABLE 2-8. MULTIBAY 24x CD-ROM DRIVE SPECIFICATIONS	. 2-16
TABLE 2-9. MULTIBAY 24x CD-ROM DRIVE SPECIFICATIONS	. 2-17
TABLE 2-10. Hard Drive Specifications	. 2-17
TABLE 3–1. CELERON PROCESSOR STATISTICAL COMPARISON	
TABLE 3–2. PENTIUM III PROCESSOR STATISTICAL COMPARISON	
TABLE 3–3. SPD ADDRESS MAP (SDRAM DIMM)	
TABLE 3-4. HOST/PCI BRIDGE CONFIGURATION REGISTERS (GMCH, FUNCTION 0)	3-8
TABLE 4-1. PCI Device Configuration Access	
TABLE 4-2. System Board PCI Device Identification	
TABLE 4-3. LPC Bridge Configuration Registers (ICH, Function 0)	
TABLE 4-4. PCI/AGP BRIDGE CONFIGURATION REGISTERS (MCH, FUNCTION 1)	
TABLE 4-5. MASKABLE INTERRUPT PRIORITIES AND ASSIGNMENTS	. 4-13
TABLE 4-6. MASKABLE INTERRUPT CONTROL REGISTERS	
TABLE 4-7. INTERVAL TIMER FUNCTIONS	
TABLE 4-8. INTERVAL TIMER CONTROL REGISTERS	. 4-16
TABLE 4-9. CLOCK GENERATION AND DISTRIBUTION	. 4-16
TABLE 4-10. CONFIGURATION MEMORY (CMOS) MAP	. 4-18
TABLE 4-11. System I/O MAP	. 4-29
TABLE 5–1. IDE PCI Configuration Registers	5-2
TABLE 5 THE FOR CONTROLATION REGISTERS TABLE 5–2. IDE Bus Master Control Registers	
TABLE 5 2. IDE DOS MASTER CONTROL REGISTERS TABLE 5–3. 40-Pin Primary IDE Connector Pinout	
TABLE 5-5. 40-1 IN TRIMART IDE CONNECTOR TINOUT TABLE 5-4. 50-Pin Secondary IDE Connector Pinout	
TABLE 5 4. 50 FIN SECONDART IDE CONNECTOR FINOUT. TABLE 5–5. DB-9 SERIAL CONNECTOR PINOUT.	
TABLE 5 -6. SERIAL CONNECTOR TINOUT	
TABLE 5 O. SERIAL INTERFACE CONTROL REGISTERS TABLE 5–7. SERIAL INTERFACE CONTROL REGISTERS	
TABLE 5–7. SERIAL INTERFACE CONTROL REGISTERS TABLE 5–8. PARALLEL INTERFACE CONFIGURATION REGISTERS	
TABLE 5–6. TARALLEL INTERFACE CONFIGURATION REGISTERS	
TABLE 5–9. TARALLEL INTERFACE CONTROL REGISTERS TABLE 5–10. DB-25 PARALLEL CONNECTOR PINOUT	
TABLE 5–10. DB-25 T ARALLEL CONNECTOR TINOUT TABLE 5–11. 8042-To-Keyboard Commands	
TABLE 5–11. 8042-10-KEYBOARD COMMANDS TABLE 5–12. KEYBOARD INTERFACE CONFIGURATION REGISTERS	
TABLE 5–12. REYBOARD INTERFACE CONFIGURATION REGISTERS TABLE 5–13. CPU COMMANDS TO THE 8042	
TABLE 5–15. CPU COMMANDS TO THE 8042 TABLE 5–14. Keyboard/Pointing Device Connector Pinout	
TABLE 5–14. KEYBOARD/POINTING DEVICE CONNECTOR PINOUT TABLE 5–15. USB INTERFACE CONFIGURATION REGISTERS	
TABLE 5–16. USB CONTROL REGISTERS. TABLE 5 17 USB CONFECTOR PRIOR	
TABLE 5–17. USB Connector Pinout. Time 5 18	
TABLE 5–18. USB CABLE LENGTH DATA	. 5-25

TABLE 5–19. AC'97 AUDIO CONTROLLER PCI CONFIGURATION REGISTERS	5-30
TABLE 5–20. AC'97 AUDIO CODEC CONTROL REGISTERS	5-30
TABLE 5–21. AUDIO SUBSYSTEM SPECIFICATIONS	5-31
TABLE 5–22. AOL Events	5-33
TABLE 5–23. NIC CONTROLLER PCI CONFIGURATION REGISTERS	5-35
TABLE 5–24. NIC CONTROL REGISTERS	5-35
TABLE 5–25. 82559 NIC OPERATING SPECIFICATIONS	5-36
TABLE 6-1. INTEL GRAPHICS DISPLAY MODES	
TABLE 6-2. PCI Configuration Space Registers	6-5
TABLE 6-3. STANDARD VGA MODE I/O MAPPING	6-5
TABLE 6-4. MONITOR POWER MANAGEMENT CONDITIONS	6-6
TABLE 6-5. DB-15 MONITOR CONNECTOR PINOUT	6-6
TABLE 8-1. DESKTOP MANAGEMENT FUNCTIONS (INT15)	
TABLE 8-2. CMOS FEATURE BITS	
TABLE 8-3. PNP BIOS FUNCTIONS	
TABLE 8-4. APM BIOS FUNCTIONS (INT15)	8-17
TABLE A-1. POWER-ON MESSAGES	A-1
TABLE A-2. BEEP/KEYBOARD LED CODES.	
TABLE A-3. POWER-ON SELF TEST (POST) MESSAGES.	A-2
TABLE A-4. System Error Messages	
TABLE A-5. MEMORY ERROR MESSAGES.	
TABLE A-6. Keyboard Error Messages	A-4
TABLE A-7. PRINTER ERROR MESSAGES	A-5
TABLE A-8. VIDEO (GRAPHICS) ERROR MESSAGES	
TABLE A-9. Diskette Drive Error Messages	
TABLE A-10. Serial Interface Error Messages	
TABLE A-11. SERIAL INTERFACE ERROR MESSAGES.	
TABLE A-12. System Status Error Messages	A-8
TABLE A-13. Hard Drive Error Messages	
TABLE A-14. Hard Drive Error Messages	A-9
TABLE A-15. Hard Drive Messages	
TABLE A-16. AUDIO ERROR MESSAGES	
TABLE A-17. DVD/CD-ROM Drive Error Messages	A-10
TABLE A-18. NETWORK INTERFACE ERROR MESSAGES	
TABLE A-19. SCSI INTERFACE ERROR MESSAGES	A-11
TABLE A-20. POINTING DEVICE INTERFACE ERROR MESSAGES.	A-11
TABLE A-21. CEMM Privileged Ops Error Messages	A-12
TABLE A-22. CEMM Exception Error Messages	A-12
TABLE C-1. Keyboard-to-System Commands	C-11
TABLE C-2. Keyboard Scan Codes	C-12

Chapter 1 INTRODUCTION

1.1 ABOUT THIS GUIDE

This guide provides technical information about the Compaq iPAQ Family of Internet Devices. This document includes information regarding system design, function, and features that can be used by programmers, engineers, technicians, and system administrators.

This guide and any applicable addendum are available online at the following location:

http://www.compaq.com/support/techpubs/technical_reference_guides/index.html

1.1.1 USING THIS GUIDE

The chapters of this guide primarily describe the hardware and firmware elements and primarily deal with the system board and the power supply assembly. The appendices contain general information about standard peripheral devices such as the keyboard.

1.1.2 ADDITIONAL INFORMATION SOURCES

For more information on chipset components mentioned in this guide refer to the indicated manufacturers' documentation, which may be available at the following online sources:

- Compaq Computer Corporation: <u>http://www.compaq.com</u>
- Intel Corporation: <u>http://www.intel.com</u>
- Standard Microsystems Corporation: <u>http://www.smsc.com</u>

1.2 MODEL NUMBERING CONVENTION

The model numbering convention for Compaq iPAQ units is as follows: iPAQ/XNNN/Nb/N/NNN

	Memory (in MB) Operating system: 4 = Win NT 4.0; 9 = Win95/98 Chipset type (b = 810e) Hard drive size (in GB) Processor speed (in MHz) Processor type: C = Celeron; P = Pentium

Compaq iPAQ Family of Internet Devices 1-1

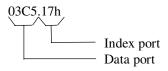
1.3 NOTATIONAL CONVENTIONS

1.3.1 VALUES

Hexadecimal values are indicated by a numerical or alpha-numerical value followed by the letter "h." Binary values are indicated by a value of ones and zeros followed by the letter "b." Numerical values that have no succeeding letter can be assumed to be decimal.

1.3.2 RANGES

Ranges or limits for a parameter are shown using the following methods:


Example A:	Bits <74> = bits 7, 6, 5, and 4.
Example B:	IRQ3-7, 9 = IRQ signals 3 through 7, and IRQ signal 9

1.3.3 SIGNAL LABELS

Signal names are indicated using abbreviations, acronyms, or, if possible, the full signal name in all capital letters. Signals that are meant to be active (asserted) low are indicated with a dash immediately following the name.

1.3.4 REGISTER NOTATION AND USAGE

This guide uses standard Intel naming conventions in discussing the microprocessor's (CPU) internal registers. Registers that are accessed through programmable I/O using an indexing scheme are indicated using the following format:

In the example above, register 03C5.17h is accessed by writing the index port value 17h to the index address (03C4h), followed by a write to or a read from port 03C5h.

1.3.5 BIT NOTATION

Bit values are labeled with bit <0> representing the least-significant bit (LSb) and bit <7> representing the most-significant bit (MSb) of a byte. Bytes, words, double words, and quad words are typically shown with most-significant portions on the left or top and the least-significant portions on the right or bottom respectively.

¹⁻² Compaq iPAQ Family of Internet Devices

1.4 COMMON ACRONYMS AND ABBREVIATIONS

Table 1-1 lists the acronyms and abbreviations used in this guide.

Table 1-1.			
	Acronyms and Abbreviations		
Acronym/Abbreviation	Description		
A	ampere		
AC	alternating current		
ACPI	Advanced Configuration and Power Interface		
A/D	analog-to-digital		
AGP	Accelerated graphics port		
API	application programming interface		
APM	advanced power management		
AOL	Alert-ON-LAN		
ASIC	application-specific integrated circuit		
AT	1) attention (modem commands) 2) 286-based PC architecture		
ATA	AT attachment (IDE protocol)		
	AT attachment w/packet interface extensions		
AVI	audio-video interleaved		
AVGA	Advanced VGA		
BAT	Basic assurance test		
BCD	binary-coded decimal		
BIOS	basic input/output system		
bis	second/new revision		
BitBLT	bit block transfer		
BNC	Bayonet Neill-Concelman (connector)		
bps or b/s	bits per second		
BSP	Bootstrap processor		
BTO	Built to order		
CAS	column address strobe		
<u>CD</u>	compact disk		
CD-ROM	compact disk		
CDS			
CF	compact disk system		
CGA	color graphics adapter		
<u> </u>	channel		
cm	centimeter		
CMC	cache/memory controller		
CMOS	complimentary metal-oxide semiconductor (configuration memory)		
Cntlr	controller		
Cntrl	control		
codec	compressor/decompressor		
CPQ	Compag		
CPU	central processing unit		
CRT	cathode ray tube		
CSM			
CTO	Compaq system management / Compaq server management		
DAA	direct access arrangement		
DAC			
DAC	digital-to-analog converter direct current		
DCH	DOS compatibility hole		
DDC	Display Data Channel		
DF	direction flag		

Continued

Compaq iPAQ Family of Internet Devices 1-3

	and Abbreviations <i>Continued</i>
Acronym/Abbreviation	Description
DIMM	dual inline memory module
DIN	Deutche IndustriNorm (connector standard)
DIP	dual inline package
DMA	direct memory access
DMI	Desktop management interface
_dpi	dots per inch
DRAM	dynamic random access memory
DRQ	data request
EDID	extended display identification data
EDO	extended data out (RAM type)
EEPROM	electrically eraseable PROM
EGA	enhanced graphics adapter
EIA	Electronic Industry Association
EISA	extended ISA
EPP	enhanced parallel port
EIDE	enhanced IDE
ESCD	Extended System Configuration Data (format)
EV	Environmental Variable (data)
ExCA	Exchangeable Card Architecture
FIFO	first in / first out
FL	flag (register)
FM	frequency modulation
FPM	fast page mode (RAM type)
FPU	Floating point unit (numeric or math coprocessor)
FPS	Frames per second
	foot
GB	gigabyte
GMCH	Graphics/memory controller hub
GND	ground
GPIO	general purpose I/O
GPOC	general purpose open-collector
GART	Graphics address re-mapping table
GUI	graphics user interface
<u>h</u>	hexadecimal
HW	hardware
hex	hexadecimal
Hz	hertz
	I/O controller hub
IDE	integrated drive element
	Institute of Electrical and Electronic Engineers
_IF	interrupt flag
I/F	interface
in	inch
INT	interrupt
	input/output
IPL	initial program loader
IrDA	InfraRed Data Association
IRQ	interrupt request
ISA	industry standard architecture
JEDEC	Joint Electron Device Engineering Council
Kb / KB	kilobits / kilobytes (x 1024 bits / x 1024 bytes)
Kb/s	kilobits per second
kg	kilogram
KHz	kilohertz
kv	kilovolt

 Table 1-1. Acronyms and Abbreviations Continued

Continued

¹⁻⁴ Compaq iPAQ Family of Internet Devices

	and Abbreviations Continued
Acronym/Abbreviation	Description
lb	pound
LAN	local area network
LCD	liquid crystal display
LED	light-emitting diode
LIF	low insertion force (socket)
LPC	Low pin count
LSI	large scale integration
LSb / LSB	least significant bit / least significant byte
LUN	logical unit (SCSI)
MCH	Memory controller hub
MMX	multimedia extensions
MPEG	Motion Picture Experts Group
ms	millisecond
MSb / MSB	most significant bit / most significant byte
mux	multiplex
MVA	motion video acceleration
MVW	motion video window
n	variable parameter/value
NIC	network interface card/controller
NiCad	nickel cadmium
NiMH	nickel-metal hvdride
NMI	non-maskable interrupt
NRZI	Non-return-to-zero inverted
ns	nanosecond
NT	nested task flag
NTSC	National Television Standards Committee
NVRAM	non-volatile random access memory
OEM	original equipment manufacturer
OS	operating system
PAL	1. programmable array logic 2. phase altering line
PC	Internet Device
PCI	peripheral component interconnect
PCM	pulse code modulation
PCMCIA	Internet Device Memory Card International Association
PF	parity flag
PIN	personal identification number
PIO	Programmed I/O
POST	power-on self test
PROM	programmable read-only memory
PTR	
RAM	pointer
	random access memory
RAS	row address strobe
	receiver
RF	resume flag
RGB	red/green/blue (monitor input)
RH	Relative humidity
RIMM	RDRAM inline memory module
RMS	root mean square
ROM	read-only memory
RPM	revolutions per minute
RTC	real time clock
R/W	read/write

 Table 1-1.
 Acronyms and Abbreviations
 Continued

Continued

Acronym/Abbreviation	Description	
SCSI	small computer system interface	
SDRAM	Synchronous Dynamic RAM	
SEC	Single Edge-Connector	
SECAM	sequential colour avec memoire (sequential color with memory)	
SF	sign flag	
SGRAM	Synchronous Graphics RAM	
SIMD	Single instruction multiple data	
SIMM	single in-line memory module	
SIT	system information table	
SMART	Self Monitor Analysis Report Technology	
SMI	system management interrupt	
SMM	system management mode	
SMRAM	system management RAM	
SPD	serial presence detect	
SPP	standard parallel port	
SRAM	static RAM	
SSE	Streaming SIMD extensions	
STN	super twist pneumatic	
SVGA	super VGA	
SW	software	
TAD	telephone answering device	
TAFI	Temperature-sensing And Fan control Integrated circuit	
ТАМ	telephone answering machine	
ТСР	tape carrier package	
TF	trap flag	
TFT	thin-film transistor	
TIA	Telecommunications Information Administration	
TPE	twisted pair ethernet	
TPI	track per inch	
TTL	transistor-transistor logic	
TV	television	
ТХ	transmit	
UART	universal asynchronous receiver/transmitter	
UDMA	Ultra DMA	
URL	Uniform resource locator	
us/μs	microsecond	
USB	Universal Serial Bus	
UTP	unshielded twisted pair	
V	volt	
VESA	Video Electronic Standards Association	
VGA	video graphics adapter	
vib	vibrato	
VLSI	very large scale integration	
VRAM	Video RAM	
W	watt	
WOL	Wake on LAN	
WRAM	Windows RAM	
WRAM ZF	Vindows RAM zero flag	

 Table 1-1.
 Acronyms and Abbreviations
 Continued

Compaq iPAQ Family of Internet Devices 1-7

Chapter 2 SYSTEM OVERVIEW

2.1 INTRODUCTION

The Compaq iPAQ Family of Internet Devices provides affordable business solutions with the focus on internet access and mainstream performance. Based on an Intel Celeron or Pentium III processor with the Intel 810e chipset, these systems are designed to maximize the effectiveness of internet and intranet usage while simplifying system management.

Figure 2–1. Compaq iPAQ Internet Device with Monitor

This chapter includes the following topics:

- Features and options (2.2) page 2-2
- Mechanical design (2.3) page 2-4
- System architecture (2.4) page 2-8
- ♦ Specifications (2.5) page 2-13

Compaq iPAQ Family of Internet Devices 2-1

2.2 FEATURES AND OPTIONS

This section describes the standard features and available options.

2.2.1 STANDARD FEATURES

The following standard features are available on all models:

- Celeron or Pentium III processor
- ♦ 810e Chipset
- Two DIMM sockets for system memory
- AC'97 audio subsystem w/Compaq Premier Sound and front panel mic and headphone jacks
- MuliBay device mount w/hot-swap support
- Extended IDE controller supporting UATA/66 mode
- Hard drive fault prediction
- Two USB ports on front panel
- Network interface controller
- VGA analog output (1600 x 1200 max resolution)
- APM 1.2 power management support
- Plug 'n Play compatible (with ESCD support)
- Intelligent Manageability support
- Energy Star compliant
- Security features including:
 - Setup and power-on passwords
 - DriveLock for MultiBay hard drive
 - I/O interface disabling
 - Administrator password
 - Network service boot
 - Asset tracking tag
 - UUID
 - Cable lock provision
- Compaq Easy-Access keyboard w/Windows support
- Mouse

Table 2-1 shows the differences in features between the iPAQ models:

Table 2-1. iPAQ Feature Difference Matrix				
	Legacy-Free		Legacy	-Light
	Celeron-Based	Pentium-based	Celeron-Based	Pentium-Based
4-MB Display cache	No	Yes	No	Yes
Rear panel USB ports	3	3	0	0
Serial port	0	0	1	1
Parallel port	0	0	1	1
Keyboard/mouse connection	USB	USB	PS/2	PS/2

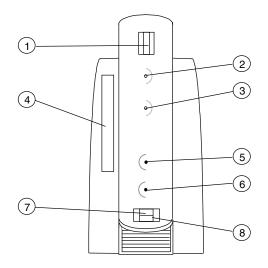
²⁻² Compaq iPAQ Family of Internet Devices

2.2.2 OPTIONS

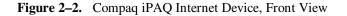
The following items are available as options for all models and may be included in the standard configuration of some models:

•	System Memory:	32-MB DIMM (non-ECC) 64-MB DIMM (non-ECC) 128-MB DIMM (non-ECC) 256-MB DIMM (non-ECC)
•	Hard drives:	4.3 or 8.4 GB UATA/66 hard drive
•	MultiBay drives:	24x CD-ROM drive 4x DVD-ROM drive Super Disk LS-120 Power Drive 6.0 GB hard drive

Compaq iPAQ Family of Internet Devices 2-3

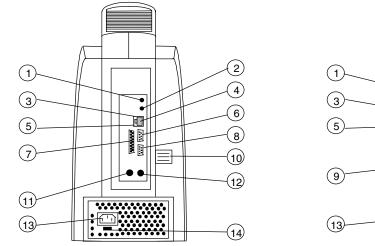

2.3 MECHANICAL DESIGN

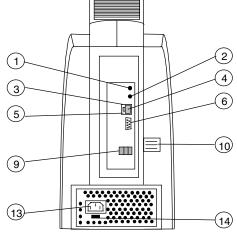
The Compaq iPAQ Internet Device uses a minitower form factor featuring a smaller footprint and reduced height than previous minitowers, allowing easy floor or desktop positioning. Commonly used audio and USB connections are accessible from the front panel. There are slight differences between the legacy-light and legacy-free models, most notably in the rear panel layouts.


NOTE: For detailed information on servicing the Internet Device refer to the applicable Maintenance and Service Guide.

2.3.1 CABINET LAYOUTS

2.3.1.1 Front View




Item	Description
1	Power Button
2	Power LED
3	Hard drive activity LED
4	MultiBay device bay (accepts 5.25"/12.7 mm storage device)
5	Microphone In Jack
6	Headphone Out Jack
7	USB port 3 jack
8	USB port 4 jack

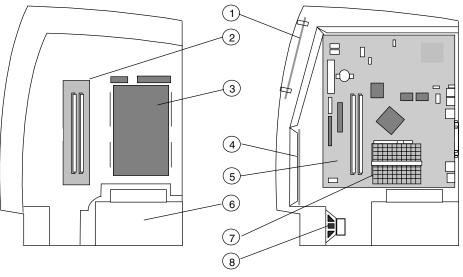
²⁻⁴ Compaq iPAQ Family of Internet Devices

2.3.1.2 Rear Views

Legacy-Light

Legacy-Free

Item	Description	Item	Description
1	Audio line output	2	Audio line input
3	Network activity LED indicator	4	Network I/F jack
5	Network speed LED indicator	6	VGA monitor connector
7	Parallel I/F connector	8	Serial I/F connector
9	USB port connectors (left-to-right; 0,1, 2)	10	MultiBay device eject button
11	PS/2 mouse connector	12	PS/2 keyboard connector
13	AC line in connector	14	Line voltage select switch


Figure 2–3. Compaq iPAQ Internet Device, Rear Views

Compaq iPAQ Family of Internet Devices 2-5

2.3.2 CHASSIS LAYOUT

The internal assemblies are accessible from the right side of the system unit. The right side (carbon-colored) cover is easily removable allowing quick access to the DIMM sockets through an access opening and to the hard drive. Access to the system board and processor requires removing the right chassis access panel.

NOTE: For a detailed description on servicing the unit refer to the applicable Maintenance and Service Guide.

Right Side Cover Removed

Right Side Cover and Chassis Access Panel Removed

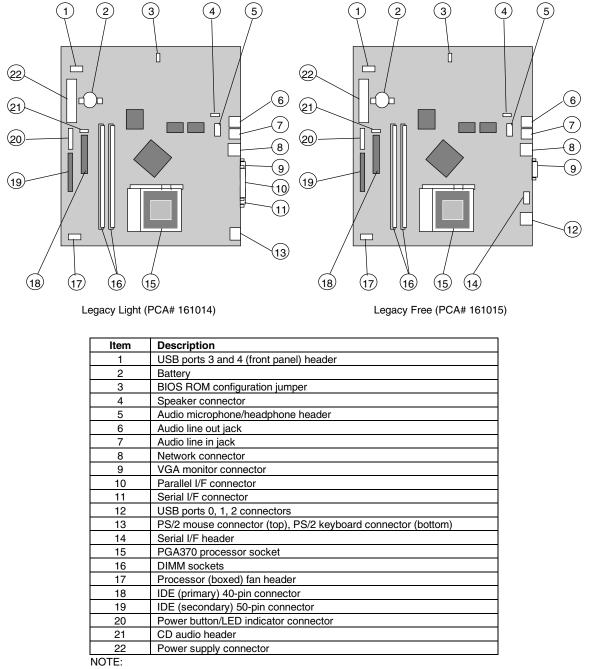

Item	Description	
1	Power button/LED board (PCA# 010647)	
2 DIMM socket access		
3	Hard drive in 3.5" 1/3 height bay	
4	Audio I/O board (PCA# 010650)	
5	System board (PCA# 161014 or 161015)	
6	Power supply assembly	
7	Processor	
8	Speaker	

Figure 2-4. Compaq iPAQ Internet Device Chassis Layout, Ride Side View

²⁻⁶ Compaq iPAQ Family of Internet Devices

2.3.3 SYSTEM BOARD LAYOUTS

The Compaq iPAQ Internet Device uses a FlexATX-type (9.0 x 7.5 inch) system board. Two variations are available; a legacy-light board and a legacy-free board.

Refer to Chapter 7 "Power and Signal Distribution" for header pinouts.

Figure 2–5. Compaq iPAQ System Board Layouts

Compaq iPAQ Family of Internet Devices 2-7

2.4 SYSTEM ARCHITECTURE

The Compaq iPAQ Internet Device features an Intel Celeron or Pentium III processor and the 810e chipset. As indicated in the following table and shown in Figure 2-6, four architectural configurations are available:

- Legacy-free with Celeron processor
- Legacy-free with Pentium III processor
- Legacy-light with Celeron processor
- Legacy-light with Pentium III processor

Legacy-free systems provide five Universal Serial Bus (USB) ports for connecting peripherals (including the supplied USB mouse and USB keyboard). Legacy light systems provide two USB ports along with the traditional PS/2 connectors for the supplied mouse and keyboard as well as parallel and serial port connectors.

All systems use the 810e chipset. The 810e chipset includes the 82810e-DC100 GMCH designed to provide control for SDRAM and also integrates an AGP 2X graphics controller. Pentium III-based systems come with an additional 4-MB display cache to compliment the graphics controller.

The 810e chipset also includes an 82801 I/O Controller Hub (ICH) that provides two IDE interfaces, two USB interfaces, and a PCI bus controller. The 82802 Firmware Hub (FWH) component is loaded with Compaq BIOS

Table 2-1 lists differences between system architectures:

Table 2-2. Architectural Comparison				
	Legacy Free		Legacy	Light
	Celeron-Based	Pentium III-Based	Celeron-Based	Pentium III-Based
Host bus (FSB)speed [1]	66 MHz	100 MHz	66 MHz	100 MHz
4-MB Display Cache?	No	Yes	No	Yes
PS/2 Mouse/Keyboard?	No	No	Yes	Yes
Serial port?	No	No	Yes	Yes
Parallel port?	No	No	Yes	Yes
# of USB ports	5	5	2	2

NOTES:

[1] As configured with 500-MHz processor.

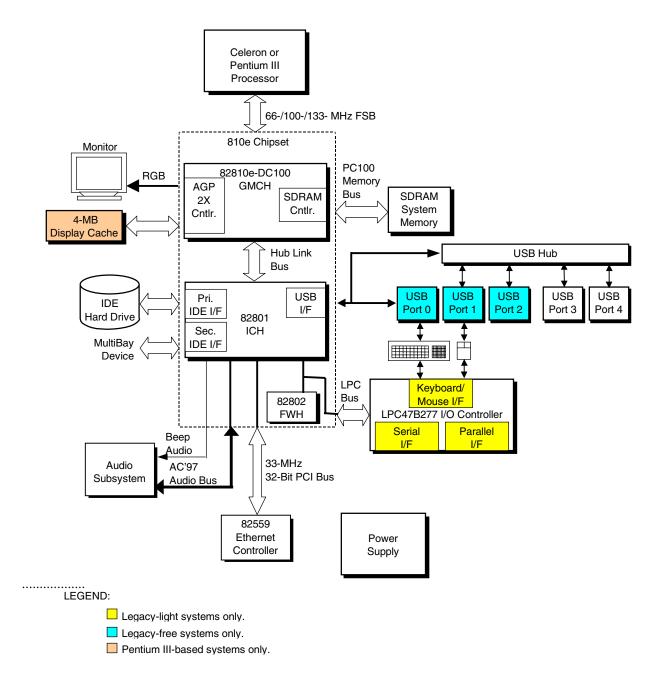


Figure 2–6. Compaq iPAQ Architecture, Block diagram

Compaq iPAQ Family of Internet Devices 2-9

2.4.1 PROCESSORS

The Compaq iPAQ family includes models based on Celeron and Pentium III processors. These processors are backward-compatible with software written for the Pentium II, Pentium MMX, Pentium Pro, Pentium, and x86 microprocessors. Both processor architectures include a floating-point unit and first and secondary caches providing enhanced performance for multimedia applications.

2.4.1.1 Celeron Processor

Select Compaq iPAQ systems use the Intel Celeron processor. The Celeron processor provides economical performance and is compatible with software written for previous generation processors such as Pentium II, Pentium MMX, Pentium, and x86 processors. Featuring a Pentium-type core architecture, the Celeron processor integrates a dual-ALU CPU with a floating-point unit, 32-KB first-level cache, and 128-KB second level cache, all of which operate at full processing (CPU) speed. The Celeron processor includes MMX technology for enhanced multimedia performance.

The Celeron processor uses a PGA370 package with a heat sink.

2.4.1.2 Pentium III Processor

The Intel Pentium III processor used on select systems represents the maximum performance processor for Compaq iPAQs. The Pentium III processor is compatible with software written for Celeron, Pentium II, Pentium MMX, Pentium, and x86 processors.

The Pentium III processor core integrates a dual-ALU CPU with a floating-point unit and 32-KB first-level cache operating at processing (CPU) speed. Featuring .18-micron technology, the Pentium III processor features 256 kilobytes of secondary cache included on the CPU die and operating at full processor speed.

The Pentium III processor includes MMX technology for enhanced multimedia performance. Also included are 70 additional streaming SIMD extensions (SSE) for enhancing 3D graphics and speech processing performance and a serial number function useful for asset tracking.

The Pentium III processor employed in these systems uses a Flip-Chip (FC) PGA370 package and heat sink.

2-10 Compaq iPAQ Family of Internet Devices

2.4.1.3 Processor Upgrading

All models of the Compaq iPAQ use the PGA370 zero-insertion force (ZIF) socket for processor mounting as shown in Figure 2-7. Raising the Lock/Unlock handle of the socket in the vertical position allows the processor to be removed or inserted into the socket. Lowering the Lock/Unlock handle in the down (horizontal) position locks the processor in place. Factory configurations use processors fitted with passive heat sinks. Upgrade (boxed) processors may be fitted with a heat sink/fan assembly with a power cable that attaches to the fan power header provided on the system board.

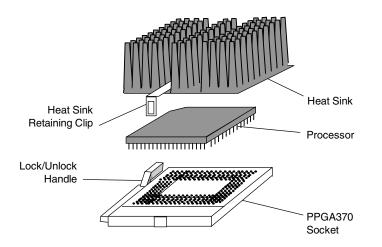


Figure 2–7. Processor Assembly and Mounting

The processor clock frequency is automatically set by chipset logic, eliminating the need for setting DIP switches when upgrading the processor.

WARNING: The system board is designed handle a maximum processor current load of 18 amps. Installing a replacement processor that draws more than 18 amps of current may damage the processor and/or the system board.

Compaq iPAQ Family of Internet Devices 2-11

2.4.2 CHIPSET

The Compaq iPAQ employs the Intel 810e chipset, which is designed to compliment the processor and provide the central point for the system's data transactions.

The chipset is composed of a graphics memory controller hub (GMCH), an I/O controller hub (ICH), and a firmware hub (FWH). Table 2-3 shows the functions provided by the components of the chipset.

Table 2-3.			
Intel 8	310e Chipset Components		
Component Type	Function		
82810e-DC100 Graphics/Memory	AGP 2X graphics controller (i740 equivalent)		
Controller Hub(GMCH)	SDRAM controller supporting 2 PC100 DIMMs		
	66-/100-/133-MHz FSB		
	PCI bus I/F		
82801AA I/O Controller Hub (ICH)	LPC bus I/F		
	SMBus I/F		
	IDE I/F with UATA/66 support		
	AC '97 audio controller		
	RTC/CMOS		
	IRQ controller		
	Power management logic		
	USB I/F (2)		
82802 Firmware Controller Hub (FWH)	Loaded with Compaq BIOS		
· · · · ·	Random number generator		

2.4.3 SUPPORT COMPONENTS

Input/output functions not provided by the chipset are handled by other support components. Some of these components also provide "housekeeping" and various other functions as well. Table 2-4 shows the functions provided by the support components.

	Table 2-4.	
	Support Component Functions	
Component Name	Function	Notes
LPC47B277 I/O Controller	Keyboard and pointing device I/F	[1]
	Diskette I/F	[2]
	Serial I/F	[1]
	Parallel I/F	[1]
	AGP, PCI reset generation	
	ISA serial IRQ converter	
	Power button logic	
	Slow speed detection	
	S3 regulator controller	
	GPIO ports	
AD1881 Audio Codec	Audio mixer	
	Digital-to-analog converter	
	Analog-to-digital converter	
	Analog I/O:	
	Mic input	
	Line input	
	CD input	
	Line output	
82559 Ethernet Controller [1]	Network interface controller	
	PHY interface	

NOTE:

[1] Implemented on legacy-light models only.

[2] Not available for actual use but may be enabled to satisfy OS requirements.

2.4.4 SYSTEM MEMORY

These systems utilize Synchronous DRAM (PC100 SDRAM, non-ECC only). Two DIMM sockets are provided and accessible through an access opening once the right side cover has been removed.

Compaq iPAQ Family of Internet Devices 2-13

2.4.5 MASS STORAGE

In a standard configuration the Compaq iPAQ supports two mass storage devices; one internal IDE hard drive mounted on the right side and a removeable-media IDE device (CD-ROM, DVD, or LS-120 Power Drive, etc.) mounted in the MultiBay on the left side. This system uses SMART drives for the internal IDE device. An adapter is available that allows a secondary IDE hard drive to be installed in the MultiBay. The MultiBay supports hot-swapping of mass storage devices **except for hard drives**. The Compaq iPAQ supports the DriveLock feature for MultiBay hard drives, providing enhanced security for removeable hard drives.

2.4.6 SERIAL AND PARALLEL INTERFACES

The legacy-light models include a serial port and a parallel port accessible at the rear of the chassis. The serial port is RS-232-C/16550-compatible and supports standard baud rates up to 115,200 as well as two high-speed baud rates of 230K and 460K, and utilize a DB-9 connector. The parallel interface is Enhanced Parallel Port (EPP1.9) and Enhanced Capability Port (ECP) compatible, and supports bi-directional data transfers through a DB-25 connector. These interfaces may be disabled through Setup for enhanced security

2.4.7 UNIVERSAL SERIAL BUS INTERFACE

Legacy-light models feature two front panel-accessible Universal Serial Bus (USB) ports that provide a 12Mb/s interface for peripherals. Legacy-free models also include three additional USB ports on the rear panel to accommodate the USB keyboard and mouse supplied with those models. The USB provides hot plugging/unplugging (Plug 'n Play) functionality.

2.4.8 GRAPHICS SUBSYSTEM

All models use the graphics controller integrated into the 82810e/DC-100 GMCH component of the 810e chipset. This graphics controller is the equivalent of the Intel i740 controller and provides up to 1600 x 1200 2D resolution using the AGP 2X interface. Pentium III-based systems also include 4 megabytes of local display cache for higher 3D performance.

2.4.9 AUDIO SUBSYSTEM

The audio subsystem features an AC'97 specification-based design and uses the integrated AC97 audio controller of the chipset and an AC'97-compliant audio codec. Microphone and headphone jacks are accessible on the front panel and line input and output jacks are provided on the rear panel. A low-distortion 5-watt amplifier drives a long-excursion speaker for optimum sound.

2.5 SPECIFICATIONS

This section includes the environmental, electrical, and physical specifications for the Compaq iPAQ Series Internet Devices. Where provided, metric statistics are given in parenthesis. All specifications subject to change without notice.

