COMPAQ

Technical Reference Guide

For the

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

This hardcopy is designed to be placed into a standard 3-ring binder. Provided below is a title block that can be copied and cut out and placed into the slip or taped onto the edge of the binder.

COMPAQ. Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors **TRG**

Reader Feedback Please feel free to send any questions, suggestions, corrections, or comments regarding this document please to the following email address: Desktop.training.feedback@Compaq.com When responding, please state the title of the referenced document.

NOTICE

The information in this document is subject to change without notice.

COMPAQ COMPUTER CORPORATION SHALL NOT BE LIABLE FOR TECHNICAL OR EDITORIAL ERRORS OR OMISSIONS HEREIN; NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES RESULTING FROM THE FURNISHING, PERFORMANCE, OR USE OF THIS MATERIAL. IT IS THE RESPONSIBILITY OF MANUFACTURERS TO ENSURE THAT DEVICES DESIGNED TO BE USED WITH COMPAQ PRODUCTS COMPLY WITH FCC CLASS B EMISSIONS REQUIREMENTS.

This guide contains information protected by copyright. No part of this document may be photocopied or reproduced in any form without prior written consent from Compaq Computer Corporation.

©1998 Compaq Computer Corporation All rights reserved. Printed in the USA

Compaq, Deskpro, LTE, Contura, Presario, ProLinea Registered U.S. Patent and Trademark Office

Product names mentioned in this document may be trademarks and/or registered trademarks of other companies. "Pentium" and "MMX" are trademarks of Intel Corporation.

"Windows" is a trademark of Microsoft Corporation.

For more information regarding specifications and Compaq-specific parts please contact Compaq Computer Corporation.

Technical Reference Guide for Compaq Deskpro EN Series of Personal Computers, Desktop and Minitower Form Factors Third Edition - September 1998 Document Number DSK-113C/0498

> Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Technical Reference Guide		
ii Compag Dasknyo EN Sarias of Parson	al Computans	

TABLE OF CONTENTS

CHAPTER	I INTRODUCTION	•••••
1.1 Al	BOUT THIS GUIDE	1-1
1.1.1	USING THIS GUIDE	1-1
1.1.2	ADDITIONAL INFORMATION SOURCES	1-1
1.2 NO	OTATIONAL CONVENTIONS	
1.2.1	VALUES	1-2
1.2.2	RANGES	1-2
1.2.3	SIGNAL LABELS	1-2
1.2.4	REGISTER NOTATION AND USAGE	1-2
1.2.5	BIT NOTATION	1-2
1.3 CO	OMMON ACRONYMS AND ABBREVIATIONS	1-3
CHAPTER	2 SYSTEM OVERVIEW	
2.1 IN	VTRODUCTION	2-1
2.2 FE	EATURES AND OPTIONS	2-2
2.2.1	STANDARD FEATURES	2-2
2.2.2	OPTIONS	2-3
2.3 M	ECHANICAL DESIGN	2-4
2.3.1	CABINET LAYOUTS	2-4
2.3.2	CHASSIS LAYOUTS	2-6
2.3.3	BOARD LAYOUTS	2-8
2.4 SY	YSTEM ARCHITECTURE	2-10
2.4.1	PROCESSOR	2-12
2.4.2	SYSTEM MEMORY	2-13
2.4.3	SUPPORT CHIPSET	2-13
2.4.4	MASS STORAGE	2-13
2.4.5	SERIAL AND PARALLEL INTERFACES	
2.4.6	UNIVERSAL SERIAL BUS INTERFACE	2-14
2.4.7	GRAPHICS SUBSYSTEM	2-14
2.4.8	AUDIO SUBSYSTEM	2-14
2.5 SF	PECIFICATIONS	2-15
СНАРТБР	3 PROCESSOR/MEMORY SUBSYSTEM	
	VTRODUCTION	
	ROCESSOR/MEMORY SUBSYSTEM	
	PROCESSORPROCESSOR	
3.2.1	PROCESSOR CHANGING/UPGRADING	
3.2.2 3.2.3	SYSTEM MEMORY	
	SYSTEM MEMORYSUBSYSTEM CONFIGURATION	
3.2.4	SUBS I STEW CUNTICURATION	

CHAPTER	4 SYSTEM SUPPORT	
4.1 IN	TRODUCTION	4-1
	I BUS OVERVIEW	
4.2.1	PCI CONNECTOR	
4.2.2	PCI BUS MASTER ARBITRATION	
4.2.3	PCI BUS TRANSACTIONS	
4.2.4	OPTION ROM MAPPING	
4.2.5	PCI INTERRUPT MAPPING	
4.2.6	PCI POWER MANAGEMENT SUPPORT	
4.2.7	PCI CONFIGURATION	
4.3 AC	GP BUS OVERVIEW	4-11
4.3.1	BUS TRANSACTIONS	4-11
4.3.2	AGP CONFIGURATION	4-14
4.3.3	AGP CONNECTOR	4-15
4.4 ISA	A BUS OVERVIEW	4-16
4.4.1	ISA CONNECTOR	4-17
4.4.2	ISA BUS TRANSACTIONS	4-18
4.4.3	DIRECT MEMORY ACCESS	4-20
4.4.4	INTERRUPTS	4-23
4.4.5	INTERVAL TIMER	4-27
4.4.6	ISA CONFIGURATION	
	STEM CLOCK DISTRIBUTION	
	AL-TIME CLOCK AND CONFIGURATION MEMORY	
4.7 I/O	MAP AND REGISTER ACCESSING	
4.7.1	~ - ~	
4.7.2	GPIO UTILIZATION	
	STEM MANAGEMENT SUPPORT	
4.8.1	FLASH ROM WRITE PROTECT	
4.8.2	PASSWORD PROTECTION	
4.8.3	I/O SECURITY	
4.8.4	USER SECURITY	
4.8.5	TEMPERATURE SENSING	
4.8.6	SMART COVER LOCK	
4.8.7	SMART COVER REMOVAL SENSOR	
4.8.8	POWER MANAGEMENT	4-56
CHAPTER	5 INPUT/OUTPUT INTERFACES	
5.1 IN	TRODUCTION	5-1
	IHANCED IDE INTERFACE	
5.2.1	IDE PROGRAMMING	
5.2.2	IDE CONNECTOR	
	SKETTE DRIVE INTERFACE	
5.3.1	DISKETTE DRIVE PROGRAMMING	
5.3.2	DISKETTE DRIVE CONNECTOR	
	RIAL INTERFACES	
5.4.1	RS-232 INTERFACE	
5.4.2	SERIAL INTERFACE PROGRAMMING	5-15

iv Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

5.5 PAI	RALLEL INTERFACE	
5.5.1	STANDARD PARALLEL PORT MODE	5-20
5.5.2	ENHANCED PARALLEL PORT MODE	5-21
5.5.3	EXTENDED CAPABILITIES PORT MODE	5-21
5.5.4	PARALLEL INTERFACE PROGRAMMING	5-22
5.5.5	PARALLEL INTERFACE CONNECTOR	5-26
5.6 KE	YBOARD/POINTING DEVICE INTERFACE	
5.6.1	KEYBOARD INTERFACE OPERATION	5-27
5.6.2	POINTING DEVICE INTERFACE OPERATION	5-29
5.6.3	KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING	5-29
5.6.4	KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR	5-33
5.7 UN	IVERSAL SERIAL BUS INTERFACE	
5.7.1	USB KEYBOARD CONSIDERATIONS	
5.7.2	USB CONFIGURATION	
5.7.3	USB CONTROL	
5.7.4	USB CONNECTOR	
	AUDIO SUBSYSTEM	
	NCTIONAL DESCRIPTION	
6.2.1	PCM AUDIO PROCESSING	
6.2.2	FM SYNTHESIS AUDIO PROCESSING	
	OGRAMMING	
6.3.1	CONFIGURATION	
6.3.2	CONTROL	
	CIFICATIONS	
0.4 SFE	CIFICATIONS	0-11
	POWER SUPPLY AND DISTRIBUTION	
	RODUCTION	
	WER SUPPLY ASSEMBLY/CONTROL	
7.2.1	POWER SUPPLY ASSEMBLY	
7.2.2	POWER CONTROL	
	WER DISTRIBUTION	
	3.5/5/12 VDC DISTRIBUTION	
7.3.2	LOW VOLTAGE DISTRIBUTION	
7.4 SIG	NAL DISTRIBUTION	7-7
CHAPTER 8	BIOS ROM	•••••
8.1 INT	RODUCTION	
	OT/RESET FUNCTIONS	
8.2.1	BOOT BLOCK	
8.2.2	QUICKBOOT	
8.2.3	SILENTBOOT	
8.2.4	RESET	
- /		

8.3	MEMORY DETECTION AND CONFIGURATION	
8.4	DESKTOP MANAGEMENT SUPPORT	
8.4		
8.4		
8.4		
8.4		
8.4		
8.4		
8.4		
8.4		
8.4		
8.4		
8.5		
8.5		
8.6	POWER MANAGEMENT FUNCTIONS	
8.6		
8.6		
8.6	.3 APM SUPPORT	8-22
8.7	USB LEGACY SUPPORT	8-24
8.8	BIOS UPGRADING	8-24
A.1	DIX A ERROR MESSAGES AND CODES	A-1
A.2	POWER-ON MESSAGES	
A.3	BEEP/KEYBOARD LED CODES	
A.4	POWER-ON SELF TEST (POST) MESSAGES	
A.5	PROCESSOR ERROR MESSAGES (1xx-xx)	
A.6	MEMORY ERROR MESSAGES (2xx-xx)	
A.7	KEYBOARD ERROR MESSAGES (30x-xx)	
A.8	PRINTER ERROR MESSAGES (4xx-xx)	
A.9	VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)	
A.10	DISKETTE DRIVE ERROR MESSAGES (6xx-xx)	
A.11	SERIAL INTERFACE ERROR MESSAGES (11xx-xx)	
A.12	MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx)	
A.13	HARD DRIVE ERROR MESSAGES (17xx-xx)	
A.14	HARD DRIVE ERROR MESSAGES (19xx-xx)	
A.15	VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)	
A.16	AUDIO ERROR MESSAGES (3206-xx)	
A.17	NETWORK INTERFACE ERROR MESSAGES (60xx-xx)	
A.18	SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)	
A.19	POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)	
A.20	CEMM PRIVILEDGED OPS ERROR MESSAGES	
A.21	CEMM EXCEPTION ERROR MESSAGES	A-12
APPEN	DIX B ASCII CHARACTER SET	
R 1	INTRODUCTION	R-1

vi Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

APPENDIX C KEYBOARD	
C.1 INTRODUCTION	
C.2 KEYSTROKE PROCESSING	C-2
C.2.1 TRANSMISSIONS TO THE SYSTEM	C-3
C.2.2 KEYBOARD LAYOUTS	
C.2.3 KEYS	
C.2.4 KEYBOARD COMMANDS	
C.2.5 SCAN CODES	
APPENDIX D COMPAQ 10/100 TX PCI INTEL WOL UTP CONTROLL	ED CADO
D.1 INTRODUCTION	
D.2 FUNCTIONAL DESCRIPTION	
D.2.1 STATUS INDICATORS	
D.2.2 CARD POWER AND CLOCK	
D.2.3 82558 CONTROLLER	
D.2.4 POWER MANAGEMENT SUPPORT	D-4
D.3 CONFIGURATION/CONTROL	D-5
D.4 RJ-45 CONNECTOR	D-5
D.5 SPECIFICATIONS	D-5
APPENDIX E WIDE ULTRA SCSI HOST ADAPTER	
E.1 INTRODUCTION	E-1
E.2 FUNCTIONAL DESCRIPTION	E-2
E.3 SCSI ADAPTER PROGRAMMING	E-3
E.3.1 SCSI ADAPTER CONFIGURATION	E-3
E.3.2 SCSI ADAPTER CONTROL	E-3
E.4 SPECIFCATIONS	E-3
E.5 USER GUIDELINES	E-4
E.6 SCSI CONNECTORS	E-5
APPENDIX F ATI RAGE PRO AGP 1X/2X GRAPHICS CARDS	
F.1 INTRODUCTION	
F.2 FUNCTIONAL DESCRIPTION	
F.2.1 ATI RAGE PRO TURBO AGP GRAPHICS CONTROLLER	
F.3 DISPLAY MODES	
F.4 PROGRAMMING	
F.4.1 CONFIGURATION	
F.4.2 CONTROL	-
F.5 MONITOR POWER MANAGEMENT CONTROL	
F.6 CONNECTORS	
F.6.1 MEMORY EXPANSION CONNECTOR	
F.6.2 MONITOR CONNECTOR	
F.6.3 ATI MULTIMEDIA CHANNEL CONNECTOR	F-8

LIST OF FIGURES

FIGURE 2-1.	COMPAQ DESKPRO EN PERSONAL COMPUTER WITH MONITOR	2-1
	Cabinet Layouts, Front View	
FIGURE 2–3.	CABINET LAYOUTS, REAR VIEW	2-5
FIGURE 2–4.	DESKTOP CHASSIS LAYOUT, TOP VIEW	2-6
FIGURE 2–5.	MINITOWER CHASSIS LAYOUT, LEFT SIDE VIEW	2-7
	SYSTEM BOARD CONNECTOR AND SWITCH LOCATIONS	
	BACKLPANE BOARD CONNECTOR, HEADER, AND SWITCH LOCATIONS	
	SYSTEM ARCHITECTURE, BLOCK DIAGRAM	
	PROCESSOR PACKAGE COMPARISON	
FIGURE 3–1.	PROCESSOR/MEMORY SUBSYSTEM ARCHITECTURE	3-2
	PENTIUM II PROCESSOR INTERNAL ARCHITECTURE	
	CELERON PROCESSOR INTERNAL ARCHITECTURE	
	System Memory Map	
-100122	- 10 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
FIGURE 4–1.	PCI Bus Devices and Functions	4-2
	PCI Bus Connector (32-Bit Type)	
	TYPE 0 CONFIGURATION CYCLE	
	PCI Configuration Space Map.	
	AGP 1X Data Transfer (Peak Transfer Rate: 266 MB/s)	
	AGP 2X Data Transfer (Peak Transfer Rate: 532 MB/s)	
	AGP Bus Connector	
	ISA Bus Block Diagram.	
	ISA Expansion Connector.	
	MASKABLE INTERRUPT PROCESSING, BLOCK DIAGRAM	
	CONFIGURATION MEMORY MAP	
I IGURE 1 —11.	CONTIDURATION MEMORITMA	. T -2)
FIGURE 5-1	40-Pin IDE Connector.	5-8
	34-Pin Diskette Drive Connector.	
	SERIAL INTERFACES BLOCK DIAGRAM	
	SERIAL INTERFACE CONNECTOR (MALE DB-9 AS VIEWED FROM REAR OF CHASSIS)	
	PARALLEL INTERFACE CONNECTOR (WALE DB-9 AS VIEWED FROM REAR OF CHASSIS)	
	8042-To-Keyboard Transmission of Code EDH, Timing Diagram	
	KEYBOARD OR POINTING DEVICE INTERFACE CONNECTOR	
FIGURE 3-8.	Universal Serial Bus Connector (one of two as viewed from rear of chassis)	. 3-33
Figure 6 1	AUDIO SUBSYSTEM BLOCK DIAGRAM	6.3
	ANALOG SIGNAL SAMPLING/QUANTIZING	
	DAC OPERATION	
	AUDIO SUBSYSTEM-TO-ISA BUS PCM AUDIO DATA FORMATS / BYTE ORDERING	
	FM SYNTHESIS PATCH	
rigure 6–6.	Audio Car-to-ISA Bus FM Audio Data Format	0-/
Figure 7 1	POWER DISTRIBUTION AND CONTROL, BLOCK DIAGRAM	7 1
	POWER CABLE DIAGRAM	
	Low Voltage Supply, Block Diagram	
	SIGNAL DISTRIBUTION DIAGRAM.	
rigure /-5.	BACKPLANE HEADER PINOUTS	/-8

viii Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

FIGURE C–1.	KEYSTROKE PROCESSING ELEMENTS, BLOCK DIAGRAM	
FIGURE C–2.	KEYBOARD-TO-SYSTEM TRANSMISSION OF CODE 58H, TIMING DIAGRAM	C-3
	U.S. ENGLISH (101-KEY) KEYBOARD KEY POSITIONS	
FIGURE C-4.	NATIONAL (102-KEY) KEYBOARD KEY POSITIONS	C-4
FIGURE C-5.	U.S. ENGLISH WINDOWS (101W-KEY) KEYBOARD KEY POSITIONS	C-5
	NATIONAL WINDOWS (102W-KEY) KEYBOARD KEY POSITIONS	
FIGURE D–1.	COMPAQ 10/100 TX WOL CONTROLLER CARD LAYOUT (PCA# 323550-001)	D-1
FIGURE D–2.	COMPAQ 10/100 TX PCI INTEL WOL UTP CONTROLLER CARD BLOCK DIAGRAM	D-2
FIGURE D-3.	82558 CONTROLLER INTERNAL ARCHITECTURE	D-3
FIGURE D-4.	ETHERNET TPE CONNECTOR (RJ-45, VIEWED FROM CARD EDGE)	D-5
FIGURE E-1.	WIDE ULTRA SCSI HOST ADAPTER CARD LAYOUT	E-1
FIGURE E-2.	ADAPTEC AHA-2940U ULTRA SCSI ADAPTER CARD BLOCK DIAGRAM	E-2
FIGURE E-3.	ULTRA SCSI CONNECTOR (50-PIN, AS SEEN FROM REAR OF CARD)	E-5
	WIDE ULTRA SCSI CONNECTOR (68-PIN, AS SEEN FROM TOP OF CARD)	
FIGURE F–1.	ATI RAGE PRO AGP GRAPHICS CARD LAYOUT (NLX VERSION SHOWN)	F-1
FIGURE F–2.	ATI RAGE PRO AGP GRAPHICS CARD BLOCK DIAGRAM	F-2
FIGURE F–3.	ATI 3DRAGE PRO GRAPHICS CONTROLLER INTERNAL ARCHITECTURE	F-3
FIGURE F-4.	VGA MONITOR CONNECTOR, (FEMALE DB-15, AS VIEWED FROM REAR)	F-7
FIGURE E_5	AMC CONNECTOR (AOLPIN HEADER P1)	F-8

LIST OF TABLES

TABLE $1-1$.	ACRONYMS AND ABBREVIATIONS	1-3
TABLE 2–1.	Model Differences	2-10
TABLE 2–2.		
TABLE 2–3.	GRAPHICS SUBSYSTEM COMPARISON	
	ENVIRONMENTAL SPECIFICATIONS	
	ELECTRICAL SPECIFICATIONS	
	PHYSICAL SPECIFICATIONS	
	DISKETTE DRIVE SPECIFICATIONS	
	24x CD-ROM DRIVE SPECIFICATIONS	
	HARD DRIVE SPECIFICATIONS	
TABLE 2).	TAILD DIG TO LOT TO THE STATE OF THE STATE O	2 17
TABLE 3–1.	PROCESSOR COMPARISON	3-3
Table $3-2$.	BUS/CORE SPEED SWITCH SETTINGS	3-5
Table $3-3$.	SPD ADDRESS MAP (SDRAM DIMM)	3-7
TABLE 3–4.	HOST/PCI BRIDGE CONFIGURATION REGISTERS (443BX, FUNCTION 0)	3-9
	PCI Bus Connector Pinout	
	PCI Bus Mastering Devices	
	PCI Device Configuration Access	
	PCI Function Configuration Acces.	
	PCI DEVICE IDENTIFICATION	
Table 4–6.	PCI/ISA Bridge Configuration Registers (82371, Function 0)	
Table 4–7.	PCI/AGP Bridge Configuration Registers (82371, Function 1)	4-14
Table 4–8.	AGP Bus Connector Pinout	4-15
Table 4–9.	ISA Expansion Connector Pinout	4-17
TABLE 4–10.	DEFAULT DMA CHANNEL ASSIGNMENTS	4-20
TABLE 4-11.	DMA PAGE REGISTER ADDRESSES	4-21
TABLE 4–12.	DMA CONTROLLER REGISTERS	4-22
TABLE 4–13.	MASKABLE INTERRUPT PRIORITIES AND ASSIGNMENTS	4-24
TABLE 4-14.	MASKABLE INTERRUPT CONTROL REGISTERS	4-24
TABLE 4–15.	INTERVAL TIMER FUNCTIONS	4-27
TABLE 4–16.	INTERVAL TIMER CONTROL REGISTERS	4-27
TABLE 4–17.	CLOCK GENERATION AND DISTRIBUTION	4-28
TABLE 4-18.	CONFIGURATION MEMORY (CMOS) MAP	4-30
TABLE 4–19.	System I/O Map	4-46
TABLE 4-20.	82371 SOUTH BRIDGE GENERAL PURPOSE INPUT PORT UTILIZATION	4-47
TABLE 4-21.	82371 SOUTH BRIDGE GENERAL PURPOSE OUTPUT PORT UTILIZATION	4-48
TABLE 4-22.	87307 I/O CONTROLLER PNP STANDARD CONTROL REGISTERS	4-49
TABLE 4-23.	System Management Control Registers	4-51
TABLE $5-1$.	IDE PCI Configuration Registers	
TABLE $5-2$.	IDE BUS MASTER CONTROL REGISTERS	
TABLE $5-3$.	IDE ATA Control Registers	
TABLE 5–4.	IDE CONTROLLER COMMANDS	
TABLE 5–5.	40-PIN IDE CONNECTOR PINOUT	
TABLE 5–6.	DISKETTE DRIVE CONTROLLER CONFIGURATION REGISTERS	
TABLE 5–7.	DISKETTE DRIVE CONTROLLER REGISTERS	
TABLE 5–8.	34-PIN DISKETTE DRIVE CONNECTOR PINOUT	5-13

x Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

TABLE $5-9$.		
Table $5-10$	SERIAL INTERFACE CONFIGURATION REGISTERS	5-15
TABLE 5-11	SERIAL INTERFACE CONTROL REGISTERS	5-16
TABLE 5-12	PARALLEL INTERFACE CONFIGURATION REGISTERS	5-22
TABLE 5–13	PARALLEL INTERFACE CONTROL REGISTERS	5-23
TABLE 5-14	DB-25 PARALLEL CONNECTOR PINOUT	5-26
TABLE 5-15	8042-To-Keyboard Commands	5-28
TABLE 5–16	KEYBOARD/MOUSE INTERFACE CONFIGURATION REGISTERS	5-29
TABLE 5-17	. CPU COMMANDS TO THE 8042	5-31
TABLE 5-18	KEYBOARD/POINTING DEVICE CONNECTOR PINOUT	5-33
TABLE 5-19	USB INTERFACE CONFIGURATION REGISTERS	5-34
TABLE 5-20	USB Control Registers	5-35
TABLE 5–21	USB Connector Pinout	5-35
Table 6–1.	AUDIO MODE DIFFERENCES	6-6
TABLE 6–2.	AUDIO SUBSYSTEM I/O MAP	6-9
TABLE 6–3.	COMPATIBILITY MODE AUDIO MIXER CONTROL REGISTER MAPPING	6-9
TABLE 6–4.	EXTENDED MODE AUDIO MIXER CONTROL REGISTER MAPPING	6-10
	FM SYNTHESIZER CONTROL REGISTER MAPPING	
	AUDIO SUBSYSTEM SPECIFICATIONS	
Table 7–1.	POWER SUPPLY ASSEMBLY SPECIFICATIONS	7-2
TABLE 8–1.	DESKTOP MANAGEMENT FUNCTIONS (INT15)	8-4
TABLE 8-1.	PNP BIOS FUNCTIONS	8-19
TABLE 8–2.	APM BIOS Functions (INT15)	8-23
TABLE A-1.	Power-On Messages	A-1
Table $A-2$.		
TABLE A–3.	POWER-ON SELF TEST (POST) MESSAGES	
TABLE A-4.		
TABLE A–5.		
TABLE A-6.		
TABLE A-7.		
	VIDEO (GRAPHICS) ERROR MESSAGES	
	DISKETTE DRIVE ERROR MESSAGES	
	. SERIAL INTERFACE ERROR MESSAGES	
	. SERIAL INTERFACE ERROR MESSAGES	
	HARD DRIVE ERROR MESSAGES	
	. HARD DRIVE ERROR MESSAGES	
	HARD DRIVE MESSAGES	
	. Audio Error Messages	
	NETWORK INTERFACE ERROR MESSAGES	
	. SCSI Interface Error Messages	
	. Pointing Device Interface Error Messages	
	. CEMM Privileged Ops Error Messages	
TABLE A-20	. CEMM Exception Error Messages	A-12
TABLE B-1.	ASCII CHARACTER SET	B-1
	KEYBOARD-TO-SYSTEM COMMANDS	
Table $C-2$.	KEYBOARD SCAN CODES	

Technical Reference Guide

TABLE $D-1$.	OPERATING SPECIFICATIONS	D-5
TABLE E-1.	ULTRA SCSI HOST ADAPTER CARD CONTROL REGISTER MAPPING	E-3
TABLE E-2.	ULTRA SCSI HOST ADAPTER CARD SPECIFICATIONS	E-3
TABLE E-3.	WIDE ULTRA SCSI ADAPTER CARD TYPICAL CONFIGURATION	E-4
TABLE E-4.	SCSI CONNECTOR PINOUT	E-5
TABLE E-5.	WIDE ULTRA SCSI CONNECTOR PINOUT	E-6
	2D GRAPHICS DISPLAY MODES (W/SGRAM)	
TABLE F-2.	3D GRAPHICS DISPLAY MODES	F-4
TABLE F-3.	ATI RAGE PRO PCI CONFIGURATION SPACE REGISTERS	F-5
TABLE F-4.	STANDARD VGA MODE I/O MAPPING	F-5
TABLE F-5.	MONITOR POWER MANAGEMENT CONDITIONS	F-6
TABLE F-6.	DB-15 MONITOR CONNECTOR PINOUT	F-7
TABLE F-7.	Multimedia Interface Connector Pinout	F-8

Chapter 1 INTRODUCTION

1.1 ABOUT THIS GUIDE

This guide provides technical information about the Compaq Deskpro EN Series of Personal Computers in desktop and minitower form factors. This document includes information regarding system design, function, and features that can be used by programmers, engineers, technicians, and system administrators.

This and other support documentation is available online and can be downloaded in .PDF format from the following WEB site: http://www.compaq.com/support/index.htm.

1.1.1 USING THIS GUIDE

This guide consists of chapters and appendices. The chapters primarily describe the hardware and firmware elements contained within the chassis and specifically deal with the system board and the power supply assembly. The appendices contain general information about standard peripheral devices such as the keyboard as well as separate audio or other interface cards, as well as other general information in tabular format.

1.1.2 ADDITIONAL INFORMATION SOURCES

This guide does not describe in detail other manufacturer's components used in the product covered. For more information on individual commercial-off-the-shelf (COTS) components refer to the indicated manufacturers' documentation. The products covered by this guide use architecture based on industry-standard specifications that can be referenced for detailed information.

Hardcopy documentation sources:

- ♦ The Lotus/Intel/Microsoft Expanded Memory Specification, Ver. 4.0
- ♦ PCI Local Bus Specification Revision 2.1

Online information sources:

- ◆ Compaq Computer Corporation: http://www.compaq.com
- ♦ Intel Corporation: http://www.intel.com
- National Semiconductor Incorporated: http://www.national.com
- ♦ ATI Incorporated: http://www.atitech.com

1.2 NOTATIONAL CONVENTIONS

1.2.1 VALUES

Hexadecimal values are indicated by the letter "h" following an alpha-numerical value. Binary values are indicated by the letter "b" following a value of ones and zeros. Memory addresses expressed as "SSSS:OOOO" (SSSS = 16-bit segment, OOOO = 16-bit offset) can be assumed as a hexadecimal value. Values that have no succeeding letter can be assumed to be decimal.

1.2.2 RANGES

Ranges or limits for a parameter are shown as a pair of values separated by two dots: Example: Bits <7..4> = bits 7, 6, 5, and 4.

1.2.3 SIGNAL LABELS

Signal names are indicated using abbreviations, acronyms, or, if possible, the full signal name in all capital letters. Signals that are meant to be active low are indicated with a dash immediately following the name.

1.2.4 REGISTER NOTATION AND USAGE

This guide uses standard Intel naming conventions in discussing the microprocessor's (CPU) internal registers. Registers that are accessed through programmable I/O using an indexing scheme are indicated using the following format:

In the example above, register 03C5.17h is accessed by writing the index port value 17h to the index address (03C4h), followed by a write to or a read from port 03C5h.

1.2.5 BIT NOTATION

Bit values are labeled with bit <0> representing the least-significant bit (LSb) and bit <7> representing the most-significant bit (MSb) of a byte. Bytes, words, double words, and quad words are typically shown with most-significant portions on the left or top and the least-significant portions on the right or bottom respectively.

1-2 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

1.3 COMMON ACRONYMS AND ABBREVIATIONS

Table 1-1 lists the acronyms and abbreviations used in this guide.

Table 1-1.		
Acronyms and Abbreviations		
Acronym/Abbreviation	Description	
A	ampere	
AC	alternating current	
ACPI	Advanced Configuration and Power Interface	
A/D	analog-to-digital	
AGP	Accelerated graphics port	
API	application programming interface	
APM	advanced power management	
ASIC	application-specific integrated circuit	
AT	1. attention (commands) 2. 286-based PC architecture	
ATA	AT attachment (mode)	
AVI	audio-video interleaved	
AVGA	Advanced VGA	
BCD		
-	binary-coded decimal	
BIOS	basic input/output system	
bis D:4DLT	second/new revision	
BitBLT	bit block transfer	
BNC	Bayonet Neill-Concelman (connector)	
bps or b/s	bits per second	
BSP	Bootstrap processor	
ВТО	Built to order	
CAS	column address strobe	
CD	compact disk	
CD-ROM	compact disk read-only memory	
CDS	compct disk system	
CF	carry flag	
CGA	color graphics adapter	
Ch	channel	
CLUT	color look-up table (pallete)	
cm	centimeter	
CMC	cache/memory controller	
CMOS	complimentary metal-oxide semiconductor (configuration memory)	
Cntlr	controller	
codec	compressor/decompressor	
CPQ	Compaq	
CPU	central processing unit	
CRT	cathode ray tube	
CSM	Compaq system management / Compaq server management	
СТО	Configure to order	
DAA	direct access arrangement	
DAC	digital-to-analog converter	
db	decibel	
DC	direct current	
DCH	DOS compatibility hole	
DDC	Display Data Channel	
DF	direction flag	

Continued

Table 1-1. Acronyms and Abbreviations Continued

Dimmark Description Dimmark	Table 1-1. Acronyms	and Abbreviations Continued
DIN Deutche IndustriNorm (connector standard) DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended display identification data EDO extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EISE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FIF first in / first out FIF frequency modulation FPM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) fit foot GB gigabyte GND ground GPIC general purpose I/O GPIC general purpose e pen-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag IF interrupt flag IF interrupt III IF interrupt III IF interrupt request IF interrupt Relations interrupt Relations in Interrupt Relations III (III) IF Interrupt Relations III (III) IF Interrupt Relations III (III) IF Interrupt Relations III (IIII) IF Interrupt Relations III (IIIII) IF Interrupt Relations IIII (IIIIIIII) IF Interrupt Relations IIII (IIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	Acronym/Abbreviation	Description
DIP dual inline package DMA direct memory access DMI Desktop management interface dpi dots per inch DRAM dynamic random access memory DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended display identification data EDO extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced praphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced DIP EIDE enhanced DIP ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) If foot GB gigabyte GND ground GPIO general purpose i/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE interrupt flag IVF interface Interrupt flag IVF interface INT interrupt flag IVF interface INT interrupt flag IVF interface INT interrupt request IND Interface Data Association INQ Interrupt request IND Interface Council Industry standard architecture JEDEC Joint Electron Device Engineering Council IND Interface Data Association INQ Interrupt request IND Interface Data Association INQ Interrupt request IND Interface IND Interface Engineering Council IND Interface Data Association INT Interrupt request IND Interface IND Interfac	DIMM	dual inline memory module
DMA direct memory access DMI Desktop management interface dpl dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced DIE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EVCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPFM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GRAT Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HW hardware hex hexadecimal HIV interrupt request ISA indows interrupt request ISA indows interrupt request ISA interrupt request ISA indows inter	DIN	Deutche IndustriNorm (connector standard)
DMII Desktop management interface dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended display identification data EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Exchangeable Card Architecture FIFO first in / first out FIFO foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HZ hertz IDE interrupt flag IVF interface In first in inch INT interrupt IVO input/Output IVI initial program loader IIDA infraRed Data Association IRQ interrupt request IKb/ K kilobits / kilobits / kilobits / x 1024 bits / x 1024 bytes) Kb/s kilobits per second Kg Kiloparm	DIP	dual inline package
dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EISA extended ISA EISA extended ISA EIPP enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gjabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HZ hertz IDE interprated drive element IEEE Institute of Electrical and Electronic Engineers IIF interrupt I/O input/output I/O infarRed Data Association I/RQ interrupt request I/SA kilobits / kilobits / kilobits / x 1024 bits / x 1024 bytes) I/Sb / KB kilobits / kilobits / x 1024 bits / x 1024 bytes) I/Sb / KB kilobits / kilobits / x 1024 bits / x 1024 bytes) I/Sb / KB kilobits / kilobits / x 1024 bits / x 1024 bytes) I/Sb / KB kilobits / kilobits / x 1024 bytes) I/Sb / KB kilobits / kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes) I/Sb / KB / Kilobits / x 1024 bytes)	DMA	direct memory access
dpi dots per inch DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced DE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FIL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) fit foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal Hz hertz IDE interprated drive element IEEE Institute of Electrical and Electronic Engineers IIFQ interrupt I/O input/output I/O infared Data Association I/RQ interrupt request I/SD Kilobits / kilobits / kilobits / kilobits / sto24 bits / x 1024 bits / x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg Kilogram	DMI	Desktop management interface
DRAM dynamic random access memory DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically araseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EISE enhanced DE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EV Environmental Variable (data) EV Exchangeable Card Architecture FIFO first in / first out FL flag (register) FPM frequency modulation GBB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HZ herz IDE interrupt flag I/F interrupt request ISA industry standard architecture ISA industry standard architecture ISA industry standard architecture IKb Kilobits / Kilobites	dpi	
DRQ data request EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced DE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FIL flag (register) FM frequency modulation FPM flast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output I/O input/output I/O input/output I/O input/output I/O infarRed Data Association IRQ interrupt request IKb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram		dynamic random access memory
EDID extended display identification data EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPIO general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag	DRQ	
EDO extended data out (RAM type) EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FIF flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) fit foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hardware hex hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IRQ interrupt standustry standard architecture SA industry standard architecture ISA industry standard architecture SA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / Kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilobiter X 1024 bits / x 1024 bytes)	EDID	
EEPROM electrically eraseable PROM EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h h hexadecimal HW hardware hexa hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output IPL initial program loader IRQ interrupt standard architecture ISA industry standard architecture ISA kilobits / Kilobytes (x 1024 bytes) IKb / KB kilobits / Kilobytes (x 1024 bits / x 1024 bytes) IKb / KB kilobits / Kilobytes (x 1024 bits / x 1024 bytes) IKb / KB kilobits / Kilobytes (x 1024 bits / x 1024 bytes) IKB / KB kilobits / Kilobits / KILOBA InfraRed Data Association IRQ kilogram IKHz kilobits / KILOBA InfraRed Data Association IKHz kilobatez		
EGA enhanced graphics adapter EIA Electronic Industry Association EISA extended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt IFL initial program loader IRDA infraRed Data Association IRQ interrupt standustry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s Klos kilobits per second kg kiloptrax KHz kilohertz		
EIA Electronic Industry Association EISA extended ISA exhended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose I/O GPOC general purpose I/O GPOC general purpose I/O GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt I/O In inch INT interrupt I/O input/output IPL initial program loader IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits per second kg kiloptram KHz kilobertz		
EISA extended ISA EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose open-collector GPCC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE intergrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag IVF interface in inch INT interrupt IVO input/output IPL initial program loader IRQ intergrate Association IRQ intergrate Silobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilobertz		
EPP enhanced parallel port EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB giqabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IIF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IIFQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / Kilobytes (x 1024 bytes) Kb/s Kilobits per second KHz kilobertz KHz kilobertz		
EIDE enhanced IDE ESCD Extended System Configuration Data (format) EV Environmental Variable (data) ExCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output IPL initial program loader IIFOA InfarRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Date (2014 bits / x 1024 bytes) Kb/s kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second Kthz kilobertz		
ESCD Extended System Configuration Data (format) EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal HZ hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IIF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IFQ interrupt request ISA industry standard architecture LEDE John Kilobits / Kilobytes (x 1024 bits / x 1024 bytes) Kb/ KB kilobits / Kilobytes (x 1024 bits / x 1024 bytes) Kb/ Kb/ S kilobits per second kg kilobits per second kg kilobits per second		<u> </u>
EV Environmental Variable (data) EXCA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrace in inch INT interrupt I/O input/output IPL initial program loader IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s Kilz kilobertz		
ExcA Exchangeable Card Architecture FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IIF interrupt flag IIF interrupt IVO input/output IIPL initial program loader IIRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kh/s kilobits per second KHz kilobertz		· · · · · · · · · · · · · · · · · · ·
FIFO first in / first out FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output IPL initial program loader IIDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kiloperam KHz kilobertz		
FL flag (register) FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IIFDA InfraRed Data Association IRQ intervolves (x 1024 bits / x 1024 bytes) Kb/S kilobits / kilobytes (x 1024 bits / x 1024 bytes) KK/S KHz kilobertz		<u> </u>
FM frequency modulation FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb/KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits / kilobytes (x 1024 bits / x 1024 bytes) KHz kilobertz		
FPM fast page mode (RAM type) FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IIRQ infraRed Data Association IRQ infraRed Data Association IKD/KB kilobits / kilobytes (x 1024 bytes) KK/S kilobits / kilobytes KHz kilobertz KILOR GRAM to math coprocessor) If toot foot the foot of math coprocessor) If the foot of the foot of math coprocessor) If the foot of the foot of math coprocessor of		
FPU Floating point unit (numeric or math coprocessor) ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb/KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) KK/S kilobits per second kg kilogram KHz kilohertz		' '
ft foot GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output IPL initial program loader IIRQ interrupt request ISA industry standard architecture JEDE Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) KK/s kilobits / kilobrtz		
GB gigabyte GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Htz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IFDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits per second kg kiloptra KHz kilohertz		
GND ground GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDE Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kh/s kilobits per second kg kilopram KHz kilobertz		
GPIO general purpose I/O GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilobertz		
GPOC general purpose open-collector GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kiloparam KHz kilohertz		
GART Graphics address re-mapping table GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobertz KHz kilobertz		
GUI graphics user interface h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobrtz KHz kilobrtz		<u> </u>
h hexadecimal HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IIrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kiloparm KHz kilopertz	-	
HW hardware hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz		V ,
hex hexadecimal Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobratz KHz kilohertz		
Hz hertz IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kiloparam KHz kiloparam		
IDE integrated drive element IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilopram KHz kilopram		
IEEE Institute of Electrical and Electronic Engineers IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilogram KHz kilohertz		
IF interrupt flag I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bytes) Kb/s kilobram KHz kilohertz		
I/F interface in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilopram KHz kilopram		
in inch INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilopram KHz kilopram		
INT interrupt I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilopram KHz kilopram		
I/O input/output IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilopram KHz kilohertz		
IPL initial program loader IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz		·
IrDA InfraRed Data Association IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz		· · ·
IRQ interrupt request ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz		
ISA industry standard architecture JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz	_ ::=::	InfraRed Data Association
JEDEC Joint Electron Device Engineering Council Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz		
Kb / KB kilobits / kilobytes (x 1024 bits / x 1024 bytes) Kb/s kilobits per second kg kilogram KHz kilohertz		industry standard architecture
Kb/skilobits per secondkgkilogramKHzkilohertz		Joint Electron Device Engineering Council
Kb/skilobits per secondkgkilogramKHzkilohertz	Kb / KB	kilobits / kilobytes (x 1024 bits / x 1024 bytes)
KHz kilohertz		kilobits per second
KHz kilohertz	kg	kilogram
KY KIIOVOIL	kv	kilovolt

Continued

¹⁻⁴ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Table 1-1. Acronyms and Abbreviations Continued

Acronym/Abbreviation	Description
lb	pound
LAN	local area network
LCD	liquid crystal display
LED	light-emitting diode
LIF	low insertion force (socket)
LSI	large scale integration
LSb / LSB	least significant bit / least significant byte
LUN	logical unit (SCSI)
MMX	multimedia extensions
MPEG	Motion Picture Experts Group
ms	millisecond
MSb / MSB	most significant bit / most significant byte
mux	multiplex
MVA	motion video acceleration
MVW	motion video window
n	variable parameter/value
NIC	network interface card/controller
NiCad	nickel cadmium
NiMH	nickel-metal hydride
NMI	non-maskable interrupt
ns	nanosecond
NT	nested task flag
NTSC	National Television Standards Committee
NVRAM	non-volatile random access memory
OEM	original equipment manufacturer
OS	operating system
PAL	programmable array logic 2. phase altering line
PC	personal computer
PCI	peripheral component interconnect
PCM	pulse code modulation
PCMCIA	Personal Computer Memory Card International Association
PF	parity flag
PIN	personal identification number
PIO	Programmed I/O
POST	power-on self test
PROM	programmable read-only memory
PTR	pointer
RAM	random access memory
RAS	row address strobe
rcvr	receiver
RF	resume flag
RGB	red/green/blue (monitor input)
RH	Relative humidity
RMS	root mean square
ROM	read-only memory
RPM	revolutions per minute
	revolutions per minute real time clock

Continued

Table 1-1. Acronyms and Abbreviations Continued

Acronym/Abbreviation	Description
SCSI	small computer system interface
SDRAM	Synchronous Dynamic RAM
SEC	Single Edge-Connector
SECAM	sequential colour avec memoire (sequential color with memory)
SF	sign flag
SGRAM	Synchronous Graphics RAM
SIMM	single in-line memory module
SIT	system information table
SMART	Self Monitor Analysis Report Technology
SMI	system management interrupt
SMM	system management mode
SMRAM	system management RAM
SPD	serial presence detect
SPP	standard parallel port
SRAM	static RAM
STN	super twist pneumatic
SVGA	super VGA
SW	software
TAD	telephone answering device
TAM	telephone answering machine
TCP	tape carrier package
TF	trap flag
TFT	thin-film transistor
TIA	Telecommunications Information Administration
TPE	twisted pair ethernet
TPI	track per inch
TTI	transistor-transistor logic
TV	television
TX	transmit
UART	universal asynchronous receiver/transmitter
UDMA	Ultra DMA
_us/μs	microsecond
USB	Universal Serial Bus
_ UTP	unshielded twisted pair
V	volt
VESA	Video Electronic Standards Association
VGA	video graphics adapter
_ vib	vibrato
VLSI	very large scale integration
VRAM	Video RAM
W	watt
WOL	Wake on LAN
WRAM	Windows RAM
ZF	zero flag
ZIF	zero insertion force (socket)

¹⁻⁶ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Chapter 2 SYSTEM OVERVIEW

2.1 INTRODUCTION

The Compaq Deskpro EN Series of desktop and minitower Personal Computers (Figure 2-1) delivers an outstanding combination of manageability, serviceability, and consistency for enterprise environments. Based on Intel Pentium II and Celeron processors, the Deskpro EN Series emphasizes performance and industry compatibility. These models feature architectures incorporating the PCI, AGP, and ISA buses. All models are easily upgradable and expandable to keep pace with the needs of the office enterprise.