	Table 2-5. Environmental Specificat	ions		
Parameter Operating Nonoperating				
Air Temperature	50° to 95° F (10° to 35° C)	-24° to 140° F (-30° to 60° C)		
Shock	N/A	60.0 g for 2 ms half-sine pulse		
Vibration	0.000215g^ 2/Hz, 10-300 Hz [1]	0.0005g ² /Hz, 10-500 Hz [1]		
Humidity	90% RH @ 36° C (no hard drive)	95% RH @ 36° C		
Maximum Altitude	10,000 ft (3048 m)	30,000 ft (9,144 m)		

NOTE:

[1] 0.5 grms nominal

Table 2-6. Electrical Specifications			
Parameter	U.S.	International	
Input Line Voltage:			
Nominal:	110 - 120 VAC	200 - 240 VAC	
Maximum:	90 - 132 VAC	180 - 264 VAC	
Input Line Frequency Range:			
Nominal:	50 - 60 Hz	50 - 60 Hz	
Maximum:	47 - 63 Hz	47 - 63 Hz	
Power Supply:			
Maximum Continuous Power	90 watts	90 watts	
Maximum Line Current Draw	2.5 amps	1.25 amps	

	Table 2-7.Physical Specifications			
Parameter	Standard	Metric		
Height	11.80 in	29.97 cm		
Width 5.66 in 14.38 cm				
Depth	9.44 in	23.98 cm		
Weight	10.7 lb	4.8 kg		

Table 2-8.				
MultiBay 24x CD-ROM Drive Specifications				
(SP# 161685-B21)				
Parameter Measurement				
Interface Type / Protocol	IDE / ATAPI			
Transfer Rate:				
Max. Sustained	3.6 MB/s			
Burst	16.6 MB/s			
Media Type	Mode 1,2, Mixed Mode, CD-DA,			
	Photo CD, Cdi, CD-XA			
Capacity:				
Mode 1, 12 cm	550 MB			
Mode 2, 12 cm	640 MB			
8 cm	180 MB			
Center Hole Diameter	15 mm			
Disc Diameter	8/12 cm			
Disc Thickness	1.2 mm			
Track Pitch	1.6 um			
Laser				
Beam Divergence	53.5 +/- 1.5 °			
Output Power	53.6 0.14 mW			
Туре	GaAs			
Wave Length	790 +/- 25 nm			
Average Access Time:				
Random	140 ms			
Full Stroke	300 ms			
Audio Output Level	0.7 Vrms			
Cache Buffer	128 KB			

2-16 Compaq iPAQ Family of Internet Devices

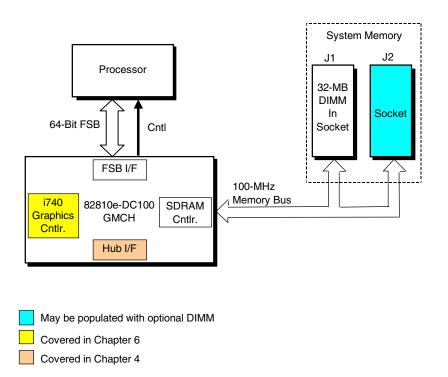
Table 2-9.			
MultiBay 4x DVD-ROM Drive Specifications			
(SP# 161685-B21)			
Parameter Measurement			
Interface Type / Protocol	IDE / ATAPI		
Transfer Rate:			
Max. Sustained (off disk)	5.41 MB/s		
Data Bus Burst	16.6 MB/s		
Media Types	DVD (single/double layer),		
	DVD-5, DVD-9, DVD-10,		
	CD-ROM Modes 1 or 2, CD-DA,		
	Photo CD, Cdi, CD-XA		
Capacity:	· · · ·		
Mode 1, 12 cm	550 MB		
Mode 2, 12 cm	640 MB		
8 cm	180 MB		
Center Hole Diameter	15 mm		
Disc Diameter	8 or 12 cm		
Disc Thickness	1.2 mm		
Track Pitch	1.6 um		
Average Access Time:			
DVD:			
Random	<170 ms		
Full Stroke	<280 ms		
CD:			
Random	<130 ms		
Full stroke	<225 ms		
Audio Output Level	0.7 Vrms		
Cache Buffer	512 KB		

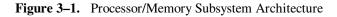
	Table 2-10.				
Hard Drive Specifications					
Parameter	4.3 GB	6.0 GB [1]	8.4 GB		
P/N	158738	161684	158739		
Interface / Protocol Type	IDE / UATA-4	IDE / UATA-4	IDE / UATA-4		
Drive Type	65	65	65		
Drive Size	3.5/5.25 in	2.5/5.25 in	5.25 in		
Interface Transfer Rate (max.)	66.6 MB/s	66.6 MB/s	66.6 MB/s		
Max. Seek Time (w/settling)					
Single Track	2.0 ms	4.0 ms	4.75 ms		
Average	9.5 ms	12.0 ms	14.9 ms		
Full Stroke (max)	19.0 ms	23.0 ms	27 ms		
Disk Format (logical):					
# of Cylinders	8419	13424	16383		
# of Data Heads	15	15	16		
# of Sectors per Track	63	63	63		
Rotation Speed	5400 RPM	4200 RPM	5400 RPM		
Drive Fault Prediction	SMART II	SMART II	SMART III		

NOTE:

[1] For use in MultiBay.

Compaq iPAQ Family of Internet Devices 2-17


This page is intentionally blank.

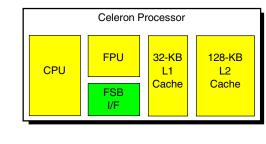

2-18 Compaq iPAQ Family of Internet Devices

Chapter 3 PROCESSOR/ MEMORY SUBSYSTEM

3.1 INTRODUCTION

This chapter describes the processor/cache memory subsystem of the Compaq iPAQ Internet Device featuring a Celeron or Pentium III processor and the 810e chipset (Figure 3-1). The 810e chipset supports up to two SDRAM DIMMs and integrates an i740 3D graphics controller (covered in Chapter 6).

This chapter includes the following topics:


- Processor [3.2] page 3-2
- Memory subsystem [3.3] page 3-5
- Subsystem configuration {3.4] page 3-8

3.2 PROCESSOR

The Compaq iPAQ is configured as either a Celeron-based or Pentium III-based system.

3.2.1 CELERON PROCESSOR

The Celeron processor (Figure 3-2) uses a dual-ALU CPU with branch prediction and MMX support, floating point unit (FPU) for math coprocessing, a 32-KB primary (L1) cache, and a 128-KB secondary (L2) cache. All internal functions, except for the front side bus interface (FSB I/F), operate at processor speed.

Core processing speed

Host bus speed

Figure 3-2. Celeron Processor Internal Architecture

The Celeron processor is software-compatible with earlier generation Pentium II, Pentium MMX, Pentium, and x86 processors. The MMX support provided by the Celeron consists of 57 special instructions for accelerating multimedia communications applications. Such applications often involve computing-intensive loops that can take up as much as 90 percent of the CPU's execution time. Using a parallel-processing technique called single-instruction multiple-data (SIMD), MMX logic processes data 64 bits at a time. Specific applications that can benefit from MMX technology include 2D/3D graphics, audio, speech recognition, video codecs, and data compression.

The Celeron-based systems ship with a Celeron 500 installed. The 82810-DC100 GMCH supports the processors listed in the following table:

Table 3-1.							
Cele	Celeron Processor Statistical Comparison						
	Core/L1/L2 FSB Core Power						
Processor	Processor Freq. Freq. Voltage Consumption						
Celeron 500	500 MHz	66 MHz	2.0 v	Na			
Celeron 533	533 MHz	66 MHz	2.0 v	Na			

3.2.2 PENTIUM III PROCESSOR

Full processing speed

The Pentium III processor's architecture (Figure 3-3) includes the same core functionality as described previously for the Celeron processor but includes a larger L2 cache and additional processing features.

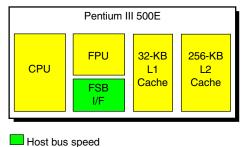


Figure 3–3. Pentium III Processor Internal Architecture

Table 3-2. Pentium III Processor Statistical Comparison					
Processor	CPU/L1 Speed	L2 Size / Speed	Core Voltage	FSB Speed	
Pentium III 500E	500 MHz	256 KB @ 500 MHz	1.60 VDC	100 MHz	
Pentium III 533	533 MHz	512 KB @ 266 MHz	2.00 VDC	100 MHz	
Pentium III 533B	533 MHz	512 KB @ 266 MHz	2.05 VDC	133 MHz	
Pentium III 533EB	533 MHz	256 KB @ 533 MHz	1.65 VDC	133 MHz	
Pentium III 550	550 MHz	512 KB @ 275 MHz	2.00 VDC	100 MHz	
Pentium III 550E	550 MHz	256 KB @ 550 MHz	1.60 VDC	100 MHz	
Pentium III 600	600 MHz	512 KB @ 300 MHz	2.05 VDC	100 MHz	
Pentium III 600B	600 MHz	512 KB @ 300 MHz	2.05 VDC	133 MHz	
Pentium III 600E	600 MHz	256 KB @ 600 MHz	1.65 VDC	100 MHz	
Pentium III 600EB	600 MHz	256 KB @ 600 MHz	1.65 VDC	133 MHz	
Pentium III 667	667 MHz	256 KB @ 667 MHz	1.65 VDC	133 MHz	
Pentium III 700	700 MHz	256 KB @ 700 MHz	1.65 VDC	100 MHz	
Pentium III 733	733 MHz	256 KB @ 733 MHz	1.65 VDC	133 MHz	

The Pentium III processor is software-compatible with Celeron, Pentium II, Pentium MMX, Pentium, and x86 processors. The Pentium III processor also features 70 FPU-based streaming SIMD extensions (SSE) that, when implemented by appropriate software, can enhance 3D transforming and speech processing operations. Operating system requirements for SSE support are as follows:

Operating System	Level of SSE Support
Windows 95	No SSE support
Windows 98, OSR0	SSE support though ISV and OpenGL 6.1 applications only
Windows 98, OSR1	SSE support though ISV, OpenGL, and DirectX applications
Windows 2000	SSE support with ISV, OpenGL, and DirectX applications
Windows NT 4.0	SSE support requires driver and Service Pack 4 (SP5 recommended)

3.2.3 PROCESSOR UPGRADING

All units use the PGA370 ZIF mounting socket and ship with either a Celeron 500E or a Pentium III 500E installed. To replace the processor, use the following procedure:

- 1. Power down the system and disconnect the power cord.
- 2. Remove the right outer (carbon) panel.
- 3. Disconnect and remove the hard drive.
- 4. Remove the right chassis access panel.
- 5. After insuring that you have been properly grounded, remove the heatsink retaining clip and then the heatsink itself.
- 6. Lift the release arm of the PGA370 socket to the upright position.
- 7. Lift the processor package from the socket.

Replacement of the new processor is a reversal of steps 1-7. The use of "boxed" processors may also require the connection of a power cable from the processor's heatsink-mounted fan to a header on the system board. When replacing the processor it is recommended that the replacement processor be of the same family as the existing processor (i.e., Celeron for Celeron, or Pentium for Pentium).

WARNING: Upgrading to a faster processor is possible provided that the new processor does not draw more than 18 amps of current. Using a processor that draws in excess of 18 amps may create a thermal condition and damage the system board

The processor core voltage and operating frequency are automatically set early in power cycle process. No DIP switch settings are involved in replacing the processor.

3.3 MEMORY SUBSYSTEM

The 810e chipset supports PC100 SDRAM for system memory. The memory interface consists of a 64-bit data bus operating at 100 MHz providing a maximum throughput rate of 800 MB/s. The system board provides two 168-pin SDRAM DIMM sockets that accommodate single- or double-sided DIMMs. **This system is designed for using non-ECC DIMMs only**.

If using memory modules from third party suppliers the following DIMM type is recommended: 100-MHz unbuffered RAM supporting CAS latency (CL) 2 or 3 with a data access time (clock-to-data out) of 9.0 ns or less @ CL=2 or CL=3.

NOTE: The 82810/82810e GMCH performs memory accesses at 100 MHz regardless of the FSB frequency.

The RAM type and operating parameters are detected during POST by the system BIOS using the serial presence detect (SPD) method. This method employs an I^2C bus to communicate with an EEPROM on each installed DIMM. The EEPROM holds the type and operating parameter data.

The supported format complies with the JEDEC specification for 128-byte EEPROMs. This system also provides support for 256-byte EEPROMs to include additional Compaq-added features such as part number and serial number. The SPD format as supported in this system is shown in Table 3-3.

The key SPD bytes that BIOS checks for compatibility are 2, 9, 10, 18, 23, and 24. **If BIOS detects EDO DIMMs a "memory incompatible" message will be displayed and the system will halt.** If ECC DIMMs are used, all DIMMs installed must be ECC for ECC benefits (error logging) to be realized.

Once BIOS determines the DIMM type the DRAM speed and CAS latency is checked based on the following criteria:

		Access
		from
Bus Speed	Cycle Time	Clock
100 MHz	10 ns	6 ns @ 50 pf loading

NOTE: Refer to chapter 8 for a description of the BIOS procedure of interrogating DIMMs.

Only CAS latencies of 2 or 3 are supported. If DIMMs with unequal CAS latencies are installed then operation will occur based on the DIMM with the greatest latency.

If an incompatible DIMM is detected the NUM LOCK will blink for a short period of time during POST and an error message may or may not be displayed before the system hangs.

The SPD address map is shown below.

SPD Address Map (SDRAM DIMM)					
Byte	Description	Notes	Byte	Description	Notes
0	No. of Bytes Written Into EEPROM	[1]	27	Min. Row Prechge. Time	[7]
1	Total Bytes (#) In EEPROM	[2]	28	Min. Row Active to Delay	[7]
2	Memory Type		29	Min. RAS to CAS Delay	[7]
3	No. of Row Addresses On DIMM	[3]	30, 31	Reserved	
4	No. of Column Addresses On DIMM		3261	Superset Data	[7]
5	No. of Module Banks On DIMM		62	SPD Revision	[7]
6, 7	Data Width of Module		63	Checksum Bytes 0-62	
8	Voltage Interface Standard of DIMM		64-71	JEP-106E ID Code	[8]
9	Cycletime @ Max CAS Latency (CL)	[4]	72	DIMM OEM Location	[8]
10	Access From Clock	[4]	73-90	OEM's Part Number	[8]
11	Config. Type (Parity, Nonparity, etc.)		91, 92	OEM's Rev. Code	[8]
12	Refresh Rate/Type	[4] [5]	93, 94	Manufacture Date	[8]
13	Width, Primary DRAM		95-98	OEM's Assembly S/N	[8]
14	Error Checking Data Width		99-125	OEM Specific Data	[8]
15	Min. Clock Delay	[6]	126, 127	Reserved	
16	Burst Lengths Supported		128-131	Compaq header "CPQ1"	[9]
17	No. of Banks For Each Mem. Device	[4]	132	Header checksum	[9]
18	CAS Latencies Supported	[4]	133-145	Unit serial number	[9] [10]
19	CS# Latency	[4]	146	DIMM ID	[9] [11]
20	Write Latency	[4]	147	Checksum	[9]
21	DIMM Attributes		148-255	Reserved	[9]
22	Memory Device Attributes				
23	Min. CLK Cycle Time at CL X-1	[7]			
24	Max. Acc. Time From CLK @ CL X-1	[7]			
25	Min. CLK Cycle Time at CL X-2	[7]			
26	Max. Acc. Time From CLK @ CL X-2	[7]			

Table 3-3.

NOTES:

- [1] Programmed as 128 bytes by the DIMM OEM
- [2] Must be programmed to 256 bytes.
- [3] High order bit defines redundant addressing: if set (1), highest order RAS# address must be re-sent as highest order CAS# address.
- [4] Refer to memory manufacturer's datasheet
- [5] MSb is Self Refresh flag. If set (1), assembly supports self refresh.
- [6] Back-to-back random column addresses.
- [7] Field format proposed to JEDEC but not defined as standard at publication time.
- [8] Field specified as optional by JEDEC but required by this system.
- [9] Compaq usage. This system requires that the DIMM EEPROM have this space available for reads/writes.
- [10] Serial # in ASCII format (MSB is 133). Intended as backup identifier in case vender data is invalid. Can also be used to indicate s/n mismatch and flag system administrator of possible system Tampering.
- [11] Contains the socket # of the module (first module is "1"). Intended as backup identifier (refer to note [10]).

			— 4 GB
	FFFF FFFFh FFE0 0000h	High BIOS Area	
	FFDF FFFFh	(2 MB) PCI Memory	
		(18 MB)	
	FEC1 0000h FEC0 FFFFh	APIC Config. Space	
		(64 KB)	
	FEC0 0000h FEBF FFFFh		
Host,		PCI Memory	
PCI, AGP Area		Expansion (2548 MB)	
	4000 0000h		— 1 GB
	3FFF FFFFh		1 4 5
		Host/PCI Memory	
		Expansion	
		(1008 MB)	
	0100 0000h		— 16 MB
Host, PCI, ISA Area	00FF FFFFh	Extended Memory	
ISA Alea	0010 0000h	(15 MB)	
	000F FFFFh	System BIOS Area	1 MB
	000F 0000h 000E FFFFh	(64 KB) Extended BIOS Area	
	000E 0000h	(64 KB)	
	000D FFFFh		
		Option ROM	
	000C 0000h	(128 KB)	
	000B FFFFh		
DOS Compatibility		Graphics/SMRAM	
Area		RAM (128 KB)	
	000A 0000h 0009 FFFFh		640 KB
		Fixed Mem. Area	
	0008 0000h	(128 KB)	512 KB
	0007 FFFFh		
		Base Memory	
		(512 KB)	
	0000 0000h		

Figure 3-4 shows the system memory map.

NOTE: All locations in memory are cacheable. Base memory is always mapped to DRAM. The next 128 KB fixed memory area can, through the north bridge, be mapped to DRAM or to PCI space. Graphics RAM area is mapped to PCI or AGP locations.

Figure 3–4. System Memory Map

3.4 SUBSYSTEM CONFIGURATION

The 82810e-DC100 GMCH component provides the configuration function for the processor/memory subsystem. Table 3-4 lists the configuration registers used for setting and checking such parameters as memory control and PCI bus operation. These registers reside in the PCI Configuration Space and accessed using the methods described in Chapter 4, section 4.2.

Table 3-4. Host/PCI Bridge Configuration Registers (GMCH, Function 0)					
PCI Config. Addr.	Register	Reset Value	PCI Config. Addr.	Register	Reset Value
00, 01h	Vender ID	8086h	6A, 6Bh	DRAM Control Reg.	00h
02, 03h	Device ID	7190h	6C6Fh	Memory Buffer Strength	55h
04, 05h	Command	0006h	70h	Multi-Transaction Timer	00h
06, 07h	Status	0210h	71h	CPU Latency Timer	10h
08h	Revision ID		72h	SMRAM Control	02h
090Bh	Class Code		90h	Error Command	00h
0Dh	Latency Timer	00h	91h	Error Status Register 0	00h
0Eh	Header Type	00h	92h	Error Status Register 1	00h
1013h	Aperture Base Config.	8	93h	Reset Control	00h
50, 51h	PAC Config. Reg.	00h	A0A3h	AGP Capability Identifier	N/A
53h	Data Buffer Control	83h	A4A7h	AGP Status	N/A
5556h	DRAM Row Type	00h	A8ABh	AGP Command	00h
57h	DRAM Control	01h	B0B3h	AGP Control	00h
58h	DRAM Timing	00h	B4h	Aperture Size	0000h
595Fh	PAM 06 Registers	00h	B8BBh	Aperture Translation Table	0000h
6067h	DRAM Row Boundary	01h	BCh	Aperture I/F Timer	00h
68h	Fixed DRAM Hole	00h	BDh	Low Priority Timer	00h

NOTES:

Refer to Intel Inc. documentation for detailed description of registers. Assume unmarked locations/gaps as reserved.

Chapter 4 SYSTEM SUPPORT

4.1 INTRODUCTION

This chapter covers subjects dealing with basic system architecture and support functions. Topics covered are:

٠	PCI bus overview (4.2)	page 4-2
•	AGP bus overview (4.3)	page 4-10
•	Interrupts (4.4)	page 4-13
٠	Interval timer (4.5)	page 4-16
٠	System clock distribution (4.6)	page 4-16
٠	Real-time clock and configuration memory (4.7)	page 4-17
٠	System management (4.8)	page 4-27
•	System I/O map (4.9)	page 4-29

This chapter covers functions provided by off-the-shelf chipsets and therefore describes only basic aspects of these functions as well as information unique to Compaq iPAQ Internet Devices. For detailed information on specific components, refer to the applicable manufacturer's documentation.

4.2 PCI BUS OVERVIEW

NOTE: This section describes the PCI bus in general and highlights bus implementation in this particular system. For detailed information regarding PCI bus operation, refer to the *PCI Local Bus Specification Revision 2.2.*

This system implements a 32-bit Peripheral Component Interconnect (PCI) bus (spec. 2.2) operating at 33 MHz. The PCI bus handles address/data transfers through the identification of devices and functions on the bus. A device is typically defined as a component that resides on the PCI bus (although some components such as the GMCH and ICH are organized as multiple devices). A function is defined as the end source or target of the bus transaction. A device may contain one or more functions.

This system use two PCI buses. The PCI bus #0 is internal to the 810e chipset and divided by the hub link bus. The PCI bus #1 is used by the NIC function (Figure 4-1). As this system is designed for simplicity of system management, **the PCI buses are not available for expansion purposes.**

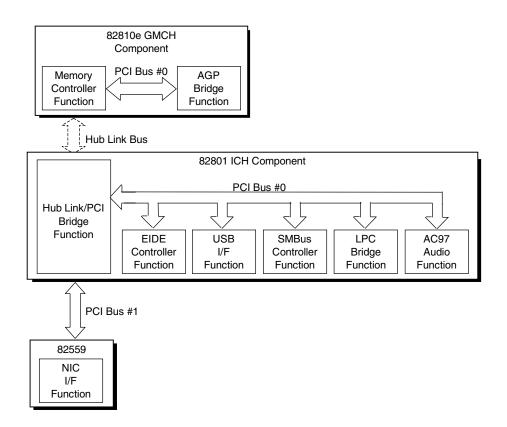


Figure 4-1. PCI Bus Devices and Functions

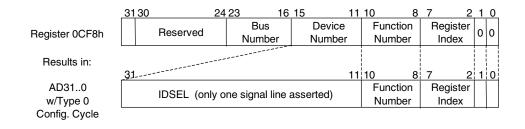
4-2 Compaq iPAQ Family of Internet Devices

4.2.1 PCI BUS TRANSACTIONS

The PCI bus consists of a 32-bit path (AD31-00 lines) that uses a multiplexed scheme for handling both address and data transfers. A bus transaction consists of an address cycle and one or more data cycles, with each cycle requiring a clock (PCICLK) cycle. High performance is realized during burst modes in which a transaction with contiguous memory locations requires that only one address cycle be conducted and subsequent data cycles are completed using auto-incremented addressing. Four types of address cycles can take place on the PCI bus; I/O, memory, configuration, and special. Address decoding is distributed (left up to each device on the PCI bus).

4.2.1.1 I/O and Memory Cycles

For I/O and memory cycles, a standard 32-bit address decode (AD31..0) for byte-level addressing is handled by the appropriate PCI device. For memory addressing, PCI devices decode the AD31..2 lines for dword-level addressing and check the AD1,0 lines for burst (linear-incrementing) mode. In burst mode, subsequent data phases are conducted a dword at a time with addressing assumed to increment accordingly (four bytes at a time).


4.2.1.2 Configuration Cycles

Devices on the PCI bus must comply with PCI protocol that allows configuration of that device by software. In this system, configuration mechanism #1 (as described in the PCI Local Bus specification Rev. 2.1) is employed. This method uses two 32-bit registers for initiating a configuration cycle for accessing the configuration space of a PCI device. The configuration address register (CONFIG_ADDRESS) at 0CF8h holds a value that specifies the PCI bus, PCI device, and specific register to be accessed. The configuration data register (CONFIG_DATA) at 0CFCh contains the configuration data.

PCI Configuration Address Register I/O Port 0CF8h, R/W, (32-bit access only)		
Bit	Function	
31	Configuration Enable	
	0 = Disabled	
	1 = Enable	
3024	Reserved - read/write 0s	
2316	Bus Number. Selects PCI bus	
1511	PCI Device Number. Selects PCI	
	device for access	
108	Function Number. Selects function of	
	selected PCI device.	
72	Register Index. Specifies config. reg.	
1,0	Configuration Cycle Type ID.	
	00 = Type 0	
	01 = Type 1	

PCI Configuration Data Register		
/O Port 0CFCh, R/W, (8-, 16-, 32-bit access)		
Bit	Function	
310	Configuration Data.	

Figure 4-2 shows how the loading of 0CF8h results in a Type 0 configuration cycle on the PCI bus. The Device Number (bits <15..11> determines which one of the AD31..11 lines is to be asserted high for the IDSEL signal, which acts as a "chip select" function for the PCI device to be configured. The function number (CF8h, bits <10..8>) is used to select a particular function within a PCI component.

Figure 4-2. Type 0 Configuration Cycle

Type 0 configuration cycles are used for configuring devices on PCI bus # 0. Type 1 configuration cycles (reg. 0CF8h bits <1,0> = 01b) are passed on to PCI bus # 1. Table 4-1 shows the standard configuration of device numbers for components and slots residing on a PCI bus.

Table 4-1. PCI Component Configuration Access				
PCI Component	Function #	Device #	PCI Bus #	
82810e GMCH:				
Memory Controller	0	0 (00h)	0	
AGP Bridge	0	1(01h)	0	
AGP slot	0	0 (00h)	2	
82801 ICH:				
PCI Bridge	0	30 (1Eh)	0	
LPC Bridge	0	31 (1Fh)	0	
EIDE Controller	1	31 (1Fh)	0	
USB I/F	2	31 (1Fh)	0	
SMBus Controller	3	31 (1Fh)	0	
AC97 Audio Controller	5	31 (1Fh)	0	
AC97 Modem Controller	6	31 (1Fh)	0	
82559 Network I/F Controller	0	2 (02h)	1	

NOTES:

Not implemented.

The register index (CF8h, bits <7..2>) identifies the 32-bit location within the configuration space of the PCI device to be accessed. All PCI devices can contain up to 256 bytes of configuration data (Figure 4-3), of which the first 64 bytes comprise the configuration space header.



Figure 4-3. PCI Configuration Space Map

Each PCI device is identified with a vender ID (assigned to the vender by the PCI Special Interest Group) and a device ID (assigned by the vender). The device and vender IDs for the devices on the system board are listed in Table 4-2.

Table 4-2.				
System Board PCI Device Identification				
PCI Device	Vender ID	Device ID		
82810e GMCH:				
Memory Controller	8086h	2500h		
AGP Bridge	8086h	2501h		
82801 ICH:				
PCI Bridge	8086h	2418h		
LPC Bridge	8086h	2410h		
EIDE Controller	8086h	2411h		
USB I/F	8086h	2412h		
SMBus Controller	8086h	2413h		
AC97 Audio Controller	8086h	2415h		
82559 Network I/F Controller	8086h	1229h		

4.2.2 PCI INTERRUPT MAPPING

The PCI bus provides for four interrupt signals; INTA-, INTB-, INTC-, and INTD-. These signals may be generated by on-board PCI devices or by devices installed in the PCI slots. In order to minimize latency, INTx- signal routing from the interrupt controller of the ICH to PCI slots/devices is distributed evenly as shown below:

Intr. Cntlr.	AGP Cntlr.	Audio Cntlr.	NIC_I/F	USB <u></u> //F
INTA-	INTA-			
INTB-	INTB-	INTB-		
INTC-				
INTD-			INTA-	INTD-

NOTE:

Interrupts generated by PCI devices can be configured to share the standard AT (IRQn) interrupt lines. Two devices that share a single PCI interrupt must also share the corresponding AT interrupt.

4.2.3 PCI POWER MANAGEMENT SUPPORT

This system complies with the PCI Power Management Interface Specification (rev 1.0). The PCI Power Management Enable (PME-) signal is supported by the 810 and 820 chipsets and allows compliant PCI and AGP peripherals to initiate the power management routine.

4.2.4 PCI SUB-BUSSES

The 810e chipset implements two data busses that supplement the PCI bus:

- Hub Link Bus
- ♦ LPC Bus

4.2.4.1 Hub Link Bus

The 810e chipset implements a Hub Link bus between the GMCH and the ICH. The Hub Link bus handles transactions at a 66-MHz rate using PCI-type protocol. This bus is transparent to software and not accessible for expansion purposes.

4.2.4.2 LPC Bus

The 82801 ICH implements a Low Pin Count (LPC) bus for handling transactions to and from the 47B277 Super I/O Controller as well as the 82802 FWH. The LPC bus transfers data a nibble (4 bits) at a time at a 33-MHz rate. This bus is transparent to software and not accessible for expansion purposes.

⁴⁻⁶ Compaq iPAQ Family of Internet Devices

4.2.5 PCI CONFIGURATION

PCI bus operations, especially those that involve ISA bus interaction, require the configuration of certain parameters such as PCI IRQ routing, DMA channel configuration, RTC control, port decode ranges, and firmware hub (FWH) access control. These parameters are handled by the LPC I/F bridge function (PCI function #0, device 31) of the ICH component and configured through the PCI configuration space registers listed in Table 4-3. Configuration is provided by BIOS at power-up but re-configurable by software.

Table 4-3.LPC Bridge Configuration Registers(ICH, Function 0, Device 31)					
PCI Config.		Reset	PCI Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vender ID	8086h	88h	Device 31 Error Config.	00h
02, 03h	Device ID	2410h	8Ah	Device 31 Error Status	00h
04, 05h	Command	000Fh	90, 91h	PCI DMA Configuration	0000h
06, 07h	Status	0280h	A0-CFh	Power Management	
08h	Revision ID	00h	D0-D3h	General Control	0's
09-0Bh	Class Code	00h	D4-D7h	General Status	F00h
0Eh	Header Type	01h	D8h	RTC Configuration	00h
40-43hh	ACPI Base Address	1	E1h	COM Port Decode Range	00h
44h	ACPI Control	00h	E2h	DD & LPT Port Dec. Range	00h
4E, 4Fh	BIOS Control	0000h	E3h	FWH Decode Enable	80h
54h	TCO Control	80h	E4, E5h	LPC I/F Decode Range 1	0000h
58-5Bh	GPIO Base Address	1	E6, E7h	LPC I/F Enables	0000h
5Ch	GPIO Control	00h	E8h	FWH Select	
60-63h	PCI IRQ Routing Cntrl.	80h	EC, EDh	LPC I/F Decode Range 2	0000h
64h	Serial IRQ Control	10h	F2, F3h	Functions Disable	00

NOTE: Assume unmarked locations/gaps as reserved.

4.3 AGP BUS OVERVIEW

NOTE: This section provides a brief overview of AGP bus operation. For a detailed description of AGP bus operations refer to the *AGP Interface Specification* available at the following AGP forum web site: <u>http://www.agpforum.org/index.htm</u>

The Accelerated Graphics Port (AGP) bus is specifically designed as an economical yet highperformance interface for graphics adapters, especially those designed for 3D operations. The AGP interface is designed to give graphics adapters dedicated pipelined access to system memory for the purpose of off-loading texturing, z-buffering, and alpha blending used in 3D graphics operations. By off-loading a large portion of 3D data to system memory the AGP graphics adapter only requires enough memory for frame buffer (display image) refreshing.

As this system is designed for simplicity of system management, the AGP bus is not available for expansion purposes.

4.3.1 BUS TRANSACTIONS

The operation of the AGP bus is based on the 66-MHz PCI specification but includes additional mechanisms to increase bandwidth. During the configuration phase the AGP bus acts in accordance with PCI protocol. Once graphics data handling operation is initiated, AGP-defined protocols take effect. The AGP graphics adapter acts generally as the AGP master, but can also behave as a "PCI" target during fast writes from the GMCH or MCH.

Key differences between the AGP interface and the PCI interface are as follows:

- Address phase and associated data transfer phase are disconnected transactions. Addressing and data transferring occur as contiguous actions on the PCI bus. On the AGP bus a request for data and the transfer of data may be separated by other operations.
- Commands on the AGP bus specify system memory accesses only. Unlike the PCI bus, commands involving I/O and configuration are not required or allowed. The system memory address space used in AGP operations is the same linear space used by PCI memory space commands, but is further specified by the graphics address re-mapping table (GART) of the north bridge component.
- Data transactions on the AGP bus involve eight bytes or multiples of eight bytes. The AGP memory addressing protocol uses 8-byte boundaries as opposed to PCI's 4-byte boundaries. If a transfer of less than eight bytes is needed, the remaining bytes are filled with arbitrary data that is discarded by the target.
- Pipelined requests are defined by length or size on the AGP bus. The PCI bus defines transfer lengths with the FRAME- signal.

There are two basic types of transactions on the AGP bus: data requests (addressing) and data transfers. These actions are separate from each other.

4.3.1.1 Data Request

Requesting data is accomplished in one of two ways; either multiplexed addressing (using the AD lines for addressing/data) or demultiplexed ("sideband") addressing (using the SBA lines for addressing only and the AD lines for data only). Even though there are only eight SBA lines (as opposed to the 32 AD lines) sideband addressing maximizes efficiency and throughput by allowing the AD lines to be exclusively used for data transfers. Sideband addressing occurs at the same rate (1X or 2X) as data transfers. The differences in rates will be discussed in the next section describing data transfers. Note also that sideband addressing is limited to 48 bits (address bits 48-63 are assumed zero). The GMCH and MCH components support both SBA and AD addressing, but the method and rate is selected by the AGP graphics adapter.

4.3.1.2 Data Transfers

Data transfers use the AD lines and occur as the result of data requests described previously. Each transaction resulting from a request involves at least eight bytes, requiring the 32 AD lines to handle at least two transfers per request. The 82810e MCH supports two transfer rates: 1X and 2X. Regardless of the rate used, the speed of the bus clock is constant at 66 MHz. The following subsections describe how the use of additional strobe signals makes possible higher transfer rates.

AGP 1X Transfers

During a AGP 1X transfer the 66-MHz CLK signal is used to qualify the control and data signals. Each 4-byte data transfer is synchronous with one CLK cycle so it takes two CLK cycles for a minimum 8-byte transfer (Figure 4-4 shows two 8-byte transfers). The GNT- and TRDY-signals retain their traditional PCI functions. The ST0..3 signals are used for priority encoding, with "000" for low priority and "001" indicating high priority. The signal level for AGP 1X transfers may be 3.3 or 1.5 VDC.

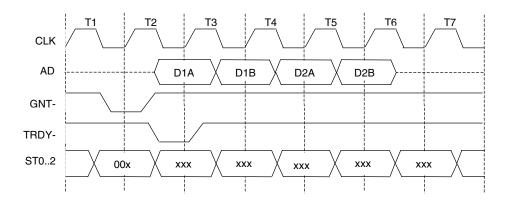


Figure 4-4. AGP 1X Data Transfer (Peak Transfer Rate: 266 MB/s)

AGP 2X Transfers

During AGP 2X transfers, clocking is basically the same as in 1X transfers except that the 66-MHz CLK signal is used to qualify only the control signals. The data bytes are latched by an additional strobe (AD_STBx) signal so that an 8-byte transfer occurs in one CLK cycle (Figure 4-5). The first four bytes (DnA) are latched by the receiving agent on the falling edge of AD_STBx and the second four bytes (DnB) are latched on the rising edge of AD_STBx. The signal level for AGP 2X transfers may be 3.3 or 1.5 VDC.

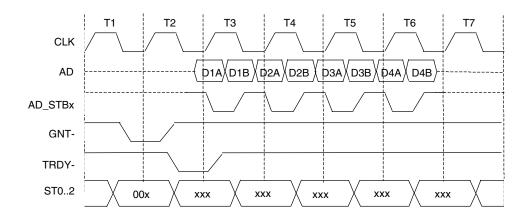


Figure 4-5. AGP 2X Data Transfer (Peak Transfer Rate: 532 MB/s)

⁴⁻¹⁰ Compaq iPAQ Family of Internet Devices

4.3.2 AGP CONFIGURATION

AGP bus operations require the configuration of certain parameters involving system memory access by the AGP graphics adapter. The AGP bus interface is configured as a PCI device integrated within the north bridge (MCH, device 1) component. The AGP function is, from the PCI bus perspective, treated essentially as a PCI/PCI bridge and configured through PCI configuration registers (Table 4-4). Configuration is accomplished by BIOS during POST.

NOTE: Configuration of the AGP bus interface involves functions 0 and 1 of the MCH. Function 0 registers (listed in Table 3-4) include functions that affect basic control (GART) of the AGP.

Table 4-4.						
	PCI/AGP Bridge Function Configuration Registers					
	(GMCH, F	Function 1)			
PCI Config. Addr.	Register	Reset Value	PCI Config. Addr.	Register	Reset Value	
00, 01h	Vender ID	8086h	1Bh	Sec. Master Latency Timer	00h	
02, 03h	Device ID	7191h	1Ch	I/O Base Address	F0h	
04, 05h	Command	0000h	1Dh	I/O Limit Address	00h	
06, 07h	Status	0220h	1E, 1Fh	Sec. PCI/PCI Status	02A0h	
08h	Revision ID	00h	20, 21h	Memory Base Address	FFF0h	
0A, 0Bh	Class Code	0406h	22, 23h	Memory Limit Address	0000h	
0Eh	Header Type	01h	24, 25h	Prefetch Mem. Base Addr.	FFF0h	
18h	Primary Bus Number	00h	26, 27h	Prefetch Mem. Limit Addr.	0000h	
19h	Secondary Bus Number	00h	3Eh	PCI/PCI Bridge Control	80h	
1Ah	Subordinate Bus Number	00h	3F-FFh	Reserved	00h	

NOTE:

Assume unmarked locations/gaps as reserved. Refer to Intel documentation for detailed register descriptions.