Figure 2–1. Compaq Deskpro EN Desktop Personal Computers with Monitor

This chapter includes the following topics:

•	Features and options (2.2)	page 2-2
•	Mechanical design (2.3)	page 2-4
•	System architecture (2.4)	page 2-8
♦	Specifications (2.5)	page 2-13

2.2 FEATURES AND OPTIONS

This section describes the standard features and available options.

2.2.1 STANDARD FEATURES

The following standard features are included on all models:

- ♦ Pentium II or Celeron processor
- ♦ High-performance 2D/3D AGP graphics card
- Embedded 16-bit full-duplex audio with Compaq Premier Sound
- ♦ 3.5 inch, 1.44-MB diskette drive
- Extended IDE controller support for up to four IDE drives
- ♦ Hard drive fault prediction
- ♦ Two serial interfaces
- ♦ Parallel interface
- ♦ Two universal serial bus ports
- ♦ Two PCI slots
- ♦ Two combo PCI/ISA slots
- ♦ 10/100 NIC card
- ♦ Compaq Enhanced keyboard w/Windows support
- ♦ Mouse
- ♦ APM 1.2 power management support
- ♦ Plug 'n Play compatible (with ESCD support)
- ♦ Intelligent Manageability support
- ♦ Energy Star compliant
- Security features including:
 - Flash ROM Boot Block
 - Diskette drive disable, boot disable, write protect
 - Power-on password
 - Administrator password
 - QuickLock/QuickBlank
 - Smart Cover lock
 - Smart Cover removal sense
 - Serial port disable
 - Parallel port disable

2.2.2 OPTIONS

The following items are available as options for all models and may be included in the standard configuration of some models:

♦ System Memory: 16-MB DIMM (ECC and non-ECC)

32-MB DIMM (ECC and non-ECC) 64-MB DIMM (ECC and non-ECC) 128-MB DIMM (ECC and non-ECC)

♦ Hard drives/controllers: 3.2 GB UATA

4.3 GB Wide Ultra SCSI9.1 GB Wide Ultra SCSIWide Ultra SCSI PCI controller

6.4 GB UATA

• Removeable media drives: 1.44 MB diskette drive

32x CD-ROM drive PS-120 Power Drive

♦ Communications cards: Compaq 10/100TX PCI Intel with WOL UTP

Netelligent 10/100, TX PCI UTP TLAN 3COM Fast EtherLink XL 10/100TX PCI Compaq Netelligent 56.6 Baud ISA Modem

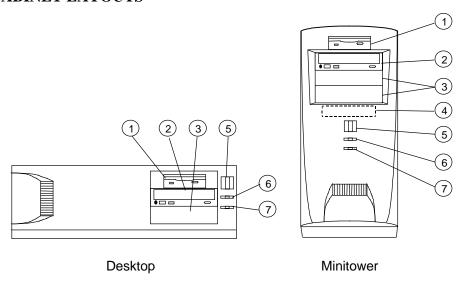
♦ Graphics cards/memory: ATI RAGE PRO Turbo AGP card

ATI RAGE PRO Turbo AGP 2X card

4-MB SGRAM SODIMM (for RAGE PRO AGP 2X card)

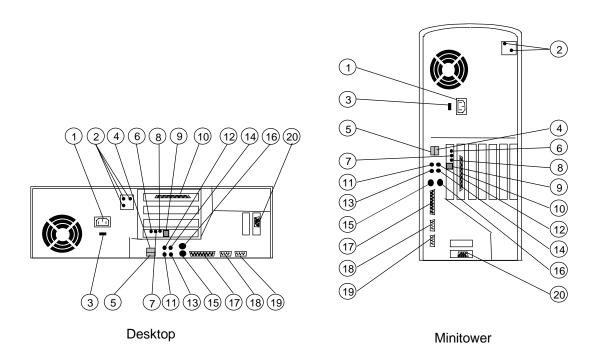
Matrox MGA-G100A card

Matrox Millennium G200-SD card


8-MB SDRAM SODIMM (for Millennium G200-SD card)

Compaq Deskpro Computers are easily upgraded and enhanced with peripheral devices designed to meet PCI and ISA standards. The Compaq Deskpro Personal Computers are compatible with peripherals designed for Plug 'n Play operation.

2.3 MECHANICAL DESIGN


The Compaq Deskpro EN Series uses a desktop form factor. This section illustrates the mechanical particulars of the bezel, chassis, and major board assemblies.

2.3.1 CABINET LAYOUTS

Item	Function
1	1.44 MB Diskette Drive (5.25" drive bay)
2	CD-ROM Drive (CDS models) (5.25" drive bay)
3	Internal Drive (5.25") bay
4	Internal Drive (3.5") bay
5	Power Button
6	Power On/Sleep Indicator
7	Hard Drive Activity Indicator

Figure 2–2. Cabinet Layouts, Front View

Item	Function
1	AC Line In Connector
2	Smart Cover Lock Screws
3	Line Voltage Switch
4	USB Interface Port B
5	USB Interface Port A
6	100TX speed LED
7	Activity LED
8	Link LED
9	NIC Connector
10	SCSI connector
11	Audio Headphone Input
12	Audio Microphone Input
13	Audio Line Output
14	Audio Line Input
15	Keyboard Connector
16	Mouse Connector
17	Parallel Interface Connector
18	Serial Interface Connector (COM1)
19	Serial Interface Connector (COM2)
20	Graphics Monitor Connector

Figure 2–3. Cabinet Layouts, Rear View

2.3.2 CHASSIS LAYOUTS

Figures 2-4 and 2-5 show the layout of key assemblies within the desktop and minitower chassis respectively. For serviceability this system features an expansion card cage that allows easy removal of the backplane and expansion cards as a single assembly. The tilt drive cage tilts up for easy removal/replacement of drives. For detailed information on servicing the chassis refer to the multimedia training CD-ROM and/or the maintenance and service guide for this system.

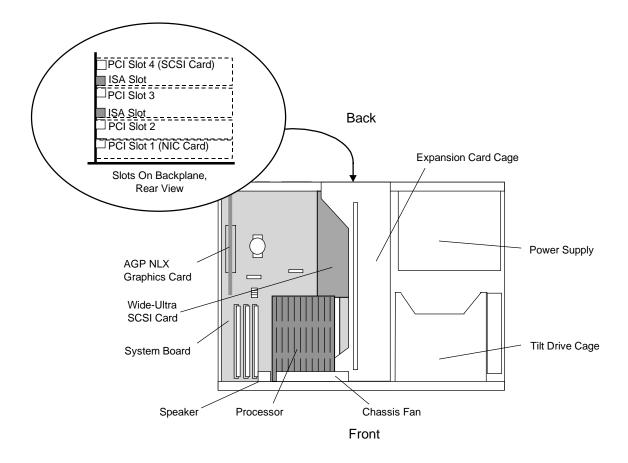


Figure 2–4. Desktop Chassis Layout, Top View

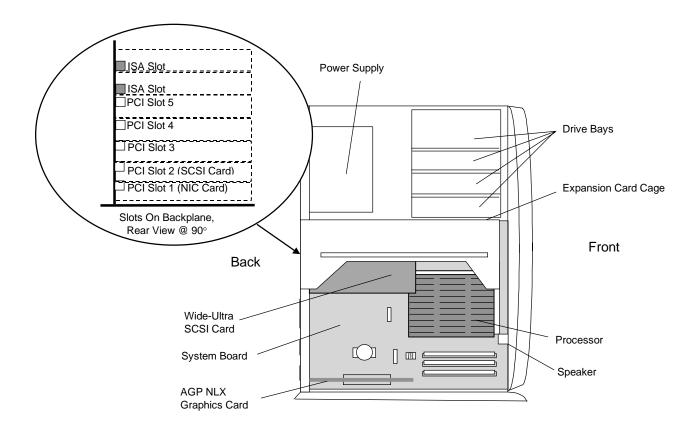
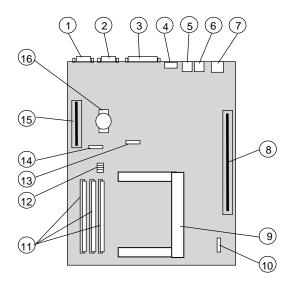
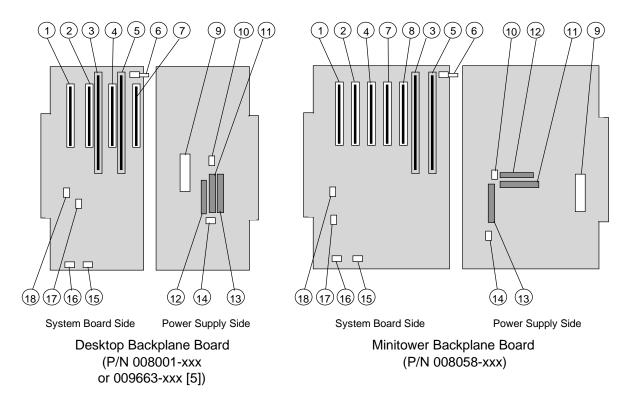



Figure 2–5. Minitower Chassis Layout, Left Side View

2.3.3 BOARD LAYOUTS

Figure 2-6 shows the location of connectors and switches for the system board, which is the same for all models and both formfactors.

System Board (NLX-Type) (P/N 007998-xxx or 008123-xxx [1])


Item	Function	Item	Function
1	Serial I/F (COM2)	7	(bottom) USB Port A I/F
2	Serial I/F (COM1)	8	Backplane Connector
3	Parallel I/F	9	Processor Slot 1
4	(top) Mouse connector	10	Heat Sink Thermal Diode Connector [2]
4	(bottom) Keyboard connector	11	DIMM Sockets
5	(top) Audio Line Input	12	Frequency/Password DIP Switch
5	(bottom) Audio Line Output	13	Heat Sink Thermal Diode Connector [3]
6	(top) Audio Mic Input	14	CMOS Clear Jumper
6	(bottom) Audio Headphone Output	15	AGP Slot (NLX-type)
7	(top) USB Port B I/F	16	Battery

NOTE:

- [1] The two system boards are electrically identical. There are slight differences in the location of some components. Later production units use the 008123-xxx board.
- [2] PCA # 008123
- [3] PCA # 007998

Figure 2–6. System Board Connector and Switch Locations

Figure 2-7 shows the connector and switch locations for the two types of backplane boards.

Item	Function	Item	Function
1	PCI connector J20 (slot 1)	10	CD audio input header P7
2	PCI connector J21 (slot 2)	11	Secondary EIDE connector P21
3	ISA connector J10 [1]	12	Diskette drive connector P10
4	PCI connector J22 (slot 3) [2]	13	Primary EIDE connector P20
5	ISA connector J11 [3]	14	Power button/LED header P5
6	Smart Cover sensor switch	15	Fan header P8
7	PCI connector J23 (slot 4) [4]	16	Speaker header P6
8	PCI connector J24 (slot 5)	17	SCSI LED header P29
9	Power supply connector P1	18	NIC WOL header P9

NOTES:

- [1] Shares slot with item 4 on desktop backplane (combo slot 1)
- [2] Shares slot with item 3 on desktop backplane (combo slot 1)
- [3] Shares slot with item 7 on desktop backplane (combo slot 2)
- [4] Shares slot with item 5 on desktop backplane (combo slot 2)
- [5] Later production units use the 009663-001 board

Figure 2–7. Backplane Board Connector, Header, and Switch Locations

2.4 SYSTEM ARCHITECTURE

The Compaq Deskpro EN Series of Personal Computers is based on an Intel Pentium II processor matched with the Intel 440BX AGPset. The basic architecture (Figure 2-8), uses three main buses: the Host bus, the Peripheral Component Interconnect (PCI) bus, and the Industry Standard Architecture (ISA) bus.

The Host and memory buses provide high performance support for CPU, cache and system memory accesses, and operate at 66 or 100 MHz, depending on the speed of the microprocessor.

The PCI bus provides support for the UATA controllers, USB ports, and PCI expansion devices. The PCI bus operates at 33 MHz. This system also includes an Accelerated Graphics Port (AGP) slot for an AGP graphics card. The AGP bus is closely associated with the PCI bus but operates at 66 MHz and allows data pipelining, sideband addressing, and frame mode transfers for increased 3D graphics performance.

The ISA bus provides a standard 8-MHz interface for the input/output (I/O) devices such as the keyboard, diskette drive, serial and parallel interfaces, as well as the addition of 16- or 8-bit expansion devices.

The north and south bridge functions are provided by the 440BX AGPset designed to compliment the processor. The support chipset also provides memory controller and data buffering functions as well as bus control and arbitration functions.

The I/O interfaces and diskette drive controller are integrated into the PC87307 I/O Controller. This component also includes the real time clock and battery-backed configuration memory (CMOS).

Table 2-1 lists differences between system models:

	Мо	Table 2-1. del Differences		
	Model 3200	Model 4300	Model 6400	Model 9100
Form Factor	DT/MT	DT/MT	DT/M T	MT
CPU Speed (MHz)	266/300/333	333/350/400	300/333/350/400	400/450
Host Bus Speed (MHz)	66	66/100/100	66/66/100/100	100
Hard Drive	3.2 GB UATA	4.3 GB SCSI	6.4 GB UATA	9.1 GB SCSI
System Memory:				
Standard	16/32 MB SDRAM	32/64 MB ECC	32/64 MB SDRAM	64 MB ECC
Maximum installable	384 MB	384 MB	384 MB	384 MB
Graphics Controller	ATI RAGE PRO	ATI RAGE PRO	ATI RAGE PRO	ATI RAGE PRO
	Turbo	Turbo	Turbo	Turbo
	AGP 1X Card	AGP 2X Card	AGP 1X/2X Card	AGP 2X Card

NOTE:

Only BTO configurations shown.

The following subsections provide a description of the key functions and subsystems.

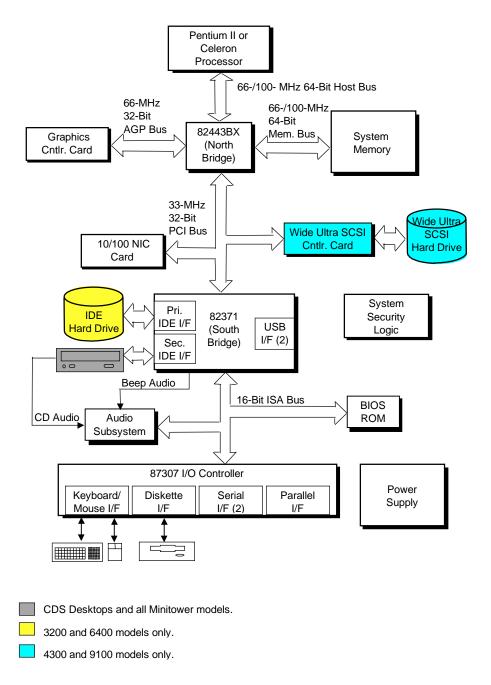


Figure 2–8. Compaq Deskpro EN System Architecture, Block diagram

2.4.1 PROCESSOR

The Deskpro EN Series includes models based on Pentium II and Celeron processors. The processor and heat sink is mounted as an assembly (Figure 2-9) in a slot (Slot 1) on the system board. The Pentium II processor includes a microprocessor and a secondary (L2) cache contained in a single edge connector (SEC) cartridge to which a heat sink is attached. The Celeron processor includes a microprocessor mounted on a single edge processor package (SEPP) board. On these systems the SEPP board of the Celeron processor is contained within a SEPP board housing and heat sink.

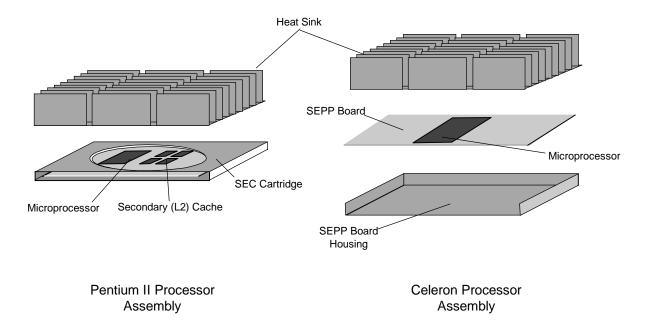


Figure 2–9. Processor Assembly Comparison

The Pentium II and Celeron processors are backward-compatible with software written for the Pentium MMX, Pentium Pro, Pentium, and x86 microprocessors. The integrated microprocessor provides performance enhancements for multi-byte and floating-point processing.

2.4.2 SYSTEM MEMORY

This system provides three 168-pin DIMM sockets with 16, 32 or 64 megabytes of RAM installed depending on model. System memory can be expanded up to 384 megabytes using 16-, 32-, 64-, and 128-MB DIMMs. This system supports SDRAM, EDO, and ECC DIMMs. Models 3200 and 6400 come with SDRAM installed while models 4300 and 9100 come with ECC DIMMs installed. Non-parity DIMMs are installed as standard but parity DIMMs are supported.

2.4.3 SUPPORT CHIPSETS

Table 2-2 shows the functions provided by the key components on the system board.

Tal	ble 2-2.				
	Support Chipsets				
Component Name	Component Type	Function			
PCI Arbitration Controller (PAC) North Bridge	82443BX	Memory Controller			
		Host/PCI Bridge			
PCI-ISA/IDE eXcelerator (PIIX4E) South Bridge	82371	PCI/ISA Bridge			
		EIDE Controller			
		DMA Controller			
		Interrupt Controller			
		Timer/Counter			
		NMI Registers			
		Reset Control Reg.			
		USB I/F (2)			
Super I/O Controller	87307	Keyboard I/F			
		Diskette I/F			
		Serial I/F			
		Parallel I/F			
		RTC/CMOS Mem.			
Clock Generator	CY2280	GPIO Ports			
		Clock Generator			
System Security ASIC	Compaq ASIC	Super I/O Security Smart Cover Lock			
		ROM Write Protect			
		Temperature Shutdown			
		SM/WOL Interrupts			
		Diskette Write Disable			
		Pwr LED Blink Cntrl.			
		PS On sig. Cntrl.			

2.4.4 MASS STORAGE

All models include a 3.5 inch 1.44-MB diskette drive installed. Either an EIDE or SCSI hard drive is also installed, depending on model. All models include a PCI bus mastering Enhanced IDE (EIDE) controller that provides two EIDE interfaces supporting up to four IDE devices. Models equipped with a SCSI drive include a Wide Ultra SCSI adapter board. A 32x CD-ROM is included on desktop CDS models and on all MT models.

Compaq Deskpro EN Series of Personal Computers 2-13 Desktop and Minitower Form Factors

2.4.5 SERIAL AND PARALLEL INTERFACES

All models include two serial ports and a parallel port accessible at the rear of the chassis. The serial and parallel ports are integrated into a PC87307 I/O Controller component. The serial port is RS-232-C/16550-compatible and operates at baud rates up to 115,200. The parallel interface is Enhanced Parallel Port (EPP1.9) and Enhanced Capability Port (ECP) compatible, and supports bi-directional data transfers.

2.4.6 UNIVERSAL SERIAL BUS INTERFACE

All models feature two Universal Serial Bus (USB) ports that provide a high speed interface for future systems and/or peripherals. The USB operates at 12 Mbps and provides hot plugging/unplugging (Plug 'n Play) functionality.

2.4.7 GRAPHICS SUBSYSTEM

The graphics subsystem is conatained on a card installed into the AGP slot. Two types of graphics controllers are used, depending on the microprocessor employed on the system board as indicated in Table 2-3.