The AGP graphics adapter (actually its resident controller) is configured as a standard PCI device.

4.4 INTERRUPTS

The microprocessor uses two types of interrupts; maskable and nonmaskable. A maskable interrupt can be enabled or disabled within the microprocessor by the use of the STI and CLI instructions. A nonmaskable interrupt cannot be masked off within the microprocessor but may be inhibited by hardware or software means external to the microprocessor.

4.4.1 MASKABLE INTERRUPTS

The maskable interrupt is a hardware-generated signal used by peripheral functions within the system to get the attention of the microprocessor. Peripheral functions produce a unique INTA-D (PCI) or IRQ0-15 (ISA) signal that is routed to interrupt processing logic that asserts the interrupt (INTR-) input to the microprocessor. The microprocessor halts execution to determine the source of the interrupt and then services the peripheral as appropriate.

Figure 4-6 shows the routing of PCI and ISA interrupts. Most IRQs are routed through the I/O controller, which contains a serializing function. A serialized interrupt stream is applied to the 82801 ICH.

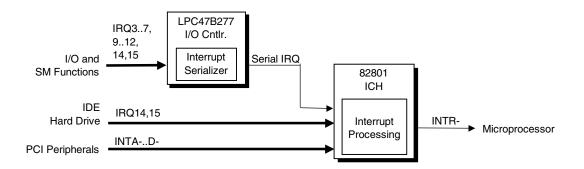


Figure 4-6. Maskable Interrupt Processing, Block Diagram

The 82801 ICH component, which includes the equivalent of two 8259 interrupt controllers cascaded together, handles the decoding of the serial interrupt stream (Serial IRQ signal) as well as interrupts IRQ14 and 15 from the IDE hard drives. The ICH also receives the PCI interrupt signals (INTA-..INTD-) from PCI devices. The PCI interrupts can be configured by PCI Configuration Registers 60h..63h to share the standard ISA interrupts (IRQn). The power-up default configuration has the PIRQn disabled. Table 4-13 lists the standard source configuration for maskable interrupts and their priorities. If more than one interrupt is pending, the highest priority (lowest number) is processed first.

The 82801 ICH is configured to handle interrupts in 8259-mode.

⁴⁻¹² Compaq iPAQ Family of Internet Devices

		Table 4-5.	
	Μ	laskable Interrupt Priorities and Assignments	
Priority	Signal Label	Source (Typical)	Notes
1	IRQ0	Interval timer 1, counter 0	
2	IRQ1	PS/2 Keyboard	[1]
3	IRQ8-	Real-time clock	
4	IRQ9	Unused	
5	IRQ10	Unused	
6	IRQ11	Unused	
7	IRQ12	PS/2 Mouse	[1]
8	IRQ13	Coprocessor (math)	
9	IRQ14	IDE primary I/F	
10	IRQ15	IDE secondary I/F	
11	IRQ3	Unused	
12	IRQ4	Serial port (COM1)	[1]
13	IRQ5	Unused	
14	IRQ6	Unused	
15	IRQ7	Parallel port (LPT1)	[1]
	IRQ2	NOT AVAILABLE (Cascade from interrupt controller 2)	• •
NOTE			

NOTE:

[1] Legacy-light models only

Interrupts generated by PCI devices can be configured to share the standard AT (IRQn) interrupt lines. Also, PCI interrupts are hardwired for even distribution to minimize latency (see section 4.2.2 "PCI Interrupt Mapping").

Maskable Interrupt processing is controlled and monitored through standard AT-type I/Omapped registers. These registers are listed in Table 4-6.

Table 4-6.		
Maskable Interrupt Control Registers		
I/O Port	Register	
020h	Base Address, Int. Cntlr. 1	
021h	Initialization Command Word 2-4, Int. Cntlr. 1	
0A0h	Base Address, Int. Cntlr. 2	
0A1h	Initialization Command Word 2-4, Int. Cntlr. 2	

The initialization and operation of the interrupt control registers follows standard AT-type protocol.

4.4.2 NON-MASKABLE INTERRUPTS

Non-maskable interrupts cannot be masked (inhibited) within the microprocessor itself but may be maskable by software using logic external to the microprocessor. There are two non-maskable interrupt signals: the NMI- and the SMI-. These signals have service priority over all maskable interrupts, with the SMI- having top priority over all interrupts including the NMI-.

4.4.2.1 NMI- Generation

The Non-Maskable Interrupt (NMI-) signal can be generated by one of the following actions:

- Parity errors detected on the ISA bus (activating IOCHK-).
- Parity errors detected on a PCI bus (activating SERR- or PERR-).
- Microprocessor internal error (activating IERRA or IERRB)

The IOCHK-, SERR-, and PERR- signals are routed through the ICH component, which in turn activates the NMI to the microprocessor.

The NMI Status Register at I/O port 061h contains NMI source and status data as follows:

NMI Status Register 61h

Bit	Function
7	NMI Status:
	0 = No NMI from system board parity error.
	1 = NMI requested, read only
6	IOCHK- NMI:
	0 = No NMI from IOCHK-
	1 = IOCHK- is active (low), NMI requested, read only
5	Interval Timer 1, Counter 2 (Speaker) Status
4	Refresh Indicator (toggles with every refresh)
3	IOCHK- NMI Enable/Disable:
	0 = NMI from IOCHK- enabled
	1 = NMI from IOCHK- disabled and cleared (R/W)
2	System Board Parity Error (PERR/SERR) NMI Enable:
	0 = Parity error NMI enabled
	1 = Parity error NMI disabled and cleared (R/W)
1	Speaker Data (R/W)
0	Inteval Timer 1, Counter 2 Gate Signal (R/W)
	0 = Counter 2 disabled
	1 = Counter 2 enabled

Functions not related to NMI activity.

After the active NMI has been processed, status bits <7> or <6> are cleared by pulsing bits <2> or <3> respectively.

The NMI Enable Register (070h, <7>) is used to enable/disable the NMI signal. Writing 80h to this register masks generation of the NMI-. Note that the lower six bits of register at I/O port 70h affect RTC operation and should be considered when changing NMI- generation status.

4.4.2.2 SMI- Generation

The SMI- (System Management Interrupt) is typically used for power management functions. When power management is enabled, inactivity timers are monitored. When a timer times out, SMI- is asserted and invokes the microprocessor's SMI handler. The SMI- handler works with the APM BIOS to service the SMI- according to the cause of the timeout.

Although the SMI- is primarily used for power managment the interrupt is also employed for the QuickLock/QuickBlank functions as well.

Compaq iPAQ Family of Internet Devices 4-15

4.5 **INTERVAL TIMER**

The interval timer generates pulses at software (programmable) intervals. A 8254-compatible timer is integrated into the 82801 component. The timer function provides three counters, the functions of which are listed in Table 4-7.

		Table 4-7.Interval Timer Functions		
Counter	Function	Gate	Clock In	Clock Out
0	System Clock	Always on	1.193 MHz	IRQ0
1	Refresh	Always on	1.193 MHz	Refresh Req.
2	Speaker Tone	Port 61, bit<0>	1.193 MHz	Speaker Input

The interval timer is controlled through the I/O mapped registers listed in Table 4-8.

Table 4-8.		
Interval Timer Control Registers		
I/O Port	Register	
040h	Read or write value, counter 0	
041h	Read or write value, counter 1	
042h	Read or write value, counter 2	
043h	Control Word	

4.6 SYSTEM CLOCK DISTRIBUTION

These systems use a CK133 clock generator (for 820-based systems) or a CK Whitney or ICS92250-16 clock generator (for 810/810e-based systems). Table 4-9 lists the system board clock signals and how they are distributed.

Source CLK Gen.	Destination Processor, GMCH
CLK Gen.	Processor, GMCH
СК	DIMM sockets
"	82801 ICH, 47B277 I/O Cntlr.
"	82801 ICH
Crystal	CK133
CLK Gen	82801 ICH
	" Crystal

NOTE:

[1] Depending on processor speed.

4-16 Compaq iPAQ Family of Internet Devices

4.7 REAL-TIME CLOCK AND CONFIGURATION MEMORY

The Real-time clock (RTC) and configuration memory (also referred to as "CMOS") functions are provided by the 82801 ICH component and is MC146818-compatible. As shown in the following figure, the 82801 ICH component provides 256 bytes of battery-backed RAM divided into two 128-byte configuration memory areas. The RTC uses the first 14 bytes (00-0Dh) of the standard memory area. All locations of the standard memory area (00-7Fh) can be directly accessed using conventional OUT and IN assembly language instructions through I/O ports 70h/71h, although the suggested method is to use the INT15 AX=E823h BIOS call. Also note that CMOS locations above 3Fh are used for the control and status of features that should be handled through BIOS function INT15h, AX=E845h.

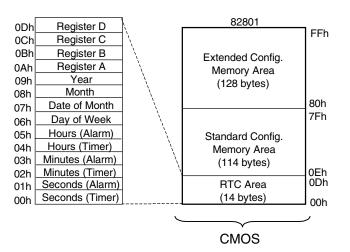


Figure 4-7. Configuration Memory Map

A lithium 3-VDC battery is used for maintaining the RTC and configuration memory while the system is powered down. During system operation a wire-Ored circuit allows the RTC and configuration memory to draw power from the power supply. The battery is located in a battery holder on the system board and has a life expectancy of four to eight years. When the battery has expired it is replaced with a Renata CR2032 or equivalent 3-VDC lithium battery.

Table 4-10 lists the mapping of the configuration memory.

Location	Function	Location	Function
00-0Dh	Real-time clock	24h	System board ID
0Eh	Diagnostic status	25h	System architecture data
0Fh	System reset code	26h	Auxiliary peripheral configuration
10h	Diskette drive type	27h	Speed control external drive
11h	Reserved	28h	Expanded/base mem. size, IRQ12
12h	Hard drive type	29h	Miscellaneous configuration
13h	Security functions	2Ah	Hard drive timeout
14h	Equipment installed	2Bh	System inactivity timeout
15h	Base memory size, low byte/KB	2Ch	Monitor timeout, Num Lock Cntrl
16h	Base memory size, high byte/KB	2Dh	Additional flags
17h	Extended memory, low byte/KB	2Eh-2Fh	Checksum of locations 10h-2Dh
18h	Extended memory, high byte/KB	30h-31h	Total extended memory tested
19h	Hard drive 1, primary controller	32h	Century
1Ah	Hard drive 2, primary controller	33h	Miscellaneous flags set by BIOS
1Bh	Hard drive 1, secondary controller	34h	International language
1Ch	Hard drive 2, secondary controller	35h	APM status flags
1Dh	Enhanced hard drive support	36h	ECC POST test single bit
1Eh	Reserved	37h-3Fh	Power-on password
1Fh	Power management functions	40-FFh	Feature Control/Status

_ . .

4 4 6

NOTES:

Assume unmarked gaps are reserved.

Higher locations (>3Fh) contain information that should be accessed using the INT15, AX=E845h BIOS function (refer to Chapter 8 for BIOS function descriptions).

4.7.1 CMOS ARCHIVE

There is no provision for clearing the contents of the configuration memory (CMOS). During POST, a copy of the CMOS data is written to a sector of the 82802 FWH. This means that changes to CMOS will be stored on the following boot. Should the system hang during boot as the result of corrupted CMOS data, then a Power Button Override boot should be invoked with the following procedure:

- 1. Initiate a power cycle by pressing and releasing the Power button, then pressing and holding the power button for about four seconds so that the system should record a power button override event.
- 2. Power down the system.
- 3. Press and release the power button, initiating a boot sequence. The system should detect the occurrence of a power button override event and will load the CMOS archive data stored in the FWH allowing a successful boot. All passwords and settings used in the previous successful boot would be restored.

4.7.2 STANDARD CMOS LOCATIONS

The following paragraphs describe standard configuration memory locations 0Ah-3Fh. These locations are accessible through using OUT/IN assembly language instructions using port 70/71h or BIOS function INT15, AX=E823h.

⁴⁻¹⁸ Compaq iPAQ Family of Internet Devices

RTC Control Register A, Byte 0Ah

Bit	Function		
7	Update in Progress. Read only.		
	0 = Time update will not occur before 2444 us		
	1 = Time update will occur within 2444 us		
64	Divider Chain Control. R/W.		
	00x = Oscillator disabled.		
	010 = Normal operation (time base frequency =	32.768 KHz).	
	11x = Divider chain reset.		
30	Periodic Interrupt Control. R/W. Specifies the period	odic interrupt interval.	
	0000 = none 1000 = 3.90625 ms		
	0001 = 3.90625 ms 1001 = 7.8125 ms		
	0010 = 7.8125 ms 1010 = 15. 625 ms		
	0011 = 122.070 us 1011 = 31.25 ms		
	0100 = 244.141 us 1100 = 62.50 ms		
	0101 = 488.281 us 1101 = 125 ms		
	0110 = 976.562 us 1110 = 250 ms		
	0111 = 1.953125 ms 1111 = 500 ms		

RTC Control Register B, Byte 0Bh

Bit	Function
7	Time Update Enable/disable
	0 = Normal operation, 1 = Disable time updating for time set
6	Periodic Interrupt Enable/Disable.
	0 = Disable, 1 = Enable interval specified by Register A
5	Alarm Interrupt Enable/disable
	0 = Disabled, 1 = Enabled
4	End-of-Update Interrupt Enable/Disable
	0 = Disabled, 1 = Enabled
3	Reserved (read 0)
2	Time/Date Format Select
	0 = BCD format, 1 = Binary format
1	Time Mode
	0 = 12-hour mode, 1 = 24-hour mode
0	Automatic Daylight Savings Time Enable/Disable
	0 = Disable
	1 = Enable (Advance 1 hour on 1 st Sunday in April, retreat 1 hour on last Sunday in October).

RTC Status Register C, Byte 0Ch

Bit	Function		
7	If set, interrupt output signal active (read only)		
6	If set, indicates periodic interrupt flag		
5	If set, indicates alarm interrupt		
4	If set, indicates end-of-update interrupt		
30	Reserved		

RTC Status Register D, Byte 0Dh

Bit	Function
7	RTC Power Status
	0 = RTC has lost power
	1 = RTC has not lost power
60	Reserved

Configuration Byte 0Eh, Diagnostic Status Default Value = 00h

This byte contains diagnostic status data.

Configuration Byte 0Fh, System Reset Code Default Value = 00h

This byte contains the system reset code.

Configuration Byte 10h, Diskette Drive Type

Bit	Function	
74	Primary (Drive A) Diskette Drive Type	
30	Secondary (Drive B) Diskette Drive Type	
Valid valu	ues for bits <74> and bits <30>:	
	0000 = Not installed	
	0001 = 360-KB drive	
	0010 = 1.2-MB drive	
	0011 = 720-KB drive	
	0100 = 1.44-MB/1.25-MB drive	
	0110 = 2.88-MB drive	
	(all other values reserved)	

Configuration Byte 12h, Hard Drive Type

Bit	Function			
74	Primary Controller 1, Hard Drive 1 Type:			
	0000 = none 1000 = Type 8			
	0001 = Type 1 1001 = Type 9			
	0010 = Type 2 1010 = Type 10			
	0011 = Type 3 1011 = Type 11			
	0100 = Type 4 1100 = Type 12			
	0101 = Type 5 1101 = Type 13			
	0110 = Type 6 1110 = Type 14			
	0111 = Type 7 1111 = other (use bytes 19h)			
30	Primary Controller 1, Hard Drive 2 Type:			
	0000 = none 1000 = Type 8			
	0001 = Type 1 1001 = Type 9			
	0010 = Type 2 1010 = Type 10			
	0011 = Type 3 1011 = Type 11			
	0100 = Type 4 1100 = Type 12			
	0101 = Type 5 1101 = Type 13			
	0110 = Type 6 1110 = Type 14			
	0111 = Type 7 1111 = other (use bytes 1Ah)			

4-20 Compaq iPAQ Family of Internet Devices

Default V	/alue = 00h
Bit	Function
7	Reserved
6	QuickBlank Enable After Standby:
	0 = Disable
	1 = Enable
5	Administrator Password:
	0 = Not present
	1 = Present
4	Reserved
3	Diskette Boot Enable:
	0 = Enable
	1 = Disable
2	QuickLock Enable:
	0 = Disable
	1 = Enable
1	Network Server Mode/Security Lock Override:
	0 = Disable
	1 = Enable
0	Password State (Set by BIOS at Power-up)
	0 = Not set
	1 = Set

Configuration Byte 13h, Security Functions

Configuration Byte 14h, Equipment Installed Default Value (standard configuration) = 03h

Bit	Function		
7,6	No. of Diskette Drives Installed:		
	00 = 1 drive 10 = 3 drives		
	01 = 2 drives $11 = 4 drives$		
52	Reserved		
1	Coprocessor Present		
	0 = Coprocessor not installed		
	1 = Coprocessor installed		
0	Diskette Drives Present		
	0 = No diskette drives installed		
	1 = Diskette drive(s) installed		

Configuration Bytes 15h and 16h, Base Memory Size

Default Value = 280h

Bytes 15h and 16h hold a 16-bit value that specifies the base memory size in 1-KB (1024) increments. Valid base memory sizes are 512 and 640 kilobytes .

Configuration Bytes 17h and 18h, Extended Memory Size

Bytes 17h and 18h hold a 16-bit value that specifies the extended memory size in 1-KB increments.

Configuration Bytes 19h-1Ch, Hard Drive Types

Byte 19h contains the hard drive type for drive 1 of the primary controller if byte 12h bits <7..4> hold 1111b. Byte 1Ah contains the hard drive type for drive 2 of the primary controller if byte 12h bits <3..0> hold 1111b. Bytes1Bh and 1Ch contain the hard drive types for hard drives 1 and 2 of the secondary controller.

Default Value = F0h	
Bit	Function
7	EIDE - Drive C (83h)
6	EIDE - Drive D (82h)
5	EIDE - Drive E (81h)
4	EIDE - Drive F (80h)
30	Reserved
Values for bits <74>:	

Configuration Byte 1Dh, Enhanced IDE Hard Drive Support

0 = Disable

1 = Enable for auto-configure

Configuration Byte 1Fh, Power Management Functions Default Value = 00h

Bit	Function
74	Reserved
3	Slow Processor Clock for Low Power Mode
	0 = Processor runs at full speed
	1 = Processor runs at slow speed
2	Reserved
1	Monitor Off Mode
	0 = Turn monitor power off after 45 minutes in standby
	1 = Leave monitor power on
0	Energy Saver Mode Indicator (Blinking LED)
	0 = Disable
	1 = Enable

Configuration Byte 24h, System Board Identification Default Value = 7Eh

Configuration memory location 24h holds the system board ID.

Configuration Byte 25h, System Architecture Data

Default V	Default Value = 0Bh	
Bit	Function	
74	Reserved	
3	Unmapping of ROM:	
	0 = Allowed	
	1 = Not allowed	
2	Reserved	
1,0	Diagnostic Status Byte Address	
	00 = Memory locations 80C00000h-80C00004h	
	01 = I/O ports 878h-87Ch	
	11 = neither place	

Default Value = 00h	
Bit	Function
7,6	I/O Delay Select
	00 = 420 ns (default)
	01 = 300 ns
	10 = 2600 ns
	11 = 540 ns
5	Alternative A20 Switching
	0 = Disable port 92 mode
	1 = Enable port 92 mode
4	Bi-directional Print Port Mode
	0 = Disabled
	1 = Enabled
3	Graphics Type
	0 = Color
	1 = Monochrome
2	Hard Drive Primary/Secondary Address Select:
	0 = Primary
	1 = Secondary
1	Diskette I/O Port
	0 = Primary
	1 = Secondary
0	Diskette I/O Port Enable
	0 = Primary
	1 = Secondary

Configuration Byte 26h, Auxiliary Peripheral Configurat	ion
Default Value = 00h	

Configuration Byte 27h, Speed Control/External Drive Default Value = 00h

Bit	Function
7	Boot Speed
	0 = Max MHz
	1 = Fast speed
60	Reserved

Configuration Byte 28h, Expan	nded and Base Memory, IRQ12 Select
Default Value = 00h	

Bit	Function
7	IRQ12 Select
	0 = Mouse
	1 = Expansion bus
6,5	Base Memory Size:
	00 = 640 KB
	01 = 512 KB
	10 = 256 KB
	11 = Invalid
40	Internal Compaq Memory:
	00000 = None
	00001 = 512 KB
	00010 = 1 MB
	00011 = 1.5 MB
	11111 = 15.5 MB

Default Value = 00h	
Bit	Function
75	Reserved
4	Primary Hard Drive Enable (Non-PCI IDE Controllers)
	0 = Disable
	1 = Enable
30	Reserved

Configuration Byte 29h, Miscellaneous Configuration Data

Configuration Byte 2Ah, Hard Drive Timeout

Default Value = 02h

Bit	Function
75	Reserved
40	Hard Drive Timeout (index to SIT timeout record)

Configuration Byte 2Bh, System Inactivity Timeout Default Value = 23h

Bit	Function
7	Reserved
6,5	Power Conservation Boot
	00 = Reserved
	01 = PC on
	10 = PC off
	11 = Reserved
40	System Inactive Timeout. (Index to SIT system timeout record)
	00000 = Disabled

Configuration Byte 2Ch, ScreenSave and NUMLOCK Control Default Value = 00h

Bit	Function
7	Reserved
6	Numlock Control
	0 = Numlock off at power on
	1 = Numlock on at power on
5	Screen Blank Control:
	0 = No screen blank
	1 = Screen blank w/QuickLock
40	ScreenSave Timeout. (Index to SIT monitor timeout record)
	000000 = Disabled

Default V	alue = 00h					
Bit	Function					
75	Reserved					
4	Memory Test					
	0 = Test memory on power up only					
	1 = Test memory on warm boot					
3	POST Error Handling (BIOS Defined)					
	0 = Display "Press F1 to Continue" on error					
	1 = Skip F1 message					
20	Reserved					

Configuration Byte 2Dh, Additional Flags

Configuration Byte 2Eh, 2Fh, Checksum

These bytes hold the checksum of bytes 10h to 2Dh.

Configuration Byte 30h, 31h, Total Extended Memory Tested

This location holds the amount of system memory that checked good during the POST.

Configuration Byte 32h, Century

This location holds the Century value in a binary coded decimal (BCD) format.

Default V	alue = 80h			
Bit	Function			
7	Memory Above 640 KB 0 = No, 1 = Yes			
6	Reserved			
5	Weitek Numeric Coprocessor Present: 0 = Not installed, 1 = Installed			
4	Standard Numeric Coprocessor Present: 0 = Not installed, 1 = Installed			
30	Reserved			

Configuration Byte 33h, Miscellaneous Flags

Configuration Byte 34h, International Language Support Default Value = 00h

Default V	/alue = 11h						
Bit	Function						
76	Power Conservation State:						
	00 = Ready						
	01 = Standby						
	10 = Suspend						
	11 = Off						
5,4	Reserved						
3	32-bit Connection:						
	0 = Disconnected, 1 = Connected						
2	16-bit Connection						
	0 = Disconnected, 1 = Connected						
1	Real Mode Connection						
	0 = Disconnected, 1 = Connected						
0	Power Management Enable:						
	0 = Disabled						
	1 = Enabled						

Configuration Byte 35h, APM Status Flags

Configuration Byte 36h, ECC POST Test Single Bit Errors Default Value = 01h

Bit	Function
7	Row 7 Error Detect
6	Row 6 Error Detect
5	Row 5 Error Detect
4	Row 4 Error Detect
3	Row 3 Error Detect
2	Row 2 Error Detect
1	Row 1 Error Detect
0	Row 0 Error Detect
	ngle bit error detected

0 = No single bit error detected.

1 = Single bit error detected.

Configuration Byte 37h-3Fh, Power-On Password

These eight locations hold the power-on password.

4.7.3 CMOS FEATURE BITS

Configuration memory above location 3Fh is used for storing special features that are accessed using BIOS function INT15, AX=E845h. Refer to Chapter 8 for more information on accessing the feature bits with BIOS.

⁴⁻²⁶ Compaq iPAQ Family of Internet Devices

4.8 SYSTEM MANAGEMENT

This section describes functions having to do with security, power management, temperature, and overall status. These functions are handled by hardware and firmware (BIOS) and generally configured through the Setup utility.

4.8.1 SECURITY FUNCTIONS

These systems include various features that provide different levels of security. Note that this subsection describes **only the hardware/firmware functionality** (including that supported by Setup) and does not describe security features that may be provided by Setup and/or the operating system and application software.

4.8.1.1 System Passwords

This system supports two passwords; Setup and Power-On, either or both of which may be enabled through Setup.

NOTE: The system hardware does not provide a CMOS-clearing feature, therefore should both the Setup and Power-On password be lost or forgotten then a special utility and BIOS function is required, allowing the use of a service password based on the unit serial number and date. **The utility can be invoked only as a network application through Compaq Customer Support.**

Setup Password

The Setup password is enabled and entered through the Setup utility. Once set, any changes affected through Setup require the Setup password to be entered. Should the Setup password be forgotten the Setup utility will be un-accessible for changes. Should the Power On password be enabled but forgotten, the Setup password may be used to access the Setup utility and a new Power On password be set.

Power On Password

The Power On password is enabled and set through the Setup utility. Once set, the boot sequence can be completed only when the correct Power On password is entered.

4.8.1.2 DriveLock Passwords

This system supports the DriveLock security feature for a compatible hard drive installed in the Multibay. DriveLock, when enabled, prevents unauthorized access to hard drive data by requiring a master and/or user password to be entered for access to data on the hard drive. Although this function is configured through the Setup utility, the password information is stored in a reserved area on the hard drive (i.e., the password(s) move(s) with the hard drive).

NOTE: The DriveLock feature is designed primarily for business environments, especially where a removable Multibay hard drive(s) may be shared between several systems. Since the loss of (forgetting) both DriveLock passwords to a drive will result in that drive being unusable, it is strongly advised that this feature be invoked and managed by a system administrator. For detailed user information consult the appropriate user/reference guide for this system.

4.8.2 POWER MANAGEMENT

This system provides baseline hardware support of ACPI- and APM-compliant firmware and software. Key power-consuming components (processor, chipset, I/O controller, and fan) can be placed into a reduced power mode either automatically or by user control. The system can then be brought back up ("wake-up") by events defined by the ACPI specification. The ACPI wake-up events supported by this system are listed as follows:

ACPI Wake-Up Event	System Wakes From
Power Button	Suspend or soft-off
RTC Alarm	Suspend or soft-off
Wake On LAN (w/NIC)	Suspend or soft-off
PME	Suspend or soft-off
Serial Port Ring	Suspend or soft-off
USB	Suspend only
Keyboard	Suspend only
Mouse	Suspend only

4.8.3 THERMAL SENSING AND COOLING

All systems feature a variable-speed fan (mounted as a part of the power supply assembly) controlled by thermal sensing logic. All systems also include a header for connection to a fan that may be included in some processor upgrade kits (known as "boxed processors").

The system should be operated with all covers in place to ensure proper cooling of the system board components.

4.9 SYSTEM I/O MAP

Table 4-20 lists the fixed addresses of the input/output (I/O) ports.

Table 4-20.							
System I/O Map							
I/O Port	Function						
0000000Fh	DMA Controller 1						
00200021h	Interrupt Controller 1						
00400043h	Timer 1						
0060h	Keyboard Controller Data Byte						
0061h	NMI, Speaker Control						
0064h	Keyboard Controller Command/Status Byte						
0070h	NMI Enable, RTC/Lower CMOS Index						
0071h	RTC Data						
0080008Fh	DMA Page Registers						
0092h	Port A, Fast A20/Reset						
00A000A1h	Interrupt Controller 2						
00B2h, 00B3h	APM Control/Status Ports						
00C000DFh	DMA Controller 2						
01700177h	Hard Drive (IDE) Controller 2						
01F001FFh	Hard Drive (IDE) Controller 1						
0201024Fh	Audio subsystem control (primary & secondary addresses)						
0278027Bh	Parallel Port (LPT2)						
02F802FFh	Serial Port (COM2)						
0371 0375h	Diskette Drive Controller Alternate Addresses						
0376h	IDE Controller Alternate Address						
0377h	IDE Controller Alternate Address, Diskette Drive Controller Alternate Address						
0378037Fh	Parallel Port (LPT1)						
0388038Bh	FM synthesizer (alias addresses)						
03B003DFh	Graphics Controller						
03E803EFh	Serial Port (COM3)						
03F003F5h	Diskette Drive Controller Primary Addresses						
03F6, 03F7h	Diskette Drive Controller Primary Addresses, Hard Drive Controller Primary Addresses						
03F803FFh	Serial Port (COM1)						
04D0, 04D1h	Master, Slave Edge/Level INTR Control Register						
0C00, 0C01h	PCI IRQ Mapping Index, Data						
0C06, 0C07h	Reserved - Compaq proprietary use only						
0C50, 0C51h	System Management Configuration Registers (Index, Data)						
0C52h	General Purpose Port						
0C7Ch	Machine ID						
0CF8h	PCI Configuration Address (dword access only)						
0CF9h	Reset Control Register						
0CFCh	PCI Configuration Data (byte, word, or dword access)						
FF00FF07h	IDE Bus Master Register						

NOTE: Assume unmarked gaps are reserved/unused.

This page is intentionally blank.

⁴⁻³⁰ Compaq iPAQ Family of Internet Devices

Chapter 5 INPUT/OUTPUT INTERFACES

5.1 INTRODUCTION

This chapter describes the standard (i.e., system board) interfaces that provide input and output (I/O) porting of data and specifically discusses interfaces that are controlled through I/O-mapped registers. The following I/O interfaces are covered in this chapter:

٠	Enhanced IDE interface (5.2)	page 5-1
•	Diskette drive interface (5.3)	page 5-4
•	Serial interfaces (5.4)	page 5-5
•	Parallel interface (5.5)	page 5-8
•	Keyboard/pointing device interface (5.6)	page 5-15
•	Universal serial bus interface (5.7)	page 5-22
•	Audio subsystem (5.8)	page 5-26
٠	Network support (5.9)	page 5-32

5.2 ENHANCED IDE INTERFACE

The enhanced IDE (EIDE) interface consists of primary and secondary controllers integrated into the 82801 ICH component of the chipset. The system board includes two IDE connectors, a 40-pin connector that is associated with the primary controller that controls the internal hard drive and a 50-pin connector associated with the secondary controller that controls the device in the Multibay. Each controller can be configured independently for the following modes of operation:

- Programmed I/O (PIO) mode CPU controls drive transactions through standard I/O mapped registers of the IDE drive.
- 8237 DMA mode CPU offloads drive transactions using DMA protocol with transfer rates up to 16 MB/s.
- Ultra ATA/33 and /66 modes Preferred bus mastering source-synchronous protocol providing transfer rates of 33 and 66 MB/s respectively.

NOTE: Although the EIDE interface can electrically handle four EIDE devices, the form factor of the unit chassis allows only two devices to be installed.

5.2.1 IDE PROGRAMMING

The IDE interface is configured as a PCI device during POST and controlled through I/Omapped registers at runtime.

Compaq iPAQ Family of Internet Devices 5-1

Hard drives types not found in the ROM's parameter table are automatically configured as to (soft)type by DOS as follows:

Primary controller: drive 0, type 65; drive 1, type 66 Secondary controller: drive 0, type 68; drive 1, type 15

Non-DOS (non-Windows) operating systems may require using Setup (F10) for drive configuration.

5.2.1.1 IDE Configuration Registers

The IDE controller is configured as a PCI device with bus mastering capability. The PCI configuration registers for the IDE controller function (PCI device #31, function #1) are listed in Table 5-1.

Table 5-1. EIDE PCI Configuration Registers (82801, Device 31/Function 1)							
PCI Conf. Addr.	Register	Reset Value	PCI Conf. Addr.	Register	Reset Value		
00-01h	Vender ID	8086h	24-2Bh	Reserved	0's		
02-03h	Device ID	2411h	2C, 2Dh	Subsystem Vender ID	8086h		
04-05h	PCI Command	0000h	2E, 2Fh	Subsystem ID	2411h		
06-07h	PCI Status	0280h	30-3Fh	Reserved	0's		
08h	Revision ID	00h	40-43h	Primary IDE Timing	0000h		
09h	Programming	80h	44h	Secondary IDE Timing	00h		
0Ah	Sub-Class	01h	48h	Sync. DMA Control	00h		
0Bh	Base Class Code	01h	4A-4Bh	Sync. DMA Timing	0000h		
0Dh	Master Latency Timer	0000h	54h	EIDE I/O Config.Register	00h		
0Eh	Header Type	80h	F8-FBh	Manufacturer's ID			
0F-1Fh	Reserved	00h	FC-FFh	Reserved			
20-23h	BMIDE Base Address	1h					

NOTE:

Assume unmarked gaps are reserved and/or not used.

5.2.1.2 IDE Bus Master Control Registers

The IDE interface can perform PCI bus master operations using the registers listed in Table 5-2. These registers occupy 16 bytes of variable I/O space set by software and indicated by PCI configuration register 20h in the previous table.

Table 5-2.							
IDE Bus Master Control Registers							
I/O Addr. Size Default							
Offset	(Bytes)	Register	Value				
00h	1	Bus Master IDE Command (Primary)	00h				
02h	1	Bus Master IDE Status (Primary)	00h				
04h	4	Bus Master IDE Descriptor Pointer (Pri.)	0000 0000h				
08h	1	Bus Master IDE Command (Secondary)	00h				
0Ah	2	Bus Master IDE Status (Secondary)	00h				
0Ch	4	Bus Master IDE Descriptor Pointer (Sec.)	0000 0000h				
NOTE:							

Unspecified gaps are reserved, will return indeterminate data, and should not be written to.

5.2.2 IDE CONNECTOR

This system uses a standard 40-pin connector for the primary IDE device and connects (via a cable) to the hard drive installed in the right side drive bay. Note that some signals are re-defined for UATA/33 and UATA/66 modes, which require a special 80-conductor cable (supplied) designed to reduce cross-talk. Device power is supplied through a separate connector.

2 4 6 8 10 12 14 16 18 22 24 26 28 30 32 34 36 38 40 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
--

Figure 5-1. 40-Pin Primary IDE Connector (on system board).

Table 5-3.						
40-Pin Primary IDE Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	RESET-	Reset	21	DRQ	DMA Request	
2	GND	Ground	22	GND	Ground	
3	DD7	Data Bit <7>	23	IOW-	I/O Write [1]	
4	DD8	Data Bit <8>	24	GND	Ground	
5	DD6	Data Bit <6>	25	IOR-	I/O Read [2]	
6	DD9	Data Bit <9>	26	GND	Ground	
7	DD5	Data Bit <5>	27	IORDY	I/O Channel Ready [3]	
8	DD10	Data Bit <10>	28	CSEL	Cable Select	
9	DD4	Data Bit <4>	29	DAK-	DMA Acknowledge	
10	DD11	Data Bit <11>	30	GND	Ground	
11	DD3	Data Bit <3>	31	IRQn	Interrupt Request [4]	
12	DD12	Data Bit <12>	32	IO16-	16-bit I/O	
13	DD2	Data Bit <2>	33	DA1	Address 1	
14	DD13	Data Bit <13>	34	DSKPDIAG	Pass Diagnostics	
15	DD1	Data Bit <1>	35	DA0	Address 0	
16	DD14	Data Bit <14>	36	DA2	Address 2	
17	DD0	Data Bit <0>	37	CS0-	Chip Select	
18	DD15	Data Bit <15>	38	CS1-	Chip Select	
19	GND	Ground	39	HDACTIVE-	Drive Active (front panel LED) [5]	
20		Key	40	GND	Ground	

NOTES:

[1] On UATA/33 and /66 modes, re-defined as STOP.

[2] On UATA/33 and /66 mode reads, re-defined as DMARDY-.

On UATA/33 and /66 mode writes, re-defined as STROBE.

 $\left[3\right]$ On UATA/33 and /66 mode reads, re-defined as STROBE-.

On UATA/33 and /66 mode writes, re-defined as DMARDY-.

[4] Primary connector wired to IRQ14, secondary connector wired to IRQ15.