	Table 2-3.	
	Graphics Subsystem Compa	arison
	266-/300-/333-MHz Processor	350-/400-/4500 MHz Processor
Graphics Controller	ATI Rage Pro Turbo AGP	ATI Rage Pro Turbo AGP 2X
Graphics Memory		
Standard installed:	4 MB SGRAM	4 MB SGRAM
Expandable to:	N/A	8 MB SGRAM
Maximum Resolution		
w/ standard mem.	1600 x 1200 @ 65K colors	1600 x 1200 @ 65K colors
w/ max. mem.		1600 x 1200 @ 16.7M colors

2.4.8 AUDIO SUBSYSTEM

All models feature the Compaq Premier Sound system. The system board includes an embedded 16-bit full-duplex subsystem based on the ES1869 graphics controller. The audio output is processed through a six-level equalizer designed to work with the chassis acoustics. A low-distortion 5-watt amplifier drives a long-excursion speaker for optimum sound. The audio subsystem is compatible with software written for industry-common sound hardware.

2-14 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

2.5 **SPECIFICATIONS**

This section includes the environmental, electrical, and physical specifications for the Compaq DESKPRO EN Series Personal Computers.

Table 2-4.
Environmental Specifications

Parameter	Operating	Nonoperating
Air Temperature	50° to 95° F (10° to 35° C)	-24° to 140° F (-30° to 60° C)
Shock	N/A	60.0 g for 2 ms half-sine pulse
Vibration	0.000215g^ 2/hz, 10-300 Hz [1]	0.0005g^ 2/Hz, 10-500 Hz [1]
Humidity	90% RH @ 36° C (no hard drive)	95% RH @ 36° C
Maximum Altitude	10,000 ft (3048 m)	30,000 ft (9,144 m)

NOTE:

Values are subject to change without notice.

[1] 0.5 grms nominal

Table 2-5. Electrical Specifications

Parameter	U.S.	International
Input Line Voltage:		
Nominal:	110 - 120 VAC	200 - 240 VAC
Maximum:	90 - 132 VAC	180 - 264 VAC
Input Line Frequency Range:		
Nominal:	50 - 60 Hz	50 - 60 Hz
Maximum:	47 - 63 Hz	47 - 63 Hz
Power Supply:		
Maximum Continuous Power	200 watts	200 watts
Maximum Peak Power	200 watts	200 watts
Maximum Line Current Draw	5.5 A	3.0 A

Table 2-6. Physical Specifications

Parameter	Desktop	Minitower
Height	5.88 in (14.93 cm)	20.25 in (51.44 cm)
Width	19.16 in (48.66 cm)	8.38 in (21.29 cm)
Depth	16.82 in (42.72 cm)	18.60 in (47.24 cm)
Weight [1]	32.0 lb (14.50 kg)	40.0 lb (18.20 kg)

NOTES:

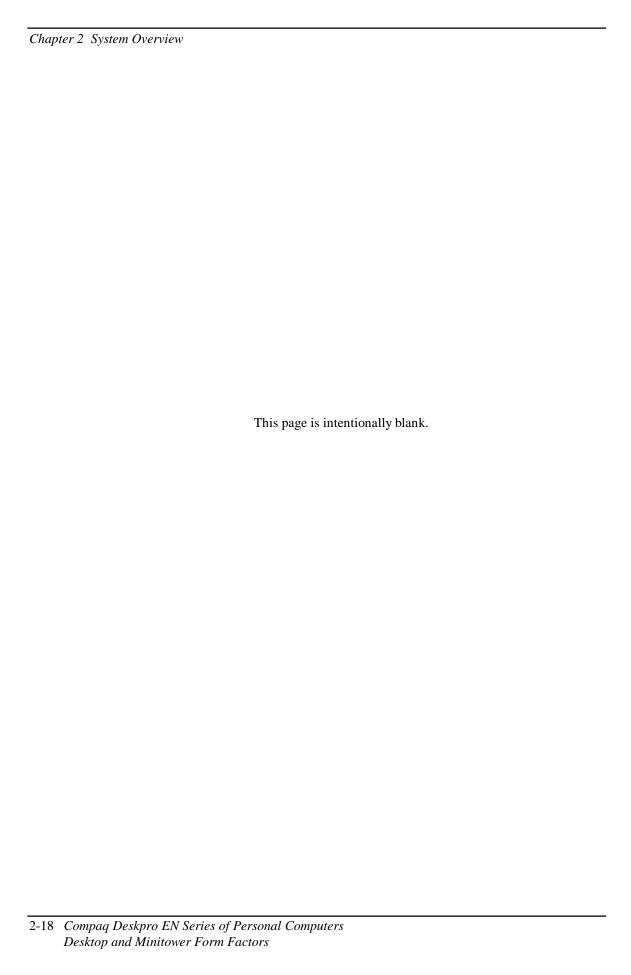
Metric figures in parenthesis.

[1] System weight may differ depending on installed drives/peripherals.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Table 2-7.Diskette Drive Specifications (Compaq SP# 179161-001)

· · · · ·	/
Parameter	Measurement
Media Type	3.5 in 1.44 MB/720 KB diskette
_ Height	1/3 bay (1 in)
Bytes per Sector	512
Sectors per Track:	
High Density	18
Low Density	9
Tracks per Side:	
High Density	80
Low Density	80
Read/Write Heads	2
Average Access Time:	
Track-to-Track (high/low)	3 ms/6 ms
Average (high/low)	94 ms/173ms
Settling Time	15 ms
Latency Average	100 ms


Table 2-8.32x CD-ROM Drive Specifications (SP# 327659-001)

Parameter	Measurement
Interface Type	IDE
Transfer Rate:	
Max. Sustained	4800 KB/s
Burst	16.6 MB/s
Media Type	Mode 1,2, Mixed Mode, CD-DA,
	Photo CD, Cdi, CD-XA
Capacity:	
Mode 1, 12 cm	550 MB
Mode 2, 12 cm	640 MB
8 cm	180 MB
Center Hole Diameter	15 mm
Disc Diameter	8/12 cm
Disc Thickness	1.2 mm
Track Pitch	1.6 um
Laser	
Beam Divergence	53.5 +/- 1.5 °
Output Power	53.6 0.14 mW
Туре	GaAs
Wave Length	790 +/- 25 nm
Average Access Time:	
Random	<100 ms
Full Stroke	<150 ms
Audio Output Level	0.7 Vrms
Cache Buffer	128 KB

²⁻¹⁶ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

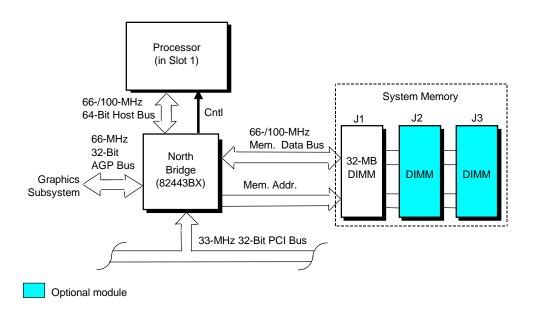
Table 2-9.Hard Drive Specifications

	3.2 GB	4.3 GB	6.4 GB	9.1 GB
Parameter	(# 166873-001)	(# 179287-001)	(# 166973-001)	(# 179288-001)
Interface	EIDE-UATA	Wide-Ultra SCSI	EIDE-UATA	Wide-Ultra SCSI
Drive Type	65	65	65	65
Drive Size	5.25 in	5.25 in	5.25 in	5.25 in
Transfer Rate	33.3 MB/s	40.0 MB/s	33.3 MB/s	40.0 MB/s
Seek Time (w/settling)				
Single Track	<1.0 ms	.76 ms	2.0 ms	.76 ms
Average	<9.7 ms	7.5 ms	<9.7 ms	7.5 ms
Full Stroke	<18.0 ms	17.0 ms	20.0 ms	15.0 ms
Disk Format:				
# of Cylinders	6697	8420	13325	8420
# of Data Heads	15	8	15	10
# of Sectors per Track	63	165-264	63	165-264
Buffer Size	256 KB	512 KB	256 KB	512 KB
Drive Fault Prediction	SMART II	SMART II	SMART II	SMART II

Chapter 3 PROCESSOR/ MEMORY SUBSYSTEM

3.1 INTRODUCTION

This chapter describes the processor/cache memory subsystem of the Compaq Deskpro EN Series of desktop and minitower Personal Computers. These systems are shipped either with an Intel Pentium II or Celeron processor and either 32 or 64 megabytes of system memory, depending on configuration.


This chapter includes the following topics:

♦ Processor/memory subsystem [3.2]

page 3-2

3.2 PROCESSOR/MEMORY SUBSYSTEM

The subsystem features an Intel Pentium II or Celeron processor with the North Bridge (82443BX), and either 32 or 64 megabytes of system memory (Figure 3-1). The 64-bit Host and memory buses operate at either 66- or 100-MHz depending on the speed of the processor. The 32-bit PCI bus operates at 33-MHz.

Figure 3–1. Processor/Memory Subsystem Architecture

The processor is mounted in a slot 1-type connector that facilitates easy changing/upgrading. Replacing the processor may require reconfiguring DIP switch SW1 to select the correct bus frequency/core frequency combination. Frequency selection is described in detail later in this section.

The North Bridge (82443BX) provides Host/memory/PCI bridge functions and controls data transfers with system memory over the 64-bit memory data bus. The 443BX supports SDRAM, EDO, FPM, and ECC DIMM modules. Three DIMM sockets allow the system memory to be expanded to 384 megabytes.

³⁻² Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

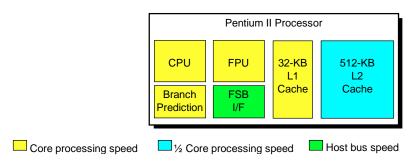
3.2.1 PROCESSOR

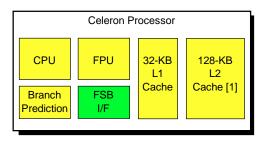
The system board includes a Slot 1-type interface that accommodates a Pentium II or Celeron processor. Table 3-1 provides a comparison between the key parameters of the Pentium II and Celeron processors.

		Та	ble 3-1.			
		Processo	or Comparsion	1		
	Pentium II 266-333	Celeron 266/300	Celeron 300A/333	Pentium II 350	Pentium II 400	Pentium II 450
CPU Freq.	266-333 MHz	300 MHz	300/333 MHz	350 MHz	400 MHz	450 MHz
L2 Cache	512 KB	0 KB	128 KB	512 KB	512 KB	512 KB
L2 Cache Freq.	133-166 MHz		300/333 MHz	175 MHz	200 MHz	225 MHz
Host Bus Freq.	66 MHz	66 MHz	66 MHz	100 MHz	100 MHz	100 MHz

3.2.1.1 Pentium II Processor

The Intel Pentium II processor is packaged in a Single Edge Connector (SEC) cartridge that contains the microprocessor and a 512-KB ECC secondary (L2) cache. The processor's architecture (Figure 3-2) includes a dual-ALU MMX-supporting CPU, branch prediction logic, dual-pipeline floating point unit (FPU) coprocessor, and a 32-KB L1 cache that is split into two 16-KB 4-way, set-associative caches for handling code and data separately. These functions operate at core processing speed (Figure 3-2), which ranges from 266 to 400 megahertz depending on version.




Figure 3–2. Pentium II Processor Internal Architecture

The Pentium II processor includes 512 kilobytes of SRAM for the write-through L2 cache. Accesses with the L2 cache occur at 50% of the core processing speed. The front side bus (FSB, also referred to as the Host bus) interface of the 266-, 300-, and 333-MHz processors operates at 66-MHz. The FSB interface of the 350- and 400-MHz processors operates at 100 MHz. The Pentium II processor is software-compatible with earlier generation x86 microprocessors.

NOTE: Later versions of the Pentium II processor require updated BIOS firmware. Refer to section 3.2.2 for upgrading information.

3.2.1.2 Celeron Processor

Select systems are shipped with the Intel Celeron processor. The Celeron processor (Figure 3-3) uses a CPU/FPU core that is functionally the same as that of the Pentium II described previously and provides the same level of branch prediction, math co-processing, MMX support, and L1 cache operation. Processing and Host bus speed ratios follow those of the Pentium II processors and are set and determined with the same methods. Note that the Celeron 300 does not include an L2 cache. The L2 cache of the Celeron 300A and 333 operates at processor (CPU) speed.

- [1] Not present on Celeron 266 or 300 processors.
- Core processing speed
- Host bus speed

Figure 3–3. Celeron Processor Internal Architecture

Like the Pentium II processor, the Celeron processor is software-compatible with earlier generation Pentium MMX, Pentium, and x86 processors.

NOTE: Later versions of the Celeron processor require updated BIOS firmware. Refer to section 3.2.2 for upgrading information.

3.2.2 PROCESSOR CHANGING/UPGRADING

The slot 1 design allows for easy changing and/or upgrading of the processor/cache complex. Changing the processor requires disconnection/re-connection of the heat sink sensor cable and may require upgrading the BIOS firmware and re-configuration of the bus/core speed switch discussed in the following paragraphs.

3.2.2.1 BIOS Upgrading

The Pentium II 450 and Celeron 300A/333 processors require BIOS firmware dated 7/30/98 or later. Installing and running one of these processors in a system with BIOS dated earlier than 7/30/98 will likely cause the system to halt (lockup).

The BIOS (ROM) version may be checked using either the Compaq Diagnostics or Compaq Insight utility.

3.2.2.2 Processor Speed Selection

Changing the processor may require re-configuration of the bus/core frequency ratio. The system board includes a six-position DIP switch (SW), of which positions 2-5 are read by the processor (while RESET- is active) to select the bus-to-core frequency ratio. Table 3-2 shows the possible switch configurations for this system and the resultant core (or processing) frequency, based on the front side bus (FSB or Host bus) frequency.

		e 3-2.	
Bus/	Core Speed	Switch Settings	
DIP SW1 Settings	Bus/Core	Core Fr	equency
2345 [1]	Freq. Ratio	w/66-MHz FSB	w/100-MHz FSB
1000	1/3	200	300
1100	2/7	233	350
0010	1/4	266	400
0110	2/9	300	450
1010	1/5	333	500

NOTES:

Shipping configurations are unshaded. [1] 0 = Switch Closed (On), 1 = Switch Open (Off)

The DIP switch settings should be set to match the processor installed. Configuring for a speed higher than that which the processor is designed could result in unreliable operation and possible system damage.

The processor sets the clock generator to the appropriate bus frequency. Software can determine the operating speed by reading the bus speed from an MSR register in the processor.

3.2.3 SYSTEM MEMORY

The system board contains three 168-pin DIMM sockets for system memory. This system is designed for using SDRAM or ECC DIMMs. As shipped from the factory the standard configuration has 16, 32, or 64 megabytes of memory installed. The system memory is expandable up to a maximum of 384 megabytes. Single or double-sided DIMMs may be used. In expanding the standard memory using modules from third party suppliers the following DIMM type is recommended: **66- or 100-MHz unbuffered RAM supporting CAS latency (CL) 2 or 3 with a data access time (clock-to-data out) of 9.0 ns or less @ CL=2 or CL=3**.

NOTE: The DIMM speed should compliment the host bus speed of the processor (i.e., use 66-MHz DIMMs in a system with a 266/66 processor and 100-MHz DIMMs in a system with a 350/100 processor). All systems are factory-shipped with 100-MHz DIMMs.

The RAM type and operating parameters are detected during POST by the system BIOS using the serial presence detect (SPD) method. This method employs an I²C bus to communicate with an EEPROM on each installed DIMM. The EEPROM holds the type and operating parameter data.

The supported format complies with the JEDEC specification for 128-byte EEPROMs. This system also provides support for 256-byte EEPROMs to include additional Compaq-added features such as part number and serial number. The SPD format as supported in this system is shown in Table 3-3.

The key SPD bytes that BIOS checks for compatibility are 2, 9, 10, 18, 23, and 24. **If BIOS detects EDO DIMMs a "memory incompatible" message will be displayed and the system will halt.** If ECC DIMMs are used, all DIMMs installed must be ECC for ECC benefits (error logging) to be realized.

Once BIOS determines the DIMM type the DRAM speed and CAS latency is checked based on the following criteria:

		Access
		from
Bus Speed	Cycle Time	Clock
66 MHz	15 ns	9 ns @ 50 pf loading
100 MHz	10 ns	6 ns @ 50 pf loalding

NOTE: Refer to chapter 8 for a description of the BIOS procedure of interrogating DIMMs.

Only CAS latencies of 2 or 3 are supported. If DIMMs with unequal CAS latencies are installed then operation will occur based on the DIMM with the greatest latency.

If an incompatible DIMM is detected the NUM LOCK will blink for a short period of time during POST and an error message may or may not be displayed before the system hangs.

The system memory map is shown in Figure 3-3.

3-6 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Table 3-3. SPD Address Map (SDRAM DIMM)

Byte	Description	Notes	Byte	Description	Notes
0	No. of Bytes Written Into EEPROM	[1]	27	Min. Row Prechge. Time	[7]
1	Total Bytes (#) In EEPROM	[2]	28	Min. Row Active to Delay	[7]
2	Memory Type		29	Min. RAS to CAS Delay	[7]
3	No. of Row Addresses On DIMM	[3]	30, 31	Reserved	
4	No. of Column Addresses On DIMM		3261	Superset Data	[7]
5	No. of Module Banks On DIMM		62	SPD Revision	[7]
6, 7	Data Width of Module		63	Checksum Bytes 0-62	
8	Voltage Interface Standard of DIMM		64-71	JEP-106E ID Code	[8]
9	Cycletime @ Max CAS Latency (CL)	[4]	72	DIMM OEM Location	[8]
10	Access From Clock	[4]	73-90	OEM's Part Number	[8]
11	Config. Type (Parity, Nonparity, etc.)		91, 92	OEM's Rev. Code	[8]
12	Refresh Rate/Type	[4] [5]	93, 94	Manufacture Date	[8]
13	Width, Primary DRAM		95-98	OEM's Assembly S/N	[8]
14	Error Checking Data Width		99-125	OEM Specific Data	[8]
15	Min. Clock Delay	[6]	126, 127	Reserved	
16	Burst Lengths Supported		128-131	Compaq header "CPQ1"	[9]
17	No. of Banks For Each Mem. Device	[4]	132	Header checksum	[9]
18	CAS Latencies Supported	[4]	133-145	Unit serial number	[9] [10]
19	CS# Latency	[4]	146	DIMM ID	[9] [11]
20	Write Latency	[4]	147	Checksum	[9]
21	DIMM Attributes		148-255	Reserved	[9]
22	Memory Device Attributes				
23	Min. CLK Cycle Time at CL X-1	[7]			
24	Max. Acc. Time From CLK @ CL X-1	[7]			
25	Min. CLK Cycle Time at CL X-2	[7]			
26	Max. Acc. Time From CLK @ CL X-2	[7]			

NOTES:

- [1] Programmed as 128 bytes by the DIMM OEM
- [2] Must be programmed to 256 bytes.
- [3] High order bit defines redundant addressing: if set (1), highest order RAS# address must be re-sent as highest order CAS# address.
- [4] Refer to memory manufacturer's datasheet
- [5] MSb is Self Refresh flag. If set (1), assembly supports self refresh.
- [6] Back-to-back random column addresses.
- [7] Field format proposed to JEDEC but not defined as standard at publication time.
- [8] Field specified as optional by JEDEC but required by this system.
- [9] Compaq usage. This system requires that the DIMM EEPROM have this space available for reads/writes.
- [10] Serial # in ASCII format (MSB is 133). Intended as backup identifier in case vender data is invalid. Can also be used to indicate s/n mismatch and flag system adminstrator of possible system Tampering.
- [11] Contains the socket # of the module (first module is "1"). Intended as backup identifier (refer to note [10]).

4 GB FFFF FFFFh High BIOS Area FFE0 0000h FFDF FFFFh (2 MB) **PCI** Memory (18 MB) FEC1 0000h FEC0 FFFFh APIC Config. Space (64 KB) FECO 0000h FEBF FFFFh Host, **PCI** Memory PCI, AGP Area Expansion (2548 MB) 4000 0000h 3FFF FFFFh 1 GB Host/PCI Memory Expansion (1008 MB) 0100 0000h 16 MB 00FF FFFFh Host, PCI, **Extended Memory** ISA Area (15 MB) 0010 0000h 1 MB 000F FFFFh System BIOS Area (64 KB) 000F 0000h 000E FFFFh Extended BIOS Area 000E 0000h 000D FFFFh (64 KB) Option ROM (128 KB) 000C 0000h 000B FFFFh Graphics/SMRAM DOS Compatibility **RAM (128 KB)** Area 000A 0000h 640 KB 0009 FFFFh Fixed Mem. Area (128 KB) 0008 0000h 512 KB 0007 FFFFh Base Memory (512 KB) 0000 0000h

Figure 3-3 shows the system memory map for the system.

NOTE: All locations in memory are cacheable. Base memory is always mapped to DRAM. The next 128 KB fixed memory area can, through the north bridge, be mapped to DRAM or to PCI space. Graphics RAM area is mapped to PCI or AGP locations.

Figure 3–4. System Memory Map

³⁻⁸ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

3.2.4 SUBSYSTEM CONFIGURATION

The 443BX north bridge component provides the configuration function for the processor/memory subsystem. Table 3-4 lists the configuration registers used for setting and checking such parameters as memory control and PCI bus operation. These registers reside in the PCI Configuration Space and accessed using the methods described in Chapter 4, section 4.2.

Та	ble 3-4.
Host/PCI Bridge Configuration	n Registers (82443BX, Function 0)
Pacat	PCI Config

PCI Config.		Reset	PCI Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vender ID	8086h	6A, 6Bh	DRAM Control Reg.	00h
02, 03h	Device ID	7190h	6C6Fh	Memory Buffer Strength	55h
04, 05h	Command	0006h	70h	Multi-Transaction Timer	00h
06, 07h	Status	0210h	71h	CPU Latency Timer	10h
08h	Revision ID		72h	SMRAM Control	02h
090Bh	Class Code		90h	Error Command	00h
0Dh	Latency Timer	00h	91h	Error Status Register 0	00h
0Eh	Header Type	00h	92h	Error Status Register 1	00h
1013h	Aperture Base Config.	8	93h	Reset Control	00h
50, 51h	PAC Config. Reg.	00h	A0A3h	AGP Capability Identifier	N/A
_53h	Data Buffer Control	83h	A4A7h	AGP Status	N/A
5556h	DRAM Row Type	00h	A8ABh	AGP Command	00h
57h	DRAM Control	01h	B0B3h	AGP Control	00h
58h	DRAM Timing	00h	B4h	Aperture Size	0000h
595Fh	PAM 06 Registers	00h	B8BBh	Aperture Translation Table	0000h
6067h	DRAM Row Boundary	01h	BCh	Aperture I/F Timer	00h
68h	Fixed DRAM Hole	00h	BDh	Low Priority Timer	00h

NOTES:

Refer to Intel Inc. documentation for detailed description of registers. Assume unmarked locations/gaps as reserved.

Chapter 3	Processor/Memory Subsystem
	This page is intentionally blank.
3-10 <i>Comp</i>	paq Deskpro EN Series of Personal Computers

Chapter 4 SYSTEM SUPPORT

4.1 INTRODUCTION

This chapter covers subjects dealing with basic system architecture and covers the following topics:

♦	PCI bus overview (4.2)	page 4-2
•	AGP bus overview (4.3)	page 4-11
•	ISA bus overview (4.4)	page 4-16
•	System clock distribution (4.5)	page 4-28
•	Real-time clock and configuration memory (4.6)	page 4-29
•	I/O map and register accessing (4.7)	page 4-46
•	System management (4.8)	page 4-51

This chapter covers functions provided by off-the-shelf chipsets and therefore describes only basic aspects of these functions as well as information unique to the Compaq Deskpro EN Series of Personal Computers. For detailed information on specific components, refer to the applicable manufacturer's documentation.

4.2 PCI BUS OVERVIEW

NOTE: This section describes the PCI bus in general and highlights bus implementation in this particular system. For detailed information regarding PCI bus operation, refer to the *PCI Local Bus Specification Revision 2.1*.

This system implements a 5-V, 32-bit Peripheral Component Interconnect (PCI) bus operating at 33 MHz. The PCI bus uses a shared address/data bus design. On the first clock cycle of a PCI bus transaction the bus carries address information. On subsequent cycles, the bus carries data. PCI transactions occur synchronously with the Host bus at 33 MHz. All I/O transactions involve the PCI bus. All ISA transactions involving the microprocessor, cache, and memory also involve the PCI bus. Memory cycles will involve the PCI if the access is initiated by a device or subsystem other than the microprocessor.

The PCI bus handles address/data transfers through the identification of devices and functions on the bus (Figure 4-1). A device is defined as a component or slot that resides on the PCI bus. A function is defined as the end source or target of the bus transaction. A device (component or slot) may contain one or more functions (i.e., in this system the PCI/ISA Bridge function, EIDE controller function, USB function, and ACPI function are contained within the South Bridge component).

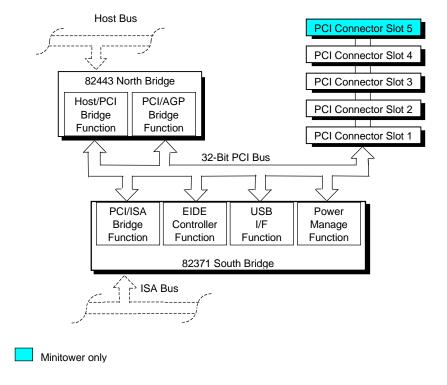
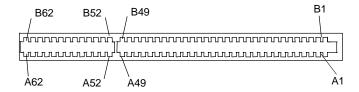



Figure 4–1. PCI Bus Devices and Functions

4.2.1 PCI CONNECTOR

Figure 4–2. PCI Bus Connector (32-Bit Type)

				Table	. 4 4
			DOL	Table	
	PCI Bus Connect				
Pin_	B Signal	A Signal	Pin	B Signal	A Signal
01	-12 VDC	TRST-	32	AD17	AD16
02	TCK	+12 VDC	33	C/BE2-	+3.3 VDC
_03	GND	TMS	34	GND	FRAME-
_04	TDO	TDI	35	IRDY-	GND
_05	+5 VDC	+5 VDC	36	+3.3 VDC	TRDY-
_06	+5 VDC	INTA-	37	DEVSEL-	GND
07	INTB-	INTC-	38	GND	STOP-
08	INTD-	+5 VDC	39	LOCK-	+3.3 VDC
09	PRSNT1-	Reserved	40	PERR-	SDONE
10	RSVD	+5 VDC	41	+3.3 VDC	SBO-
11	PRSNT2-	Reserved	42	SERR-	GND
12	GND	GND	43	+3.3 VDC	PAR
13	GND	GND	44	C/BE1-	AD15
14	RSVD	Reserved	45	AD14	+3.3 VDC
15	GND	RST-	46	GND	AD13
16	CLK	+5 VDC	47	AD12	AD11
17	GND	GNT-	48	AD10	GND
18	REQ-	GND	49	GND	AD09
19	+5 VDC	PME-	50	Key	Key
20	AD31	AD30	51	Key	Key
21	AD29	+3.3 VDC	52	AD08	C/BE0-
22	GND	AD28	53	AD07	+3.3 VDC
23	AD27	AD26	54	+3.3 VDC	AD06
24	AD25	GND	55	AD05	AD04
25	+3.3 VDC	AD24	56	AD03	GND
26	C/BE3-	IDSEL	57	GND	AD02
27	AD23	+3.3 VDC	58	AD01	AD00
28	GND	AD22	59	+5 VDC	+5 VDC
29	AD21	AD20	60	ACK64-	REQ64-
30	AD19	GND	61	+5 VDC	+5 VDC
31	+3.3 VDC	AD18	62	+5 VDC	+5 VDC

4.2.2 PCI BUS MASTER ARBITRATION

The PCI bus supports a bus master/target arbitration scheme. A bus master is a device that has been granted control of the bus for the purpose of initiating a transaction. A target is a device that is the recipient of a transaction. Request (REQ), Grant (GNT), and FRAME signals are used by PCI bus masters for gaining access to the PCI bus. When a PCI device needs access to the PCI bus (and does not already own it), the PCI device asserts it's REQn signal to the PCI bus arbiter (a function of the system controller component). If the bus is available, the arbiter asserts the GNTn signal to the requesting device, which then asserts FRAME and conducts the address phase of the transaction with a target. If the PCI device already owns the bus, a request is not needed and the device can simply assert FRAME and conduct the transaction. Table 4-1 shows the grant and request signals assignments for the devices on the PCI bus.

	Table 4-2.
	PCI Bus Mastering Devices
REQ/GNT Line	Device
REQ0/GNT0	PCI Connector Slot 1
REQ1/GNT1	PCI Connector Slot 2
REQ2/GNT2	PCI Connector Slot 3
REQ3/GNT3	PCI Connector Slot 4
REQ4/GNT4	PCI Connector Slot 5 [1]
GREQ/GGNT	AGP Slot

NOTE:

[1] Minitower only.

PCI bus arbitration is based on a round-robin scheme that complies with the fairness algorithm specified by the PCI specification. The bus parking policy allows for the current PCI bus owner (excepting the PCI/ISA bridge) to maintain ownership of the bus as long as no request is asserted by another agent. Note that most CPU-to-DRAM and AGP-to-DRAM accesses can occur concurrently with PCI traffic, therefore reducing the need for the Host/PCI bridge to compete for PCI bus ownership.

The PCI bus arbiter of the 443BX includes a Multi-Transaction Timer (MTT) that provides additional control for bus agents that perform fragmented accesses or have real-time access requirements. The MTT allows the use of lower-cost peripherals (by the reduction of data buffering) for multimedia applications such as video capture, serial bus, and RAID SCSI controllers.

The 82443 and the 82371 support the passive release mechanism, which reduces PCI bus latency caused by an ISA initiator owning the bus for long periods of time.

4.2.3 PCI BUS TRANSACTIONS

The PCI bus consists of a 32-bit path (AD31-00 lines) that uses a multiplexed scheme for handling both address and data transfers. A bus transaction consists of an address cycle and one or more data cycles, with each cycle requiring a clock (PCICLK) cycle. High performance is realized during burst modes in which a transaction with contiguous memory locations requires that only one address cycle be conducted and subsequent data cycles are completed using auto-incremented addressing. Four types of address cycles can take place on the PCI bus; I/O, memory, configuration, and special. Address decoding is distributed (left up to each device on the PCI bus).

4.2.3.1 I/O and Memory Cycles

For I/O and memory cycles, a standard 32-bit address decode (AD31..0) for byte-level addressing is handled by the appropriate PCI device. For memory addressing, PCI devices decode the AD31..2 lines for dword-level addressing and check the AD1,0 lines for burst (linear-incrementing) mode. In burst mode, subsequent data phases are conducted a dword at a time with addressing assumed to increment accordingly (four bytes at a time).

4.2.3.2 Configuration Cycles

Devices on the PCI bus must comply with PCI protocol that allows configuration of that device by software. In this system, configuration mechanism #1 (as described in the PCI Local Bus specification Rev. 2.1) is employed. This method uses two 32-bit registers for initiating a configuration cycle for accessing the configuration space of a PCI device. The configuration address register (CONFIG_ADDRESS) at 0CF8h holds a value that specifies the PCI bus, PCI device, and specific register to be accessed. The configuration data register (CONFIG_DATA) at 0CFCh contains the configuration data.

PCI Configuration Address Register I/O Port 0CF8h, R/W, (32-bit access only)

Bit	Function			
31	Configuration Enable			
	0 = Disabled			
	1 = Enable			
3024	Reserved - read/write 0s			
2316	Bus Number. Selects PCI bus			
1511	PCI Device Number. Selects PCI			
	device for access			
108	Function Number. Selects function of			
	selected PCI device.			
72	Register Index. Specifies config. reg.			
1,0	Configuration Cycle Type ID.			
	00 = Type 0			
	01 = Type 1			

PCI Configuration Data Register I/O Port 0CFCh, R/W, (8-, 16-, 32-bit access)

Bit	Function
310	Configuration Data.

Figure 4-3 shows how the loading of 0CF8h results in a Type 0 configuration cycle on the PCI bus. The Device Number (bits <15..11> determines which one of the AD31..11 lines is to be asserted high for the IDSEL signal, which acts as a "chip select" function for the PCI device to be configured.

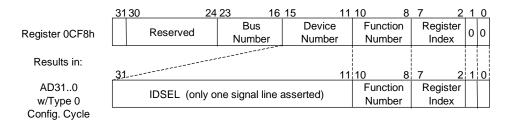


Figure 4–3. Type 0 Configuration Cycle

Type 0 configuration cycles are used for configuring devices on PCI bus # 0. Type 1 configuration cycles (reg. 0CF8h bits <1,0>=01b) are passed on to PCI bus # 1 (if present). Table 4-3 shows the standard configuration of device numbers and IDSEL connections for components and slots residing on a PCI bus.

	Table 4	l-3					
PCI Component Configuration Access							
Device IDSEL PCI Component Bus No. [1] Wired to:							
82443 (North Bridge)	0	0	AD11				
AGP slot	1	0	AD16				
USB	0	9	AD20				
PCI Connector 1 (PCI slot 1)	0	13	AD24				
PCI Connector 2 (PCI slot 2)	0	14	AD25				
PCI Connector 3 (PCI slot 3)	0	15	AD26				
PCI Connector 4 (PCI slot 4)	0	16	AD27				
PCI Connector 5 (PCI slot 5) [2]	0	17	AD29				
82371 (South Bridge)	0	20	AD31				

NOTES

[1] CF8h bits <15..11>

[2] Minitower only.

The function number (CF8h, bits <10..8>) is used to select a particular function within a multifunction device. Configurable functions present in system as shipped from the factory are listed in Table 4-4.

Table 4-4.					
PCI Function Configuration Access					
PCI Function Device No. Function No					
Host/PCI Bridge (82443)	0	0			
PCI/AGP Bridge (82443)	0	1			
PCI/ISA Bridge (82371)	20	0			
IDE Interface (82371)	20	1			
USB Interface (82371)	20	2			
Power Management Cntlr. (82371)	20	3			

The register index (CF8h, bits <7..2>) identifies the 32-bit location within the configuration space of the PCI device to be accessed. All PCI devices can contain up to 256 bytes of configuration data (see Figure 4-4), of which the first 64 bytes comprise the configuration space header.

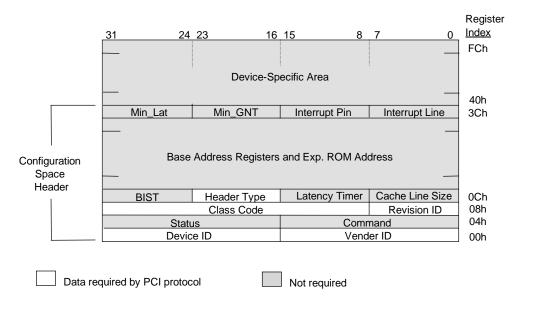


Figure 4-4. PCI Configuration Space Map

Each PCI device is identified with a vender ID (assigned to the vender by the PCI Special Interest Group) and a device ID (assigned by the vender). The device and vender IDs for the devices on the system board are listed in Table 4-5.

Table 4-5. System Board PCI Device Identification					
PCI Device	Device ID				
North Bridge (82443 PAC):					
Host/PCI Bridge (Function 0)	8086h	7190h			
PCI/AGP Bridge (Function 1) [1]	8086h	7191h			
South Bridge (82371 PIIX4):					
PCI/ISA Bridge (Function 0)	8086h	7110h			
EIDE Controller (Function 1)	8086h	7111h			
USB I/F (Function 2)	7112h				
Power Mngmt. Cntlr (Function 3)	8086h	7113h			

NOTES:

4.2.3.3 Special Cycles

There are two types of special cycles that may occur on the PCI bus. The first type is initiated by the host and is used to perform the following functions: Shutdown, Flush, Halt, Write Back, Flush Acknowledge, Branch Trace Message, and Stop/Grant. These cycles start like all other PCI cycles and terminate with a master abort.

The second type of special cycle is initiated by writing to 0CF8h, Bus # = all 0s, Device = all 1s, (Function # all 1s, and Register = all 0s) and 0CFCh to generate a Type 0 configuration cycle. This Type 0 cycle, however, does not assert any of the IDSEL lines and therefore results in a master abort with FFFFh returned to the microprocessor.

4.2.4 OPTION ROM MAPPING

During POST, the PCI bus is scanned for devices that contain their own specific firmware in ROM. Such option ROM data, if detected, is loaded into system memory's DOS compatibility area (refer to the system memory map shown in chapter 3).

^[1] Graphics Address Remapping Table (GART) used on all systems.

4.2.5 PCI INTERRUPT MAPPING

The PCI bus provides for four interrupt signals; INTA-, INTB-, INTC-, and INTD-. These signals may be generated by on-board PCI devices or by devices installed in the PCI slots. In order to minimize latency, INTA-..INTD- signal routing from the interrupt controller of the 82371 south bridge to PCI slots/devices is distributed evenly as shown below:

Interrupt Cntlr.	PCI Slot 1	PCI Slot 2	PCI Slot 3	PCI Slot 4	PCI Slot 5	AGP Slot	USB
INTA-	INTA-	INTD-	INTC-	INTB-	INTD-		
INTB-	INTB-	INTA-	INTD-	INTC-	INTA-		
INTC-	INTC-	INTB-	INTA-	INTD-	INTB-	INTA-	
INTD-	INTD-	INTC-	INTB-	INTA-	INTC-	INTB-	INTD-

NOTE: PCI Slot 5 on minitower only.

Interrupts generated by PCI devices can be configured to share the standard AT (IRQn) interrupt lines. Two devices that share a single PCI interrupt must also share the corresponding AT interrupt.

4.2.6 PCI POWER MANAGEMENT SUPPORT

This system complies with the PCI Power Management Interface Specification (rev 1.0). The PCI Power Management Enable (PME-) signal is supported by the 440BX chipset and allows compliant PCI and AGP peripherals to initiate the power management routine.

4.2.7 PCI CONFIGURATION

PCI bus operations, especially those that involve ISA bus interaction, require the configuration of certain parameters such as PCI IRQ routing, top of memory accessible by ISA, SMI generation, and clock throttling characteristics. These parameters are handled by the PCI/ISA bridge function (PCI function #0) of the South Bridge component and configured through the PCI configuration space registers listed in Table 4-6. Configuration is provided by BIOS at power-up but re-configurable by software.

Table 4-6.PCI/ISA Bridge Configuration Registers (82371, Function 0)

PCI Config.		Reset	PCI Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vender ID	8086h	63h	PCI Interrupt Routing	80h
02, 03h	Device ID	7111h	64h	Serial Interrupt Control	
04, 05h	Command		69h	Memory Map Control	02h
06, 07h	Status		6A, 6Bh	SERR-/PCI Cycle Retry	00h
08h	Revision ID		76, 77h	DMA Enable/Ch. Routing	
09-0Bh	Class Code		80h	A12 Mask/X-Y Base Addr.	00h
0Eh	Header Type		82h	USB Passive Rel. Enable	00h
4Ch	DMA Aliasing Control	00h	90, 91h	DMA Channel Select	00h
4E-4Fh	APIC/BIOS Control	0003h	92, 93h	DMA 0-3 Base PTR	00h
60h	PCI Interrupt Routing	80h	94, 95h	DMA 4-7 Base PTR	00h
61h	PCI Interrupt Routing	80h	B0-B3h	GPIO/Misc. Funct. Select	00h
62h	PCI Interrupt Routing	80h	CBh	RTC/RAM Control	21h

NOTE: Assume unmarked locations/gaps as reserved.

4.3 AGP BUS OVERVIEW

NOTE: This section describes the AGP bus in general. For a detailed description of AGP bus operations refer to the *AGP Interface Specification* available at the following AGP forum web site: http://www.agpforum.org/index.htm

The Accelerated Graphics Port (AGP) bus is specifically designed as an economical yet high-performance interface for 3D graphics adapters. The AGP interface is designed to give graphics adapters dedicated pipelined access to system memory for the purpose of off-loading texturing, z-buffering, and alpha blending used in 3D graphics operations. By off-loading a large portion of 3D data to system memory the AGP graphics adapter only requires enough memory for frame buffer (display image) refreshing.

4.3.1 BUS TRANSACTIONS

The operation of the AGP bus is based on the 66-MHz PCI specification but includes additional mechanisms to increase bandwidth. During the configuration phase the AGP bus acts in accordance with PCI protocol. Once operation with the AGP adapter involves graphics data handling, AGP-defined protocols take effect. The AGP graphics adapter acts generally as the AGP master, but can also behave as a "PCI" target during fast writes from the north bridge.

Key differences between the AGP interface and the PCI interface are as follows:

- ♦ Address phase and associated data transfer phase are disconnected transactions. Addressing and data transferring occur as contiguous actions on the PCI bus. On the AGP bus a request for data and the transfer of data may be separated by other operations.
- ♦ Commands on the AGP bus specify system memory accesses only. Unlike the PCI bus, commands involving I/O and configuration are not required or allowed. The system memory address space used in AGP operations is the same linear space used by PCI memory space commands, but is further specified by the graphics address re-mapping table (GART) of the north bridge component.
- ◆ Data transactions on the AGP bus involve eight bytes or multiples of eight bytes. The AGP memory addressing protocol uses 8-byte boundaries as opposed to PCI's 4-byte boundaries. If a transfer of less than eight bytes is needed, the remaining bytes are filled with arbitrary data that is discarded by the target.
- Pipelined requests are defined by length or size on the AGP bus. The PCI bus defines transfer lengths with the FRAME- signal.

There are two basic types of transactions on the AGP bus: data requests (addressing) and data transfers. These actions are separate from each other.

4.3.1.1 Data Request

Requesting data is accomplished in one of two ways; either multiplexed addressing (using the AD lines for addressing/data) or demultiplexed ("sideband") addressing (using the SBA lines for addressing only and the AD lines for data only). Even though there are only eight SBA lines (as opposed to the 32 AD lines) sideband addressing maximizes efficiency and throughput by allowing the AD lines to be exclusively used for data transfers. Sideband addressing occurs at the same rate (1X or 2X) as data transfers. The differences in rates will be discussed in the next section describing data transfers. Note also that sideband addressing is limited to 48 bits (address bits 48-63 are assumed zero).

The north bridge supports both SBA and AD addressing methods and all three data transfer rates, but the method and rate is selected by the AGP graphics adapter.