[5] Pin 39 is used for spindle sync and drive activity (becomes SPSYNC/DACT-)

when synchronous drives are connected.

Compaq iPAQ Family of Internet Devices 5-3

The system board includes a 50-pin connector for the secondary IDE drive that is installed in the MultiBay mounting position on the left side of the chassis. This interface includes power and audio signals. The 50-pin system/daughter board connector is illustrated below followed by the pinout.

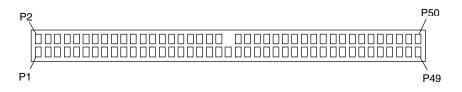


Figure 5-2. 50-Pin Secondary IDE Connector (on system and daughter boards).

Table 5-4.							
50-Pin Secondary IDE Connector Pinout							
Pin	Signal	Description	Pin	Signal	Description		
1	AUD L	Left channel audio	2	AUD R	Right channel audio		
3	AUD RTN	Audio return	4	AUD RTN	Audio return		
5	NC	Not connected	6	MBAY	Multibay device sense		
7	RST	Reset	8	GND	Ground		
9	D7	Data Bit <7>	10	D8	Data Bit <8>		
11	D6	Data Bit <6>	12	D9	Data Bit <9>		
13	D5	Data Bit <5>	14	D10	Data Bit <10>		
15	D4	Data Bit <4>	16	D11	Data Bit <11>		
17	D3	Data Bit <3>	18	D12	Data Bit <12>		
19	D2	Data Bit <2>	20	D13	Data Bit <13>		
21	D1	Data Bit <1>	22	D14	Data Bit <14>		
23	D0	Data Bit <0>	24	D15	Data Bit <15>		
25	GND	Ground	26		(Key Space)		
27	DDRQ1	Data request	28	GND	Ground		
29	I/O W-	I/O write	30	GND	Ground		
31	I/O R-	I/O read	32	GND	Ground		
33	I/OCHRDY	I/O channel ready	34	P_ALE	Cable select		
35	ACK1-	Acknowledge	36	GND	Ground		
37	IRQ15	Interrupt request 15	38	IO16	16-bit I/O transfer		
39	AD1	Address bit <1>	40	PDIAG	Diagnostic		
41	AD0	Address bit <0>	42	AD2	Address bit <2>		
43	CS1	Chip select <1>	44	CS3	Chip select <3>		
45	ACT-	Activity	46	GND	Ground		
47	Vcc	+5 VDC	48	Vcc	+5 VDC logic power		
49	GND	Ground	50	NC	Not connected		

5.3 DISKETTE DRIVE INTERFACE

NOTE: The Compaq iPAQ **does not** support a diskette drive. However, the LPC47B277 I/O controller contains a diskette drive controller that may need to be enabled (with Setup) to satisfy the requirements of some operating systems. This will result in device manager applications indicating the presence of a diskette drive that in fact is **not** available.

⁵⁻⁴ *Compaq iPAQ Family of Internet Devices*

5.4 SERIAL INTERFACE

The legacy-light models include a serial interface to transmit and receive asynchronous serial data with external devices. The serial interface function is provided by the LPC47B277 I/O controller component that includes a NS16C550-compatible UART.

NOTE: Legacy-free models do not have an externally accessible serial port, but do have an internal serial header to satisfy the serial port requirements of some operating systems.

The UART supports the standard baud rates up through 115200, and also special high speed rates of 239400 and 460800 baud. The baud rate of the UART is typically set to match the capability of the connected device. While most baud rates may be set at runtime, **baud rates 230400 and 460800 must be set during the configuration phase.**

5.4.1 RS-232 INTERFACE

On the legacy-light system, the UART is associated with a DB-9 connector that complies with EIA standard RS-232-C. The DB-9 connector is shown in the following figure and the pinout of the connector is listed in Table 5-5.

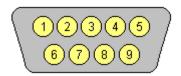


Figure 5-3. Serial Interface Connector (Male DB-9 as viewed from rear of chassis)

Table 5-5. DB-9 Serial Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	CD	Carrier Detect	6	DSR	Data Set Ready	
2	RX Data	Receive Data	7	RTS	Request To Send	
3	TX Data	Transmit Data	8	CTS	Clear To Send	
4	DTR	Data Terminal Ready	9	RI	Ring Indicator	
5	GND	Ground				

The standard RS-232-C limitation of 50 feet (or less) of cable between the DTE (computer) and DCE (modem) should be followed to minimize transmission errors. Higher baud rates may require shorter cables.

5.4.2 SERIAL TEST INTERFACE

Legacy-free systems do not provide an externally accessible serial port but do include a serial header connector on the system board to satisfy some the requirements of some operating systems. The test header and pinout is shown in the following figure:

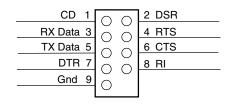


Figure 5-4. Serial Interface Header (on legacy-free system board)

5.4.3 SERIAL INTERFACE PROGRAMMING

Programming the serial interfaces consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.4.3.1 Serial Interface Configuration

The serial interface must be configured for a specific address range (COM1, COM2, etc.) and also must be activated before it can be used. Address selection and activation of the serial interface are affected through the PnP configuration registers of the LPC47B277 I/O controller. The serial interface configuration registers are listed in the following table:

	Table 5-6.				
	Serial Interface Configuration Registers				
Index Address Function B/W					
30h	Activate	R/W			
60h	Base Address MSB	R/W			
61h	Base Address LSB	R/W			
70h	Interrupt Select	R/W			
F0h	Mode Register	R/W			

NOTE:

Refer to LPC47B277 data sheet for detailed register information.

5.4.3.2 Serial Interface Control

The BIOS function INT 14 provides basic control of the serial interface. The serial interface can be directly controlled by software through the I/O-mapped registers listed in Table 5-7.

⁵⁻⁶ Compaq iPAQ Family of Internet Devices

00114	00110	Serial Interface Control Registers	
COM1 Addr.	COM2 Addr.	Register	R/W
3F8h	2F8h	Receive Data Buffer	R
	21 011	Transmit Data Buffer	Ŵ
		Baud Rate Divisor Register 0 (when bit 7 of Line Control Reg. Is set)	Ŵ
3F9h	2F9h	Baud Rate Divisor Register 1 (when bit 7 of Line Control Reg. Is set)	Ŵ
01 011	21 511	Interrupt Enable Register:	R/W
		<74> Reserved (always 0's)	10,00
		<3> Modem status interrupt enable (active high) (CTS, DSR, RI, CD)	
		<2> Rx line status interrupt enable (active high) (Overrun, parity, framing error)	
		<1> Tx holding register empty interrupt enable (active high)	
		<0> Baud rate divisor interrupt enable (active high)	
3FAh	2FAh	Interrupt ID Register:	R
01741	21741	<7,6> FIFO Enable/Disable: 0 = disable, 1 = enable	
		<5.4> Reserved	
		<31> Interrupt Source:	
		000 = Modem status 100,101 = Reserved	
		001 = TX holding reg. Empty 110 = Character time-out	
		010 = RX data available $111 = Reserved$	
		011 = RX line status	
		<pre><0> Interrupt pending (if cleared)</pre>	
		FIFO Control Register:	W
		<7,6> RX Trigger Level: 00 = 1 byte, 01 = 4 bytes, 10 = 8 bytes, 11 = 14 bytes	
		<53> Rerserved	
		<2> TX FIFO reset (active high)	
		<1> RX FIFO reset (active high)	
		<0> FIFO Enable/Disable: 0 = Disable TX/RX FIFO's, 1 = Enable TX/RX FIFO's	
3FBh	2FBh	Line Control Register:	R/W
		<7> Register acces control:	
		0 = RX buffer, TX holding, divisor rate registers are accessable.	
		1 = Divisor rate register is accessable	
		<6> Break control (forces SOUT singla low if set)	
		<5> Stick parity (if set, even parity bit is 0, odd parity bit is 1)	
		<4> Parity type: 0 = odd, 1 = even	
		<3> Parity enable: 0 = disabled, 1 = enabled	
		<2> Stop bit: $0 = 1$ stop bit, $1 = 2$ stop bits	
		<1,0> Word size: 00 = 5 bits, 01 = 6 bits, 10 = 7 bits, 11 = 8 bits	
3FCh	2FCh	Modem Control Register:	R/V
		<75> Reserved	
		<4> Internal loopback enabled (if set)	
		<3> Serial I/F interrupts enabled (if set)	
		<2> Reserved	
		<1> RTS signal active (if set)	
		<0> DTR signal active (if set)	
3FDh	2FDh	Line Status Register:	R
		<7> Parity error, framing error, or Break condition (if set)	
		<6> TX holding and TX shift registers are empty (if set)	
		<5> TX holding register is empty (if set)	
		<4> Break interrupt has occurred (if set)	
		<3> Framing error has occurred (if set)	
		<2> Parity error has occurred (if set)	
		<1> Overrun error has occurred (if set)	
		<0> Data register ready to be read (if set)	
3FEh	2FEh	Modem Status:	R
		<74> DCD-, RI-, DSR, CTS (respectively) active (if set)	
		<30> DCD-, RI-, DSR, CTS (respectively) changed state since last read (if set)	

 Table 5-7.

 Serial Interface Control Registers

5.5 PARALLEL INTERFACE

The legacy-light models include a parallel interface for connection to a peripheral device that has a compatible interface, the most common being a printer. The parallel interface function is integrated into theLPC47B277 I/O controller component and provides bi-directional 8-bit parallel data transfers with a peripheral device. The parallel interface supports three main modes of operation:

- Standard Parallel Port (SPP) mode
- Enhanced Parallel Port (EPP) mode
- Extended Capabilities Port (ECP) mode

These three modes (and their submodes) provide complete support as specified for an IEEE 1284 parallel port.

5.5.1 STANDARD PARALLEL PORT MODE

The Standard Parallel Port (SPP) mode uses software-based protocol and includes two sub-modes of operation, compatible and extended, both of which can provide data transfers up to 150 KB/s. In the compatible mode, CPU write data is simply presented on the eight data lines. A CPU read of the parallel port yields the last data byte that was written.

The following steps define the standard procedure for communicating with a printing device:

- 1. The system checks the Printer Status register. If the Busy, Paper Out, or Printer Fault signals are indicated as being active, the system either waits for a status change or generates an error message.
- 2. The system sends a byte of data to the Printer Data register, then pulses the printer STROBE signal (through the Printer Control register) for at least 500 ns.
- 3. The system then monitors the Printer Status register for acknowledgment of the data byte before sending the next byte.

In extended mode, a direction control bit (CTR 37Ah, bit <5>) controls the latching of output data while allowing a CPU read to fetch data present on the data lines, thereby providing bidirectional parallel transfers to occur.

The SPP mode uses three registers for operation: the Data register (DTR), the Status register (STR) and the Control register (CTR). Address decoding in SPP mode includes address lines A0 and A1.

5.5.2 ENHANCED PARALLEL PORT MODE

In Enhanced Parallel Port (EPP) mode, increased data transfers are possible (up to 2 MB/s) due to a hardware protocol that provides automatic address and strobe generation. EPP revisions 1.7 and 1.9 are both supported. For the parallel interface to be initialized for EPP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with EPP mode. If compatible, then EPP mode can be used. In EPP mode, system timing is closely coupled to EPP timing. A watchdog timer is used to prevent system lockup.

Five additional registers are available in EPP mode to handle 16- and 32-bit CPU accesses with the parallel interface. Address decoding includes address lines A0, A1, and A2.

5.5.3 EXTENDED CAPABILITIES PORT MODE

The Extended Capabilities Port (ECP) mode, like EPP, also uses a hardware protocol-based design that supports transfers up to 2 MB/s. Automatic generation of addresses and strobes as well as Run Length Encoding (RLE) decompression is supported by ECP mode. The ECP mode includes a bi-directional FIFO buffer that can be accessed by the CPU using DMA or programmed I/O. For the parallel interface to be initialized for ECP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with ECP mode. If compatible, then ECP mode can be used.

Ten control registers are available in ECP mode to handle transfer operations. In accessing the control registers, the base address is determined by address lines A2-A9, with lines A0, A1, and A10 defining the offset address of the control register. Registers used for FIFO operations are accessed at their base address + 400h (i.e., if configured for LPT1, then 378h + 400h = 778h).

The ECP mode includes several sub-modes as determined by the Extended Control register. Two submodes of ECP allow the parallel port to be controlled by software. In these modes, the FIFO is cleared and not used, and DMA and RLE are inhibited.

5.5.4 PARALLEL INTERFACE PROGRAMMING

Programming the parallel interface consists of configuration, which typically occurs during POST, and control, which occurs during runtime.

5.5.4.1 Parallel Interface Configuration

The parallel interface must be configured for a specific address range (LPT1, LPT2, etc.) and also must be enabled before it can be used. When configured for EPP or ECP mode, additional considerations must be taken into account. Address selection, enabling, and EPP/ECP mode parameters of the parallel interface are affected through the PnP configuration registers of the LPC47B347 I/O controller. Address selection and enabling are automatically done by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The parallel interface configuration registers are listed in the following table:

Table 5-8. Parallel Interface Configuration Registers					
Index Address	Function	R/W	Reset Value		
30h	Activate	R/W	00h		
60h	Base Address MSB	R/W	00h		
61h	Base Address LSB	R/W	00h		
70h	Interrupt Select	R/W	00h		
74h	DMA Channel Select	R/W	04h		
F0h	Mode Register	R/W	00h		
F1h	Mode Register 2	R/W	00h		

5.5.4.2 Parallel Interface Control

The BIOS function INT 17 provides simplified control of the parallel interface. Basic functions such as initialization, character printing, and printer status are provide by subfunctions of INT 17. The parallel interface is controllable by software through a set of I/O mapped registers. The number and type of registers available depends on the mode used (SPP, EPP, or ECP). Table 5-9 lists the parallel registers and associated functions based on mode.

	Table 5	5-9.					
Parallel Interface Control Registers							
I/O		SPP Mode	EPP Mode	ECP Mode			
Address	Register	Ports	Ports	Ports			
Base	Data	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 1h	Printer Status	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 2h	Control	LPT1,2,3	LPT1,2	LPT1,2,3			
Base + 3h	Address		LPT1,2				
Base + 4h	Data Port 0		LPT1,2				
Base + 5h	Data Port 1		LPT1,2				
Base + 6h	Data Port 2		LPT1,2				
Base + 7h	Data Port 3		LPT1,2				
Base + 400h	Parallel Data FIFO			LPT1,2,3			
Base + 400h	ECP Data FIFO			LPT1,2,3			
Base + 400h	Test FIFO			LPT1,2,3			
Base + 400h	Configuration Register A			LPT1,2,3			
Base + 401h	Configuration Register B			LPT1,2,3			
Base + 402h	Extended Control Register			LPT1,2,3			

Base Address:

LPT1 = 378h LPT2 = 278h LPT3 = 3BCh

The following paragraphs describe the individual registers. Note that only the LPT1-based addresses are given in these descriptions.

Data Register, I/O Port 378h

Data written to this register is presented to the data lines D0-D7. A read of this register when in SPP-compatible mode yields the last byte written. A read while in SPP-extended or ECP mode yields the status of data lines D0-D7 (i.e., receive data).

In ECP mode in the forward (output) direction, a write to this location places a tagged command byte into the FIFO and reads have no effect.

Status Register, I/O Port 379h, Read Only

This register contains the current printer status. Reading this register clears the interrupt condition of the parallel port.

Bit	Function
7	Printer Busy (if 0)
6	Printer Acknowledgment Of Data Byte (if 0)
5	Printer Out Of Paper (if 1)
4	Printer Selected/Online (if 1)
3	Printer Error (if 0)
2	Reserved
1	EPP Interrupt Occurred (if set while in EPP mode)
0	EPP Timeout Occurred (if set while in EPP mode)

Control Register, I/O Port 37Ah

This register provides the printer control functions.

Bit	Function
7,6	Reserved
5	Direction Control for PS/2 and ECP Modes:
	0 = Forward. Drivers enabled. Port writes to peripheral (default)
	1 = Backward. Tristates drivers and data is read from peripheral
4	Acknowledge Interrupt Enable
	0 = Disable ACK interrupt
	1 = Enable interrupt on rising edge of ACK
3	Printer Select (if 0)
2	Printer Initialize (if 1)
1	Printer Auto Line Feed (if 0)
0	Printer Strobe (if 0)

Address Register, I/O Port 37Bh (EPP Mode Only)

This register is used for selecting the EPP register to be accessed.

Data Port Registers 0-3, I/O Ports 37C-Fh (EPP Mode Only)

These registers are used for reading/writing data. Port 0 is used for all transfers. Ports 1-3 are used for transferring the additional bytes of 16- or 32-bit transfers through port 0.

FIFO Register, I/O Port 7F8h (ECP Mode Only)

While in ECP/forward mode, this location is used for filling the 16-byte FIFO with data bytes. Reads have no effect (except when used in Test mode). While in ECP/backward mode, reads yield data bytes from the FIFO.

Configuration Register A, I/O Port 7F8h (ECP Mode Only)

A read of this location yields 10h, while writes have no effect.

Configuration Register B, I/O Port 7F9h (ECP Mode, Read Only)

A read of this location yields the status defined as follows:

Bit	Function
7	Reserved (always 0)
6	Status of Selected IRQn.
5,4	Selected IRQ Indicator:
	00 = IRQ7
	11 = IRQ5
	All other values invalid.
3	Reserved (always 1)
20	Reserved (always 000)

Extended Control Register B, I/O Port 7FAh (ECP ModeOnly)

This register defines the ECP mode functions.

Bit	Function
75	 ECP Submode Select: 000 = Standard forward mode (37Ah <5> forced to 0). Writes are controlled by software and FIFO is reset. 001 = PS/2 mode. Reads and writes are software controlled and FIFO is reset. 010 = Parallel Port FIFO forward mode (37Ah <5> forced to 0). Writes are hardware controlled. 011 = ECP FIFO mode. Direction determined by 37Ah, <5>. Reads and writes are hardware controlled.
4	ECP Interrupt Mask: 0 = Interrupt is generated on ERR- assertion. 1 = Interrupt is inhibited.
3	ECP DMA Enable/Disable. 0 = Disabled 1 = Enabled
2	ECP Interrupt Generation with DMA 0 = Enabled 1 = Disabled
1	FIFO Full Status (Read Only) 0 = Not full (at least 1 empty byte) 1 = Full
0	FIFO Empty Status (Read Only) 0 = Not empty (contains at least 1 byte) 1 = Empty

Compaq iPAQ Family of Internet Devices 5-13

5.5.5 PARALLEL INTERFACE CONNECTOR

Figure 5-5 and Table 5-10 show the connector and pinout of the parallel interface connector. Note that some signals are redefined depending on the port's operational mode.

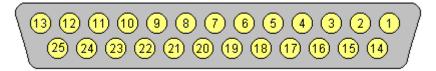


Figure 5-5. Parallel Interface Connector (Female DB-25 as viewed from rear of chassis)

	Table 5-10. DB-25 Parallel Connector Pinout						
Pin	Signal	Function	Pin	Signal	Function		
1	STB-	Strobe / Write [1]	14	LF-	Line Feed [2]		
2	D0	Data 0	15	ERR-	Error [3]		
3	D1	Data 1	16	INIT-	Initialize Paper [4]		
4	D2	Data 2	17	SLCTIN-	Select In / Address. Strobe [1]		
5	D3	Data 3	18	GND	Ground		
6	D4	Data 4	19	GND	Ground		
7	D5	Data 5	20	GND	Ground		
8	D6	Data 6	21	GND	Ground		
9	D7	Data 7	22	GND	Ground		
10	ACK-	Acknowledge / Interrupt [1]	23	GND	Ground		
11	BSY	Busy / Wait [1]	24	GND	Ground		
12	PE	Paper End / User defined [1]	25	GND	Ground		
13	SLCT	Select / User defined [1]					

NOTES:

[1] Standard and ECP mode function / EPP mode function

[2] EPP mode function: Data Strobe

ECP modes: Auto Feed or Host Acknowledge

[3] EPP mode: user defined

ECP modes:Fault or Peripheral Req.

[4] EPP mode: Reset

ECP modes: Initialize or Reverse Req.

5.6 KEYBOARD/POINTING DEVICE INTERFACE

The legacy-light models include PS/2-type keyboard/pointing device interfaces for the connection of a standard enhanced keyboard and a mouse. (Legacy-free models use USB ports for keyboard/mouse connections.) The keyboard/pointing device interface function is provided by the LPC47B277 I/O controller component, which integrates 8042-compatible keyboard controller logic (hereafter referred to as simply the "8042") to communicate with the keyboard and pointing device using bi-directional serial data transfers. The 8042 handles scan code translation and password lock protection for the keyboard as well as communications with the pointing device. This section describes the interface itself. The keyboard is discussed in the Appendix C.

5.6.1 KEYBOARD INTERFACE OPERATION

The data/clock link between the 8042 and the keyboard is uni-directional for Keyboard Mode 1 and bi-directional for Keyboard Modes 2 and 3. (These modes are discussed in detail in Appendix C). This section describes Mode 2 (the default) mode of operation.

Communication between the keyboard and the 8042 consists of commands (originated by either the keyboard or the 8042) and scan codes from the keyboard. A command can request an action or indicate status. The keyboard interface uses IRQ1 to get the attention of the CPU.

The 8042 can send a command to the keyboard at any time. When the 8042 wants to send a command, the 8042 clamps the clock signal from the keyboard for a minimum of 60 us. If the keyboard is transmitting data at that time, the transmission is allowed to finish. When the 8042 is ready to transmit to the keyboard, the 8042 pulls the data line low, causing the keyboard to respond by pulling the clock line low as well, allowing the start bit to be clocked out of the 8042. The data is then transferred serially, LSb first, to the keyboard (Figure 5-6). An odd parity bit is sent following the eighth data bit. After the parity bit is received, the keyboard pulls the data line low and clocks this condition to the 8042. When the keyboard receives the stop bit, the clock line is pulled low to inhibit the keyboard and allow it to process the data.

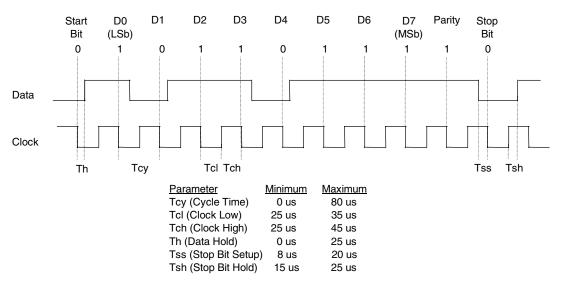


Figure 5-6. 8042-To-Keyboard Transmission of Code EDh, Timing Diagram

Compaq iPAQ Family of Internet Devices 5-15

Control of the data and clock signals is shared by the 8042 and the keyboard depending on the originator of the transferred data. Note that the clock signal is always generated by the keyboard. After the keyboard receives a command from the 8042, the keyboard returns an ACK code. If a parity error or timeout occurs, a Resend command is sent to the 8042.

Table 5-11 lists and describes commands that can be issued by the 8042 to the keyboard.

00	Table 5-11.					
8042-To-Keyboard Commands						
Command	Value	Description				
Set/Reset Status Indicators	EDh	Enables LED indicators. Value EDh is followed by an option				
		byte that specifies the indicator as follows:				
		Bits <73> not used				
		Bit <2>, Caps Lock ($0 = off, 1 = on$)				
		Bit <1>, NUM Lock ($0 = off, 1 = on$)				
		Bit <0>, Scroll Lock ($0 = off, 1 = on$)				
Echo	EEh	Keyboard returns EEh when previously enabled.				
Invalid Command	EFh/F1h	These commands are not acknowledged.				
Select Alternate Scan Codes	F0h	Instructs the keyboard to select another set of scan codes				
		and sends an option byte after ACK is received:				
		01h = Mode 1				
		02h = Mode 2				
		03h = Mode 3				
Read ID	F2h	Instructs the keyboard to stop scanning and return two				
		keyboard ID bytes.				
Set Typematic Rate/Display	F3h	Instructs the keyboard to change typematic rate and delay				
eet Typemale Tale, Display	1 011	to specified values:				
		Bit <7>, Reserved - 0				
		Bits <6,5>, Delay Time				
		00 = 250 ms				
		00 = 250 ms 01 = 500 ms				
		10 = 750 ms				
		10 = 750 ms 11 = 1000 ms				
		Bits <40>, Transmission Rate:				
		00000 = 30.0 ms				
		00001 = 26.6 ms				
		00010 = 24.0 ms				
		00011 = 21.8 ms				
		11111 = 2.0 ms				
Enable	F4h	Instructs keyboard to clear output buffer and last typematic				
		key and begin key scanning.				
Default Disable	F5h	Resets keyboard to power-on default state and halts				
		scanning pending next 8042 command.				
Set Default	F6h	Resets keyboard to power-on default state and enable				
		scanning.				
Set Keys - Typematic	F7h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Make/Brake	F8h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Make	F9h	Clears keyboard buffer and sets default scan code set. [1]				
Set Keys - Typematic/Make/Brake	FAh	Clears keyboard buffer and sets default scan code set. [1]				
Set Type Key - Typematic	FBh	Clears keyboard buffer and prepares to receive key ID. [1]				
Set Type Key - Make/Brake	FCh	Clears keyboard buffer and prepares to receive key ID. [1]				
Set Type Key - Make	FDh	Clears keyboard buffer and prepares to receive key ID. [1]				
Resend	FEh	8042 detected error in keyboard transmission.				
Reset	FFh	Resets program, runs keyboard BAT, defaults to Mode 2.				
ote:						

Note:

[1] Used in Mode 3 only.

5-16 Compaq iPAQ Family of Internet Devices

5.6.2 POINTING DEVICE INTERFACE OPERATION

The pointing device (typically a mouse) connects to a 6-pin DIN-type connector that is identical to the keyboard connector both physically and electrically. The operation of the interface (clock and data signal control) is the same as for the keyboard. The pointing device interface uses the IRQ12 interrupt.

5.6.3 KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING

Programming the keyboard interface consists of configuration, which occurs during POST, and control, which occurs during runtime.

5.6.3.1 8042 Configuration

The keyboard/pointing device interface must be enabled and configured for a particular speed before it can be used. Enabling and speed parameters of the 8042 logic are affected through the PnP configuration registers of the LPC47B347 I/O controller. Enabling and speed control are automatically set by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The keyboard interface configuration registers are listed in the following table:

Table 5-12.						
K	Keyboard Interface Configuration Registers					
Index	Index					
Address	Function	R/W				
30h	Activate	R/W				
70h	Primary Interrupt Select	R/W				
72h	Secondary Interrupt Select	R/W				
F0h	Reset and A20 Select	R/W				

5.6.3.2 8042 Control

The BIOS function INT 16 is typically used for controlling interaction with the keyboard. Subfunctions of INT 16 conduct the basic routines of handling keyboard data (i.e., translating the keyboard's scan codes into ASCII codes). The keyboard/pointing device interface is accessed by the CPU through I/O mapped ports 60h and 64h, which provide the following functions:

- Output buffer reads
- Input buffer writes
- Status reads
- Command writes

Ports 60h and 64h can be accessed using the IN instruction for a read and the OUT instruction for a write. Prior to reading data from port 60h, the "Output Buffer Full" status bit (64h, bit <0>) should be checked to ensure data is available. Likewise, before writing a command or data, the "Input Buffer Empty" status bit (64h, bit <1>) should also be checked to ensure space is available.

I/O Port 60h

I/O port 60h is used for accessing the input and output buffers. This register is used to send and receive data from the keyboard and the pointing device. This register is also used to send the second byte of multi-byte commands to the 8042 and to receive responses from the 8042 for commands that require a response.

A read of 60h by the CPU yields the byte held in the output buffer. The output buffer holds data that has been received from the keyboard and is to be transferred to the system.

A CPU write to 60h places a data byte in the input byte buffer and sets the CMD/ DATA bit of the Status register to DATA. The input buffer is used for transferring data from the system to the keyboard. All data written to this port by the CPU will be transferred to the keyboard **except** bytes that follow a multibyte command that was written to 64h

I/O Port 64h

I/O port 64h is used for reading the status register and for writing commands. A read of 64h by the CPU will yield the status byte defined as follows:

Bit	Function
74	General Purpose Flags.
3	CMD/DATA Flag (reflects the state of A2 during a CPU write).
	0 = Data
	1 = Command
2	General Purpose Flag.
1	Input Buffer Full. Set (to 1) upon a CPU write. Cleared by
	IN A, DBB instruction.
0	Output Buffer Full (if set). Cleared by a CPU read of the buffer.

A CPU write to I/O port 64h places a command value into the input buffer and sets the CMD/DATA bit of the status register (bit <3>) to CMD.

⁵⁻¹⁸ Compaq iPAQ Family of Internet Devices

Table 5-13 lists the commands that can be sent to the 8042 by the CPU. The 8042 uses IRQ1 for gaining the attention of the CPU.

	Table 5-13.CPU Commands To The 8042							
Value								
20h	Put current command byte in port 60h.							
60h	Load new command byte. This is a two-byte operation described as follows:							
	1. Write 60h to port 64h.							
	2. Write the command byte to port 60h as follows:							
	Bit <7> Reserved							
	<6> Keyboard Code Conversion							
	0 = Do not convert codes							
	1 = Convert codes to 9-bit 8088/8086-compatible format							
	Bit <5> Pointing Device Enable							
	0 = Enable pointing device							
	1 = Disable pointing device							
	Bit <4> Keyboard Enable							
	0 = Enable keyboard							
	1 = Disable keyboard							
	Bit <3> Reserved							
	Bit <2> System Flag							
	0 = Cold boot							
	1 = CPU reset (exit from protected mode)							
	Bit <1> Pointing Device Interrupt Enable							
	0 = Disable interrupt							
	1 = Enable interrupt							
	Bit <0> Keyboard Interrupt Enable							
	0 = Disable interrupt							
	1 = Enable interrupt							
A4h	Test password installed. Tests whether or not a password is installed in the 8042:							
	If FAh is returned, password is installed.							
	If F1h is returned, no password is installed.							
A5h	Load password. This multi-byte operation places a password in the 8042 using the following manner:							
	1. Write A5h to port 64h.							
	2. Write each character of the password in 9-bit scan code (translated) format to port 60h.							
	3. Write 00h to port 60h.							
A6h	Enable security. This command places the 8042 in password lock mode following the A5h command.							
	The correct password must then be entered before further communication with the 8042 is allowed.							
A7h	Disable pointing device. This command sets bit <5> of the 8042 command byte, pulling the clock line							
	of the pointing device interface low.							
A8h	Enable pointing device. This command clears bit <5> of the 8042 command byte, activating the clock							
	line of the pointing device interface.							
A9h	Test the clock and data lines of the pointing device interface and place test results in the output buffer							
	00h = No error detected							
	01h = Clock line stuck low							
	02h = Clock line stuck high							
	03h = Data line stuck low							
	04h = Data line stuck high							
AAh	Initialization. This command causes the 8042 to inhibit the keyboard and pointing device and places							
	55h into the output buffer.							
ABh	Test the clock and data lines of the keyboard interface and place test results in the output buffer.							
	00h = No error detected							
	01h = Clock line stuck low							
	02h = Clock line stuck high							
	03h = Data line stuck low							
	04h = Data line stuck high							
ADh	Disable keyboard command (sets bit <4> of the 8042 command byte).							
AEh	Enable keyboard command (clears bit <4> of the 8042 command byte).							
	Continued							

Compaq iPAQ Family of Internet Devices 5-19

Value	Command Description
C0h	Read input port of the 8042. This command directs the 8042 to transfer the contents of the input port
	to the output buffer so that they can be read at port 60h. The contents are as follows:
	Bit <7> Password Enable:
	0 = Disabled
	1 = Enabled
	Bit <6> External Boot Enable:
	0 = Enabled
	1 = Disabled
	Bit <5> Setup Enable:
	0 = Enabled
	1 = Disabled
	Bit <4> VGA Enable:
	0 = Enabled
	1 = Disabled
	Bit <3> Diskette Writes:
	0 = Disabled
	1 = Enabled
	Bit <2> Reserved
	Bit <1> Pointing Device Data Input Line
	Bit <0> Keyboard Data Input Line
C2h	Poll Input Port High. This command directs the 8042 to place bits <74> of the input port into the
	upper half of the status byte on a continous basis until another command is received.
C3h	Poll Input Port Low. This command directs the 8042 to place bits <30> of the input port into the lowe
	half of the status byte on a continous basis until another command is received.
D0h	Read output port. This command directs the 8042 to transfer the contents of the output port to the
	output buffer so that they can be read at port 60h. The contents are as follows:
	Bit <7> Keyboard data stream
	Bit <6> Keyboard clock
	Bit <5> IRQ12 (pointing device interrupt)
	Bit <4> IRQ1 (keyboard interrupt)
	Bit <3> Pointing device clock
	Bit <2> Pointing device data
	Bit <1> A20 Control:
	0 = Hold A20 low
	1 = Enable A20
	Bit <0> Reset Line Status;
	0 = Inactive
	1 = Active
D1h	Write output port. This command directs the 8042 to place the next byte written to port 60h into the
	output port (only bit <1> can be changed).
D2h	Echo keyboard data. Directs the 8042 to send back to the CPU the next byte written to port 60h as it
	it originated from the keyboard. No 11-to-9 bit translation takes place but an interrupt (IRQ1) is
Dal	generated if enabled.
D3h	Echo pointing device data. Directs the 8042 to send back to the CPU the next byte written to port 60
.	as if it originated from the pointing device. An interrupt (IRQ12) is generated if enabled.
D4h	Write to pointing device. Directs the 8042 to send the next byte written to 60h to the pointing device.
E0h	Read test inputs. Directs the 8042 to transfer the test bits 1 and 0 into bits <1,0> of the output buffer.
F0h-	Pulse output port. Controls the pulsing of bits $<30>$ of the output port (0 = pulse, 1 = don't pulse).
FFh	Note that pulsing bit <0> will reset the system.

Table 5-13. CPU Commands To The 8042 (Continued)

5.6.4 KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR

The legacy-light model provides separate PS/2 connectors for the keyboard and pointing device. Both connectors are identical both physically and electrically. Figure 5-7 and Table 5-14 show the connector and pinout of the keyboard/pointing device interface connectors.

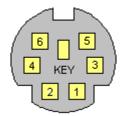
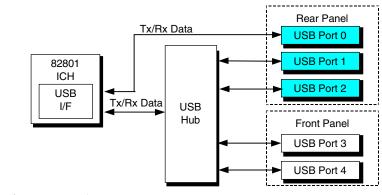


Figure 5-7. Keyboard or Pointing Device Interface Connector (as viewed from rear of chassis)

Table 5-17.
Keyboard/Pointing Device Connector Pinout

	-,							
Pin	Signal	Description	Pin	Signal	Description			
1	DATA	Data	4	+ 5 VDC	Power			
2	NC	Not Connected	5	CLK	Clock			
3	GND	Ground	6	NC	Not Connected			


5.7 UNIVERSAL SERIAL BUS INTERFACE

The Universal Serial Bus (USB) interface provides asynchronous/isochronous data transfers of up to 12 Mb/s with compatible peripherals such as keyboards, printers, or modems. This high-speed interface supports hot-plugging of compatible devices, making possible system configuration changes without powering down or even rebooting systems.

NOTE: It is recommended to run the Windows 98 (or later) operating system when using USB peripherals, **especially a USB keyboard and USB mouse**. Problems may be encountered when using USB devices with a system running Windows 95, although some peripherals (such as a modem and/or a camera) may operate satisfactorily.

As shown in Figure 5-8, the USB interface is provided by the 82801 ICH component and a USB hub component. All models provide two front-panel accessible series-A USB ports. The legacy-free system provides three additional series-A USB ports on the rear panel.

NOTE: For more information on the USB interface refer to the following web site: <u>http://www.usb.org</u>

Legacy-free systems only

Figure 5-8. USB I/F, Block Diagram

5.7.1 USB DATA FORMATS

The USB I/F uses non-return-to-zero inverted (NRZI) encoding for data transmissions, in which a 1 is represented by no change (between bit times) in signal level and a 0 is represented by a change in signal level. Bit stuffing is employed prior to NRZ1 encoding so that in the event a string of 1's is transmitted (normally resulting in a steady signal level) a 0 is inserted after every six consecutive 1's to ensure adequate signal transitions in the data stream.

⁵⁻²² Compaq iPAQ Family of Internet Devices

The USB transmissions consist of packets using one of four types of formats (Figure 5-9) that include two or more of seven field types.