4.3.1.2 Data Transfers

Data transfers use the AD lines and occur as the result of data requests described previously. Each transaction resulting from a request involves at least eight bytes, requiring the 32 AD lines to handle at least two transfers per request. The 443BX supports two transfer rates: 1X and 2X. Regardless of the rate used, the speed of the bus clock is constant at 66 MHz. The following subsections describe how the use of additional strobe signals makes possible higher transfer rates.

AGP 1X Transfers

In AGP 1X transfers the 66-MHz CLK signal is used to qualify the control and data signals. Each 4-byte data transfer is synchronous with one CLK cycle so it takes two CLK cycles for a minimum 8-byte transfer (Figure 4-5 shows two 8-byte transfers). The GNT- and TRDY- signals retain their traditional PCI functions. The ST0..3 signals are used for priority encoding, with "000" for low priority and "001" indicating high priority.

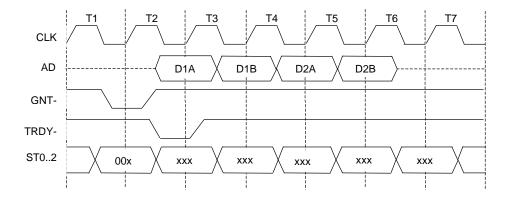
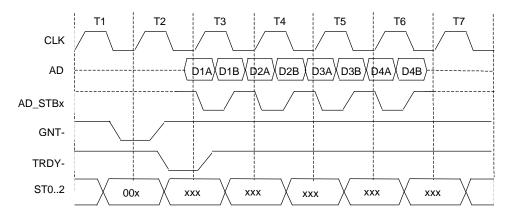



Figure 4–5. AGP 1X Data Transfer (Peak Transfer Rate: 266 MB/s)

AGP 2X Transfers

In AGP 2X transfers, clocking is basically the same as in 1X transfers except that the 66-MHz CLK signal is used to qualify only the control signals. The data bytes are latched by an additional strobe (AD_STBx) signal so that an 8-byte transfer occurs in one CLK cycle (Figure 4-6). The first four bytes (DnA) are latched by the receiving agent on the falling edge of AD_STBx and the second four bytes (DnB) are latched on the rising edge of AD_STBx.

Figure 4–6. AGP 2X Data Transfer (Peak Transfer Rate: 532 MB/s)

4.3.2 AGP CONFIGURATION

AGP bus operations require the configuration of certain parameters involving system memory access by the AGP graphics adapter. The AGP bus interface is configured as a PCI device integrated within the north bridge (82443, device 1) component. The AGP function is, from the PCI bus perspective, treated essentially as a PCI/PCI bridge and configured through PCI configuration registers (Table 4-7). Configuration is accomplished by BIOS during POST.

NOTE: Configuration of the AGP bus interface involves functions 0 and 1 of the 82443. Function 0 registers (listed in Table 3-4) include functions that affect basic control (GART) of the AGP.

Table 4-7.PCI/AGP Bridge Function Configuration Registers (82443BX, Function 1)

PCI Config.		Reset	PCI Config.		Reset
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vender ID	8086h	1Bh	Sec. Master Latency Timer	00h
02, 03h	Device ID	7191h	1Ch	I/O Base Address	F0h
04, 05h	Command	0000h	1Dh	I/O Limit Address	00h
06, 07h	Status	0220h	1E, 1Fh	Sec. PCI/PCI Status	02A0h
08h	Revision ID	00h	20, 21h	Memory Base Address	FFF0h
0A, 0Bh	Class Code	0406h	22, 23h	Memory Limit Address	0000h
0Eh	Header Type	01h	24, 25h	Prefetch Mem. Base Addr.	FFF0h
18h	Primary Bus Number	00h	26, 27h	Prefetch Mem. Limit Addr.	0000h
19h	Secondary Bus Number	00h	3Eh	PCI/PCI Bridge Control	80h
1Ah	Subordinate Bus Number	00h	3F-FFh	Reserved	00h

NOTE:

Assume unmarked locations/gaps as reserved. Refer to Intel documentation for detailed register descriptions.

The AGP graphics adapter (actually its resident controller) is configured as a standard PCI device.

4.3.3 AGP CONNECTOR

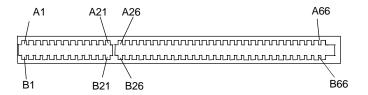


Figure 4–7. AGP Bus Connector

	Table 4-8.							
	AGP Bus Connector Pinout							
Pin	A Signal	B Signal	Pin	A Signal	B Signal	Pin	A Signal	B Signal
01	+12 VDC	OVRCNT-	23	(Key)	(Key)	45	VDD3	VDD3
02	RSVD	VDD	24	(Key)	(Key)	46	TRDY-	DEVSEL-
03	GND	VDD	25	(Key)	(Key)	47	STOP-	NC
04	USBN	USBF	26	PAD30	PAD31	48	PME-	PERR-
05	GND	GND	27	PAD28	PAD29	49	GND	GND
06	INTA-	INTB-	28	VDD3	VDD3	50	PAR	SERR-
07	RESET	CLK	29	PAD26	PAD27	51	PAD15	CBE1-
08	GNT-	REQ-	30	PAD24	PAD25	52	NC	NC
09	VDD3	VDD3	31	GND	GND	53	PAD13	PAD14
10	ST1	ST0	32	RSVD	AD_STB1	54	PAD11	PAD12
11	RSVD	ST2	33	CBE3-	PAD23	55	GND	GND
12	PIPE-	RBF-	34	NC	NC	56	PAD09	PAD10
13	GND	GND	35	PAD22	PAD21	57	CBE0-	PAD08
14	RSVD	RSVD	36	PAD20	PAD19	58	NC	NC
15	SBA1	SBA0	37	GND	GND	59	RSVD	AD_STB0
16	VDD3	VDD3	38	PAD18	PAD17	60	PAD06	PAD07
17	SBA3	SBA2	39	PAD16	CBE2-	61	GND	GND
18	RSVD	SB_STB	40	NC	NC	62	PAD04	PAD05
19	GND	GND	41	FRAME-	IRDY-	63	PAD02	PAD03
20	SBA5	SBA4	42	RSVD	RSVD	64	NC	NC
21	SBA7	DBA6	43	GND	GND	65	PAD00	PAD01
22	(Key)	(Key)	44	RSVD	RSVD	66	RSVD	RSVD

4.4 ISA BUS OVERVIEW

NOTE: This section describes the ISA bus in general and highlights bus implementation in this particular system. For detailed information regarding ISA bus operation, refer to the *Compaq Extended Industry Standard Architecture (EISA) Technical Reference Guide*.

The industry standard architecture (ISA) bus provides an 8-/16-bit path for standard I/O peripherals as well as for optional devices that can be installed in the ISA expansion slots. Figure 4-8 shows the key functions and devices that reside on the ISA bus.

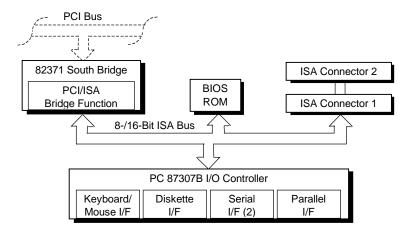


Figure 4–8. ISA Bus Block Diagram

4.4.1 ISA CONNECTOR

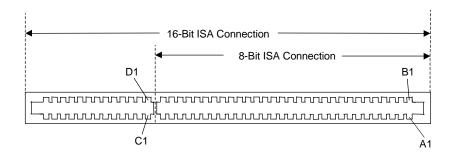


Figure 4–9. ISA Expansion Connector

	Table 4-9.							
	ISA Expansion Connector Pinout							
	16-Bit ISA Interface							
	8-Bit IS/	A Interfa	ce					
Pin	Signal	Pin	Signal	Pin	Signal	Pin	Signal	
B01	GND	A01	I/O CHK-	D01	M16-	C01	SBHE-	
B02	RESDRV	A02	SD7	D02	I/O16-	C02	LA23	
B03	+5 VDC	A03	SD6	D03	IRQ10	C03	LA22	
B04	IRQ9	A04	SD5	D04	IRQ11	C04	LA21	
B05	-5 VDC	A05	SD4	D05	IRQ12	C05	LA20	
B06	DRQ2	A06	SD3	D06	IRQ15	C06	LA19	
B07	-12 VDC	A07	SD2	D07	IRQ14	C07	LA18	
B08	NOWS-	A08	SD1	D08	DAK0-	C08	LA17	
B09	+12 VDC	A09	SD0	D09	DRQ0	C09	MRDC-	
B10	GND	A10	BUSRDY	D10	DAK5-	C10	MWTC-	
B11	SMWTC-	A11	DMA	D11	DRQ5	C11	SD8	
B12	SMRDC-	A12	SA19	D12	DAK6-	C12	SD9	
B13	IOWC-	A13	SA18	D13	DRQ6	C13	SD10	
B14	IORC-	A14	SA17	D14	DAK7-	C14	SD11	
B15	DAK3-	A15	SA16	D15	DRQ7	C15	SD12	
B16	DRQ3	A16	SA15	D16	+5 VDC	C16	SD13	
B17	DAK1	A17	SA14	D17	GRAB-	C17	SD14	
B18	DRQ1	A18	SA13	D18	GND	C18	SD15	
B19	REFRESH-	A19	SA12					
B20	BCLK	A20	SA11					
_B21	IRQ7	A21	SA10					
B22	IRQ6	A22	SA9					
B23	IRQ5	A23	SA8					
B24	IRQ4	A24	SA7					
B25	IRQ3	A25	SA6					
B26	DAK2-	A26	SA5					
B27	T-C	A27	SA4					
B28	BALE	A28	SA3					
B29	+5 VDC	A29	SA2					
B30	OSC	A30	SA1					
B31	GND	A31	SA0					

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

4.4.2 ISA BUS TRANSACTIONS

The ISA bus supports 8- and 16-bit transfers at an 8-MHz rate. Devices limited to 8-bit transfers use the lower byte portion (data lines 7..0) while 16-bit transfers use the full bandwidth (data lines 15..0). Addressing is handled by two classifications of address signals: latched and latchable. Latched address signals (SA19..0) select the specific byte within the 1-MB section of memory defined by address lines LA23..17. Latchable address lines (LA23..17) provide a longer setup time for pre-chip selection or for pre-address decoding for high-speed memory and allow access to up to 16 megabytes of physical memory on the ISA bus. The SA19..17 signals have the same values as the LA19..17 signals for all memory cycles. The I/O cycles use only the SA15..0 signals.

The key control signals are described as follows:

- ♦ MRDC- (Memory Read Cycle): MRDC- is active on all ISA memory reads accessing memory from 000000h to FFFFFFh.
- ♦ SMEMR- (System Memory Read): SMEMR- is asserted by the PCI/ISA bridge to request an ISA memory device to drive data onto the data lines for accesses below one megabyte. SMEMR- is a delayed version of MRDC-.
- ♦ MWTC- (Memory Write Cycle): MWTC- is active on all ISA memory write cycles accessing memory from 000000h to FFFFFFh.
- ♦ SMEMW- (System Memory Write): SMEMW- is asserted by the PCI/ISA bridge to request an ISA memory device to accept data from the data lines for access below one megabyte. SMEMW- is a delayed version of MWTC-.
- ♦ IORC- (Input/Output Read Cycle): IORC- commands an ISA I/O device to drive data onto the data lines.
- ♦ IOWC- (Input/Output Write Cycle): IOWC- commands an ISA I/O device to accept data from the data lines.
- ♦ SBHE- (System Byte High Enable): SBHE- indicates that a byte is being transferred on the upper half (D15..8) of the data lines.
- ♦ SA0- (System Address Bit <0>): This bit is the complement of SBHE- and indicates that a byte is being transferred on the lower half (D7..0) of the data lines.
- ♦ M16- (16-bit Memory Cycle): M16- is asserted by 16-bit ISA devices to indicate 16-bit memory cycle capability.
- ♦ IO16- (16-bit I/O Cycle): IO16- is asserted by 16-bit ISA devices to indicate 16-bit I/O cycle transfer capability.

If the address on the SA lines is above one megabyte, SMRDC- and SMWTC- will not be active. The MRDC- and MWTC- signals are active for memory accesses up to 16 megabytes and can be used by any device that uses the full 16-bit ISA bus. To request a 16-bit transfer, a device asserts either the M16- (memory) or IO16- (I/O) signal when the device is addressed.

When another device (such as a DMA device or another bus master) takes control of the ISA, the Bus Address Latch Enable (BALE) signal is held active for the duration of the operation. As a result, signals LA23..17 are always enabled and must be held stable for the duration of each bus cycle.

When the address changes, devices on the bus may decode the latchable address (LA23..17) lines and then latch them. This arrangement allows devices to decode chip selects and M16- before the next cycle actually begins.

The following guidelines apply to optional ISA devices installed in the system:

- On bus lines that can be driven by a controller board, the driver should be able to sink a minimum of 20 ma at 0.5 VDC and source 2 ma at 3.75 VDC.
- On bus lines that are driven in the low direction only (open collector), the driver should be able to sink 20 ma at 0.5 VDC.
- ◆ The load on any logic line from a single bus slot should not exceed 2.0 ma in the low state (at 0.5 VDC) or 0.1 ma in the high state (at 3.75 VDC).
- ♦ The logic-high voltage at the bus ranges from 3.75 VDC to 5.5 VDC. The logic low voltage ranges from 0 VDC to 0.8 VDC.

4.4.3 DIRECT MEMORY ACCESS

Direct Memory Access (DMA) is a method by which an ISA device accesses system memory without involving the microprocessor. DMA is normally used to transfer blocks of data to or from an ISA I/O device. DMA reduces the amount of CPU interactions with memory, freeing the CPU for other processing tasks.

NOTE: This section describes DMA in general. For detailed information regarding DMA operation, refer to the *Compaq Extended Industry Standard Architecture (EISA) Technical Reference Guide*. Note, however, that EISA enhancements as described in the referenced document are not supported in this (ISA only) system.

The South Bridge component includes the equivalent of two 8237 DMA controllers cascaded together to provide eight DMA channels. Table 4-10 lists the default configuration of the DMA channels.

Table 4-10.				
Default DM	1A Channel Assignments			
DMA Channel	Device ID			
Controller 1 (byte transfers)				
0	Spare & ISA conn. pins D8, D9			
1	Audio subsystem & ISA conn. pins B17, B18			
2	Diskette drive & ISA conn. pins B6, B26			
3	ECP LPT1 & ISA conn. pins B15, B16			
Controller 2 (word transfers)				
4	Cascade for controller 1			
5	Spare & ISA conn. pins D10, D11			
6	Spare & ISA conn. pins D12, D13			
7	Spare & ISA conn. pins. D14, D15			

All channels in DMA controller 1 operate at a higher priority than those in controller 2. Note that channel 4 is not available for use other than its cascading function for controller 1. The DMA controller 2 can transfer words only on an even address boundary. The DMA controller and page register define a 24-bit address that allows data transfers within the address space of the CPU. The DMA controllers operate at 8 MHz.

The DMA logic is accessed through two types of I/O mapped registers; page registers and controller registers. The mapping is the same regardless of the support chipset used.

4.4.3.1 Page Registers

The DMA page register contains the eight most significant bits of the 24-bit address and works in conjunction with the DMA controllers to define the complete (24-bit)address for the DMA channels. Table 4-11 lists the page register port addresses.

Table 4-11.			
DMA Page Register Addresses			
DMA Channel	Page Register I/O Port		
Controller 1 (byte transfers)			
Ch 0	087h		
Ch 1	083h		
Ch 2	081h		
Ch 3	082h		
Controller 2 (word transfers)			
Ch 4	n/a		
Ch 5	08Bh		
Ch 6	089h		
Ch 7	08Ah		
Refresh	08Fh [see note]		

NOTE:

The DMA memory page register for the refresh channel must be programmed with 00h for proper operation.

The memory address is derived as follows:

24-Bit Address - Controller 1 (Byte Transfers)

8-Bit Page Register
A23..A16

8-Bit DMA Controller
A15..A00

24-Bit Address - Controller 2 (Word Transfers)

8-Bit Page Register
A23..A17

A16..A01, (A00 = 0)

Note that address line A16 from the DMA memory page register is disabled when DMA controller 2 is selected. Address line A00 is not connected to DMA controller 2 and is always 0 when word-length transfers are selected.

By not connecting A00, the following applies:

- ♦ The size of the the block of data that can be moved or addressed is measured in 16-bits (words) rather than 8-bits (bytes).
- The words must always be addressed on an even boundary.

DMA controller 1 can move up to 64 Kbytes of data per DMA transfer. DMA controller 2 can move up to 64 Kwords (128 Kbytes) of data per DMA transfer. Word DMA operations are only possible between 16-bit memory and 16-bit peripherals.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors The RAM refresh is designed to perform a memory read cycle on each of the 512 row addresses in the DRAM memory space. Refresh operations are used to refresh memory on the 32-bit memory bus and the ISA bus. The refresh address is provided on lines SA00 through SA08. Address lines LA23..17, SA18,19 are driven low.

The remaining address lines are in an undefined state during the refresh cycle. The refresh operations are driven by a 69.799-KHz clock generated by Interval Timer 1, Counter 1. The refresh rate is 128 refresh cycles in 2.038 ms.

4.4.3.2 DMA Controller Registers

Table 4-12 lists the DMA Controller Registers and their I/O port addresses. Note that there is a set of registers for each DMA controller.

Table 4-12. DMA Controller Registers				
Status	008h	0D0h	R	
Command	008h	0D0h	W	
Mode	00Bh	0D6h	W	
Write Single Mask Bit	00Ah	0D4h	W	
Write All Mask Bits	00Fh	0DEh	W	
Software DRQx Request	009h	0D2h	W	
Base and Current Address - Ch 0	000h	0C0h	W	
Current Address - Ch 0	000h	0C0h	R	
Base and Current Word Count - Ch 0	001h	0C2h	W	
Current Word Count - Ch 0	001h	0C2h	R	
Base and Current Address - Ch 1	002h	0C4h	W	
Current Address - Ch 1	002h	0C4h	R	
Base and Current Word Count - Ch 1	003h	0C6h	W	
Current Word Count - Ch 1	003h	0C6h	R	
Base and Current Address - Ch 2	004h	0C8h	W	
Current Address - Ch 2	004h	0C8h	R	
Base and Current Word Count - Ch 2	005h	0CAh	W	
Current Word Count - Ch 2	005h	0CAh	R	
Base and Current Address - Ch 3	006h	0CCh	W	
Current Address - Ch 3	006h	0CCh	R	
Base and Current Word Count - Ch 3	007h	0CEh	W	
Current Word Count - Ch 3	007h	0CEh	R	
Temporary (Command)	00Dh	0DAh	R	
Reset Pointer Flip-Flop (Command)	00Ch	0D8h	W	
Master Reset (Command)	00Dh	0DAh	W	
Reset Mask Register (Command)	00Eh	0DCh	W	

NOTE:

For a detailed description of the DMA registers, refer to the Compaq EISA Technical Reference Guide.

4.4.4 INTERRUPTS

The microprocessor uses two types of interrupts; maskable and nonmaskable. A maskable interrupt can be enabled or disabled within the microprocessor by the use of the STI and CLI instructions. A nonmaskable interrupt cannot be masked off within the microprocessor but may be inhibited by hardware or software means external to the microprocessor.

4.4.4.1 Maskable Interrupts

The maskable interrupt is a hardware-generated signal used by peripheral functions within the system to get the attention of the microprocessor. Peripheral functions produce a unique INTA-D (PCI) or IRQ0-15 (ISA) signal that is routed to interrupt processing logic that asserts the interrupt (INTR) input to the microprocessor. The microprocessor halts execution to determine the source of the interrupt and then services the peripheral as appropriate.

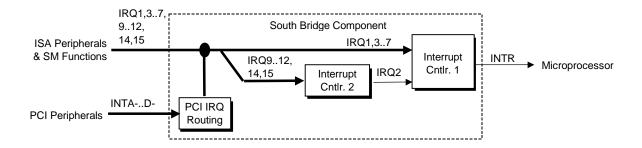


Figure 4–10. Maskable Interrupt Processing, Block Diagram

The South Bridge component, which includes the equivalent of two 8259 interrupt controllers cascaded together, handles the standard AT-type (ISA) interrupt signals (IRQn). The South Bridge also receives the PCI interrupt signals (PINTA-..PINTD-) from PCI devices. The PCI interrupts can be configured by PCI Configuration Registers 60h..63h to share the standard ISA interrupts (IRQn). The power-up default configuration has the PIRQn disabled. Table 4-13 lists the standard source configuration for maskable interrupts and their priorities. If more than one interrupt is pending, the highest priority (lowest number) is processed first.