- Sync Field 8-bit field that starts every packet and is used by the receiver to align the incoming signal with the local clock.
- Packet Identifier (PID) Field 8-bit field sent with every packet to identify the attributes (in. out, start-of-frame (SOF), setup, data, acknowledge, stall, preamble) and the degree of error correction to be applied.
- Address and Endpint Fields 7- and 4-bit fields (respectively) that provide source/destination information required in token packets.
- Frame Field 11-bit field sent in Start-of-Frame (SOF) packets that are incremented by the host and sent only at the start of each frame.
- Data Field 0-1023-byte field of data.
- Cyclic Redundancy Check (CRC) Field 5- or 16-bit field used to check transmission integrity.

Token Packet	Sync Field (8 bits)	PID Field (8 bits)	Addr. Field (7 bits)		P. Field bits)	 C Field 5 bits)	
SOF Packet	Sync Field (8 bits)	PID Field (8 bits)	Frame Fiel (11 bits)	d	CRC F (5 bit		
Data Packet	Sync Field (8 bits)	PID Field (8 bits)		ta Field 23 byte		CRC Field (16 bits)	
Handshake Packet	Sync Field (8 bits)	PID Field (8 bits)					

Figure 5-9. USB Packet Formats

Data is transferred LSb first. A cyclic redundancy check (CRC) is applied to all packets (except a handshake packet). A packet causing a CRC error is generally completely ignored by the receiver.

5.7.2 USB PROGRAMMING

Programming the USB interface consists of configuration, which typically occurs during POST, and control, which occurs at runtime.

5.7.2.1 USB Configuration

The USB interface functions as a PCI device (31) within the 82801 component (function 2) and is configured using PCI Configuration Registers as listed in Table 5-15.

Table 5-15. USB Interface Configuration Registers						
PCI Config. Reset PCI Config. Addr. Register Value Addr. Register						
00, 01h	Vender ID	8086h	0Dh	Latency Timer	00h	
02, 03h	Device ID	2412h	0Eh	Header Type	00h	
04, 05h	PCI Command	0000h	20-23h	I/O Space Base Address	1h	
06, 07h	PCI Status	0280h	3Ch	Interrupt Line	00h	
08h	Revision ID	00h	3Dh	Interrupt Pin	04h	
09h	Programming I/F	00h	60h	Miscellaneous Control 1	10h	
0Ah	Sub Class Code	03h	C0, C1h	Miscellaneous Control 2	2000h	
0Bh	Base Class Code	0Ch	C4h	USB Resume Enable	00h	

5.7.2.2 USB Control

The USB is controlled through I/O registers as listed in table 5-16.

Table 5-16.USB Control Registers				
I/O Addr.	Register	Default Value		
00, 01h	Command	0000h		
02, 03h	Status	0000h		
04, 05h	Interupt Enable	0000h		
06, 07	Frame Number	0000h		
08, 0B	Frame List Base Address	0000h		
0Ch	Start of Frame Modify	40h		
10, 11h	Port 1 Status/Control	0080h		
12, 13h	Port 2 Status/Control	0080h		
18h	Test Data	00h		

5.7.3 USB CONNECTOR

The USB interface provides two series-A connectors on the front panel and, on legacy-free models, three series-A USB connectors on the rear panel.

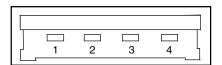


Figure 5-10. Universal Serial Bus Connector

Table 5-17. USB Connector Pinout							
Pin	Signal	Description	Pin	Signal	Description		
1	Vcc	+5 VDC	3	USB+	Data (plus)		
2	USB-	Data (minus)	4	GND	Ground		

5.7.4 USB CABLE DATA

The recommended cable length between the host and the USB device should be no longer than sixteen feet for full-channel (12 MB/s) operation, depending on cable specification (see following table).

Table 5-18.					
USB Cable Length Data					
Conductor Size	Resistance	Maximum Length			
20 AWG	0.036 Ω	16.4 ft (5.00 m)			
22 AWG	0.057 Ω	9.94 ft (3.03 m)			
24 AWG	0.091 Ω	6.82 ft (2.08 m)			
26 AWG	0.145 Ω	4.30 ft (1.31 m)			
28 AWG	0.232 Ω	2.66 ft (0.81 m)			

NOTE:

For sub-channel (1.5 MB/s) operation and/or when using sub-standard cable shorter lengths may be allowable and/or necessary.

The shield, chassis ground, and power ground should be tied together at the host end but left unconnected at the device end to avoid ground loops.

Color code:

<u>Signal</u>	Insulation color
Data +	Green
Data -	White
Vcc	Red
Ground	Black

Compaq iPAQ Family of Internet Devices 5-25

5.8 AUDIO SUBSYSTEM

A PCI audio subsystem is integrated onto the system board of the Compaq iPAQ. Implementing AC'97 design guidelines, the audio subsystem is designed to provide optimum sound. Key features of the audio subsystem include:

- AC'97 ver. 2.1 compliance
- Multiple audio channel streaming
- Soft CD, DVD/AC-3 processing
- Wavetable synthesis utilizing system memory
- Acoustic echo cancellation
- 16-bit stereo PCM input and output w/ up to 48 KHz sampling

5.8.1 FUNCTIONAL ANALYSIS

A block diagram of the audio subsystem is shown in Figure 5-11. The architecture uses the AC'97 Audio Controller of the 82801 ICH component to access and control an Analog Devices AD1881 Audio Codec, which provides the analog-to-digital (ADC) and digital-to-analog (DAC) conversions as well as the mixing functions.

All control functions such as volume, audio source selection, and sampling rate are controlled through software over the PCI bus through the AC97 Audio Controller of the 82801 ICH. Control data and digital audio streams (record and playback) are transferred between the Audio Controller and the Audio Codec over the AC97 Link Bus. Playback audio from the Audio Codec is routed to a 5-watt low-distortion amplifier (TDA7056A) that drives a long-excursion large-magnet speaker for optimum sound.

The analog interfaces allowing connection to external audio devices are discussed in the following paragraphs.

Mic In - This front panel-accessible input uses a three-conductor (stereo) mini-jack that is specifically designed for connection of a condenser microphone with an impedance of 10-K ohms. This is the default recording input after a system reset.

Line In - This input uses a three-conductor (stereo) mini-jack that is specifically designed for connection of a high-impedance (10k-ohm) audio source such as a tape deck.

Headphones Out - This front panel-accessible input uses a three-conductor (stereo) mini-jack that is specifically designed for connecting a set of 16-ohm (nom.) stereo headphones. Plugging into the Headphones jack mutes the signal to the internal speaker and the Line Out jack.

Line Out - This output uses a three-conductor (stereo) mini-jack for connecting left and right channel line-level signals (20-K ohm impedance). A typical connection would be to a tape recorder's Line In (Record In) jacks, an amplifier's Line In jacks, or to "powered" speakers that contain amplifiers. Plugging into the Line Out mutes the internal speaker.

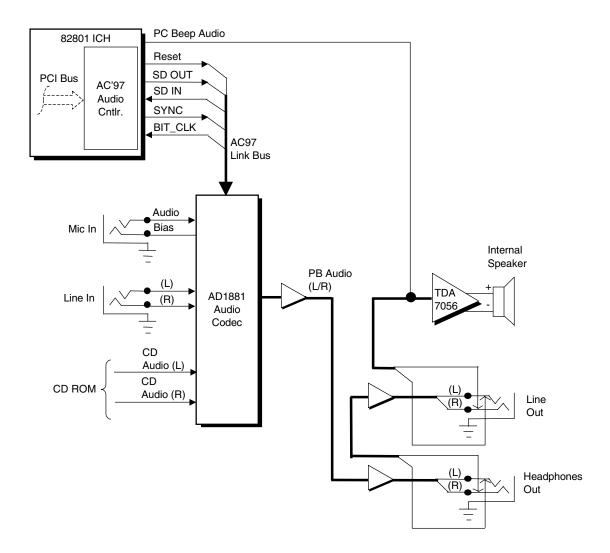
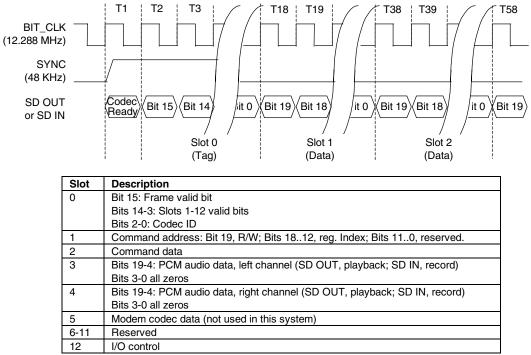


Figure 5-11. Audio Subsystem Functional Block Diagram

Legacy beep audio originates from the 82801 ICH and is applied to the output amplifier, bypassing the audio codec so that basic support of beep codes produced during POST is maintained.

Compaq iPAQ Family of Internet Devices 5-27


5.8.2 AC97 AUDIO CONTROLLER

The AC97 Audio Controller is a PCI device (device 31/function 5) that is integrated into the 82801 ICH component and supports the following functions:

- Read/write access to audio codec registers
- 16-bit stereo PCM output @ up to 48 KHz sampling
- 16-bit stereo PCM input @ up to 48 KHz sampling
- Acoustic echo correction for microphone
- AC'97 Link Bus
- ACPI power management

5.8.3 AC97 LINK BUS

The audio controller and the audio codec communicate over a five-signal AC97 Link Bus (Figure 5-12). The AC97 Link Bus includes two serial data lines (SD OUT/SD IN) that transfer control and PCM audio data serially to and from the audio codec using a time-division multiplexed (TDM) protocol. The data lines are qualified by a 12.288 MHz BIT_CLK signal driven by the audio codec. Data is transferred in frames synchronized by the 48-KHz SYNC signal, which is derived from the clock signal and driven by the audio controller. The SYNC signal is high during the frame's tag phase then falls during T17and remains low during the data phase. A frame consists of one 16-bit tag slot followed by twelve 20-bit data slots. When asserted (typically during a power cycle), the RESET- signal (not shown) will reset all audio registers to their default values.

5.8.4 AUDIO CODEC

The audio codec provides pulse code modulation (PCM) coding and decoding of audio information as well as the selection and/or mixing of analog channels. As shown in Figure 5-13, analog audio from a microphone, tape, or CD can be selected and, if to be recorded (saved) onto a disk drive, routed through an analog-to-digital converter (ADC). The resulting left and right PCM record data are muxed into a time-division-multiplexed (TDM) data stream (SD IN signal) that is routed to the audio controller. Playback (PB) audio takes the reverse path from the audio controller to the audio codec as SD OUT data and is decoded and processed by the digital-to-analog converter (DAC). The codec supports simultaneous record and playback of stereo (left and right) audio. The Sample Rate Generator may be set for sampling frequencies up to 48 KHz.

Analog audio may then be routed through 3D stereo enhancement processor or bypassed to the output selector (SEL). The integrated analog mixer provides the computer control-console functionality handling multiple audio inputs.

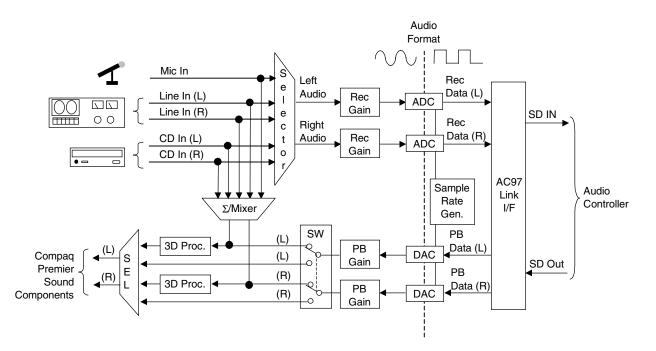


Figure 5-13. AD1881 Audio Codec Functional Block Diagram

All inputs and outputs are two-channel stereo except for the microphone input, which is inputted as a single-channel but mixed internally onto both left and right channels. The microphone input is the default active input. All block functions are controlled through index-addressed registers of the codec.

5.8.5 AUDIO PROGRAMMING

Audio subsystem programming consists configuration, typically accomplished during POST, and control, which occurs during runtime. The register maps are described in the following subsections.

5.8.5.1 Audio Configuration

The audio subsystem is configured according to PCI protocol through the AC'97 audio controller function of the 82801 ICH. Table 5-19 lists the PCI configuration registers of the audio subsystem.

	Table 5-19.AC'97 Audio Controller						
	PCI Configuration Reg	gisters (8	32801 De	vice 31/Function 5)			
PCI		Value	PCI		Value		
Conf.		on	Conf.		on		
Addr.	Register	Reset	Addr.	Register	Reset		
00-01h	Vender ID	8086h	14-17h	Native Audio Bus Mstr. Addr.	1h		
02-03h	Device ID	2415h	18-1Bh	Reserved	1h		
04-05h	PCI Command	0000h	1C-2Bh	Reserved	1h		
06-07h	PCI Status	0280h	2C-2Dh	Subsystem Vender ID	0000h		
08h	Revision ID	xxh	2E-2Fh	Subsystem ID	0000h		
09h	Programming	01h	30-3Bh	Reserved	0's		
0Ah	Sub-Class	01h	3Ch	Interrupt Line	00h		
0Bh	Base Class Code	04h	3Dh	Interrupt Pin	03h		
0Eh	Header Type	00h	3E-FFh	Reserved	0's		
10-13h	Native Audio Mixer Base Addr.	1h					

5.8.5.2 Audio Control

The audio subsystem is controlled through a set of indexed registers that physically reside in the audio codec . The register addresses are decoded by the audio controller and forwarded to the audio codec over the AC97 Link Bus previously described. The audio codec's control registers (Table 5-20) are mapped into 64 kilobytes of variable I/O space.

Table 5-20. AC'97 Audio Codec Control Registers					
Offset	On	Offset	On	Offset	On
Addr. / Register	Reset	Addr. / Register	Reset	Addr. / Register	Reset
00h Reset	0100h	14h Video Vol.	8808h	28h Ext. Audio ID.	0001h
02h Master Vol.	8000h	16h Aux Vol.	8808h	2Ah Ext. Audio Ctrl/Sts	0000h
04h Reserved	Х	18h PCM Out Vol.	8808h	2Ch PCM DAC SRate	BB80h
06h Mono Mstr. Vol.	8000h	1Ah Record Sel.	0000h	32h PCM ADC SRate	BB80h
08h Reserved	Х	1Ch Record Gain	8000h	34h Reserved	Х
0Ah PC Beep Vol.	8000h	1Eh Reserved	Х	72h Reserved	Х
0Ch Phone In Vol.	8008h	20h Gen. Purpose	0000h	74h Serial Config.	7x0xh
0Eh Mic Vol.	8008h	22h 3D Control	0000h	76h Misc. Control Bits	0404h
10h Line In Vol.	8808h	24h Reserved	Х	7Ch Vender ID1	4144h
12h CD Vol.	8808h	26h Pwr Mgnt.	000xh	7Eh Vender ID2	5340h

5.8.6 AUDIO SPECIFICATIONS

The specifications of the audio subsystem are listed in Table 5-21.

Table 5-21.					
Audio Subsystem Specifications					
Paramemter	Measurement				
Sampling Rate	5.51 KHz to 44 KHz				
Resolution	16 bit				
Nominal Input Voltage:					
Mic In (w/+20 db gain	.283 Vp-p				
Line In	2.83 Vp-p				
Impedance:					
Mic In	1 K ohms (nom)				
Line In	10 K ohms (min)				
Line Out	800 ohms				
Signal-to-Noise Ratio (input to Line Out)	90 db (nom)				
Max. Power Output (into 8 ohms)	5.2 watts				
Total Harmonic Distortion (THD) (to int. spkr):					
@ 0.5 watts	1 %				
@ max. power output	10 %				
Headphone Output Power (into 32 ohms)	60 mW				
Input Gain Attenuation Range	46.5 db				
Master Volume Range	-94.5 db				
Frequency Response:					
Codec	20-20 KHz				
Speaker	450 - 4000 Hz				

Compaq iPAQ Family of Internet Devices 5-31

5.9 NETWORK INTERFACE CONTROLLER

The Compaq iPAQ includes a network interface controller (NIC) resident on the system board. The NIC (Figure 5-14) includes the 82559 controller, two LED indicators, and support firmware. The support firmware is contained in the system (BIOS) ROM. The NIC can operate in half- or full-duplex modes, and provides auto-negotiation of both mode and speed. Half-duplex operation features an Intel-proprietary collision reduction mechanism while full-duplex operation follows the IEEE 802.3x flow control specification. Transmit and receive FIFOs of 3 kilobytes each reduce the chance of overrun while waiting for bus access.

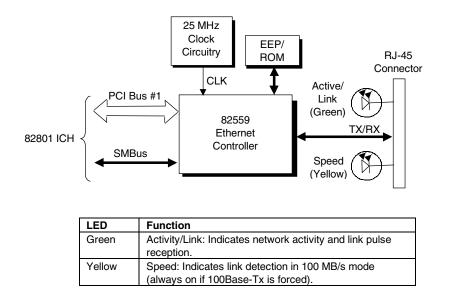


Figure 5-14. 10/100 TX Network Interface Controller Block Diagram

The Intel 82559 Fast Ethernet Controller includes the following features:

- Intel 82559 Fast Ethernet controller with 32-bit architecture and 3-KB TX/RX buffers.
- Dual-mode support with auto-switching between 10BASE-T and 100BASE-TX.
- Power down and Wake up support in both APM and ACPI environments (PME- and WOL).
- Alert-on-LAN (AOL v1.0) support.
- Dual control (PCI and SM bus interfaces).
- Link and Activity LED indicator drivers

The 82559 controller features high and low priority queues and provides priority-packet processing for networks that can support that feature. The controller's micro-machine processes transmit and receive frames independently and concurrently. Receive runt (under-sized) frames are not passed on as faulty data but discarded by the controller, which also directly handles such errors as collision detection or data under-run. An EEPROM, accessed by the 82559 controller over a serial interface, is used to store identification, configuration and connection parameters.

The NIC uses 3.3 VDC auxiliary power, which allows the 82559 controller to support Wake-On-LAN (WOL) and Alert-On-LAN (AOL) functions while the main system is powered down.

NOTE: For the WOL and AOL features to function as described in the following paragraphs, the system unit must be plugged into a live AC outlet. Controlling unit power through a switchable power strip will, with the strip turned off, disable WOL and AOL functionality.

5.9.1 WAKE ON LAN

The 82559 NIC supports the Wired-for-Management (WfM) standard of Wake-On-LAN (WOL) that allows the system to be booted up from a powered down condition upon the detection of special packets received over a network. The NIC component receives 3.3 VDC auxiliary power while the system unit is powered down in order to process special packets. The detection of a Magic Packet by the 82559 NIC results in the PME- signal on the PCI bus to be asserted, initiating system wake-up from an ACPI S1 or S3 state.

5.9.2 ALERT ON LAN

Alert-On-LAN (AOL) support allows the NIC to communicate the occurrence of certain events over a network even while the system unit is powered off. In a system-off (powered down) condition the 82801 ICH and the 82559 NIC components receive auxiliary +3.3 VDC power (derived from the +5 VDC auxiliary power from the power supply assembly). Certain events (listed in Table 5-22) detected by the 82801 ICH will result in the ICH generating an alert message over the SMBus to the 82559 NIC. Upon receiving the alert message from the ICH the NIC transmits the appropriate pre-constructed message over the network to a system management console.

Reportable AOL events are listed in the following table:

Table 5-22.			
	AOL Events		
Event	Description		
BIOS Failure	System fails to boot successfully.		
OS Problem System fails to load operating system after POST.			
Missing/Faulty Processor Processor fails to fetch first instruction.			
Thermal Condition	Thermal ASIC reports high temperature.		
Heartbeat	Indication of system's network presence (sent approximately every 30		
	seconds in normal operation).		

The AOL implementation requirements are as follows:

- 1. Intel PRO/100+ Management Adapter driver 3.1x or later (available from Compaq).
- 2. Client-side utility agent software (available from Compaq).
- 3. Management console running one of the following:
 - a. HP OpenView Network Node Manager 6.x
 - b. Intel LANDesk Client Manager
 - c. Compaq Insight Manager

5.9.3 POWER MANAGEMENT SUPPORT

The 82559 controller features Wired-for-Management (WfM) support providing system wake up from network events (WOL) as well as generating system status messages (AOL) and supports both APM and ACPI power management environments. The controller receives 3.3 VDC (auxiliary) power as long as the system is plugged into a live AC receptacle, allowing support of wake-up events occuring over a network while the system is powered down or in a low-power state.

5.9.3.1 APM Environment

The Advanced Power Management (APM) functionality of system wake up is implemented through the system's APM-compliant BIOS and the controller's Magic Packet-compliant hardware. This environment bypasses operating system (OS) intervention allowing a plugged in unit to be turned on remotely over the network (i.e., "remote wake up"). In APM mode the controller, will respond upon receiving a Magic Packet, which is a packet where the node's address is repeated 16 times. Upon Magic packet detection, the controller initiates the boot sequence.

5.9.3.2 ACPI Environment

The Advanced Configuration and Power Interface (ACPI) functionality of system wake up is implemented through an ACPI-compliant OS **and is the default power management mode**. The following wakeup events may be individually enabled/disabled through the supplied software driver:

• Magic Packet – Packet with node address repeated 16 times in data portion

NOTE: The following functions are supported in NDIS5 drivers but implemented through remote management software applications (such as LanDesk).

- Individual address match Packet with matching user-defined byte mask
- Multicast address match Packet with matching user-defined sample frame
- ♦ ARP (address resolution protocol) packet
- Flexible packet filtering Packets that match defined CRC signature

5.9.4 NIC PROGRAMMING

Programming the 82559 NIC controller consists of configuration, which occurs during POST, and control, which occurs at runtime.

5.9.4.1 Configuration

The 82559 controller is a PCI device and configured though PCI configuration space registers using PCI protocol described in chapter 4. The PCI configuration registers are listed in the following table:

	NIC Controller PCI Cor	nfiguration Reg	gisters (8	2559 Device 2/Function 0)	
PCI		Value	PCI		Value
Conf. Addr.	Register	on Reset	Conf. Addr.	Register	on Reset
00-01h	Vender ID	8086h	10-13h	Cntrl. Reg. Base Addr. (Mem)	0000h
02-03h	Device ID	1229h	14-17h	Cntrl. Reg. Base Addr. (I/O)	00h
04-05h	PCI Command	0000h	18-1Bh	Flash Mem. Base Addr.	00h
06-07h	PCI Status	0280h	2C-2Dh	Subsystem Vender ID	
08h	Revision ID	xxh	2E-2Fh	Subsystem ID	
09-0Bh	Class Code	01h	30-33h	Expansion ROM Base Addr.	
0Ch	Cache Line Size	01h	34h	Cap-Ptr	
0Dh	Latency Timer	04h	3C-3D	Interrupt Line/Pin	
0Eh	Header Type	00h	3E-3Fh	Min Gnt/Max Lat	
0Fh	BIST	00h	DC-E3h	Power Mgmt. Functions	

NOTE:

Assume unmarked gaps are reserved and/or not used.

5.9.4.2 Control

The 82559 controller is controlled though registers that may be mapped in system memory space or variable I/O space. The registers are listed in the following table:

Table 5-24. NIC Control Registers				
Offset No. of Offset No. o				
Addr. / Register	Bytes2	Addr. / Register 19h Flow Control Register	Bytes2	
02h SCB Command	2	1Bh PMDR		
04h SCB General Pointer	4	1Ch General Control	1	
08h PORT	4	1Dh General Status	1	
0Ch Flash Control Reg.	2	1E-2Fh Reserved	10	
0Eh EEPROM Control Reg.	2	30h Function Event Register	4	
10h Mgmt. Data I/F Cntrl. Reg.	4	34h Function Event Mask Register	4	
14h Rx Direct Mem. Access Byte Cnt.	4	38h Function Present State Register	4	
18h Early Receive Interrupt	1	20h Force Event Register	4	

Not implemented in these systems (CardBus registers).

5.9.4.3 RJ-45 Connector

Figure 5-15 shows the RJ-45 connector used for the NIC interface. This connector includes the two status LEDs as part of the connector assembly.

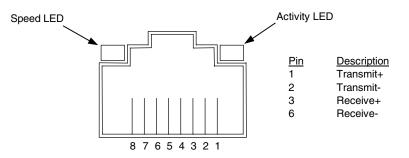


Figure 5-15. Ethernet TPE Connector (RJ-45, viewed from card edge)

5.9.4.4 82559 NIC Specifications

Table 5-25.82559 NIC Specifications				
Modes Supported	10BASE-T half duplex @ 10 MB/s			
	10Base-T full duplex @ 20 MB/s			
	100BASE-TX half duplex @ 100 MB/s			
	100Base-TX full duplex @ 200 MB/s			
Standards Compliance	IEEE VLAN (802.1A)			
	IEEE 802.2			
	IEEE 802.3 & 802.3u			
	IEEE Intel priority packet (801.1p)			
OS Driver Support	MS Windows 95,98, and 2000 beta			
	MS Windows NT 3.51 & 4.0			
	Novell Netware 3.11, 3.12, & 4.1x; 5 Server			
	Sunsoft Solaris			
	SCO UnixWare			
	Open Desktop			
	OpenServer			
Boot ROM Support	Intel PRO/100 Boot Agent (PXE 2.0, RPL)			
F12 BIOS Support	Yes			
Bus Inteface	PCI 2.2			
Power Management Support	APM, ACPI, PCI Power Management Spec.			

⁵⁻³⁶ Compaq iPAQ Family of Internet Devices

Chapter 6 GRAPHICS SUBSYSTEM

6.1 INTRODUCTION

This chapter describes the graphics subsystem of the Compaq iPAQ Internet Device. The 82810e/DC-100 GMCH component integrates the equivalent of the Intel i740 graphics controller, which employs the AGP interface allowing the use of system memory to provide efficient, economical 2D and 3D performance.

page 6-2

page 6-4

page 6-5

page 6-7

This chapter covers the following subjects:

- Functional description (6.2)
- Display modes (6.3) page 6-4
- ◆ Upgrading (6.4)
- Programming (6.5)
- Monitor power mangement (6.6) page 6-6
- Monitor connector (6.7)

6.2 FUNCTIONAL DESCRIPTION

The Intel 810e chipset integrates the equivalent of an Intel i740 graphics controller into the GMCH component (Figure 6-1).

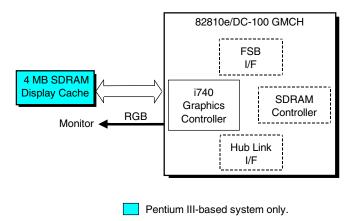
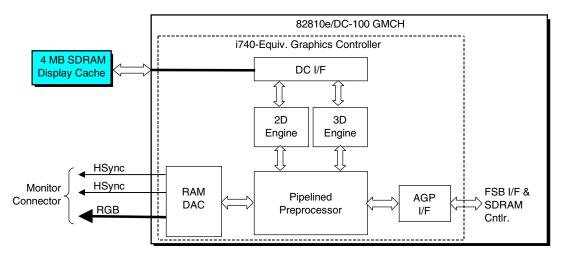



Figure 6-1. Graphics Subsystem Block diagram

The Intel graphics controller (Figure 6-2) integrated into the GMCH component includes 2D and 3D accelerator engines working with a deeply-pipelined pre-processor. The controller supports perspective-correct texture mapping, bilinear and anisotropic Mip-mapping, Alpha blending, Gouraud shading, and fogging.

The controller uses the AGP 2X interface and supports Type 1, Type 2, and Type 3 sideband cycles for a peak transfer rate of 533 MB/s. The AGP interface also allows the Intel graphics controller to use a portion of system memory for instructions, textures, and frame (display) buffering. Either a 32- or 64-MB block of system memory may be configured for use by the graphics controller for graphics use. Another 512-KB block (fixed) is used for memory-mapped control and status registers.

In Pentium III-based systems the controller also uses four megabytes of SDRAM (soldered down) as a display cache especially suited for 3D operation. This additional display cache allows the graphics controller to simultaneously render graphics to the Z-buffer (in the display cache) while processing textures in a portion of system memory. The 4-MB SDRAM Display Cache is accessed through a 32-bit 100-MHz interface.

Pentium III-based system only.

Figure 6-2. 82810e/DC-100 Integrated Graphics Controller

The Intel graphics controller includes special enhancements for 2D operations. Motion compensation logic is included to improve performance during software decoding of MPEG2 video. Hardware cursor and overlay engines relieve software processing and provide independent gamma correction, saturation, and brightness control.

The 230-MHz RAMDAC can support a variable-scan rate monitor up to a maximum resolution of 1600 x 1200 with 256 colors. Video BIOS for the controller is held in the system BIOS ROM and copied into systems memory at runtime for maximum performance.

6.2.1 FEATURE SUMMARY

- ♦ Accelerated driver support for Windows 3.1/95/98/2000, Windows NT 4.0, OS/2
- MS ActiveMovie and Media Player support for Win95
- Direct 3D support
- MS Direct Draw 5/6 support
- ♦ AGP 2X interface
- DDC2B compliant
 - Accelerator engine support for:
 - 3-ROP BitBLT
 - Line Draw
 - Color expansion
 - Video color conversion/scaling
 - Motion video
 - Triangle setup

6.3 DISPLAY MODES

The Intel graphics controller supports the following 2D display modes:

	Та	ble 6-1.	
	Intel 2D Grap	hics Display Modes	
Resolution	Bits per pixel	Color Depth	Refresh Rate
640 x 480	8	256	60, 70, 72, 75, 85
640 x 480	16	65K	60, 70, 72, 75, 85
640 x 480	24	16.7M	60, 70, 72, 75, 85
720 x 480	8	256	75, 85
720 x 480	16	65K	75, 85
720 x 480	24	16.7M	75, 85
720 x 576	8	256	60, 75, 85
720 x 576	16	65K	60, 75, 85
720 x 576	24	16.7M	60, 75, 85
800 x 600	8	256	60, 70, 72, 75, 85
800 x 600	16	65K	60, 70, 72, 75, 85
800 x 600	24	16.7M	60, 70, 72, 75, 85
1024 x 768	8	256	60, 70, 72, 75, 85
1024 x 768	16	65K	60, 70, 72, 75, 85
1024 x 768	24	16.7M	60, 70, 72, 75, 85
1152 x 864	8	256	60, 70, 72, 75, 85
1152 x 864	16	65K	60, 70, 72, 75, 85
1152 x 864	24	16.7M	60, 70, 72, 75, 85
1280 x 720	8	256	60, 75, 85
1280 x 720	16	65K	60, 75, 85
1280 x 720	24	16.7M	60, 75, 85
1280 x 960	8	256	60, 75, 85
1280 x 960	16	65K	60, 75, 85
1280 x 960	24	16.7M	60, 75, 85
1280 x 1024	8	256	60, 70, 72, 75, 85
1280 x 1024	16	65K	60, 70, 72, 75, 85
1280 x 1024	24	16.7M	60, 70, 75, 85
1600 x 900	8	256	60, 75, 85
1600 x 900	16	65K	60, 75, 85
1600 x 1200	8	256	60, 70, 72, 75, 85

6.4 UPGRADING

The graphics controller is not upgradable.

6-4 Compaq iPAQ Family of Internet Devices

6.5 **PROGRAMMING**

6.5.1 CONFIGURATION

The graphics subsystem works off the AGP bus and is configured through PCI configuration space registers using PCI protocol. These registers (Table 6-3) are configured by BIOS during POST.

Table 6-3. PCI Configuration Space Registers					
PCI Config.	PCI Config. PCI Config.				
Address	Function	Address	Function		
00h	Vender ID/Device ID	14h	Relocateable I/O Base Address		
04h	PCI Command	30h	Expansion ROM Base Address		
08h	Status	3Ch	Interrupt Line / Interrupt Pin		
10h	Display Memory Base Address				

For a discussion of accessing PCI configuration space registers refer to chapter 4. For a detailed description of registers refer to applicable ATI Technologies, Inc. documentation.

6.5.2 CONTROL

6.5.2.1 Standard VGA Modes

Table 6-4 list the control registers used for operating in standard VGA mode. No special drivers are required for VGA, EGA, and CGA modes. For a detailed description of the registers refer to applicable ATI Technologies, Inc. documentation.

Table 6-4.				
	Standard VGA	Mode I/O Ma	apping	
I/O		I/O		
Address	Function	Address	Function	
3B5.0026h*	CRT Controller (mono)	3C6h3C9h	RAMDAC	
3BAh	VSYNC Control, Display Status	3CAh	Read VSYNC Status	
3C1.0014h*	Attribute Controller	3CCh	Misc. Control, Read	
3C2h	Misc. Control / Status	3CF.0008h	Graphics Controller	
3C5h.0004h*	Sequencer	3D5.0026h*	CRT Controller (color)	
		3DAh	VSYNC Control, Display Status (color)	

* Index at base minus 1 (i.e., if base is 3B5h, index is at 3B4h.

6.5.2.2 Extended VGA Modes

Extended modes use the video BIOS (contained in the system flash ROM) and the supplied driver.

6.6 MONITOR POWER MANAGEMENT CONTROL

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table 6-5 lists the monitor power conditions.

Table 6-5. Monitor Power Management Conditions				
HSYNC	VSYNC	Power Mode	Description	
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.	
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.	
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.	

6.7 MONITOR CONNECTOR

The Deskpro EN SFF models provide a DB-15 connector on the rear chassis panel for connection to an analog monitor. The pinout for this connector is shown in Figure 6-3 and Table 6-6.

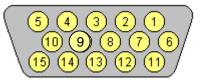


Figure 6-3. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table 6-6.					
		DB-15 Monito	or Conne	ctor Pinout	
Pin	Signal	Description	Pin	Signal	Description
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]
2	G	Blue Analog	10	GND	Ground
3	В	Green Analog	11	NC	Not Connected
4	NC	Not Connected	12	SDA	DDC2-B Data
5	GND	Ground	13	HSync	Horizontal Sync
6	R GND	Red Analog Ground	14	VSync	Vertical Sync
7	G GND	Blue Analog Ground	15	SCL	DDC2-B Clock
8	B GND	Green Analog Ground			

NOTES:

[1] Fuse automatically resets when excessive load is removed.

6-6 Compaq iPAQ Family of Internet Devices

Chapter 7 POWER and SIGNAL DISTRIBUTION

7.1 INTRODUCTION

This chapter describes the power supply and method of general power and signal distribution. Topics covered in this chapter include:

- Power supply assembly/control (7.2) page 7-1
- Power distribution (7.3) page 7-5
- ◆ Signal distribution (7.4) page 7-7

7.2 POWER SUPPLY ASSEMBLY/CONTROL

This system features a power supply assembly that is controlled through programmable logic (Figure 7-1).

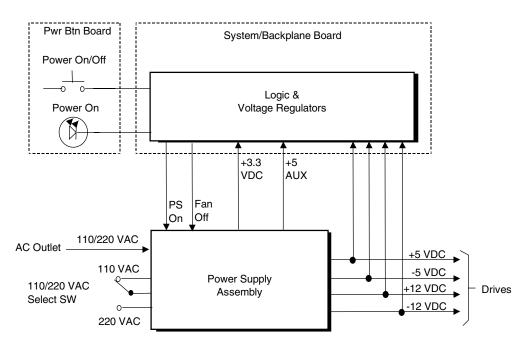


Figure 7–1. Power Distribution and Control, Block Diagram

Compaq iPAQ Family of Internet Devices 7-1

7.2.1 POWER SUPPLY ASSEMBLY

The power supply assembly is contained in a single unit that features a selectable input voltage: 90-132 VAC and 180-264 VAC. The system uses a 90-watt supply with specifications listed in Table 7-1.

Table 7-1. 90-Watt Power Supply Assembly Specifications (P/N 159447)						
	Range/ Tolerance	Min. Current Loading [1]	Max. Current	Surge Current [2]	Max. Ripple	
Input Line Voltage:						
110 VAC Setting	90 - 132 VAC					
220 VAC Setting	180-264 VAC					
Line Frequency	47 - 63 Hz					
Steady State Input (VAC) Current			3.0 A			
+3.3 VDC Output	+/- 5%	0.50 A	6.00 A	6.00 A	50 mV	
+5 VDC Output	+/- 5 %	0.70 A	10.0 A	12.0 A	50 mV	
+5 AUX Output	+/- 4 %	0.00 A	2.50 A	2.50 A	50 mV	
+12 VDC Output	+/- 5 %	0.05 A	1.50 A	3.50 A	120 mV	
-12 VDC Output	+/- 10 %	0.00 A	0.30 A	0.30 A	200 mV	

NOTES:

[1] Minimum loading requirements must be met at all times to ensure normal operation and specification compliance.

[2] Surge duration no longer than 10 seconds and +12 tolerance +/- 10%.

The power supply assembly features power line surge protection, withstanding brief surges of up to 2000 VAC without damage.

7.2.2 POWER CONTROL

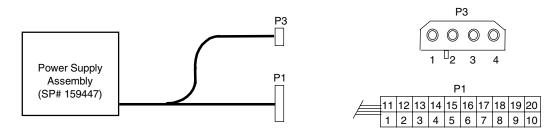
The power supply assembly is controlled digitally by the PS On signal (Figure 7-1). When PS On is asserted, the Power Supply Assembly is activated and all voltage outputs are produced. When PS On is de-asserted, the Power Supply Assembly is off and no voltages (except +5 AUX) are generated. Note that the +5 AUX voltage is always produced as long as the system is connected to a live AC source.

The PS On signal can be controlled either by the Power Button or by the operating system (OS).

7.2.2.1 Power Button Control

The PS On signal is typically controlled through the Power Button which, when pressed and released, applies a negative (grounding) pulse to the power control logic. The resultant action of pressing the power button depends on the state and mode of the system at that time and is described as follows:

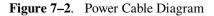
System State	Pressed Power Button Results In:
Off	Negative pulse, of which the falling edge results in power control logic asserting PS On signal to Power Supply Assembly, which then initializes. ACPI four-second counter is not active.
On, ACPI Disabled	Negative pulse, of which the falling edge causes power control logic to de-assert the PS On signal. ACPI four-second counter is not active.
Full On, ACPI Enabled	 (Pressed and Released in Under Four Seconds): Negative pulse, of which the falling edge causes power control logic to generate SMI-, set a bit in the SMI source register, set a bit for button status, and start four-second counter. Software should clear the button status bit within four seconds and the Suspend state is entered. If the status bit is not cleared by software in four seconds PS On is de-asserted and the power supply assembly shuts down (this operation is meant as a guard if the OS is hung). (Pressed and Held At least Four Seconds Before Release): PS On is negated, de-activating the power supply.
Suspend, ACPI Enabled	(Pressed and Released in Under Four Seconds): System wakes up to Full On. (Pressed and Held At least Four Seconds Before Release): System powers off.


7.2.2.2 OS Power Control

The PS On signal can be de-asserted by the ACPI-compliant operating system such as Windows 95. This system uses ACPI mode as the default power management mode, allowing the operating system to shut off the system (once the user has selected that decision) without further user intervention.

7.3 POWER DISTRIBUTION

7.3.1 3.3/5/12 VDC DISTRIBUTION


The power supply assembly includes a multi-connector cable assembly that routes +3.3 VDC, +5 VDC, -5 VDC, +12 VC, and -12 VDC to the system board as well as to the individual drive assemblies. Figure 7-2 shows the power supply cabling.

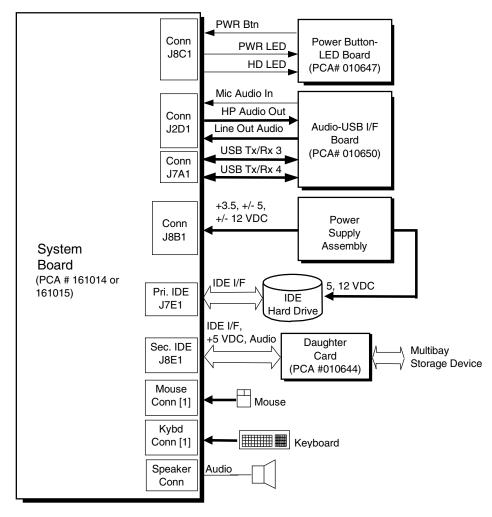
Conn. #	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10
P1	+3.3	+3.3	RTN	+5	RTN	+5	RTN	PwrGd	+5 Aux	+12
P1 [1]	+3.3	-12	RTN	PS On	RTN	RTN	RTN	FO	+5	+5
P3	+5	GND	GND	+12						

NOTES:

[1] This row represents pins 11-20 of connector P1.
All + and - values are VDC.
RTN = Return (signal ground)
GND = Power ground
PwrGd = Power Good
FO = Fan off

7.3.2 LOW VOLTAGE DISTRIBUTION

Voltages less than 3.3 VDC (including processor core (VccP) voltage) are produced through regulator circuitry on the system board.


An on-board regulator produces the VccP (processor core) voltage according to the strapping of signals VID3..0 by the processor. The possible voltages available are listed as follows:

VID 30	VccP	VID 30	VccP
0000	2.05 VDC	1000	1.65 VDC
0001	2.00 VDC	1001	1.60 VDC
0010	1.95 VDC	1010	1.55 VDC
0011	1.90 VDC	1011	1.50 VDC
0100	1.85 VDC	1100	1.45 VDC
0101	1.80 VDC	1101	1.40 VDC
0110	1.75 VDC	1110	1.35 VDC
0111	1.70 VDC	1111	1.30 VDC

⁷⁻⁴ Compaq iPAQ Family of Internet Devices

7.4 SIGNAL DISTRIBUTION

Figures 7-4 shows general signal distribution between the main subassemblies of the system unit.

NOTE:

[1] On legacy-light models, PS/2-type connector. On legacy-free models, USB connector.

Figure 7–3. Signal Distribution Diagram

Compaq iPAQ Family of Internet Devices 7-5

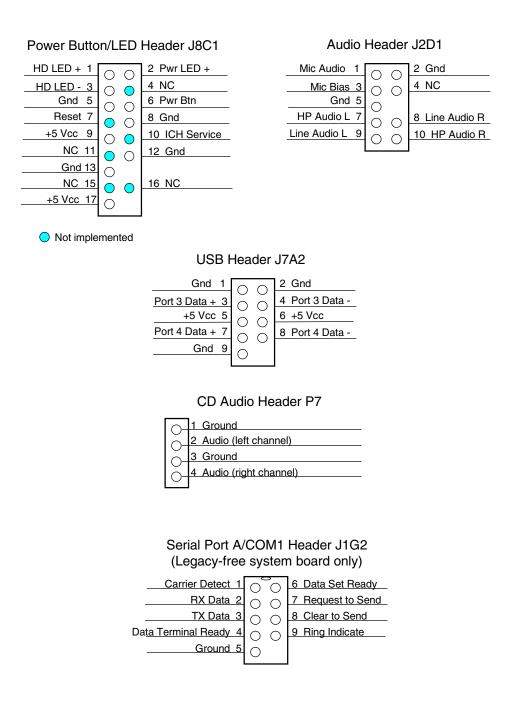


Figure 7–4. Header Pinouts

7-6 Compaq iPAQ Family of Internet Devices

Chapter 8 BIOS ROM

8.1 INTRODUCTION

The Compaq iPAQ Internet Device uses Compaq BIOS firmware loaded into the 82802 FWH component. The BIOS ROM includes such functions as Power-On Self Test (POST), PCI device initialization, Plug 'n Play support, power management activities, and Setup. This chapter includes the following topics:

٠	Boot/reset functions (8.2)	page 8-2
٠	Memory detection and configuration (8.3)	page 8-11
٠	PnP support (8.5)	page 8-12
٠	Power management functions (8.6)	page 8-15
٠	USB legacy support (8.7)	page 8-17
٠	BIOS upgrading (8.8)	page 8-18

The firmware contained in the BIOS ROM supports the following operating systems and specifications:

- DOS 6.2
- Windows for Workgroups 3.11
- Windows 95
- Windows 98
- Windows NT 3.5 and 4.0
- OS/2 ver 2.1
- ♦ OS/2 Warp
- SCO Unix
- ◆ DMI 2.1
- Intel Wired for Management (WfM) ver. 2.2
- SMBIOS 2.3.1
- ♦ Alert-On-LAN (AOL)
- ♦ Wake-On-LAN (WOL)
- ♦ ACPI/WHIIG and OnNow
- ◆ APM 1.2
- Phoenix PMM
- PC98/99 and NetPC

The microprocessor accesses the BIOS ROM as a 128-KB block from E0000h to FFFFFh. The BIOS data is shadowed in a 64-KB block in the upper memory area. The BIOS segments are dynamically paged in and out of the 64-KB block as they are needed.

NOTE: This chapter describes BIOS in general and focuses only on aspects of BIOS unique to this particular system..

8.2 DESKTOP MANAGEMENT SUPPORT

Desktop Management deals with issues of security, identification, and system management functions. Desktop Management is provided by BIOS INT 15 functions listed Table 8-1.

	Table 8-1.			
Desktop Management Functions (INT15)				
AX	Function	Mode		
E800h	Get system ID	Real, 16-, & 32-bit Prot.		
E807h	Get System Information Table	Real, 16-, & 32-bit Prot.		
E813h	Get monitor information	Real, 16-, & 32-bit Prot.		
E814h	Get system revision	Real, 16-, & 32-bit Prot.		
E816h	Get temperature status	Real, 16-, & 32-bit Prot.		
E817h	Get drive attribute	Real		
E818h	Get drive off-line test	Real		
E819h	Get chassis serial number	Real, 16-, & 32-bit Prot.		
E81Ah	Write chassis serial number	Real		
E81Bh	Get drive threshold	Real		
E81Eh	Get drive ID	Real		
E820h	System Memory Map	Real		
E822h	Flash ROM/Sys. Admin. Fnc.	Real, 16-, & 32-bit Prot.		
E827h	DIMM EEPROM Access	Real, 16-, & 32-bit Prot.		
E828h	Inhibit power button	Real, 16-, & 32-bit Prot.		
E845h	Access CMOS Feature Bits	Real, 16-, & 32-bit Prot.		
E846h	Security Functions	Real, 16-, & 32-bit Prot.		

All 32-bit protected mode calls are accessed by using the industry-standard BIOS32 Service Directory. Using the service directory involves three steps:

- 1. Locating the service directory.
- 2. Using the service directory to obtain the entry point for the client management functions.
- 3. Calling the client management service to perform the desired function.

The BIOS32 Service Directory is a 16-byte block that begins on a 16-byte boundary between the physical address range of 0E0000h-0FFFFh. The format is as follows:

Offset	No. Bytes	Description
00h	4	Service identifier (four ASCII characters)
04h	4	Entry point for the BIOS32 Service Directory
08h	1	Revision level
09h	1	Length of data structure (no. of 16-byte units)
0Ah	1	Checksum (should add up to 00h)
0Bh	5	Reserved (all 0s)

To support Windows NT an additional table to the BIOS32 table has been defined to contain 32bit pointers for the DDC and SIT locations. The Windows NT extension table is as follows:

; Extension to BIOS SERVICE directory table (next paragraph)

db	"32OS"	; sig
db	2	; number of entries in table
db	"\$DDC"	; DDC POST buffer sig
dd	?	; 32-bit pointer
dw	?	; byte size
db	"\$SIT"	; SIT sig
dd	?	; 32-bit pointer
dw	?	; byte size
db	"\$ERB"	; ESCD sig
dd	?	; 32-bit pointer
dw	?	; bytes size

The service identifier for Desktop Management functions is "\$CLM." Once the service identifier is found and the checksum verified, a FAR call is invoked using the value specified at offset 04h to retrieve the CM services entry point. The following entry conditions are used for calling the Desktop Management service directory:

INPUT:		
	EAX	= Service Identifier [\$CLM]
	EBX (318)	= Reserved
	EBX (70)	= Must be set to 00h
	CS	 Code selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. CS is execute/read.
	DS	 Data selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. DS is read only.
	SS	= Stack selector must provide at least 1K of stack space and be 32-bit.
	(I/O permissions m	ust be provided so that the BIOS can support as necessary)
OUTPUT	Г:	
	AL	 Return code: 00h, requested service is present 80h, requested service is not present 81h, un-implemented function specified in BL 86h and CF=1, function not supported
	EBX ECX EDX	 Physical address to use as the selector BASE for the service Value to use as the selector LIMIT for the service Entry point for the service relative to the BASE returned in EBX

Compaq iPAQ Family of Internet Devices 8-3

8.2.1 SYSTEM ID

The INT 15, AX=E800h BIOS function can be used to identify the type of system. This function will return the system ID in the BX register.

System	ROM Type	PnP ID	System ID
Compaq iPAQ	686J1	CPQB1A0	0630h

8.2.2 SYSTEM INFORMATION TABLE

The System Information Table (SIT) is a comprehensive list of fixed configuration information arranged into records. The INT 15 AX=E807h BIOS function accesses the SIT by returning a pointer in ES:BX to indicate the location of the SIT. This system includes the following SIT records:

Record #	Function
01h	Power conservation
02h	System standby
03h	Display screensave
04h	Hard drive timeout counter
05h	Security features
06h	Processor, memory, cache attributes
07h	General peripheral & input device information
08h	Memory module information
09h	Timeout default value
0Ah	CMOS information
0Eh	Extended disks information
0Fh	System information
10h	Product name header
12h	Processor micro-code patch data

The SIT records are used by Compaq applications such as Diagnostics, Inspect, and Insight Manager. Other applications may use SMBIOS firmware to obtain system data.

8.2.3 EDID RETRIEVE

The BIOS function INT 15, AX=E813h is a tri-modal call that retrieves the VESA extended display identification data (EDID). Two subfunctions are provided: AX=E813h BH=00h retrieves the EDID information while AX=E813h BX=01h determines the level of DDC support.

Input:

 $\begin{array}{ll} AX & = E813h \\ BH & = 00 \ \text{Get EDID} \ . \\ BH & = 01 \ \text{Get DDC support level} \end{array}$

If BH = 00 then DS:(E)SI = Pointer to a buffer (128 bytes) where ROM will return block If 32-bit protected mode then DS:(E)SI = Pointer to \$DDC location

Output:

(Successful)	
If BH	= 0:
	DS:SI=Buffer with EDID file.
CX	= Number of bytes written
CF = 0	
AH	=00h Completion of command
If BH	= 1:
BH	= System DDC support
	<0>=1 DDC1 support
	<1>=1 DDC2 support
BL	= Monitor DDC support
	<0>=1 DDC1 support
	<1>=1 DDC2 support
	<2>=1 Screen blanked during transfer
(Failure)	
CF	= 1
AH	= 86h or 87h

8.2.4 DRIVE FAULT PREDICTION

The Compaq BIOS provides direct Drive Fault Prediction support for IDE-type hard drives. This feature is provided through two BIOS calls. Function INT 15, AX=E817h is used to retrieve a 512-byte block of drive attribute data while the INT 15, AX=E818h is used to retrieve the drive's warranty threshold data. If data is returned indicating possible failure then the following message is displayed:

"1720-Intellisafe Hard Drive detects imminent failure"

8.2.5 SYSTEM MAP RETRIEVAL

The BIOS function INT 15, AX=E820h will return base memory and ISA/PCI memory contiguous with base memory as normal memory ranges. This real mode call will indicate chipset-defined address holes that are not in use, motherboard memory-mapped devices, and all occurrences of the system BIOS as reserved. Standard PC address ranges will not be reported.

Input:

EBX = continuation value or 00000000h to start at beginning of map				
ECX = number of bytes to copy (>=20)				
EDX = 534D4150h ('SMAP')				
ES:DI = buffer for result (see below)				
Offset Size Description				
00h QWORD base address				
08h QWORD length in bytes				
10h DWORD type of address range				
01h memory, available to OS				

02h reserved, not available (e.g. system ROM, memory-mapped device) other: not defined

Output:

If CF=0 (success)

EAX = 534D4150h ('SMAP') EBX = next offset from which to copy or 00000000h if finished ECX = actual length returned in bytes ES:DI buffer filled

If CF=1 (failure)

AH = Error Code (86h)

In order to determine the entire memory map, multiple calls must be made. For example, the first call would be:

Input:

EDX = 534D4150h EBX = 00h ECX = 14h ES:DI = some buffer to store information.

Output:

```
EAX = 534D4150h
EBX = 01h
ECX = 14h
ES:DI = 00 00 00 00 00 00 00 00 FC 09 00 00 00 00 00 01 00 00 00
(indicates 0-639k is available to the OS)
```

Consecutive calls would continue until EBX returns with 0, indicating that the memory map is complete.

8-6 Compaq iPAQ Family of Internet Devices

8.2.6 FLASH ROM FUNCTIONS

The system BIOS may be upgraded by flashing the ROM using the INT 15, AX=E822h BIOS interface, which includes the necessary subfunctions. An upgrade utility is provided on a ROMPAQ diskette.

8.2.7 POWER BUTTON FUNCTIONS

The BIOS includes an interface for controlling the system unit's power button. The power button can be disabled and enabled.

The INT 15, AX=E822h, BL=08h function can be invoked to disable the power button, preventing a user from inadvertently powering down the system. This tri-modal function is typically used in the ROM flashing procedure to reduce the chance of an accidental power down while the BIOS is being upgraded.

Entry:

AX	= E822h
BL	= 08h

Return:

(Successful) CF = 0 AH = 00

(Failure)

CF = 1 AH = 86, not supported

NOTE: With the Disable function invoked the system can **still** be powered down by holding the power button in for four seconds or more.

The INT 15, AX=E822h, BL=09h function is used to restore the power button to the state it was in prior to invoking the Disable (BL=08h) function.

Entry:

AX = E822h BL = 09hReturn: (Successful) CF = 0 AH = 00(Failure) CF = 1AH = 86, call not supported

8.2.8 ACCESSING CMOS

Configuration memory data can be retrieved with the BIOS call INT 15, AX=E823h. This trimodal function retrieves a specific byte from the CMOS map described in Chapter 4. The function is described as follows:

INPUT:

EAX	= E823h
BH	= 0, Read
	= 1, Write
BL	= Value to write (if a write is specified)
CX	= Bytes number (zero-based)
OUTPUT:	
(Successful)	
CF	= 0
AH	= 00h
AL	= Byte value (on a read)
(Failure)	
CF	= 1
AH	= 86h, Function not supported
	= FFh, byte does not exist

8.2.9 ACCESSING CMOS FEATURE BITS

The BIOS function INT 15, AX=E845h is a tri-modal call for accessing areas in non-volatile memory (CMOS) used for storing variables for various features. Note that this function differs from the previously discussed call since data blocks of varying lengths are retrieved.

INPUT:

	EAX	= E845h
	BL	= 0, Read
		= 1, Write
	BH	= Value Read/to Write
	CX	= Feature Bits Number (refer to Table 8-2)
	DS:SI	= Pointer to buffer passing multiple byte features
OUTPU	JT:	
(Succes	sful)	
	CF	= 0
	EAX	= Reserved
	BH	= Value read (on a read)
(Failure	e)	
	CF	= 1
	AH	= 86h, Function not supported

8-8 Compaq iPAQ Family of Internet Devices

	Table 8-2. CMOS Feature Bits						
сх	Function	Default Value	Default Setting	cx	Function	Default Value	Default Setting
0000h	PCI 2.1 Mode Enable	01h	Yes	0025h	Asset Tag	[1]	[1]
0001h	Erase Eaze Kybd	03h	lgn.	0026h		00h	Norm
0002h	COM/IR Port Select	00h	COM	0027h		[1]	[1]
0003h	PnP Rejects SET	00h	Yes	0028h	QuickLock after Stby	00h	No
0004h	PCI VGA Snoop	00h	No		Audio Chip Enable	01h	Yes
0005h	PCI Bus Mastering	00h	Yes	002Ah	Audio IRQ	01h	IRQ5
0006h	Auto Prompt Setup	00h	Yes	002Bh		02h	DMA1
0007h	Mode 2 Config. Enable	01h	Yes	002Ch		00h	22xh
0008h	Sec. IDE Cntlr, En.	01h	Yes	002Dh	ECP DMA Config.	03h	DMA3
0009h	Sec. IDE Cntlr. IRQ	03h	IRQ15	002Eh	COM1 Base Addr.	3Fh	3F8h
000Ah	Custom Drive Type 1	00h	[1]	002Fh	COM1 IRQ	00h	Rsrvd
000Bh	Custom Drive Type 2	00h	[1]	0030h	COM2 Base Addr.	1Fh	2F8h
000Ch	Custom Drive Type 3	00h	[1]	0031h	COM2 IRQ	00h	Rsrvd
000Dh	Custom Drive Type 4	00h	[1]	0032h	UDMA33 Enable	0Fh	Yes
000Eh	POST Verbose/Terse	01h	Terse	0033h		00h	No
000Fh	Translate SCSI Drive	00h	Yes	0034h		[1]	[1]
0010h	Mfg. Process no.	[1]	[1]	0035h	Copy Std. CMOS	[1]	[1]
0011h	Admin. Password	[1]	[1]	0036h	AGP Adapter Srch.	01h	Yes
0012h	Pwr-On Password	[1]	[1]	0037h	APM Fan Throttle	00h	Auto
0013h	Ownership Tag	[1]	[1]	0038h	Mfg. Diags. Enable	00h	No
0014h	Warm Boot Pswrd En.	00h	Yes	0039h	RIPL ROM Boot En.	01h	Yes
0015h	Hood Lock Enable	00h	Yes	003Ah	Exit CleanBoot Scrn.	[1]	[1]
0016h	Hood Removal En.	00h	No	003Bh	Ethernet Speed Sel.	00h	Auto
0017h	USB Security Enable	01h	Yes	003Ch	Ethernet Mode Sel.	00h	Auto
0018h	Power Supply Mode	01h	ACPI	003Dh	Ethernet Conn. Type	01h	UTP
0019h	QuickBoot Mode	1Fh	Fast	003Eh	ACPI Enable	01h	Yes
001Ah	Onbd NIC Enable	01h	Yes	003Fh	S/W BOM S/N		
001Bh	Onbd. SCSI Enable	01h	Yes	0040h	ECP Mode Selected	01h	Yes
001Ch	Onbd. Pri. IDE Enable	01h	Yes	0041h	NT Shutdown Dvr.	00h	No
001Dh	Ultra SCSI Md. Enable	00h	No	0042h	Em. SCSI Priority	00h	Lowest
001Eh	QuickLock Enable	00h	No	0043h	Factor Boot Sel.	00h	
001Fh	QuickBlank Enable	00h	No	0044h	Product Name	00h	[1]
0020h	Serial I/F 1 Security [2]	01h	No	0045h	UUID	00h	[1]
0021h	Serial I/F 2 Security	01h	No	0046h	Processor # Enable	01h	Yes
0022h	Printer I/F Security [2]	01h	No	0047h	After G3 State	00h	Off
0023h	CD/Diskette Boot	00h	Yes	0048h	UUID Enable	01h	Yes
0024h	CD/Diskette Write	00h	Yes				

NOTE:

Not applicable to these systems. [1] Default Value will be pointer to buffer DS:SI (16-bit mode) or DS:(E)SI (32-bit mode) where actual data is held. Default Setting will be unique for each system.

[2] Legacy-light system only.

8.2.10 SECURITY FUNCTIONS

The INT 15 AX=E846h BIOS function is used to control various security features of the system. This function may be issued by a remote system (over a network). The issuing driver must build a request buffer for each security feature prior to making the call. This system supports the following security features:

- QuickLock
- IDE controller disable
- Serial port disable (legacy-light only)
- Parallel port disable (legacy-light only)
- Change administrator password
- QuickLock on suspend
- Ownership tag
- USB disable (legacy-light only)

The write-protect function that determines diskette write control is extended to cover all drives that use removable read/write media (i.e., if diskette write protect is invoked, then any diskette drive, power drive (SCSI and/or ATAPI), and floptical drive installed will be inaccessible for (protected from) writes). Client management software should check the following bytes of SIT record 07h for the location and access method for this bit:

Byte	Bit	Function		
1Fh	7-0	Removable Read/Write Media Write Protect Enable Byte Offset (0-255)		
20h		Removable Read/Write Media Write Protect Enable Bit Location:		
	74	CMOS Type:		
		0000 = CMOS		
		0001 = High CMOS		
		0010 = NVRAM		
		0011 = Flat model NVRAM		
	30	Bit Location:		
		0000 = Bit 0 0100 = Bit 4		
		0001 = Bit 1 0101 = Bit 5		
		0010 = Bit 2 0110 = Bit 6		
		0011 = Bit 3 0111 = Bit 7		

System Information Table, Peripheral and Input Device Record (07h) (partial listing)

8.3 MEMORY DETECTION AND CONFIGURATION

This system uses the Serial Presence Detect (SPD) method of determining the installed DIMM configuration. The BIOS communicates with an EEPROM on each DIMM through an I²C-type bus to obtain data on the following DIMM parameters:

- Presence
- ♦ Size
- ♦ Type
- Timing/CAS latency

NOTE: Refer to Chapter 3, "Processor/Memory Subsystem" for the SPD format and DIMM data specific to this system.

The BIOS performs memory detection and configuration with the following steps:

- 1. Set Memory Buffer Strength The memory controller must be configured for correct buffer drive strength. The BIOS provides this function by reading the number of module banks, ECC enable/disable status, and SDRAM width data from the DIMMs and transferring that data to the memory controller. SPD bytes checked: 5, 11, 13
- Determine DIMM Presence/Type The BIOS checks each memory socket for DIMM presence. If present, the DIMM type and CAS latency is determined. SPD bytes checked: 2, 9, 10, 18, 23, 24.

Check Sequence:

- a. SPD byte 2 is read for all slots first. A failed read or returned value of other than 02h (EDO) or 04h (SDRAM) results in the slot marked as empty. If mixed types are detected then only SDRAMs are used (see chapter 3 for details).
- b. SPD byte 18 is read for maximum CAS latency, followed by reads of bytes 9 and 10 for bus speed compatibility. A DIMM detected as too-slow results in an error.
- c. If the DIMM can handle the memory bus speed at maximum CAS latency then bytes 23 and 24 are checked to see if the DIMM can work maximum CAS latency minus 1. Once all slots are checked, the greatest CAS latency (2 or 3) is used. A DIMM detected as incompatible will result in a bit in CMOS being set and the Num Lock LED on the keyboard will blink for a short time. Depending on the progress of the BIOS routine a POST message may be displayed before the system locks up.
- Initialize SDRAM If SDRAM are installed then each row containing SDRAM will be initialized. This step includes pre-charging all banks, sending a CAS-before-RAS command, sending a Mode-Register-Set-Enable command, reading DIMM location/CAS latency data, and sending a Normal Op command.
- 4. Memory Sizing The SPD bytes 3, 4, and 17 are checked for number of row and column addresses and (for SDRAM) the number of internal banks.
- 5. Memory Timing For SDRAM, the memory controller requires the RAS pre-charge time and the RAS-to-CAS delay time. SPD bytes checked: 27and 29.

8.4 PNP SUPPORT

The BIOS includes Plug 'n Play (PnP) support for PnP version 1.0A.

NOTE: For full PnP functionality to be realized, all peripherals used in the system must be designed as "PnP ready." Any installed ISA peripherals that are not "PnP ready" can still be used in the system, although configuration parameters may need to be considered (and require intervention) by the user.

Table 8-2 shows the PnP functions supported (for detailed PnP information refer to the Compaq BIOS Technical Reference Guide):

Table 8-2.		
PnP BIOS Functions		
Function	Register	
00h	Get number of system device nodes	
01h	Get system device node	
02h	Set system device node	
03h	Get event	
04h	Send message	
40h	Get ISA configuration [1]	
50h	Get SMBIOS Structure Information	
51h	Get Specific SMBIOS Structure	

NOTE:

[1] Since no ISA slots are present, this function will return 0 for the max. CSN.

The BIOS call INT 15, AX=E841h, BH=01h can be used by an application to retrieve the default settings of PnP devices for the user. The application should use the following steps for the display function:

- 1. Call PnP function 01(get System Device Node) for each devnode with bit 1 of the control flag set (get static configuration) and save the results.
- 2. Call INT 15, AX=E841h, BH=01h.
- 3. Call PnP "Get Static Configuration" for each devnode and display the defaults.
- 4. If the user chooses to save the configuration, no further action is required. The system board devices will be configured at the next boot. If the user wants to abandon the changes, then the application must call PnP function 02 (Set System Device Node) for each devnode (with bit 1 of the control flag set for static configuration) with the results from the calls made prior to invoking this function.

8.4.1 SMBIOS

This system supports System Management BIOS (SMBIOS) version 2.3.1, which is compliant with the Desktop Management Interface (DMI) specification. The PnP functions 50h and 51h are used to retrieve the SMBIOS data, which is stored using management information format (MIF) structures. Function 50h retrieves the number of structures, size of the largest structure, and SMBIOS version. Function 51h retrieves a specific structure. This system the following structure types:

Type Data

- 0 BIOS Information
- 1 System Information
- 3 System Enclosure or Chassis
- 4 Processor Information
- 5 Memory Controller Information
- 6 Memory Module Information
- 7 Cache Information
- 8 Port Connector Information
- 9 System Slots
- 10 On Board Device Information
- 12 System Configuration Options
- 13 BIOS Language Information
- 16 Physical Memory Array
- 17 Memory Devices
- 18 Memory Error Information
- 19 Memory Array Mapped Addresses
- 20 Memory Device Mapped Addresses

8.5 POWER MANAGEMENT FUNCTIONS

The BIOS provides three types of power management support: independent PM support; ACPI support, and APM support. These power management interfaces share a common goal of reducing energy consumption during periods of system inactivity. The following table compares and describes the different system states identified by the various power management interfaces.

Global	Sleep		Power	OS Restart
State	State	System Condition	Consumption	Required
G0		Fully on. OS and application software is running, all devices are active, responsive, and maintaining context.	Maximum	No
G1	S1	On, with CPU executing and data held in memory, but peripheral devices (display output, some I/O) may be disabled/low power.	Low	No
	S2/S3	On, but CPU not executing and cache context lost. Memory is maintained. Display and I/O devices disabled or under low power.	Low	No
	S4	Off. CPU and most other devices powered off. No data held in RAM, but memory image from lower state has been saved to disk for recall upon wake up.	Low	Yes
G2	S5	Soft Off. OS has completed shutdown. Some devices may be powered to allow for "wake up" to occur resulting in a full boot sequence.	Minimum	Yes
G3		Mechanical off. Power to unit has been switched off (or unit has been unplugged). Only internal RTC battery power is being consumed. Unit may be disassembled/serviced safely.	None	Yes

8.5.1 INDEPENDENT PM SUPPORT

The BIOS ROM can provide power management of the system independently from any software (OS or application) that is running on the system. In this mode the BIOS uses a timer to determine when to switch the system to a different power state. State switching is not reported to the OS and occurs as follows:

On – The computer is running normally and is drawing full power.

Standby – The computer is in a low power state. In this state the processor and chipset are still running and the VSYNC signal to the monitor is turned off. Returning to the On state requires very little time and will be initiated by any of the following actions:

- a. key stroke
- b. mouse movement

Off – The computer is not running and drawing practically no power at all.

⁸⁻¹⁴ Compaq iPAQ Family of Internet Devices

8.5.2 ACPI SUPPORT

This system meets the hardware and firmware requirements for being ACPI compliant. The BIOS function INT 15 AX=E845h can be used to check or set the ACPI enable/disable status of the system, which defaults to the "ACPI enabled" state. The setup option for ACPI should be disabled if APM/PnP is to be used with Windows 98 or when disabling power management and PnP support for NT5.0. A hardware redetection should be made with Windows 98 and a reinstall of Windows NT5.0 should be performed when an ACPI switch is made. This system supports the following ACPI functions:

- PM timer
- Power button
- Power button override
- RTC alarm
- ♦ Sleep/Wake logic (S1, S4 (NT), S5
- Legacy/ACPI select
- C1 state (Halt)
- C2 state (STOPGRANT)
- C3 state (no clock)
- ♦ PCI PME

8.5.3 APM 1.2 SUPPORT

Advanced Power Management (APM) BIOS support provides interaction between the BIOS ROM and the operating system (OS). The BIOS advises the OS when a power state transition should occur. The OS then notifies the appropriate driver(s) and reports back to the BIOS. For maximum energy-conservation benefit, APM functionality should be implemented using the following three layers:

- BIOS layer (APM BIOS (ver. 1.2, 1.1, 1.0))
- Operating system (OS) layer (APM driver)
- Application layer (APM-aware application or device driver)

The process starts with the OS or driver making a connection with the BIOS through an APM BIOS call. In a DOS environment POWER.EXE makes a Real mode connection. In Windows 3.1 and in Windows 95, a 32-bit connection is made. Currently Windows NT does not make an APM connection. With power management enabled, inactivity timers are monitored.

When an inactivity timer times out, an SMI is sent to the microprocessor to invoke the SMI handler. The SMI handler works with the APM driver and APM BIOS to take appropriate action based on which inactivity timer timed out.

Three power states are defined under power management:

On - The computer is running, all subsystems are on and drawing full power. Any activity in the following subsystems will reset the activity timer, which has a default setting of 15 minutes before Standby entered:

- a. Keyboard (PS/2 only)
- b. Mouse (PS/2 only)
- c. Serial port
- d. Hard drive

Standby - The computer is in a low power state: video is off, some subsystems may be drawing less power, and the microprocessor is halted except for servicing interrupts. Video graphics controller is under driver control and/or VSYNC is off and the power supply fan is turned off. Any of the following activities will generate a wake-up SMI and return the system to On:

- a. Keyboard (PS/2 only)
- b. Mouse (PS/2 only)
- c. Serial port
- d. Hard drive
- e. RTC Alarm
- f. Power Button

If no APM connection is present, the BIOS will set an APM timer to 45 minutes, at which time the Suspend will be entered if no activity has occurred. This function can be defeated (so that Suspend will **not** be achieved). If an APM connection is present, the BIOS APM timer is not used and Suspend is entered only by user request either through an icon in Windows 95 or by pressing and releasing the power button under 4 seconds.

Suspend - The computer is in a low power state: video graphics controller is under driver control and/or HSYNC and VSYNC are off, some subsystems may be drawing less power, and the microprocessor is halted except for servicing interrupts. Any of the following activities will generate a wake-up SMI and return the system to On:

- a. Keyboard (PS/2 only)
- b. Mouse (PS/2 only)
- c. Serial port
- d. Diskette drive
- e. Hard drive
- f. RTC Alarm
- g. Network interface controller

The APM BIOS for this system supports APM 1.2 as well as previous versions 1.1 and 1.0. The APM BIOS functions are listed in Table 8-3.

Table 8-3.		
APM BIOS Functions (INT15)		
AX	Function	
5300h	APM Installation Check	
5301h	APM Connect (Real Mode)	
5302h	APM Connect (16-bit Protected Mode)	
5303h	APM Connect (32-bit Protected Mode)	
5304h	Interface Disconnect	
5305h	CPU Idle	
5306h	CPU Busy	
5307h	Set Power State [1]	
5308h	Enable/Disable Power Management	
5309h	Restore Power On Defaults	
530Ah	Get Power Status	
530Bh	Get PM Event	
530Ch	Get Power State	
530Dh	Enable/Disable Device Power Management	
530Eh	APM Driver Version	
530Fh	Engage/Disengage Power Management	
5380h	OEM (Compaq) Specific APM Function	

8.6 USB LEGACY SUPPORT

The BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

The system does not support hot-plugging of a USB keyboard, nor is a keyboard attached to a USB hub supported. A PS/2 keyboard and a USB keyboard can, however, be connected and used simultaneously.

8.7 BIOS UPGRADING

The flash ROM device can be re-written with updated BIOS code if necessary. The flashing procedure is as follows:

- 1. Create a system (bootable) diskette using the FORMAT A: /S command in DOS.
- 2. Download the appropriate BIOS firmware from the Compaq web site.
- 3. Copy the downloaded BIOS file and the flash utility file onto the boot diskette.
- 4. Unzip the BIOS and flash utility files, which should result in an .exe file and a .bin file.
- 5. Place the boot diskette into drive A: and reboot the system.
- 6. At the A: prompt, type in *"filename.exe filename.bin"* (there is a space between the file names) and press **Enter.**
- 7. At the Flash Memory Write menu, to the question "Do you want to save BIOS?" select Y. If you want to save the current BIOS then type the current BIOS name and the extension after "File name to save" (example: type in 613j900.bin). Alternately, select N if you do not want to save the current BIOS.
- 8. To the question "Are you sure to program?" select Y.
- 9. Wait until the message "Power Off or Reset the system," indicating the BIOS has been loaded successfully. Then remove the boot diskette. Should power be lost or the system reset during this time (before the message is displayed) the BIOS code in ROM will likely be corrupted and the procedure will have to be repeated (starting at step 5).
- 10. Turn off (power down) the system.
- 11. While holding the **End** key down, turn on (power up) the system, making sure the **End** key is held down until the Setup utility is entered.
- 12. Complete the Setup utility as appropriate.
- 13. Re-boot the system.