Table 4-13.
Maskable Interrupt Priorities and Assignments

Priority	Signal Label	Source (Typical)
1	IRQ0	Interval timer 1, counter 0
2	IRQ1	Keyboard
3	IRQ8-	Real-time clock
4	IRQ9	Spare and ISA connector pin B04
5	IRQ10	Spare and ISA connector pin D03
6	IRQ11	Spare and ISA connector pin D04
_ 7	IRQ12	Mouse and ISA connector pin D05
_ 8	IRQ13	Coprocessor (math)
9	IRQ14	IDE primary I/F and ISA connector pin D07
10	IRQ15	IDE secondary I/F and ISA connector pin D06
11	IRQ3	Serial port (COM2) and ISA connector pin B25
12	IRQ4	Serial port (COM1) and ISA connector pin B24
13	IRQ5	Audio subsystem and ISA connector pin B23
14	IRQ6	Diskette drive controller and ISA connector pin B22
15	IRQ7	Parallel port (LPT1)
	IRQ2	NOT AVAILABLE (Cascade from interrupt controller 2)

Interrupts generated by PCI devices can be configured to share the standard AT (IRQn) interrupt lines. Refer to section 4.2.5 "PCI Interrupt Mapping" for information on PCI interrupts.

Maskable Interrupt processing is controlled and monitored through standard AT-type I/O-mapped registers. These registers are listed in Table 4-14.

Table 4-14.		
Maskable Interrupt Control Registers		
I/O Port	Register	
020h	Base Address, Int. Cntlr. 1	
021h	Initialization Command Word 2-4, Int. Cntlr. 1	
0A0h	Base Address, Int. Cntlr. 2	
0A1h	Initialization Command Word 2-4, Int. Cntlr. 2	

The initialization and operation of the interrupt control registers follows standard AT-type protocol.

4.4.4.2 Non-Maskable Interrupts

Non-maskable interrupts cannot be masked (inhibited) within the microprocessor itself but may be maskable by software using logic external to the microprocessor. There are two non-maskable interrupt signals: the NMI- and the SMI-. These signals have service priority over all maskable interrupts, with the SMI- having top priority over all interrupts including the NMI-.

NMI- Generation

The Non-Maskable Interrupt (NMI-) signal can be generated by one of the following actions:

- Parity errors detected on the ISA bus (activating IOCHK-).
- ♦ Parity errors detected on a PCI bus (activating SERR- or PERR-).
- Microprocessor internal error (activating IERRA or IERRB)

The IOCHK-, SERR-, and PERR- signals are routed through the south bridge component, which in turn activates the NMI to the microprocessor.

The NMI Status Register at I/O port 061h contains NMI source and status data as follows:

NMI Status Register 61h

Bit	Function
7	NMI Status:
	0 = No NMI from system board parity error.
	1 = NMI requested, read only
6	IOCHK- NMI:
	0 = No NMI from IOCHK-
	1 = IOCHK- is active (low), NMI requested, read only
5	Interval Timer 1, Counter 2 (Speaker) Status
4	Refresh Indicator (toggles with every refresh)
3	IOCHK- NMI Enable/Disable:
	0 = NMI from IOCHK- enabled
	1 = NMI from IOCHK- disabled and cleared (R/W)
2	System Board Parity Error (PERR/SERR) NMI Enable:
	0 = Parity error NMI enabled
	1 = Parity error NMI disabled and cleared (R/W)
1	Speaker Data (R/W)
0	Inteval Timer 1, Counter 2 Gate Signal (R/W)
	0 = Counter 2 disabled
	1 = Counter 2 enabled

Functions not related to NMI activity.

After the active NMI has been processed, status bits <7> or <6> are cleared by pulsing bits <2> or <3> respectively.

The NMI Enable Register (070h, <7>) is used to enable/disable the NMI signal. Writing 80h to this register masks generation of the NMI-. Note that the lower six bits of register at I/O port 70h affect RTC operation and should be considered when changing NMI- generation status.

SMI- Generation

The SMI- (System Management Interrupt) is typically used for power management functions. When power management is enabled, inactivity timers are monitored. When a timer times out, SMI- is asserted and invokes the microprocessor's SMI handler. The SMI- handler works with the APM BIOS to service the SMI- according to the cause of the timeout.

Although the SMI- is primarily used for power management the interrupt is also employed for the QuickLock/QuickBlank functions as well.

4.4.5 INTERVAL TIMER

The interval timer generates pulses at software (programmable) intervals. A 8254-compatible timer is integrated into the South Bridge chip. The timer function provides three counters, the functions of which are listed in Table 4-15.

		Table 4-15. Interval Timer Functions		
Counter	Function	Gate	Clock In	Clock Out
0	System Clock	Always on	1.193 MHz	IRQ0
1	Refresh	Always on	1.193 MHz	Refresh Req.
2	Speaker Tone	Port 61, bit<0>	1.193 MHz	Speaker Input

The interval timer is controlled through the I/O mapped registers listed in Table 4-16.

	Table 4-16.
	Interval Timer Control Registers
I/O Port	Register
040h	Read or write value, counter 0
041h	Read or write value, counter 1
042h	Read or write value, counter 2
043h	Control Word

Interval timer operation follows standard AT-type protocol. For a detailed description of timer registers and operation, refer to the *Compaq Extended Industry Standard Architecture Expansion Bus Technical Reference Guide*.

4.4.6 ISA CONFIGURATION

The working relationship between the PCI and ISA buses requires that certain parameters be configured. The PC/ISA bridge function of the South Bridge component includes configuration registers to set parameters such as PCI IRQ routing and top-of-memory available to ISA/DMA devices. These parameters are programmed by BIOS during power-up, using registers listed previously in Table 4-6.

4.5 SYSTEM CLOCK DISTRIBUTION

The system uses a Cypress CY2280 or compatible part for generation of most clock signals. Table 4-17 lists the system board clock signals and how they are distributed.

Table 4-17.			
Clock Generation and Distribution			
Frequncy/Signal Source Destination			
66, 100 MHz	CY2280	Processor, 82443 N. Bridge	
(CPUCLK) [1]			
66 MHz	North Bridge	AGP Slot	
48 MHz	íí .	82371 S. Bridge, 87307 I/O Cntlr.	
33 MHz (PCICLK)	íí	PCI Slots, 82371 S. Bridge	
14.31818 MHz	Crystal	W48C67	
14.31818 MHz	CY2280	South Bridge, ISA slots	
8.33 MHz (BCLK)	South Bridge	ISA slots	
32.77 KHz	Crystal	South Bridge	

NOTE:

^[1] Depending on processor speed (refer to Chapter 3, "Processor/Memory Subsystem").

4.6 REAL-TIME CLOCK AND CONFIGURATION MEMORY

The Real-time clock (RTC) and configuration memory functions are provided by the PC87307 I/O controller. The RTC uses the first 14 of 256 bytes of configuration memory and is MC146818-compatible. As shown in the following figure, the 87307 controller provides 256 bytes of configuration memory, divided into two 128-byte banks. The RTC/configuration memory can be accessed using conventional OUT and IN assembly language instructions using I/O ports 70h/71h, although the suggested method is to use the INT15 AX=E823h BIOS call.

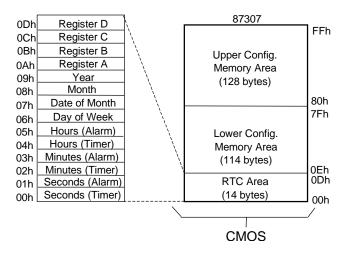


Figure 4–11. Configuration Memory Map

A lithium 3-VDC battery is used for maintaining the RTC and configuration memory while the system is powered down. During system operation a wire-Ored circuit allows the RTC and configuration memory to draw power from the power supply.

The battery is located in a battery holder on the system board and has a life expectancy of four to eight years. When the battery has expired it is replaced with a Renata CR2032 or equivalent 3-VDC lithium battery.

Table 4-18 lists the mapping of the configuration memory. Locations 00h-3Fh may be accessed using OUT/IN assembly language instructions or BIOS function INT15, AX=E823h. All other locations should be accessed using the INT15, AX=E845h function (refer to Chapter 8 for BIOS function descriptions).

Table 4-18.	
Configuration Memory (CMOS)) Мар

		T	=
Location	Function	Location	Function
00-0Dh	Real-time clock	41h-44h	Hood Removal Time Stamp
0Eh	Diagnostic status	45h	Keyboard snoop byte
_0Fh	System reset code	46h	Diskette drive status
_10h	Diskette drive type	47h	Last IPL device
11h	Reserved	48h-4Bh	IPL priority
12h	Hard drive type	4Ch-4Fh	BVC priority
_13h	Security functions	51h	ECC DIMM status
14h	Equipment installed	52h	Board revision (from boot block)
15h	Base memory size, low byte/KB	53h	SWSMI command
16h	Base memory size, high byte/KB	54h	SWSMI data
17h	Extended memory, low byte/KB	55h	APM command
18h	Extended memory, high byte/KB	56h	Erase-Ease keyboard byte
19h	Hard drive 1, primary controller	57h-76H	Saved CMOS location 10h-2Fh
1Ah	Hard drive 2, primary controller	77h-7Fh	Administrator password
1Bh	Hard drive 1, secondary controller	80h	ECMOS diagnostic byte
1Ch	Hard drive 2, secondary controller	81h-82h	Total super ext. memory tested good
1Dh	Enhanced hard drive support	83h	Microprocessor chip ID
1Eh	Reserved	84h	Microprocessor chip revision
1Fh	Power management functions	85h	Hood removal status byte
24h	System board ID	86h	Fast boot date
25h	System architecture data	87h	Fast boot status byte
26h	Auxiliary peripheral configuration	8Dh-8Fh	POST error logging
27h	Speed control external drive	90h-91h	Total super extended memory configured
28h	Expanded/base mem. size, IRQ12	92h	Miscellaneous configuration byte
29h	Miscellaneous configuration	93h	Miscellaneous PCI features
2Ah	Hard drive timeout	94h	ROM flash/power button status
2Bh	System inactivity timeout	97h	Asset/test prompt byte
2Ch	Monitor timeout, Num Lock Cntrl	9Bh	Ultra-33 DMA enable byte
2Dh	Additional flags	9Ch	Mode-2 Configuration
2Eh-2Fh	Checksum of locations 10h-2Dh	9Dh	ESS audio configuration
30h-31h	Total extended memory tested	9Eh	ECP DMA configuration
32h	Century	9Fh-AFh	Serial number
33h	Miscellaneous flags set by BIOS	B0h-C3h	Custom drive types 65, 66, 68, 15
34h	International language	C7h	Serial port 1 address
35h	APM status flags	C8h	Serial port 2 address
36h	ECC POST test single bit	C9h	COM1/COM2 port configuration
37h-3Fh	Power-on password	DEh-DFh	Checksum of locations 90h to DDh
40h	Miscellaneous Disk Bits	E0h-FFh	Client Management error log
NOTE	cccarioodo Diok Dio	1 - 311 1 1 11	S.I.S.I. I.I.GIIGGOITIOIR OTTO TOG

NOTE:

Assume unmarked gaps are reserved.

The contents of configuration memory (including the password) can be cleared by the following procedure:

- 1. Turn off unit **and** disconnect AC power cord from the rear chassis connector.
- 2. Remove jumper from pins 1 and 2 of header E50 and place on pins 2 and 3 for 15 seconds.
- 3. Replace jumper to original configuration (pins 1 and 2).
- 4. Re-connect AC power cord to the chassis and turn unit on.

RTC Control Register A, Byte 0Ah

Bit	Function		
7	Update in Progress. Read only.		
	0 = Time update will not occur before 2444 us		
	1 = Time update will occur within 2444 us		
64	Divider Chain Control. R/W.		
	00x = Oscillator disabled.		
	010 = Normal operation (time base frequency = 32.768 KHz).		
	11x = Divider chain reset.		
30	Periodic Interrupt Control. R/W. Specifies the periodic interrupt interval.		
	0000 = none 1000 = 3.90625 ms		
	0001 = 3.90625 ms		
	0010 = 7.8125 ms 1010 = 15. 625 ms		
	0011 = 122.070 us 1011 = 31.25 ms		
	0100 = 244.141 us 1100 = 62.50 ms		
	0101 = 488.281 us 1101 = 125 ms		
	0110 = 976.562 us 1110 = 250 ms		
	0111 = 1.953125 ms		

RTC Control Register B, Byte 0Bh

Bit	Function
7	Time Update Enable/disable
	0 = Normal operation, 1 = Disable time updating for time set
6	Periodic Interrupt Enable/Disable.
	0 = Disable, 1 = Enable interval specified by Register A
5	Alarm Interrupt Enable/disable
	0 = Disabled, 1 = Enabled
4	End-of-Update Interrupt Enable/Disable
	0 = Disabled, 1 = Enabled
3	Reserved (read 0)
2	Time/Date Format Select
	0 = BCD format, 1 = Binary format
1	Time Mode
	0 = 12-hour mode, 1 = 24-hour mode
0	Automatic Daylight Savings Time Enable/Disable
	0 = Disable
	1 = Enable (Advance 1 hour on 1 st Sunday in April, retreat 1 hour on last Sunday in October).

RTC Status Register C, Byte 0Ch

Bit	Function
7	If set, interrupt output signal active (read only)
6	If set, indicates periodic interrupt flag
5	If set, indicates alarm interrupt
4	If set, indicates end-of-update interrupt
30	Reserved

RTC Status Register D, Byte 0Dh

Bit	Function
7	RTC Power Status
	0 = RTC has lost power
	1 = RTC has not lost power

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

60	Reserved

Configuration Byte 0Eh, Diagnostic Status

Default Value = 00h

This byte contains diagnostic status data.

Configuration Byte 0Fh, System Reset Code

Default Value = 00h

This byte contains the system reset code.

Configuration Byte 10h, Diskette Drive Type

	Bit	Function
ſ	74	Primary (Drive A) Diskette Drive Type
ſ	30	Secondary (Drive B) Diskette Drive Type

Valid values for bits <7..4> and bits <3..0>:

0000 = Not installed

0001 = 360-KB drive

0010 = 1.2-MB drive

0011 = 720-KB drive

0100 = 1.44 - MB/1.25 - MB drive

0110 = 2.88-MB drive

(all other values reserved)

Configuration Byte 12h, Hard Drive Type

Bit	Function
74	Primary Controller 1, Hard Drive 1 Type:
	0000 = none 1000 = Type 8
	0001 = Type 1 1001 = Type 9
	0010 = Type 2 1010 = Type 10
	0011 = Type 3 1011 = Type 11
	0100 = Type 4 1100 = Type 12
	0101 = Type 5 1101 = Type 13
	0110 = Type 6 1110 = Type 14
	0111 = Type 7 1111 = other (use bytes 19h)
30	Primary Controller 1, Hard Drive 2 Type:
	0000 = none 1000 = Type 8
	0001 = Type 1 1001 = Type 9
	0010 = Type 2 1010 = Type 10
	0011 = Type 3 1011 = Type 11
	0100 = Type 4 1100 = Type 12
	0101 = Type 5 1101 = Type 13
	0110 = Type 6 1110 = Type 14
	0111 = Type 7

Configuration Byte 13h, Security Functions

Default Value = 00h

Bit	Function
7	Reserved
6	QuickBlank Enable After Standby:
	0 = Disable
	1 = Enable
5	Administrator Password:
	0 = Not present
	1 = Present
4	Reserved
3	Diskette Boot Enable:
	0 = Enable
	1 = Disable
2	QuickLock Enable:
	0 = Disable
	1 = Enable
1	Network Server Mode/Security Lock Override:
	0 = Disable
	1 = Enable
0	Password State (Set by BIOS at Power-up)
	0 = Not set
	1 = Set

Configuration Byte 14h, Equipment Installed

Default Value (standard configuration) = 03h

Bit	Function
7,6	No. of Diskette Drives Installed:
	00 = 1 drive 10 = 3 drives
	01 = 2 drives
52	Reserved
1	Coprocessor Present
	0 = Coprocessor not installed
	1 = Coprocessor installed
0	Diskette Drives Present
	0 = No diskette drives installed
	1 = Diskette drive(s) installed

Configuration Bytes 15h and 16h, Base Memory Size

Default Value = 280h

Bytes 15h and 16h hold a 16-bit value that specifies the base memory size in 1-KB (1024) increments. Valid base memory sizes are 512 and 640 kilobytes .

Configuration Bytes 17h and 18h, Extended Memory Size

Bytes 17h and 18h hold a 16-bit value that specifies the extended memory size in 1-KB increments.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Configuration Bytes 19h-1Ch, Hard Drive Types

Byte 19h contains the hard drive type for drive 1 of the primary controller if byte 12h bits <7..4> hold 1111b. Byte 1Ah contains the hard drive type for drive 2 of the primary controller if byte 12h bits <3..0> hold 1111b. Bytes1Bh and 1Ch contain the hard drive types for hard drives 1 and 2 of the secondary controller.

Configuration Byte 1Dh, Enhanced IDE Hard Drive Support

Default Value = F0h

Bit	Function	
7	EIDE - Drive C (83h)	
6	EIDE - Drive D (82h)	
5	EIDE - Drive E (81h)	
4	EIDE - Drive F (80h)	
30	Reserved	

Values for bits <7..4>:

0 = Disable

1 = Enable for auto-configure

Configuration Byte 1Fh, Power Management Functions

Default Value = 00h

Bit	Function
74	Reserved
3	Slow Processor Clock for Low Power Mode
	0 = Processor runs at full speed
	1 = Processor runs at slow speed
2	Reserved
1	Monitor Off Mode
	0 = Turn monitor power off after 45 minutes in standby
	1 = Leave monitor power on
0	Energy Saver Mode Indicator (Blinking LED)
	0 = Disable
	1 = Enable

Configuration Byte 24h, System Board Identification

Default Value = 7Eh

Configuration memory location 24h holds the system board ID.

Configuration Byte 25h, System Architecture Data

Default Value = 0Bh

Bit	Function
74	Reserved
3	Unmapping of ROM:
	0 = Allowed
	1 = Not allowed
2	Reserved
1,0	Diagnostic Status Byte Address
	00 = Memory locations 80C00000h-80C00004h
	01 = I/O ports 878h-87Ch
	11 = neither place

4-34 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Configuration Byte 26h, Auxiliary Peripheral Configuration

Default Value = 00h

Bit	Function
7,6	I/O Delay Select
	00 = 420 ns (default)
	01 = 300 ns
	10 = 2600 ns
	11 = 540 ns
5	Alternative A20 Switching
	0 = Disable port 92 mode
	1 = Enable port 92 mode
4	Bi-directional Print Port Mode
	0 = Disabled
	1 = Enabled
3	Graphics Type
	0 = Color
	1 = Monochrome
2	Hard Drive Primary/Secondary Address Select:
	0 = Primary
	1 = Secondary
1	Diskette I/O Port
	0 = Primary
	1 = Secondary
0	Diskette I/O Port Enable
	0 = Primary
	1 = Secondary

Configuration Byte 27h, Speed Control/External Drive

Default Value = 00h

- 4	Beldali Valde - 6611	
	Bit	Function
ſ	7	Boot Speed
		0 = Max MHz
		1 = Fast speed
ſ	60	Reserved

Configuration Byte 28h, Expanded and Base Memory, IRQ12 Select

Default Value = 00h

Bit	Function
7	IRQ12 Select
	0 = Mouse
	1 = Expansion bus
6,5	Base Memory Size:
	00 = 640 KB
	01 = 512 KB
	10 = 256 KB
	11 = Invalid
40	Internal Compaq Memory:
	00000 = None
	00001 = 512 KB
	00010 = 1 MB
	00011 = 1.5 MB
	11111 = 15.5 MB

Configuration Byte 29h, Miscellaneous Configuration Data

Default Value = 00h

	Bit	Function
	75	Reserved
Ī	4	Primary Hard Drive Enable (Non-PCI IDE Controllers)
		0 = Disable
L		1 = Enable
Ī	30	Reserved

Configuration Byte 2Ah, Hard Drive Timeout

Default Value = 02h

Bit	Function	
75	Reserved	
40	Hard Drive Timeout 00000 = Disabled 00001 = 1 minute 00010 = 2 minutes . 10101 = 21 minutes	

Configuration Byte 2Bh, System Inactivity Timeout

Default Value = 23h

Bit	Function
7	Reserved
6,5	Power Conservation Boot
	00 = Reserved
	01 = PC on
	10 = PC off
	11 = Reserved
40	System Inactive Timeout. (Index to SIT system timeout record)
	00000 = Disabled

Configuration Byte 2Ch, ScreenSave and NUMLOCK Control

Default Value = 00h

Beldali Value = 0011	
Bit	Function
7	Reserved
6	Numlock Control
	0 = Numlock off at power on
	1 = Numlock on at power on
5	Screen Blank Control:
	0 = No screen blank
	1 = Screen blank w/QuickLock
40	ScreenSave Timeout. (Index to SIT monitor timeout record)
	000000 = Disabled

Configuration Byte 2Dh, Additional Flags

Default Value = 00h

Bit	Function
75	Reserved
4	Memory Test
	0 = Test memory on power up only
	1 = Test memory on warm boot
3	POST Error Handling (BIOS Defined)
	0 = Display "Press F1 to Continue" on error
	1 = Skip F1 message
20	Reserved

Configuration Byte 2Eh, 2Fh, Checksum

These bytes hold the checksum of bytes 10h to 2Dh.

Configuration Byte 30h, 31h, Total Extended Memory Tested

This location holds the amount of system memory that checked good during the POST.

Configuration Byte 32h, Century

This location holds the Century value in a binary coded decimal (BCD) format.