Appendix A ERROR MESSAGES AND CODES

A.1 INTRODUCTION

This appendix lists the error codes and a brief description of the probable cause of the error. Note that not all errors listed in this appendix may be applicable to a particular system depending on the model and/or configuration.

A.2 POWER-ON MESSAGES

Table A-1.Power-On Messages		
Message	Beeps	Probable Cause
CMOS Time and Date Not Set	(None)	Invalid time or date
(none)	2 short	Power-On successful
Run Setup	(None)	Any failure

A.3 BEEP/KEYBOARD LED CODES

Table A-2.			
	Beep/Keybo	oard LED Codes	
Beeps LED [1] Probable Cause			
1 short, 2 long	NUM lock blinking	Base memory failure.	
1 long, 2 short	CAP lock blinking	Video/graphics controller failure.	
2 long, 1 short	Scroll lock blinking	System failure (prior to video initialization).	
None	All three blink in sequence	Keyboard locked in network mode.	
None	NUM lock steady on	ROMPAQ diskette not present, bad, or drive not ready.	
None	CAP lock steady on	Password prompt.	
None	All three blink together	ROM flash failed.	
None	All three steady on	Successful ROM flash.	

NOTE:

[1] PS/2 keyboard only.

A.4 POWER-ON SELF TEST (POST) MESSAGES

Error Message Probable Cause					
Bad PnP Serial ID Checksum	Serial ID checksum of PnP card was invalid.				
Address Lines Short!	Error in address decoding circuitry on system board.				
Cache Memory Failure, Do Not Enable	Defective cache memory, CPU has failed.				
Cache!	Delective cache memory; or o has failed.				
CMOS Battery Failed	Low RTC/CMOS battery				
CMOS Checksum Invalid	Previous and current checksum value mismatch.				
CMOS System Options Not Set	Corrupt or non-existant CMOS values.				
CMOS Display Type Mismatch	Graphics/video type in CMOS does not match type detected by				
emee blopidy Type miematen	BIOS.				
CMOS Memory Size Mismatch	Memory amount detected does not match value stored in CMOS.				
CMOS Time and Date Not Set	Time and date are invalid.				
Diskette Boot Failure	Boot disk in drive A: is corrupt.				
DMA Bus Timeout	Bus driven by device for more than 7.8 us				
DMA Dus Hilleout	Error in one or both DMA controllers.				
Drive Not Ready Error	BIOS cannot access the diskette drive.				
Diskette Drive Controller Failure	BIOS cannot communicate with diskette drive controller.				
Diskette Drive Controller Resource	Diskette drive controller has requested a resource already in use.				
Conflict					
Diskette Drive A: Failure	BIOS cannot access drive A:.				
Diskette Drive B: Failure	BIOS cannot access drive B:				
Gate A20 Failure	Gate A20 of keyboard controller not working.				
Invalid Boot Diskette	BIOS can read but cannot boot system from drive A:.				
Keyboard Controller Error	Keyboard controller failure.				
Keyboard is LockedPlease Unlock It	Locked keyboard.				
Keyboard Stuck Key Detected	Key pressed down.				
Master DMA Controller Error	Error exists in master DMA controller.				
Master Interrupt Controller Error	Master interrupt controller failure.				
Memory Size Decreased	Amount of memory detected is less than stated value in CMOS.				
NVRAM Checksum Error, NVRAM	ESCD data was re-initialized due to NVRAM checksum error.				
Cleared					
NVRAM Cleared By Jumper	NVRAM has been cleared by removal of jumper.				
NVRAM Data Invalid, NVRAM Cleared	Invalid entry in ESCD.				
Off Board Parity Error Addr. (HEX) = X	Parity error occurred in expansion memory, x= address of error.				
Parallel Port Resource Conflict	Parallel port has requested a resource already in use.				
PCI Error Log is Full	PCI conflict error limit (15) has been reached.				
PCI I/O Port Conflict	Two devices requested the same resource.				
PCI Memory Conflict	Two devices requested the same resource.				
Primary Boot Device Not Found	Designated primary boot device could not be found.				
Primary IDE Cntrl. Resource Conflict	Primary IDE controller requested a resource already in use.				
Primary Input Device Not Found	Designated primary input device could not be found.				
Secondary IDE Controller Resource	Secondary IDE controller has requested a resource already in use.				
Serial Port 1 Resource Conflict	Serial port 1 requested a resource already in use.				
Serial Port 2 Resource Conflict	Serial port 2 requested a resource already in use.				
Slave DMA Controller Error	Error exists in slave DMA controller.				
Slave Interrupt Controller Error	Slave interrupt controller failure.				
Static Device Resource Conflict	A non-PnP ISA card has requested a resource already in use.				
System Board Device Resource	A non-PnP ISA card has requested a resource already in use.				
Conflict					
System Memory Size Mismatch	Amount of memory detected on system board is different from				
System wertory Oize wistratori	amount indicated in CMOS.				

NOTE:

PCI and PnP messages are displayed with bus, device, and function information.

A-2 Compaq Personal Computers

Table A-4.			
	System Error	Messages	6
Message	Probable Cause	Message	Probable Cause
101	Option ROM error	110-01	Programmable timer load data test failed
102	System board failure (see note)	110-02	Programmable timer dynamic test failed
103	System board failure	110-03	Program timer 2 load data test failed
104-01	Master int. cntlr. test fialed	111-01	Refresh detect test failed
104-02	Slave int. cntlr. test failed	112-01	Speed test Slow mode out of range
104-03	Int. cntlr. SW RTC inoperative	112-02	Speed test Mixed mode out of range
105-01	Port 61 bit <6> not at zero	112-03	Speed test Fast mode out of range
105-02	Port 61 bit <5> not at zero	112-04	Speed test unable to enter Slow mode
105-03	Port 61 bit <3> not at zero	112-05	Speed test unable to enter Mixed mode
105-04	Port 61 bit <1> not at zero	112-06	Speed test unable to enter Fast mode
105-05	Port 61 bit <0> not at zero	112-07	Speed test system error
105-06	Port 61 bit <5> not at one	112-08	Unable to enter Auto mode in speed test
105-07	Port 61 bit <3> not at one	112-09	Unable to enter High mode in speed test
105-08	Port 61 bit <1> not at one	112-10	Speed test High mode out of range
105-09	Port 61 bit <0> not at one	112-11	Speed test Auto mode out of range
105-10	Port 61 I/O test failed	112-12	Speed test variable speed mode inop.
105-11	Port 61 bit <7> not at zero	113-01	Protected mode test failed
105-12	Port 61 bit <2> not at zero	114-01	Speaker test failed
105-13	No int. generated by failsafe timer	116-xx	Way 0 read/write test failed
105-14	NMI not triggered by failsafe timer	162-xx	Sys. options failed (mismatch in drive type)
106-01	Keyboard controller test failed	163-xx	Time and date not set
107-01	CMOS RAM test failed	164-xx	Memory size
108-02	CMOS interrupt test failed	199-00	Installed devices test failed
108-03	CMOS not properly initialized (int.test)		
109-01	CMOS clock load data test failed	l	
109-02	CMOS clock rollover test failed		
109-03	CMOS not properly initialized (clk test)		

A.5 PROCESSOR ERROR MESSAGES (1xx-xx)

NOTE: A 102 message code may be caused by one of a variety of processor-related problems that may be solved by replacing the processor, although system board replacement may be needed.

A.6 MEMORY ERROR MESSAGES (2xx-xx)

	Table A-5.
	Memory Error Messages
Message	Probable Cause
200-04	Real memory size changed
200-05	Extended memory size changed
200-06	Invalid memory configuration
200-07	Extended memory size changed
200-08	CLIM memory size changed
201-01	Memory machine ID test failed
202-01	Memory system ROM checksum failed
202-02	Failed RAM/ROM map test
202-03	Failed RAM/ROM protect test
203-01	Memory read/write test failed
203-02	Error while saving block in read/write test
203-03	Error while restoring block in read/write test
204-01	Memory address test failed
204-02	Error while saving block in address test
204-03	Error while restoring block in address test
204-04	A20 address test failed
204-05	Page hit address test failed
205-01	Walking I/O test failed
205-02	Error while saving block in walking I/O test
205-03	Error while restoring block in walking I/O test
206-xx	Increment pattern test failed
207-xx	ECC failure
210-01	Memory increment pattern test
210-02	Error while saving memory during increment pattern test
210-03	Error while restoring memory during increment pattern test
211-01	Memory random pattern test
211-02	Error while saving memory during random memory pattern test
211-03	Error while restoring memory during random memory pattern test
213-xx	Incompatible DIMM in slot x
214-xx	Noise test failed
215-xx	Random address test

A.7 KEYBOARD ERROR MESSAGES (30x-xx)

Table A-6. Keyboard Error Messages			
Message	Probable Cause	Message	Probable Cause
300-xx	Failed ID test	303-05	LED test, LED command test failed
301-01	Kybd short test, 8042 self-test failed	303-06	LED test, LED command test failed
301-02	Kybd short test, interface test failed	303-07	LED test, LED command test failed
301-03	Kybd short test, echo test failed	303-08	LED test, command byte restore test failed
301-04	Kybd short test, kybd reset failed	303-09	LED test, LEDs failed to light
301-05	Kybd short test, kybd reset failed	304-01	Keyboard repeat key test failed
302-xx	Failed individual key test	304-02	Unable to enter mode 3
302-01	Kybd long test failed	304-03	Incorrect scan code from keyboard
303-01	LED test, 8042 self-test failed	304-04	No Make code observed
303-02	LED test, reset test failed	304-05	Cannot /disable repeat key feature
303-03	LED test, reset failed	304-06	Unable to return to Normal mode
303-04	LED test, LED command test failed		

A-4 Compaq Personal Computers

	Table A-7. Printer Error Messages			
Message Probable Cause Message Probable Cause				
401-01	Printer failed or not connected	402-11	Interrupt test, data/cntrl. reg. failed	
402-01	Printer data register failed	402-12	Interrupt test and loopback test failed	
402-02	Printer control register failed	402-13	Int. test, LpBk. test., and data register failed	
402-03	Data and control registers failed	402-14	Int. test, LpBk. test., and cntrl. register failed	
402-04	Loopback test failed	402-15	Int. test, LpBk. test., and data/cntrl. reg. failed	
402-05	Loopback test and data reg. failed	402-16	Unexpected interrupt received	
402-06	Loopback test and cntrl. reg. failed	402-01	Printer pattern test failed	
402-07	Loopback tst, data/cntrl. reg. failed	403-xx	Printer pattern test failed	
402-08	Interrupt test failed	404-xx	Parallel port address conflict	
402-09	Interrupt test and data reg. failed	498-00	Printer failed or not connected	
402-10	Interrupt test and control reg. failed			

A.8 PRINTER ERROR MESSAGES (4xx-xx)

A.9 VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)

Table A-8.Video (Graphics) Error Messages			
Message Probable Cause Message Probable Cause			
501-01	Video controller test failed	508-01	320x200 mode, color set 0 test failed
502-01	Video memory test failed	509-01	320x200 mode, color set 1 test failed
503-01	Video attribute test failed	510-01	640x200 mode test failed
504-01	Video character set test failed	511-01	Screen memory page test failed
505-01	80x25 mode, 9x14 cell test failed	512-01	Gray scale test failed
506-01	80x25 mode, 8x8 cell test failed	514-01	White screen test failed
507-01	40x25 mode test failed	516-01	Noise pattern test failed

See Table A-14 for additional graphics messages.

A.10 DISKETTE DRIVE ERROR MESSAGES (6xx-xx)

	Table A-9.				
Diskette Drive Error Messages					
Message	Probable Cause	Messag	ge Probable Cause		
6xx-01	Exceeded maximum soft error limit	6xx-20	Failed to get drive type		
6xx-02	Exceeded maximum hard error limit	6xx-21	Failed to get change line status		
6xx-03	Previously exceeded max soft limit	6xx-22	Failed to clear change line status		
6xx-04	Previously exceeded max hard limit	6xx-23	Failed to set drive type in ID media		
6xx-05	Failed to reset controller	6xx-24	Failed to read diskette media		
6xx-06	Fatal error while reading	6xx-25	Failed to verify diskette media		
6xx-07	Fatal error while writing	6xx-26	Failed to read media in speed test		
6xx-08	Failed compare of R/W buffers	6xx-27	Failed speed limits		
6xx-09	Failed to format a tract	6xx-28	Failed write-protect test		
6xx-10	Failed sector wrap test				
600-xx = Dis	kette drive ID test		609-xx = Diskette drive reset controller test		
601-xx = Diskette drive format			610-xx = Diskette drive change line test		
602-xx = Diskette read test			611-xx = Pri. diskette drive port addr. conflict		
603-xx = Diskette drive R/W compare test			612-xx = Sec. diskette drive port addr. conflict		
604-xx = Diskette drive random seek test			694-00 = Pin 34 not cut on 360-KB drive		
605-xx = Diskette drive ID media			697-00 = Diskette type error		
606-xx = Dis	kette drive speed test		698-00 = Drive speed not within limits		
607-xx = Dis	kette drive wrap test		699-00 = Drive/media ID error (run Setup)		
608-xx = Dis	kette drive write-protect test				

A.11 SERIAL INTERFACE ERROR MESSAGES (11xx-xx)

Table A-10.				
Serial Interface Error Messages Message Probable Cause Message Probable Cause				
1101-01	UART DLAB bit failure	1101-13	UART cntrl. signal interrupt failure	
1101-02	Line input or UART fault	1101-14	DRVR/RCVR data failure	
1101-03	Address line fault	1109-01	Clock register initialization failure	
1101-04	Data line fault	1109-02	Clock register rollover failure	
1101-05	UART cntrl. signal failure	1109-03	Clock reset failure	
1101-06	UART THRE bit failure	1109-04	Input line or clock failure	
1101-07	UART Data RDY bit failure	1109-05	Address line fault	
1101-08	UART TX/RX buffer failure	1109-06	Data line fault	
1101-09	Interrupt circuit failure	1150-xx	Comm port setup error (run Setup)	
1101-10	COM1 set to invalid INT	1151-xx	COM1 address conflict	
1101-11	COM2 set to invalid INT	1152-xx	COM2 address conflict	
1101-12	DRVR/RCVR cntrl. signal failure	1155-xx	COM port address conflict	

A.12 MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)

Table A-11.					
	Serial Interface Error Messages				
Message	Probable Cause	Message	Probable Cause		
1201-XX	Modem internal loopback test	1204-03	Data block retry limit reached [4]		
1201-01	UART DLAB bit failure	1204-04	RX exceeded carrier lost limit		
1201-02	Line input or UART failure	1204-05	TX exceeded carrier lost limit		
1201-03	Address line failure	1204-06	Time-out waiting for dial tone		
1201-04	Data line fault	1204-07	Dial number string too long		
1201-05	UART control signal failure	1204-08	Modem time-out waiting for remote response		
1201-06	UART THRE bit failure	1204-09	Modem exceeded maximum redial limit		
1201-07	UART DATA READY bit failure	1204-10	Line quality prevented remote response		
1201-08	UART TX/RX buffer failure	1204-11	Modem time-out waiting for remote connection		
1201-09	Interrupt circuit failure	1205-XX	Modem auto answer test		
1201-10	COM1 set to invalid inturrupt	1205-01	Time-out waiting for SYNC [5]		
1201-11	COM2 set to invalid	1205-02	Time-out waiting for response [5]		
1201-12	DRVR/RCVR control signal failure	1205-03	Data block retry limit reached [5]		
1201-13	UART control signal interrupt failure	1205-04	RX exceeded carrier lost limit		
1201-14	DRVR/RCVR data failure	1205-05	TX exceeded carrier lost limit		
1201-15	Modem detection failure	1205-06	Time-out waiting for dial tone		
1201-16	Modem ROM, checksum failure	1205-07	Dial number string too long		
1201-17	Tone detect failure	1205-08	Modem time-out waiting for remote response		
1202-XX	Modem internal test	1205-09	Modem exceeded maximum redial limit		
1202-01	Time-out waiting for SYNC [1]	1205-10	Line quality prevented remote response		
1202-02	Time-out waiting for response [1]	1205-11	Modem time-out waiting for remote connection		
1202-03	Data block retry limit reached [1]	1206-XX	Dial multi-frequency tone test		
1202-11	Time-out waiting for SYNC [2]	1206-17	Tone detection failure		
1202-12	Time-out waiting for response [2]	1210-XX	Modem direct connect test		
1202-13	Data block retry limit reached [2]	1210-01	Time-out waiting for SYNC [6]		
1202-21	Time-out waiting for SYNC [3]	1210-02	Time-out waiting for response [6]		
1202-22	Time-out waiting for response [3]	1210-03	Data block retry limit reached [6]		
1202-23	Data block retry limit reached [3]	1210-04	RX exceeded carrier lost limit		
1203-XX	Modem external termination test	1210-05	TX exceeded carrier lost limit		
1203-01	Modem external TIP/RING failure	1210-06	Time-out waiting for dial tone		
1203-02	Modem external data TIP/RING fail	1210-07	Dial number string too long		
1203-03	Modem line termination failure	1210-08	Modem time-out waiting for remote response		
1204-XX	Modem auto originate test	1210-09	Modem exceeded maximum redial limit		
1204-01	Time-out waiting for SYNC [4]	1210-10	Line quality prevented remote response		
1204-02	Time-out waiting for response [4]	1210-11	Modem time-out waiting for remote connection		

NOTES:

[1] Local loopback mode

[2] Analog loopback originate mode

[3] Analog loopback answer mode

[4] Modem auto originate test

[5] Modem auto answer test

[6] Modem direct connect test

A.13 SYSTEM STATUS ERROR MESSAGES (16xx-xx)

	Table A-12.
	System Status Error Messages
Message	Probable Cause
1601-xx	Temperature violation
1611-xx	Fan failure

See Table A-18 for additional messages.

A.14 HARD DRIVE ERROR MESSAGES (17xx-xx)

	Table A-13. Hard Drive Error Messages							
			<u>v</u>					
Message	Probable Cause	Message	Probable Cause					
17xx-01	Exceeded max. soft error limit	17xx-51	Failed I/O read test					
17xx-02	Exceeded max. Hard error limit	17xx-52	Failed file I/O compare test					
17xx-03	Previously exceeded max. soft error limit	17xx-53	Failed drive/head register test					
17xx-04	Previously exceeded max.hard error limit	17xx-54	Failed digital input register test					
17xx-05	Failed to reset controller	17xx-55	Cylinder 1 error					
17xx-06	Fatal error while reading	17xx-56	Failed controller RAM diagnostics					
17xx-07	Fatal error while writing	17xx-57	Failed controller-to-drive diagnostics					
17xx-08	Failed compare of R/W buffers	17xx-58	Failed to write sector buffer					
17xx-09	Failed to format a track	17xx-59	Failed to read sector buffer					
17xx-10	Failed diskette sector wrap during read	17xx-60	Failed uncorrectable ECC error					
17xx-19	Cntlr. failed to deallocate bad sectors	17xx-62	Failed correctable ECC error					
17xx-40	Cylinder 0 error	17xx-63	Failed soft error rate					
17xx-41	Drive not ready	17xx-65	Exceeded max. bad sectors per track					
17xx-42	Failed to recalibrate drive	17xx-66	Failed to initialize drive parameter					
17xx-43	Failed to format a bad track	17xx-67	Failed to write long					
17xx-44	Failed controller diagnostics	17xx-68	Failed to read long					
17xx-45	Failed to get drive parameters from ROM	17xx-69	Failed to read drive size					
17xx-46	Invalid drive parameters from ROM	17xx-70	Failed translate mode					
17xx-47	Failed to park heads	17xx-71	Failed non-translate mode					
17xx-48	Failed to move hard drive table to RAM	17xx-72	Bad track limit exceeded					
17xx-49	Failed to read media in file write test	17xx-73	Previously exceeded bad track limit					
17xx-50	Failed I/O write test							
1700-xx = Ha	ard drive ID test	1719-xx	k = Hard drive power mode test					
1701-xx = Ha	ard drive format test	1720-xx	K = SMART drive detects imminent failure					
1702-xx = Ha	ard drive read test	1721-xx = SCSI hard drive imminent failure						
1703-xx = Ha	ard drive read/write compare test	1724-xx = Net work preparation test						
1704-xx = Ha	ard drive random seek test	1736-xx = Drive monitoring test						
1705-xx = Ha	ard drive controller test	1771-xx = Pri. IDE controller address conflict						
1706-xx = Ha	ard drive ready test	1772-xx = Sec. IDE controller address conflict						
1707-xx = Ha	ard drive recalibrate test	1780-xx = Disk 0 failure						
1708-xx = Ha	ard drive format bad track test	1781-xx	k = Disk 1 failure					
1709-xx = Ha	ard drive reset controller test	1782-xx	κ = Pri. IDE controller failure					
1710-xx = Ha	ard drive park head test	1790-xx	κ = Disk 0 failure					
1714-xx = Ha	ard drive file write test	1791-xx	k = Disk 1 failure					
1715-xx = Ha	ard drive head select test	1792-xx	κ = Se. controller failure					
1716-xx = Ha	ard drive conditional format test	1793-xx	$\kappa =$ Sec. Controller or disk failure					
1717-xx = Ha	ard drive ECC test	1799-xx	κ = Invalid hard drive type					

Table A-13

A-8 Compaq Personal Computers

Changed - January 2000

Table A-14.								
Hard Drive Error Messages								
Message	Probable Cause	Message	Probable Cause					
19xx-01	Drive not installed	19xx-21	Got servo pulses second time but not first					
19xx-02	Cartridge not installed	19xx-22	Never got to EOT after servo check					
19xx-03	Tape motion error	19xx-23	Change line unset					
19xx-04	Drive busy erro	19xx-24	Write-protect error					
19xx-05	Track seek error	19xx-25	Unable to erase cartridge					
19xx-06	Tape write-protect error	19xx-26	Cannot identify drive					
19xx-07	Tape already Servo Written	19xx-27	Drive not compatible with controller					
19xx-08	Unable to Servo Write	19xx-28	Format gap error					
19xx-09	Unable to format	19xx-30	Exception bit not set					
19xx-10	Format mode error	19xx-31	Unexpected drive status					
19xx-11	Drive recalibration error	19xx-32	Device fault					
19xx-12	Tape not Servo Written	19xx-33	Illegal command					
19xx-13	Tape not formatted	19xx-34	No data detected					
19xx-14	Drive time-out error	19xx-35	Power-on reset occurred					
19xx-15	Sensor error flag	19xx-36	Failed to set FLEX format mode					
19xx-16	Block locate (block ID) error	19xx-37	Failed to reset FLEX format mode					
19xx-17	Soft error limit exceeded	19xx-38	Data mismatch on directory track					
19xx-18	Hard error limit exceeded	19xx-39	Data mismatch on track 0					
19xx-19	Write (probably ID) error	19xx-40	Failed self-test					
19xx-20	NEC fatal error	19xx-91	Power lost during test					
1900-xx = Ta	ape ID test failed	1904-x>	c = Tape BOT/EOT test failed					
1901-xx = Ta	ape servo write failed	1905-x>	x = Tape read test failed					
	ape format failed		c = Tape R/W compare test failed					
	ape drive sensor test failed		c = Tape write-protect failed					

A.16 VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)

Table A-15.								
Video (Graphics) Error Messages								
Message	Probable Cause	Message	Probable Cause					
2402-01	Video memory test failed	2418-02	EGA shadow RAM test failed					
2403-01	Video attribute test failed	2419-01	EGA ROM checksum test failed					
2404-01	Video character set test failed	2420-01	EGA attribute test failed					
2405-01	80x25 mode, 9x14 cell test failed	2421-01	640x200 mode test failed					
2406-01	80x25 mode, 8x8 cell test failed	2422-01	640x350 16-color set test failed					
2407-01	40x25 mode test failed	2423-01	640x350 64-color set test failed					
2408-01	320x200 mode color set 0 test failed	2424-01	EGA Mono. text mode test failed					
2409-01	320x200 mode color set 1 test failed	2425-01	EGA Mono. graphics mode test failed					
2410-01	640x200 mode test failed	2431-01	640x480 graphics mode test failed					
2411-01	Screen memory page test failed	2432-01	320x200 256-color set test failed					
2412-01	Gray scale test failed	2448-01	Advanced VGA controller test failed					
2414-01	White screen test failed	2451-01	132-column AVGA test failed					
2416-01	Noise pattern test failed	2456-01	AVGA 256-color test failed					
2417-01	Lightpen text test failed, no response	2458-xx	AVGA BitBLT test failed					
2417-02	Lightpen text test failed, invalid response	2468-xx	AVGA DAC test failed					
2417-03	Lightpen graphics test failed, no resp.	2477-xx	AVGA data path test failed					
2417-04	Lightpen graphics test failed, invalid resp.	2478-xx	AVGA BitBLT test failed					
2418-01	EGA memory test failed	2480-xx	AVGA linedraw test failed					

Compaq Personal Computers A-9

Changed – January 2000

A.17 AUDIO ERROR MESSAGES (3206-xx)

	Table A-16.					
	Audio Error Message					
Message	Probable Cause					
3206-xx	3206-xx Audio subsystem internal error					

A.18 DVD/CD-ROM ERROR MESSAGES (33xx-xx)

	Table A-17.
	DVD/CD-ROM Drive Error Messages
Message	Probable Cause
3301-xx	Drive test failed
3305-XX	Seek test failed
a =	

See Table A-18 for additional messages.

A.19 NETWORK INTERFACE ERROR MESSAGES (60xx-xx)

Table A-18. Network Interface Error Messages							
Message	Probable Cause Message Probable Cause						
6000-xx	Pointing device interface error	6054-xx	Token ring configuration test failed				
6014-xx	Ethernet configuration test failed	6056-xx	Token ring reset test failed				
6016-xx	Ethernet reset test failed	6068-xx	Token ring int. loopback test failed				
6028-xx	Ethernet int. loopback test failed	6069-xx	Token ring ext. loopback test failed				
6029-xx	Ethernet ext. loopback test failed	6089-xx	Token ring open				

		Table A-19.					
SCSI Interface Error Messages							
Message	Probable Cause	Message	Probable Cause				
6nyy-02	Drive not installed	6nyy-33	Illegal controller command				
6nyy-03	Media not installed	6nyy-34	Invalid SCSI bus phase				
6nyy-05	Seek failure	6nyy-35	Invalid SCSI bus phase				
6nyy-06	Drive timed out	6nyy-36	Invalid SCSI bus phase				
6nyy-07	Drive busy	6nyy-39	Error status from drive				
6nyy-08	Drive already reserved	6nyy-40	Drive timed out				
6nyy-09	Reserved	6nyy-41	SSI bus stayed busy				
6nyy-10	Reserved	6nyy-42	ACK/REQ lines bad				
6nyy-11	Media soft error	6nyy-43	ACK did not deassert				
6nyy-12	Drive not ready	6nyy-44	Parity error				
6nyy-13	Media error	6nyy-50	Data pins bad				
6nyy-14	Drive hardware error	6nyy-51	Data line 7 bad				
6nyy-15	Illegal drive command	6nyy-52	MSG, C/D, or I/O lines bad				
6nyy-16	Media was changed	6nyy-53	BSY never went busy				
6nyy-17	Tape write-protected	6nyy-54	BSY stayed busy				
6nyy-18	No data detected	6nyy-60	Controller CONFIG-1 register fault				
6nyy-21	Drive command aborted	6nyy-61	Controller CONFIG-2 register fault				
6nyy-24	Media hard error	6nyy-65	Media not unloaded				
6nyy-25	Reserved	6nyy-90	Fan failure				
6nyy-30	Controller timed out	6nyy-91	Over temperature condition				
6nyy-31	Unrecoverable error	6nyy-92	Side panel not installed				
6nyy-32	Controller/drive not connected	6nyy-99	Autoloader reported tape not loaded properly				

A.20 SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)

= 6, CD-ROM drive

= 03, Power check

= 7, Tape drive.

= 03, Power = 05, Read

= 06, SA/Media

= 08, Controller

= 23, Random read

= 28, Media load/unload

A.21 POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)

Table A-20.								
Pointing Device Interface Error Messages								
Message	Probable Cause	Probable Cause Message Probable Cause						
8601-01	Mouse ID fails	8601-07	Right block not selected					
8601-02	Left mouse button is inoperative	8601-08	Timeout occurred					
8601-03	Left mouse button is stuck closed	8601-09	Mouse loopback test failed					
8601-04	Right mouse button is inoperative	8601-10	Pointing device is inoperative					
8601-05	Right mouse button is stuck closed	8602-xx	I/F test failed					
8601-06	Left block not selected							

Compaq Personal Computers A-11

A.22 CEMM PRIVILEDGED OPS ERROR MESSAGES

	CEMM Privileged Ops Error Messages							
Message	Probable Cause	obable Cause Message Probable Cause						
00	LGDT instruction	04	LL3 instruction					
01	LIDT instruction	05	MOV CRx instruction					
02	LMSW instruction	06	MOV DRx instruction					
03	LL2 instruction	07	MOV TRx instruction					

A.23 CEMM EXCEPTION ERROR MESSAGES

	Table A-22. CEMM Exception Error Messages							
Message	Message Probable Cause Message Probable Cause							
00	Divide	10	Invalid TSS					
01	Debug	11	Segment not present					
02	NMI or parity	12	Stack full					
03	INT 0 (arithmetic overflow)	13	General protection fault					
04	INT 3	14	Page fault					
05	Array bounds check	16	Coprocessor					
06	Invalid opcode	32	Attempt to write to protected area					
07	Coprocessor device not available	33	Reserved					
08	Double fault	34	Invalid software interrupt					
09	Coprocessor segment overrun							

Appendix B ASCII CHARACTER SET

B.1 INTRODUCTION

This appendix lists, in Table B-1, the 256-character ASCII code set including the decimal and hexadecimal values. All ASCII symbols may be called while in DOS or using standard text-mode editors by using the combination keystroke of holding the **Alt** key and using the Numeric Keypad to enter the decimal value of the symbol. The extended ASCII characters (decimals 128-255) can only be called using the **Alt** + Numeric Keypad keys.

NOTE: Regarding keystrokes, refer to notes at the end of the table. Applications may interpret multiple keystroke accesses differently or ignore them completely.

					Tabl	e B-1.					
ASCII Character Set											
Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
0	00	Blank	32	20	Space	64	40	@	96	60	"
1	01	\odot	33	21	!	65	41	А	97	61	а
2	02	۲	34	22	"	66	42	В	98	62	b
3	03	*	35	23	#	67	43	С	99	63	С
4	04	•	36	24	\$	68	44	D	100	64	d
5	05	*	37	25	%	69	45	E	101	65	е
6	06	٨	38	26	&	70	46	F	102	66	f
7	07	•	39	27	"	71	47	G	103	67	g
8	08	0	40	28	(72	48	Н	104	68	h
9	09		41	29)	73	49	I	105	69	I
10	0A		42	2A	*	74	4A	J	106	6A	j
11	0B	đ	43	2B	+	75	4B	К	107	6B	k
12	0C	Q	44	2C	`	76	4C	L	108	6C	I
13	0D	Ļ	45	2D	-	77	4D	М	109	6D	m
14	0E	Д Ф	46	2E		78	4E	N	110	6E	n
15	0F	¢	47	2F	/	79	4F	0	111	6F	0
16	10	•	48	30	0	80	50	Р	112	70	р
17	11	4	49	31	1	81	51	Q	113	71	q
18	12	\$	50	32	2	82	52	R	114	72	r
19	13	!!	51	33	3	83	53	S	115	73	s
20	14	1	52	34	4	84	54	Т	116	74	t
21	15	§	53	35	5	85	55	U	117	75	u
22	16	_ <u>↓</u>	54	36	6	86	56	V	118	76	v
23	17		55	37	7	87	57	W	119	77	W
24	18	\uparrow	56	38	8	88	58	Х	120	78	х
25	19	\downarrow	57	39	9	89	59	Y	121	79	У
26	1A	\rightarrow	58	ЗA	:	90	5A	Z	122	7A	Z
27	1B	\leftarrow	59	3B	;	91	5B	[123	7B	{
28	1C		60	3C	<	92	5C	١	124	7C	1
29	1D	\leftrightarrow	61	3D	=	93	5D]	125	7D	}
30	1E		62	3E	>	94	5E	^	126	7E	~
31	1F	▼	63	3F	?	95	5F	_	127	7F	△ [1]
										С	ontinued

Compaq Personal Computers B-1

Original - July 1996

Table	B-I. /	45011 000	Table B-1. ASCII Code Set (Continuea)								
Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
128	80	Ç	160	A0	á	192	C0	L	224	E0	α
129	81	ü	161	A1	í	193	C1	\perp	225	E1	ß
130	82	é	162	A2	ó	194	C2	т	226	E2	Г
131	83	â	163	A3	ú	195	C3	ŀ	227	E3	П
132	84	ä	164	A4	ñ	196	C4	-	228	E4	Σ
133	85	à	165	A5	Ñ	197	C5	+	229	E5	σ
134	86	å	166	A6	a	198	C6	F	230	E6	μ
135	87	Ç	167	A7	0	199	C7	ŀ	231	E7	τ
136	88	ê	168	A8	ż	200	C8	L	232	E8	Φ
137	89	ë	169	A9	-	201	C9	ſ	233	E9	Θ
138	8A	è	170	AA	7	202	CA	<u>_IL</u>	234	EA	Ω
139	8B	ï	171	AB	1/2	203	CB	T	235	EB	δ
140	8C	î	172	AC	1/4	204	CC	F	236	EC	ca
141	8D	ì Ä	173	AD	i	205	CD	=	237	ED	φ
142	8E	Ä	174	AE	«	206	CE	÷.	238	EE	8
143	8F	Å	175	AF	»	207	CF	<u> </u>	239	EF	Π
144	90	É	176	B0		208	D0	Ш	240	F0	=
145	91	æ	177	B1		209	D1	Ŧ	241	F1	$\stackrel{\pm}{\geq}$
146	92	Æ	178	B2		210	D2	π	242	F2	
147	93	ô	179	B3		211	D3	L	243	F3	\leq
148	94	ö	180	B4	-	212	D4	F	244	F4	ſ
149	95	ò	181	B5	Ę	213	D5	F	245	F5	J
150	96	û	182	B6	-	214	D6	Г	246	F6	÷
151	97	ù	183	B7	П	215	D7	+	247	F7	~
152	98	ÿ Ö	184	B8	키	216	D8	+	248	F8	0
153	99	Ö	185	B9	4	217	D9	L	249	F9	•
154	9A	Ü	186	BA		218	DA	<u>_</u>	250	FA	•
155	9B	¢	187	BB	ī	219	DB		251	FB	\checkmark
156	9C	£	188	BC	1	220	DC		252	FC	n
157	9D	¥	189	BD	Ш	221	DD	l	253	FD	2
158	9E	R	190	BE	4	222	DE		254	FE	
159	9F	f	191	BF	1	223	DF		255	FF	Blank

Table B-1. ASCII Code Set (Continued)

NOTES:

[1] Symbol not displayed.

[1] Symbol	i not dispi	ayed.
Keystroke	Guide:	
	Dec #	<u>Keystroke(s)</u>
	0	Ctrl 2
	1-26	Ctrl A thru Z respectively
	27	Ctrl [
	28	Ctrl
	29	Ctrl]
	30	Ctrl 6
	31	Ctrl -
	32	Space Bar
	33-43	Shift and key w/corresponding symbol
	44-47	Key w/corresponding symbol
	48-57	Key w/corresponding symbol, numerical keypad w/Num Lock active
	58	Shift and key w/corresponding symbol
	59	Key w/corresponding symbol
	60	Shift and key w/corresponding symbol
	61	Key w/corresponding symbol
	62-64	Shift and key w/corresponding symbol
	65-90	Shift and key w/corresponding symbol or key w/corresponding symbol and Caps Lock active
	91-93	Key w/corresponding symbol
	94, 95	Shift and key w/corresponding symbol
	96	Key w/corresponding symbol
	97-126	Key w/corresponding symbol or Shift and key w/corresponding symbol and Caps Lock active
	127	Ctrl -
	128-255	Alt and decimal digit(s) of desired character

B-2 Compaq Personal Computers

Original - July 1996

Appendix C KEYBOARD

C.1 INTRODUCTION

This appendix describes the Compaq keyboard that is included as standard with the system unit. The keyboard complies with the industry-standard classification of an "enhanced keyboard" and includes a separate cursor control key cluster, twelve "function" keys, and enhanced programmability for additional functions. This appendix covers the following keyboard types:

- Standard enhanced keyboard.
- Space-Saver Windows-version keyboard featuring additional keys for specific support of the Windows operating system.
- Easy Access keyboard with additional buttons for internet accessibility functions.

Only one type of keyboard is supplied with each system. Other types may be available as an option.

NOTE: This appendix discusses only the keyboard unit. The keyboard interface is a function of the system unit and is discussed in Chapter 5, Input/Output Interfaces.

Topics covered in this appendix include the following:

•	Keystroke processing (C.2)	page C-2
---	----------------------------	----------

• Connectors (C.3) page C-15

C.2 KEYSTROKE PROCESSING

A functional block diagram of the keystroke processing elements is shown in Figure C-1. Power (+5 VDC) is obtained from the system through the PS/2-type interface. The keyboard uses a Z86C14 (or equivalent) microprocessor. The Z86C14 scans the key matrix drivers every 10 ms for pressed keys while at the same time monitoring communications with the keyboard interface of the system unit. When a key is pressed, a Make code is generated. A Break code is generated when the key is released. The Make and Break codes are collectively referred to as scan codes. All keys generate Make and Break codes with the exception of the Pause key, which generates a Make code only.

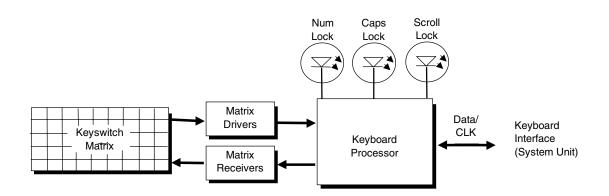
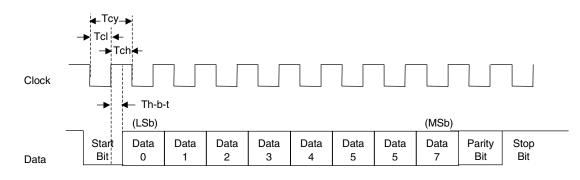


Figure C-1. Keystroke Processing Elements, Block Diagram


When the system is turned on, the keyboard processor generates a Power-On Reset (POR) signal after a period of 150 ms to 2 seconds. The keyboard undergoes a Basic Assurance Test (BAT) that checks for shorted keys and basic operation of the keyboard processor. The BAT takes from 300 to 500 ms to complete.

If the keyboard fails the BAT, an error code is sent to the CPU and the keyboard is disabled until an input command is received. After successful completion of the POR and BAT, a completion code (AAh) is sent to the CPU and the scanning process begins.

The keyboard processor includes a 16-byte FIFO buffer for holding scan codes until the system is ready to receive them. Response and typematic codes are not buffered. If the buffer is full (16 bytes held) a 17th byte of a successive scan code results in an overrun condition and the overrun code replaces the scan code byte and any additional scan code data (and the respective key strokes) are lost. Multi-byte sequences must fit entirely into the buffer before the respective keystroke can be registered.

C.2.1 PS/2-TYPE KEYBOARD TRANSMISSIONS

The PS/2-type keyboard sends two main types of data to the system; commands (or responses to system commands) and keystroke scan codes. Before the keyboard sends data to the system (specifically, to the 8042-type logic within the system), the keyboard verifies the clock and data lines to the system. If the clock signal is low (0), the keyboard recognizes the inhibited state and loads the data into a buffer. Once the inhibited state is removed, the data is sent to the system. Keyboard-to-system transfers (in the default mode) consist of 11 bits as shown in Figure C-2.

Parameter	Minimum	Nominal	Maximum
Tcy (clock cycle)	60 us		80 us
Tcl (clock low)	30 us	41 us	50 us
Tch (clock high)	30 us		40 us
Th-t-t (high-before-transmit)		20 us	

Figure C-2. PS/2 Keyboard-To-System Transmission, Timing Diagram

The system can halt keyboard transmission by setting the clock signal low. The keyboard checks the clock line every 60 us to verify the state of the signal. If a low is detected, the keyboard will finish the current transmission **if** the rising edge of the clock pulse for the parity bit has not occurred. The system uses the same timing relationships during reads (typically with slightly reduced time periods).

The enhanced keyboard has three operating modes:

- Mode 1 PC-XT compatible
- Mode 2 PC-AT compatible (default)
- Mode 3 Select mode (keys are programmable as to make-only, break-only, typematic)

Modes can be selected by the user or set by the system. Mode 2 is the default mode. Each mode produces a different set of scan codes. When a key is pressed, the keyboard processor sends that key's make code to the 8042 logic of the system unit. The When the key is released, a release code is transmitted as well (except for the Pause key, which produces only a make code). The 8042-type logic of the system unit responds to scan code reception by asserting IRQ1, which is processed by the interrupt logic and serviced by the CPU with an interrupt service routine. The service routine takes the appropriate action based on which key was pressed.

C.2.2 USB-TYPE KEYBOARD TRANSMISSIONS

The USB-type keyboard sends essentially the same information to the system that the PS/2 keyboard does, except that the data receives additional NRZI encoding and formatting (prior to leaving the keyboard) to comply with the USB I/F specification (discussed in chapter 5 of this guide).

Packets received at the system's USB I/F and decoded as originating from the keyboard result in an SMI being generated. An SMI handler routine is invoked that decodes the data and transfers the information to the 8042 keyboard controller where normal (legacy) keyboard processing takes place.

C.2.3 KEYBOARD LAYOUTS

Figures C-3 through C-8 show the key layouts for keyboards shipped with Compaq systems. Actual styling details including location of the Compaq logo as well as the numbers lock, caps lock, and scroll lock LEDs may vary.

C.2.3.1 Standard Enhanced Keyboards

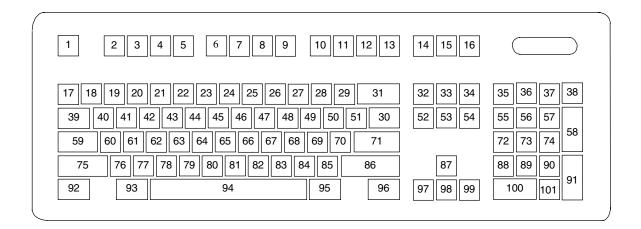


Figure C-3. U.S. English (101-Key) Keyboard Key Positions

1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16	
17 18 19 20 21 22 23 24 25 26 27 28 29 31 39 40 41 42 43 44 45 46 47 48 49 50 51 71	32 33 34 52 53 54	35 36 37 38 55 56 57 58 58
59 60 61 62 63 64 65 66 67 68 69 70 103 71 75 104 76 77 78 79 80 81 82 83 84 85 86	87	72 73 74 00 88 89 90 91
92 93 94 95 96	97 98 99	100 101

Figure C-4. National (102-Key) Keyboard Key Positions

Compaq Personal Computers C-5

Changed -- March 2000

C.2.3.2 Windows Enhanced Keyboards

1 2 3 4 5 6 7 8 9 10 11 12 13	14 15 16	
17 18 19 20 21 22 23 24 25 26 27 28 29 31	32 33 34	35 36 37 38
39 40 41 42 43 44 45 46 47 48 49 50 51 30	52 53 54	55 56 57
59 60 61 62 63 64 65 66 67 68 69 70 71		72 73 74 58
75 76 77 78 79 80 81 82 83 84 85 86	87	88 89 90
92 110 93 94 95 111 112 96	97 98 99	100 101 91
、 、		

Figure C–5. U.S. English Windows (101W-Key) Keyboard Key Positions

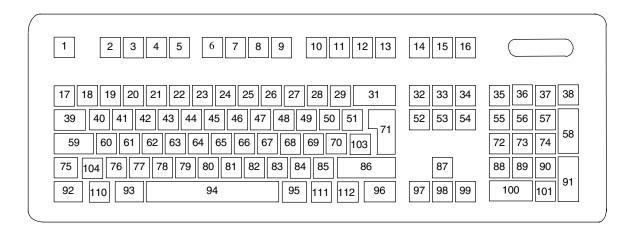
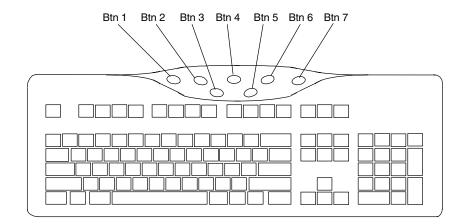



Figure C-6. National Windows (102W-Key) Keyboard Key Positions

C.2.3.3 Easy Access Keyboards

The Easy Access keyboard, such as that shipped with the Compaq iPaq system, is a Windows Enhanced-type keyboard that includes special buttons (Figure C-7) allowing quick internet navigation. Depending on the system, either a legacy PS/2-type keyboard or a Universal Serial Bus (USB) type keyboard may be employed. Either type uses the layout shown in the following figure.

NOTE:

Main key positions same as Windows Enhanced (Figures C-5 or C-6).

Figure C–7. Easy Access Key Positions

C.2.4 KEYS

All keys generate a make code (when pressed) and a break code (when released) with the exception of the **Pause** key (pos. 16), which produces a make code only. All keys with the exception of the **Pause** and Easy Access keys are also typematic, although the typematic action of the **Shift, Ctrl, Alt, Num Lock, Scroll Lock, Caps Lock**, and **Ins** keys is suppressed by the BIOS. Typematic keys, when held down longer than 500 ms, send the make code repetitively at a 10-12 Hz rate until the key is released. If more than one key is held down, the last key pressed will be typematic.

C.2.4.1 Special Single-Keystroke Functions

The following keys provide the intended function in most applications and environments.

Caps Lock - The **Caps Lock** key (pos. 59), when pressed and released, invokes a BIOS routine that turns on the caps lock LED and shifts into upper case key positions 40-49, 60-68, and 76-82. When pressed and released again, these keys revert to the lower case state and the LED is turned off. Use of the **Shift** key will reverse which state these keys are in based on the **Caps Lock** key.

Num Lock - The **Num Lock** key (pos. 32), when pressed and released, invokes a BIOS routine that turns on the num lock LED and shifts into upper case key positions 55-57, 72-74, 88-90, 100, and 101. When pressed and released again, these keys revert to the lower case state and the LED is turned off.

The following keys provide special functions that require specific support by the application.

Print Scrn - The **Print Scrn** (pos. 14) key can, when pressed, generate an interrupt that initiates a print routine. This function may be inhibited by the application.

Scroll Lock - The **Scroll Lock** key (pos. 15) when pressed and released, , invokes a BIOS routine that turns on the scroll lock LED and inhibits movement of the cursor. When pressed and released again, the LED is turned off and the function is removed. This keystroke is always serviced by the BIOS (as indicated by the LED) but may be inhibited or ignored by the application.

Pause - The **Pause** (pos. 16) key, when pressed, can be used to cause the keyboard interrupt to loop, i.e., wait for another key to be pressed. This can be used to momentarily suspend an operation. The key that is pressed to resume operation is discarded. This function may be ignored by the application.

The **Esc**, **Fn** (function), **Insert**, **Home**, **Page Up/Down**, **Delete**, and **End** keys operate at the discretion of the application software.

C-8 Compaq Personal Computers

C.2.4.2 Multi-Keystroke Functions

Shift - The **Shift** key (pos. 75/86), when held down, produces a shift state (upper case) for keys in positions 17-29, 30, 39-51, 60-70, and 76-85 as long as the **Caps Lock** key (pos. 59) is toggled off. If the **Caps Lock** key is toggled on, then a held **Shift** key produces the lower (normal) case for the identified pressed keys. The **Shift** key also reverses the **Num Lock** state of key positions 55-57, 72, 74, 88-90, 100, and 101.

Ctrl - The **Ctrl** keys (pos. 92/96) can be used in conjunction with keys in positions 1-13, 16, 17-34, 39-54, 60-71, and 76-84. The application determines the actual function. Both **Ctrl** key positions provide identical functionality. The pressed combination of **Ctrl** and **Break** (pos. 16) results in the generation of BIOS function INT 1Bh. This software interrupt provides a method of exiting an application and generally halts execution of the current program.

Alt - The **Alt** keys (pos. 93/95) can be used in conjunction with the same keys available for use with the **Ctrl** keys with the exception that position 14 (**SysRq**) is available instead of position 16 (**Break**). The **Alt** key can also be used in conjunction with the numeric keypad keys (pos. 55-57, 72-74, and 88-90) to enter the decimal value of an ASCII character code from 1-255. The application determines the actual function of the keystrokes. Both **Alt** key positions provide identical functionality. The combination keystroke of **Alt** and **SysRq** results in software interrupt 15h, AX=8500h being executed. It is up to the application to use or not use this BIOS function.

The **Ctrl** and **Alt** keys can be used together in conjunction with keys in positions 1-13, 17-34, 39-54, 60-71, and 76-84. The **Ctrl** and **Alt** key positions used and the sequence in which they are pressed make no difference as long as they are held down at the time the third key is pressed. The **Ctrl**, **Alt**, and **Delete** keystroke combination (required twice if in the Windows environment) initiates a system reset (warm boot) that is handled by the BIOS.

C.2.4.3 Windows Keystrokes

Windows-enhanced keyboards include three additional key positions. Key positions 110 and 111 (marked with the Windows logo) have the same functionality and are used by themselves or in combination with other keys to perform specific "hot-key" type functions for the Windows operating system. The defined functions of the Windows logo keys are listed as follows:

Keystroke Window Logo Window Logo + F1 Window Logo + TAB Window Logo + E Window Logo + F Window Logo + CTRL + F Window Logo + M Shift + Window Logo + M	Function Open Start menu Display pop-up menu for the selected object Activate next task bar button Explore my computer Find document Find computer Minimize all Undo minimize all Display Run dialog box
0	
Ũ	(3)

The combination keystroke of the Window Logo + 1-0 keys are reserved for OEM use for auxiliary functions (speaker volume, monitor brightness, password, etc.).

Key position 112 (marked with an application window icon \square) is used in combination with other keys for invoking Windows application functions.

Compaq Personal Computers C-9

C.2.4.4 Easy Access Keystrokes

The Easy Access keyboard (Figure C-7) includes additional keys (also referred to as buttons) used to streamline internet navigation.

These buttons have the default functionality described below:

Button #	Description	Default Function
1	Check email	Email
2	Go to community	Emoney
3	Extra web site	Compaq web site
4	Go to favorite web site	AltaVista web site
5	Internet search	Search
6	Instant answer	Travel expenses
7	E-commerce	Shopping

All buttons may be re-programmed by the user through the Easy Access utility.

C-10 Compaq Personal Computers

C.2.5 KEYBOARD COMMANDS

Table C-1 lists the commands that the keyboard can send to the system (specifically, to the 8042-type logic).

Table C-1.				
Ke	eyboard-to-S	System Commands		
Command	Value	Description		
Key Detection Error/Over/run	00h [1] FFh [2]	Indicates to the system that a switch closure couldn't be identified.		
BAT Completion	AAh	Indicates to the system that the BAT has been successful.		
BAT Failure	FCh	Indicates failure of the BAT by the keyboard.		
Echo	EEh	Indicates that the Echo command was received by the keyboard.		
Acknowledge (ACK)	FAh	Issued by the keyboard as a response to valid system inputs (except the Echo and Resend commands).		
Resend	FEh	Issued by the keyboard following an invalid input.		
Keyboard ID	83ABh	Upon receipt of the Read ID command from the system, the keyboard issues the ACK command followed by the two IDS bytes.		

Note:

[1] Modes 2 and 3. [2] Mode 1 only.

C.2.6 SCAN CODES

The scan codes generated by the keyboard processor are determined by the mode the keyboard is operating in.

- Mode 1: In Mode 1 operation, the keyboard generates scan codes compatible with 8088-/8086-based systems. To enter Mode 1, the scan code translation function of the keyboard controller must be disabled. Since translation is not performed, the scan codes generated in Mode 1 are identical to the codes required by BIOS. Mode 1 is initiated by sending command F0h with the 01h option byte. Applications can obtain system codes and status information by using BIOS function INT 16h with AH=00h, 01h, and 02h.
- Mode 2: Mode 2 is the default mode for keyboard operation. In this mode, the 8042 logic translates the make codes from the keyboard processor into the codes required by the BIOS. This mode was made necessary with the development of the Enhanced III keyboard, which includes additional functions over earlier standard keyboards. Applications should use BIOS function INT 16h, with AH=10h, 11h, and 12h for obtaining codes and status data. In Mode 2, the keyboard generates the Break code, a two-byte sequence that consists of a Make code immediately preceded by F0h (i.e., Break code for 0Eh is "F0h 0Eh").
- Mode 3: Mode 3 generates a different scan code set from Modes 1 and 2. Code translation must be disabled since translation for this mode cannot be done.

Compaq Personal Computers C-11

		Table C		
		Keyboard Sca		
Key	المسمسط		ake / Break Codes (Hex)	Mode 3
Pos. 1	Legend	<u>Mode 1</u> 01/81	<u>Mode 2</u> 76/F0 76	08/na
2	Esc F1	3B/BB	05/F0 05	08/na 07/na
	F1	3C/BC	06/F0 06	07/na 0F/na
3				
4	F3 F4	3D/BD	04/F0 04	17/na
5 6	 F5	3E/BE	0C/F0 0C	1F/na 27/na
	 F6	3F/BF 40/C0	03/F0 03 0B/F0 0B	27/na 2F/na
7	 F7			
8	 F8	<u>41/C1</u>	83/F0 83	37/na
9		42/C2	0A/F0 0A	<u>3F/na</u>
10	<u>F9</u>	43/C3	01/FO 01	47/na
11	F10	44/C4	09/F0 09	4F/na
12	F11	57/D7	78/F0 78	56/na
13	F12	58/D8	07/F0 07	5E/na
14	Print Scrn	E0 2A E0 37/E0 B7 E0 AA	E0 2A E0 7C/E0 F0 7C E0 F0 12	57/na
		E0 37/E0 B7 [1] [2]	E0 7C/E0 F0 7C [1] [2]	
	<u> </u>	54/84 [3]	84/F0 84 [3]	
15	Scroll Lock	46/C6	7E/F0 7E	5F/na
16	Pause	E1 1D 45 E1 9D C5/na	E1 14 77 E1 F0 14 F0 77/na	62/na
		E0 46 E0 C6/na [3]	E0 7E E0 F0 7E/na [3]	
17	`	29/A9	0E/F0 E0	0E/F0 0E
18	1	02/82	16/F0 16	46/F0 46
19	2	03/83	1E/F0 1E	1E/F0 1E
20	3	04/84	26/F0 26	26/F0 26
21	4	05/85	25/F0 25	25/F0 25
22	5	06/86	2E/F0 2E	2E/F0 2E
23	6	07/87	36/F0 36	36/F0 36
24	7	08/88	3D/F0 3D	3D/F0 3D
25	8	09/89	3E/F0 3E	3E/F0 3E
26	9	0A/8A	46/F0 46	46/F0 46
27	0	0B/8B	45/F0 45	45/F0 45
28	-	0C/8C	4E/F0 4E	4E/F0 4E
29	=	0D/8D	55/F0 55	55/F0 55
30	١	2B/AB	5D/F0 5D	5C/F0 50
31	Backspace	0E/8E	66/F0 66	66/F0 66
32	Insert	E0 52/E0 D2	E0 70/E0 F0 70	67/na
		E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 70/E0 F0 70 E0 12 [5]	
		E0 2A E0 52/E0 D2 E0 AA [6]	E0 12 E0 70/E0 F0 70 E0 F0 12 [6]	
33	Home	E0 47/E0 D2	E0 6C/E0 F0 6C	6E/na
		E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 6C/E0 F0 6C E0 12 [5]	
		E0 2A E0 47/E0 C7 E0 AA [6]	E0 12 E0 6C/E0 F0 6C E0 F0 12 [6]	
34	Page Up	E0 49/E0 C7	E0 7D/E0 F0 7D	6F/na
-		E0 AA E0 49/E0 C9 E0 2A [4]	E0 F0 12 E0 7D/E0 F0 7D E0 12 [5]	
		E0 2A E0 49/E0 C9 E0 AA [6]	E0 12 E0 7D/E0 F0 7D E0 F0 12 [6]	
35	Num Lock	45/C5	77/F0 77	76/na
36	/	E0 35/E0 B5	E0 4A/E0 F0 4A	77/na
		E0 AA E0 35/E0 B5 E0 2A [1]	E0 F0 12 E0 4A/E0 F0 4A E0 12 [1]	
37	*	37/B7	7C/F0 7C	7E/na
38	-	4A/CA	78/F0 78	84/na
39 39	- Tab	0F/8F	0D/F0 0D	04/11a 0D/na
40	Q	10/90	15/F0 15	15/na

Tabla C-2

([x] Notes listed at end of table.)

C-12 Compaq Personal Computers

Changed - March 2000

Download from Www.Somanuals.com. All Manuals Search And Download.

Key		Make / Break Codes (Hex)				
Pos	Legend	Mode 1	Mode 2	Mode 3		
41	W	11/91	1D/F0 1D	1D/F0 1D		
42	E	12/92	24/F0 24	24/F0 24		
43	R	13/93	2D/F0 2D	2D/F0 2D		
44	Т	14/94	2C/F0 2C	2C/F0 2C		
45	Y	15/95	35/F0 35	35/F0 35		
46	U	16/96	3C/F0 3C	3C/F0 3C		
47		17/97	43/F0 43	43/F0 43		
48	0	18/98	44/F0 44	44/F0 44		
49	Р	19/99	4D/F0 4D	4D/F0 4D		
50	[1A/9A	54/F0 54	54/F0 54		
51	1	1B/9B	5B/F0 5B	5B/F0 5B		
52	Delete	E0 53/E0 D3	E0 71/E0 F0 71	64/F0 64		
		E0 AA E0 53/E0 D3 E0 2A [4]	E0 F0 12 E0 71/E0 F0 71 E0 12 [5]			
		E0 2A E0 53/E0 D3 E0 AA [6]	E0 12 E0 71/E0 F0 71 E0 F0 12 [6]			
53	End	E0 4F/E0 CF	E0 69/E0 F0 69	65/F0 65		
		E0 AA E0 4F/E0 CF E0 2A [4]	E0 F0 12 E0 69/E0 F0 69 E0 12 [5]			
		E0 2A E0 4F/E0 CF E0 AA [6]	E0 12 E0 69/E0 F0 69 E0 F0 12 [6]			
54	Page Down	E0 51/E0 D1	E0 7A/E0 F0 7A	6D/F0 6D		
•	. ugo 20111	E0 AA E0 51/E0 D1 E0 2A [4]	E0 F0 12 E0 7A/E0 F0 7A E0 12 [5]	02/1002		
		E0 @a E0 51/E0 D1 E0 AA [6]	E0 12 E0 7A/E0 F0 7A E0 F0 12 [6]			
55	7	47/C7 [6]	6C/F0 6C [6]	6C/na [6]		
56	8	48/C8 [6]	75/F0 75 [6]	75/na [6]		
57	9	49/C9 [6]	7D/F0 7D [6]	7D/na [6]		
58	+	4E/CE [6]	79/F0 79 [6]	7C/F0 7C		
59	Caps Lock	3A/BA	58/F0 58	14/F0 14		
60	A	1E/9E	1C/F0 1C	1C/F0 1C		
61	S	1F/9F	1B/F0 1B	1B/F0 1B		
62	D	20/A0	23/F0 23	23/F0 23		
63	F	21/A1	2B/F0 2B	2B/F0 2B		
64	G	22/A2	34/F0 34	34/F0 34		
<u>65</u>	н	23/A3	33/F0 33	33/F0 33		
<u>66</u>	 J	24/A4	3B/F0 3B	3B/F0 3B		
67	<u> </u>	24/A4 25/A5	42/F0 42	42/F0 42		
<u>68</u>	 L	25/A5	42/10 42 4B/F0 4B	4B/F0 4B		
69		27/A7	4C/F0 4C	4C/F0 4C		
70	, ,	28/A8	52/F0 52	52/F0 52		
70	Entor	1C/9C	5A/F0 5A	5A/F0 5A		
	Enter					
72	4	4B/CB [6]	6B/F0 6B [6]	6B/na [6]		
73	<u>5</u> 6	4C/CC [6]	73/F0 73 [6]	73/na [6]		
74	-	4D/CD [6]	74/F0 74 [6]	74/na [6]		
75	Shift (left)	2A/AA	12/F0 12	12/F0 12		
76	<u>Z</u>	2C/AC	1A/F0 1A	1A/F0 1A		
77	<u>X</u>	2D/AD	22/F0 22	22/F0 22		
78	С	2E/AE	21/F0 21	21/F0 21		
79	<u>V</u>	2F/AF	2A/F0 2A	2A/F0 2A		
80	В	30/B0	32/F0 32	32/F0 32		

 Table C-2. Keyboard Scan Codes (Continued)

([x] Notes listed at end of table.)

Key		Make / Break Codes (Hex)		
Pos.	Legend	Mode 1	Mode 2	Mode 3
81	N	31/B1	31/F0 31	31/F0 31
82	М	32/B2	3A/F0 3A	3A/F0 3A
83	,	33/B3	41/F0 41	41/F0 41
84		34/B4	49/F0 49	49/F0 49
85	/	35/B5	4A/F0 4A	4A/F0 4A
86	Shift (right)	36/B6	59/F0 59	59/F0 59
87		E0 48/E0 C8	E0 75/E0 F0 75	63/F0 63
		E0 AA E0 48/E0 C8 E0 2A [4]	E0 F0 12 E0 75/E0 F0 75 E0 12 [5]	
		E0 2A E0 48/E0 C8 E0 AA [6]	E0 12 E0 75/E0 F0 75 E0 F0 12 [6]	
88	1	4F/CF [6]	69/F0 69 [6]	69/na [6]
89	2	50/D0 [6]	72/F0 72 [6]	72/na [6]
90	3	51/D1 [6]	7A/F0 7A [6]	7A/na [6]
91	Enter	E0 1C/E0 9C	E0 5A/F0 E0 5A	79/F0 79[6]
92	Ctrl (left)	1D/9D	14/F0 14	11/F0 11
93	Alt (left)	38/B8	11/F0 11	19/F0 19
94	(Space)	39/B9	29/F0 29	29/F0 29
95	Alt (right)	E0 38/E0 B8	E0 11/F0 E0 11	39/na
96	Ctrl (right)	E0 1D/E0 9D	E0 14/F0 E0 14	58/na
97	◀	E0 4B/E0 CB	E0 6B/Eo F0 6B	61/F0 61
		E0 AA E0 4B/E0 CB E0 2A [4]	E0 F0 12 E0 6B/E0 F0 6B E0 12[5]	
		E0 2A E0 4B/E0 CB E0 AA [6]	E0 12 E0 6B/E0 F0 6B E0 F0 12[6]	
98	*	E0 50/E0 D0	E0 72/E0 F0 72	60/F0 60
		E0 AA E0 50/E0 D0 E0 2A [4]	E0 F0 12 E0 72/E0 F0 72 E0 12[5]	
		E0 2A E0 50/E0 D0 E0 AA [6]	E0 12 E0 72/E0 F0 72 E0 F0 12[6]	
99	▶	E0 4D/E0 CD	E0 74/E0 F0 74	6A/F0 6A
		E0 AA E0 4D/E0 CD E0 2A [4]	E0 F0 12 E0 74/E0 F0 74 E0 12[5]	
		E0 2A E0 4D/E0 CD E0 AA [6]	E0 12 E0 74/E0 F0 74 E0 F0 12[6]	
100	0	52/D2 [6]	70/F0 70 [6]	70/na [6]
101		53/D3 [6]	71/F0 71 [6]	71/na [6]
102	na	7E/FE	6D/F0 6D	7B/F0 7B
103	na	2B/AB	5D/F0 5D	53/F0 53
104	na	36/D6	61/F0 61	13/F0 13
110	(Win95) [7]	E0 5B/E0 DB	E0 1F/E0 F0 1F	8B/F0 8B
		E0 AA E0 5B/E0 DB E0 2A [4]	E0 F0 12 E0 1F/E0 F0 1F E0 12 [5]	
		E0 2A E0 5B/E0 DB E0 AA [6]	E0 12 E0 1F/E0 F0 1F E0 F0 12 [6]	
111	(Win95) [7]	E0 5C/E0 DC	E0 2F/E0 F0 27	8C/F0 8C
		E0 AA E0 5C/E0 DC E0 2A [4]	E0 F0 12 E0 27/E0 F0 27 E0 12 [5]	
		E0 2A E0 5C/E0 DC E0 AA [6]	E0 12 E0 27/E0 F0 27 E0 F0 12 [6]	
112	(Win Apps)	E0 5D/E0 DD	E0 2F/E0 F0 2F	8D/F0 8D
	[7]	E0 AA E0 5D/E0 DD E0 2A [4]	E0 F0 12 E0 2F/E0 F0 2F E0 12 [5]	
		E0 2A E0 5D E0 DD E0 AA [6]	E0 12 E0 2F/E0 F0 2F E0 F0 12 [6	
Btn 1	[8]	E0 1E/E0 9E	E0 1C/E0 F0 1C	95/F0 95
Btn 2	[8]	E0 26/E0 A6	E0 4B/E0 F0 4B	9C/F0 9C
Btn 3	[8]	E0 25/E0 A5	E0 42/E0 F0 42	9D/F0 9D
Btn 4	[8]	E0 23/E0 A3	E0 33/E0 F0 33	9A/F0 9A
Btn 5	[8]	E0 21/E0 A1	E0 2B/E0 F0 2B	99/F0 99
Btn 6	[8]	E0 12/E0 92	E0 24/E0 F0 24	96/F0 96
Btn 7	[8]	E0 32/E0 B2	E0 3A/E0 F0 3A	97/F0 97

NOTES:

All codes assume Shift, Ctrl, and Alt keys inactive unless otherwise noted.

NA = Not applicable

[1] Shift (left) key active.

[2] Ctrl key active.

[3] Alt key active.

[4] Left Shift key active. For active right Shift key, substitute AA/2A make/break codes for B6/36 codes.

- [5] Left Shift key active. For active right Shift key, substitute F0 12/12 make/break codes
- for F0 59/59 codes.

[6] Num Lock key active.

[7] Windows keyboards only.

[8] Easy Access keyboards only.

C-14 Compaq Personal Computers

C.3 CONNECTORS

Two types of keyboard interfaces are used in Compaq systems: PS/2-type and USB-type. Systems that provide a PS/2 connector will ship with a PS/2-type keyboard but may also support simultaneous connection of a USB keyboard. Systems that do not provide a PS/2 interface will ship with a USB keyboard. For a detailed description of the PS/2 and USB interfaces refer to the Input/Output chapter of this guide. The keyboard cable connectors and their pinouts are described in the following figures:

Pin	Function	
1	Data	
2	Not connected	
3	Ground	(3 4)
4	+5 VDC	
5	Clock	
6	Not connected	

Figure C-8. PS/2 Keyboard Cable Connector (Male)

Pin	Function
1	+5 VDC
2	Data (+)
3	Data (-)
4	Ground

Figure C-9. USB Keyboard Cable Connector (Male)

This page is intentionally blank.

C-16 Compaq Personal Computers

INDEX

abbreviations, 1-3 AC97 link bus, 5-28 Accelerated Graphics Port (AGP), 4-8 ACPI, 5-34 acronyms, 1-3 AGP, 4-8, 6-2 AOL requirements, 5-33 APM, 5-34 APM BIOS functions, 8-17 APM BIOS support, 8-15 ASCII character set, B-1 audio, 5-26 audio controller (AC97), 5-28 audio subsystem, 2-15 battery replacement, 4-17 BIOS upgrading, 8-18 BIOS, ROM, 8-1 BIOS, video (graphics), 6-3 bus, hub link, 4-6 bus, LPC, 4-6 cable lock, 4-28 CAS latency, 3-5 Celeron processor, 2-10, 2-11, 3-2 chipset, 2-12 CMOS, 4-17 CMOS, clearing, 4-18 codec, audio, 5-29 Configuration Cycle, 4-4 configuration cycle (PCI), 4-4 configuration memory, 4-17 configuration space (PCI), 4-5 Connector Audio, CD, 5-27 audio, headphones out, 5-26 audio, line in, 5-26 audio, line out, 5-26 Audio, Mic In, 5-26 Audio, Speaker, 5-27 display (VGA monitor), 6-6 IDE interface, 5-3 IDE interface (CD-ROM), 5-4 keyboard/pointing device interface, 5-21 Network RJ-45, 5-36 parallel interface, 5-14 serial interface (RS-232), 5-5, 5-6

Connector (cont) Universal Serial Bus interface, 5-25 cooling, 4-28 core voltage, 3-2, 3-3 Desktop Management, 8-2 **DIMM**, 3-5 DIMM detection, 8-11 DIMM support, 8-5 diskette drive interface, 5-4 display cache, 6-2 display modes, 6-4 DMI, 8-13 drive fault prediction, 8-5, 8-6 East Access keys, C-10 EIDE interface, 5-1 Enhanced Parallel Port (EPP), 5-9 error codes, A-1 error messages, A-1 events, wake up, 7-3 Extended Capabilities Port (ECP), 5-9 fault prediction, drive, 8-6 features, standard, 2-2 FlexATX, 2-7 GPIO, 3-2, 3-3 graphics subsystem, 2-14, 6-1 graphics, 810e embedded, 6-2 heat sink (processor), 2-11 Hub link bus, 4-6 I/O map, 4-29, 8-9 IDE interface, 5-1 IDSEL, 4-4 index addressing, 1-2 interface audio, 2-15, 5-26 diskette drive, 5-4 IDE, 5-1 keyboard/pointing device, 5-15 parallel, 2-14, 5-8 serial, 2-14, 5-5 USB, 2-14, 5-22 interrupts maskable (IRQn), 4-12 nonmaskable (NMI, SMI), 4-14 interrupts, PCI, 4-6 interval timer, 4-16

key (keyboard) functions, C-8 keyboard, C-1 keyboard (micro)processor, C-2 keyboard layouts, C-5 keyboard, USB, C-4 keyboard/pointing device interface, 5-15 keys, Easy Access, C-10 low voltages, 7-4 LPC bus, 4-6 Magic Packet, 5-34 mass storage, 2-14 media write protect function (BIOS), 8-10 memory detection, 8-11 memory map, 3-7 memory, system, 3-5 memory, system (RAM), 2-13 MMX, 3-2 monitor power control, 6-6 motherboard, 2-7 mouse interface, 5-17 MultiBay, 2-14 network interface controller (NIC), 5-33 network support, 5-32 notational conventions, 1-1, 1-2 NUM lock, 3-5 options, 2-3 parallel interface, 2-14, 5-8 password, clearing, 4-18 password, power-on, 4-27, 4-28 PCI bus, 4-2 PCI Configuration Space, 4-5 PCI interrupts, 4-6 Pentium II, 2-12 Pentium II processor, 2-11 Pentium III processor, 2-10, 3-3 pinouts, header (connector), 7-6 Plug 'n Play, 2-2, 2-14, 8-12 Plug 'n Play BIOS function, 8-12 power button, 7-3 power distribution, 7-4 power management ACPI. 4-28 network interface controller (NIC), 5-34 PCI, 4-6 power management BIOS function, 8-14 power states, system, 8-14 power supply, 7-1 power supply assembly, 7-2 power-on password, 4-27, 4-28 PPGA370, 3-2 processor Celeron, 2-10, 3-2 Pentium III, 2-10, 3-3

processor upgrading, 2-11, 3-4 processor, Celeron, 2-11, 3-2 processor, Pentium II, 2-11 RAM, 2-13 RAMDAC, 6-3 reference sources, 1-1 remote wake up, 5-34 ROM BIOS, 8-1 RS-232, 5-5, 5-6 RTC, 4-17 scan codes (keyboard), C-11 SDRAM, 3-5 security functions (BIOS), 8-10 sensor, thermal, 4-28 serial interface, 2-14, 5-5 sideband addressing, 4-9 signal distribution, 7-5 SIMD. 3-2. 3-3 **SMBIOS**, 8-13 SMI, 4-15 specifications electrical, 2-16 environmental, 2-15 power supply, 7-5 Specifications 24x CD-ROM Drive, 2-16, 2-17 Audio subsystem, 5-31 Hard Drive, 2-18 specifications, system, 2-15 SSE, 3-3 system board, 2-7 system ID, 8-4 system information table (SIT), 8-4 system memory, 2-13, 3-5 system ROM, 8-1 thermal sensing, 4-28 timer, interval, 4-16 typematic, C-8 UART, 5-5 Universal Serial Bus (USB) interface, 5-22 upggrading BIOS, 8-18 upgrading embedded graphics, 6-4 upgrading, processor, 2-11, 3-4 USB interface, 5-22 USB keyboard, C-4 USB legacy support, 8-17 USB ports, 2-14 video BIOS, 6-3 voltage, core, 3-2, 3-3 wake up events, 7-3 wake up, remote, 5-34 WOL, 7-3 ZIF socket, 2-10

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com