Configuration Byte 33h, Miscellaneous Flags

Default Value = 80h

Bit	Function
7	Memory Above 640 KB
	0 = No, 1 = Yes
6	Reserved
5	Weitek Numeric Coprocessor Present:
	0 = Not installed, 1 = Installed
4	Standard Numeric Coprocessor Present:
	0 = Not installed, 1 = Installed
30	Reserved

Configuration Byte 34h, International Language Support

Default Value = 00h

Configuration Byte 35h, APM Status Flags

Default Value = 11h

Bit	Function
76	Power Conservation State:
	00 = Ready
	01 = Standby
	10 = Suspend
	11 = Off
5,4	Reserved
3	32-bit Connection:
	0 = Disconnected, 1 = Connected
2	16-bit Connection
	0 = Disconnected, 1 = Connected
1	Real Mode Connection
	0 = Disconnected, 1 = Connected
0	Power Management Enable:
	0 = Disabled
	1 = Enabled

Configuration Byte 36h, ECC POST Test Single Bit Errors

Default Value = 01h

Bit	Function
7	Row 7 Error Detect
6	Row 6 Error Detect
5	Row 5 Error Detect
4	Row 4 Error Detect
3	Row 3 Error Detect
2	Row 2 Error Detect
1	Row 1 Error Detect
0	Row 0 Error Detect

^{0 =} No single bit error detected.

Configuration Byte 37h-3Fh, Power-On Password

These eight locations hold the power-on password.

Configuration Byte 40h, Miscellaneous Disk Data

Configuration Bytes 41h-44h, Hood Removal Time Stamp

These four bytes record the time at which the hood of the system was removed:

Byte 41h, month & day

Byte 42h, year and month

Byte 43h, minutes and seconds

Byte 44h, removal flag and minutes

^{1 =} Single bit error detected.

Configuration Byte 45h, Keyboard Snoop Data

Default Value = xxh

Bit	Function
7	Cntrl/F10 Key Status:
	0 = Cntrl & F10 keys not pressed
	1 = Cntrl & F10 keys pressed
6	F10 Key Status:
	0 = F10 key not pressed
	1 = F10 key pressed
51	Reserved
0	Key Pressed Flag:
	0 = Key not pressed
	1 = Key pressed

Configuration Byte 46h, Diskette/Hard Drive Status

Default Value = xxh

Bit	Function
7,6	Reserved
5	Partition On HD:
	0 = Not set, 1 = Set
4	Setup Disk:
	0 = Not present, 1 = Present
3	ROMPAQ or DIAGS Diskette:
	0 = Not present, 1 = Present
2	Boot Diskette in Drive A:
	0 = No, 1 = Yes
1	Drive B: Present:
	0 = Not present, 1 = Present
0	Drive A: Present:
	0 = Not present, 1 = Present

Configuration Bytes 47h-4Fh, IPL Data

These bytes hold initial program load (IPL) data for boot purposes: Byte 47h, last IPL device Bytes 48h-4Bh, IPL priority Byte 4Ch-4Fh, BCV priority

Configuration Byte 51h, ECC Status Byte

Default Value = xxh

Bit	Function
7	ECC Status for DIMM 3
6	ECC Status for DIMM 2
5	ECC Status for DIMM 1
4	ECC Status for DIMM 0
30	Reserved

Configuration Byte 52h, Board Revision

This byte holds the board revision as copied from the boot block sector.

Configuration Byte 53h, 54h, SW SMI Command/Data Bytes

Configuration Byte 55h, APM Command Byte

Configuration Byte 56h, Miscellaneous Flags Byte

Bit	Function
7	CAS Latency:
	0 = 2, 1 = 3
6	IR Port Enable Flag:
	0 = Disabled (COM2 config. for standard serial port)
	1 = Enabled (COM2 config. for IrDA)
5	Warm Boot Enable Flag:
	0 = Disable, 1 = Enable
4	POST Terse/Verbose Mode
	0 = Verbose, 1 = Terse
31	Erase Ease Keyboard Mode:
	000 = Backspace/Spacebar
	001 = Spacebar/Backspace
	010 = Spacebar/Spacebar
	011-111 = Invalid
0	Configurable Power Supply:
	0 = Power switch active
	1 = Power switch inhibited

Configuration Byte 57h-76h, CMOS Copy

Configuration Bytes 77h-7Fh, Administrator Password

Configuration Byte 80h, CMOS Diagnostic Flags Byte

Default Value = 00h. Set bit indicates function is valid.

Bit	Function
7	CMOS Initialization (Set CMOS to Default)
6	Setup password locked
5	PnP should not reject SETs because Diags is active
4	Reserved
3	Manufacturing diagnostics diskette found
2	Invalid electronic serial number
1	Boot maintenance partition once
0	Invalid CMOS checksum

Configuration Byte 81h, 82h, Total Super Extended Memory Tested

This byte holds the value of the amount of extended system memory that tested good during POST. The amount is given in 64-KB increments.

Configuration Byte 83h, Microprocessor Identification

This byte holds the component ID and chip revision of the microprocessor.

Configuration Byte 84h, Microprocessor Revision

Configuration Byte 85h, Administration Mode

Bit	Function
7,6	Reserved
5	ESCD Buffering:
	0 = No buffering, 1 = ESCD buffered at F000h.
4	Hood Lock Enable:
	0 = Disabled, 1 = Enabled
3	User Mode Flag
2	Administration Mode Flag
1	Level Support:
	0 = Level 1, 1 = Level 2
0	Feature Support Bit
	0 = Disabled, 1 = Enabled

Configuration Byte 86h, Fast Boot Date

Configuration Byte 87h, Fast Boot Select

Bit	Function
73	
2	
1	
0	

Configuration Byte 88h, Fast Boot Date (Year/Century)

Configuration Byte 89h, APM Resume Timer

Bit <7> indicates the timer status: 0 = disabled, 1 =timer set.

Configuration Byte 8Ah-8Fh, APM Resume Timer

These bytes hold the APM timer values:

Byte 8Ah, minutes

Byte 8Bh, hours

Byte 8Ch, day

Byte 8Dh, month

Byte 8Eh, year

Byte 8Fh, century

Configuration Byte 90h, 91h, Total Super Extended Memory Configured

This byte holds the value of the amount of extended system memory that is configured. The amount is given in 64-KB increments.

Configuration Byte 92h, Miscellaneous Configuration Byte

Default Value = 18h

Bit	Function			
75	Reserved			
4	Diskette Write Control:			
	0 = Disable			
	1 = Enable			
31	Reserved			
0	Diskette Drive Swap Control:			
	0 = Don't swap			
	1 = Swap drive A: and B:			

Configuration Byte 93h, PCI Configuration Byte

Default Value = 00h

Bit	Function				
7	Onboard SCSI Status:				
	0 = Hidden				
	1 = Active				
6	Onboard NIC Status:				
	0 = Hidden				
	1 = Active				
5	Onboard USB Status:				
	0 = Hidden				
	1 = Active				
3	Reserved				
2	ISA Passive Release:				
	0 = Enabled				
	1 = Disabled				
1	PCI Bus Master Enable				
	0 = Enabled				
	1 = Disabled				
0	PCI VGA Palette Snoop				
	0 = Disable				
	1 = Enable				

If palette snooping is enabled, then a primary PCI graphics card may share a common palette with the ISA graphics card. Palette snooping should only be enabled if all of the following conditions are met:

- An ISA card connects to a PCI graphics card through the VESA connector.
- ♦ The ISA card is connected to a color monitor.
- The ISA card uses the RAMDAC on the PCI card
- ♦ The palette snooping feature (sometimes called "RAMDAC shadowing") on the PCI card is enabled and functioning properly.

Configuration Byte 94h, ROM Flash/Power Button Status

Default Value = 00h

Bit	Function
75	Reserved
4	ROM Flash In Progress (if set)
3	Reserved
2	Power Button Inhibited (if set)
1	User-Forced Bootblock (if set)
0	ROM Flash In Progress (if set)

Configuration Byte 97h, Asset/Test Prompt Byte

Default Value = 00h

Bit	Function
7,6	Test Prompt:
	01 = Fake F1
	10 = Fake F2
	11 = Fake F10
50	Asset Value

Configuration Byte 9Bh, Ultra-33 DMA Enable Byte

Default Value = 00h

Bit	Function
74	Reserved
3	Secondary Slave Enabled for U-33 if Set
2	Secondary Master Enabled for U-33 if Set
1	Primary Slave Enabled for U-33 if Set
0	Primary Master Enabled for U-33 if Set

Configuration Byte 9Ch, Mode-2 Configuration Byte

Default Value = 1Ch

20.00.	Value = 1011		
Bit	Function		
7,6	Reserved		
5	Mode 2 Support		
	0 = Disable		
	1 = Enable		
4	Secondary Hard Drive Controller		
	0 = Disable		
	1 = Enable		
3,2	Secondary Hard Drive Controller IRQ		
	00 = IRQ10		
	01 = IRQ11		
	10 = IRQ12		
	11 = IRQ15		
1,0	Reserved		

Configuration Byte 9Dh, ESS Audio Configuration Byte

Default Value = 12h

Bit	Function				
7	Reserved for Game Port Enable				
6,5	Audio Address				
	00 = 22xh				
	01 = 23xh				
	10 = 24xh				
	11 = 25xh				
4,3	DMA Channel				
	00 = Disabled				
	01 = DMA0				
	10 = DMA1				
	11 = DMA3				
2,1	IRQ Select				
	00 = IRQ9				
	01 = IRQ5				
	10 = IRQ7				
	11 = IRQ10				
0	ESS Audio Chip Enable				
	0 = Enabled				
	1 = Disabled				

Configuration Byte 9Eh, ECP DMA Configuration Byte

Default Value = 03h

Bit	Function
74	Reserved
3	SafeStart Control:
	0 = Disable
	1 = Enable
20	ECP DMA Channel
	000 = Invalid
	100 = Disabled
	All other values (001-011, 101-111) refer to channel no.

Configuration Byte 9Fh-AFh, Asset Tag Serial Number

Configuration Bytes B0h-C3h; Custom Hard Drive Information

These bytes contain the number of cylinders, heads, and sectors per track for hard drives C, D, E, and F respectively. The mapping for each drive is as follows:

Drive 65 (C)	Drive 66 (D)	Drive 68 (E)	Drive 15 (F)	<u>Function</u>
B0h	B5h	BAh	BFh	No. of Cylinders, Low Byte
B1h	B6h	BBh	C0h	No. of Cylinders, High Byte
B2h	B7h	BCh	C1h	No. of Heads
B3h	B8h	BDh	C2h	Max ECC Bytes
B4h	B9h	BEh	C3h	No. of Sectors Per Track

Configuration Byte C7h, C8h, Serial Ports 1 and 2 (Respectively) Configuration Bytes Default Value = FEh, 7Dh

Bit	Function
72	Base I/O Address (in packed format)
	(Algorithm: [Addr 200h] / 8)
	(i.e., 3Fh = 3F8h, 1Fh = 2F8h, 00 = 200h)
10	Interrupt:
	00 = Reserved
	01 = IRQ3
	10 = IRQ4
	11 = Reserved

Configuration Bytes CAh, DBh; Chassis Serial Number

Configuration Bytes DEh, DFh; Checksum of Locations 90h-DDh

Configuration Bytes E0h-FFh; Client Management Error Log

4.7 I/O MAP AND REGISTER ACCESSING

4.7.1 SYSTEM I/O MAP

Table 4-19.		
System I/O Map		
I/O Port	Function	
0000000Fh	DMA Controller 1	
00200021h	Interrupt Controller 1	
00400043h	Timer 1	
0060h	Keyboard Controller Data Byte	
0061h	NMI, Speaker Control	
0064h	Keyboard Controller Command/Status Byte	
0070h	NMI Enable, RTC/Lower CMOS Index	
0071h	RTC Data	
0078h-007Bh	GPIO Port 1 Control (87307 I/O controller)	
007Ch-007Fh	GPIO Port 2 Control (87307 I/O controller)	
0080008Fh	DMA Page Registers	
0092h	Port A, Fast A20/Reset	
00A000A1h	Interrupt Controller 2	
00B2h, 00B3h	APM Control/Status Ports	
00C000DFh	DMA Controller 2	
00F0h	Math Coprocessor Busy Clear	
015C, 015Dh	87307 I/O Controller Configuration Registers (Index, Data)	
01700177h	Hard Drive (IDE) Controller 2	
01F001FFh	Hard Drive (IDE) Controller 1	
0201024Fh	Audio subsystem control (primary & secondary addresses)	
0278027Bh	Parallel Port (LPT2)	
02F802FFh	Serial Port (COM2)	
0371 0375h	Diskette Drive Controller Alternate Addresses	
0376h	IDE Controller Alternate Address	
0377h	IDE Controller Alternate Address, Diskette Drive Controller Alternate Address	
0378037Fh	Parallel Port (LPT1)	
0388038Bh	FM synthesizer (alias addresses)	
03B003DFh	Graphics Controller	
03E803EFh	Serial Port (COM3)	
03F003F5h	Diskette Drive Controller Primary Addresses	
03F6, 03F7h	Diskette Drive Controller Primary Addresses, Hard Drive Controller Primary Addresses	
03F803FFh	Serial Port (COM1)	
04D0, 04D1h	Master, Slave Edge/Level INTR Control Register	
0C00, 0C01h	PCI IRQ Mapping Index, Data	
0C06, 0C07h	Reserved - Compag proprietary use only	
0C50, 0C51h	System Management Configuration Registers (Index, Data)	
0C52h	General Purpose Port	
0C7Ch	Machine ID	
0CF8h	PCI Configuration Address (dword access)	
0CF9h	Reset Control Register	
0CFCh	PCI Configuration Data (byte, word, or dword access)	
FF00FF07h	IDE Bus Master Register	

NOTE: Assume unmarked gaps are reserved/unused.

4.7.2 GPIO UTILIZATION

This section describes the utilization of general purpose input/output (GPIO) ports provided by the south bridge (82371) and I/O controller (87307) components used in this system.

4.7.2.1 82371 South Bridge GPIO Utilization

The 82371 South Bridge component includes a number of single and dual purpose pins available as general purpose input/output (GPIO) ports. The GPIO ports are configured during POST by BIOS through the PCI configuration registers B0-B3h (82371, function 0). The GPI ports are monitored through registers of the Power Management function (function 3) at I/O address PM base +30h. The GPO ports are controlled through a register of function 3 at I/O address PM base +34h.

Tables 4-20 and 4-21 list the utilization of the GPI and GPO ports respectively in this system.

Table 4-20.			
	82371 South Bridge General Purpose Input Port Utilization		
GP Input Port	Function		
GPI #0	IOCHK- function for ISA bus.		
GPI #1	SCI- event status.		
GPI #25	Not used.		
GPI #6	Interrupt (IRQ8) for RTC (in 87307 I/O controller).		
GPI #7	Not used.		
GPI #8	Magic packet SMI event status. When read low, magic packet has occurred.		
GPI #9	Not used.		
GPI #10	Wakeup w/ IRQ12. Will, in S1 state, be high if an IRQ12 (mouse interrupt) occurred.		
GPI #11	Not used		
GPI #12	Wake up w/ IRQ1. Will, in S1 state, be high if an IRQ1 (keyboard interrupt) occurred.		
GPI #13	PME status.		
GPI #14, 15	Backplane revision bits <0, 1>		
GPI #16	Not used.		
GPI #17	Primary IDE cable type: 0 = 80-pin cable attached, 1 = 40-pin cable attached.		
GPI #18	Secondary IDE cable type: 0 = 80-pin cable attached, 1 = 40-pin cable attached.		
GPI #19	Chassis fan status: 0 = fan not connected, 1 = fan connected.		
GPI #20	Processor thermal caution status: 0 = not occurred, 1 = occurred.		
GPI #21	Themal sensor: 0 = diode connected, 1 = diode not connected.		

Table 4-21.		
82371 South Bridge General Purpose Output Port Utilization		
GP Output Port	Function	
GPO #0	PCI reset. When low will generate a PCI RST- to PCI slots.	
GPO #1-7	ISA bus address signals LA17-23.	
GPO #8	Not used.	
GPO #9	Not used.	
GPO #10	Not used.	
GPO #11	Not used.	
GPO #12	Not used.	
GPO #13	Not used.	
GPO #14	Not used	
GPO #15	Not used.	
GPO #16	Power management suspend control signal.	
GPO #17	CPU clock stop. When cleared inhibits the clock generator from producing CPU clock.	
GPO #18	PCI clock stop. When cleared inhibits the clock generator from producing PCI clock.	
GPO #19	Not used.	
GPO #20	Power management suspend control signal.	
GPO #21	Not used.	
GPO #22, 23	X-bus control signals.	
GPO #24	Not used.	
GPO #25	Not used.	
GPO #26	Not used.	
GPO #27	Chassis fan control. When cleared (0) shuts down the chassis fan.	
GPO #28-30	Not used.	

4.7.2.2 87307 I/O Controller Functions

The 87307 I/O controller contains various functions such as the keyboard/mouse interfaces, diskette interface, serial interfaces, and parallel interface. While the control of these interfaces uses standard AT-type I/O addressing, the configuration of these functions uses indexed ports unique to the 87307. In this system, hardware strapping selects I/O addresses 015Ch and 015Dh at reset as the Index/Data ports for accessing the logical devices within the 87307. The hardware strapping also places the 87307 into PnP motherboard mode. The integrated logical devices are listed as follows:

Table 4-22 lists the PnP standard control registers for the 87307.

87307 I/O Controller PnP Standard Control Registers		
Index	Function	Reset Value
00h	Set RD_DATA Port	00h
_01h	Serial Isolation	
02h	Configuration Control	
03h	Wake (CSN)	00h
04h	Resource Data	
_05h	Status	
06h	Card Select Number (CSN)	00h
07h	Logical Device Select:	00h
	00h = 8042 Controller (Keyboard I/F)	
	01h = 8042 Controller (Mouse I/F)	
	02h = RTC/APC Configuration	
	03h = Diskette Controller	
	04h = Parallel Port	
	05h = UART 2 (Serial Port B / IrDA)	
	06h = UART 1 (Serial Port A)	
	07h = GPIO Ports	
	08h = Power Management	
20h	Super I/O ID Register (SID)	A0h
21h	SIO Configuration 1 Register	16h
22h	SIO Configuration 1 Register	02h
23h	Programmable Chip Select Configuration Index	00h
24h	Programmable Chip Select Configuration Data	00h

NOTE:

For a detailed description of registers refer to appropriate National documentation.

The configuration registers are accessed by writing the appropriate logical device's number to index 07h and writing the desired offset to the index register. The data is then either written to or read from the data register.

87307 GPIO Utilization

The 87307 I/O Controller provides 11 general purpose pins that can be individually configured as either inputs or outputs. These pins are mapped as two general purpose ports and utilized as shown below.

GPIO Port 1 Data, I/O Addr. 078h, (87307 I/O Controller),

Bit	Function
7	GPIO17 (not used)
6	GPIO16 (config. as input): Cover Lock Detect.
	Read 0, no solenoid
	Read 1, solenoid
5	GPIO15 (config. as output): Cover Alarm Clear.
	Write 0 to clear alarm.
4	GPIO14 (config. as input): Cover Removed Detect.
	Read 0, cover has been removed
	Read 1, cover is secure
30	GPIO13-10 (config. as input):
	Backplane identification (BP_ID3-0)

GPIO Port 1 Direction/Output Type/PU Cntrl., I/O Addr. 079-07Bh, (87307 I/O Controller)

GPIO Port 2 Data, I/O Addr. 07Ch, (87307 I/O Controller),

Bit	Function
74	GPIO2724 Not Available
3	GPIO23 (config. as input): Ring Detect
	Read 0, no ring received
	Write 1, ring detected
20	GPIO2220 Not Available

GPIO Port 2 Direction/Output Type/PU Cntrl., I/O Addr. 07D-07Fh, (87307 I/O Controller)

4.8 SYSTEM MANAGEMENT SUPPORT

This section describes the hardware support of functions involving security, safety, identification, and power consumption of the system. System management functions are handled largely by a System Security ASIC. Most functions are controlled through registers (Table 4-23) accessed using the indexed method through I/O ports 0C50h (index) and 0C51h (Data).

Table 4-23.		
	System Management Control Registers	
Index	Function	
00h	Identification	
02h	Temperature Status / Clear	
03h	Temperature Interrupt / SMI Enable	
05h	Power On LED Blink Control	
12h	General Purpose Open Collector (GPOC) Bits	
13h	Secured GPOC Bits	
20h	Power Button Control	
21h	SMI / SCI Source	
22h	SMI / SCI Mapping	
30h	REQ/GNT Control	
80h	Super I/O Security Control	
81h	Super I/O Index Address Low	
82h	Super I/O Index Address High	
83h	Super I/O Index Data	
84h	Super I/O Data Address Low	
85h	Super I/O Data Address High	
86h	Super I/O Write Block 0	
87h	Super I/O Write Block 1	
88h	Super I/O Write Block 2	
89h	Super I/O Write Block 3	

The following subsections describe the system management functions. Any BIOS interaction required of these functions is described in Chapter 8, "BIOS" or in the Compaq BIOS Technical Reference Guide.

4.8.1 FLASH ROM WRITE PROTECT

The system BIOS firmware is contained in a flash ROM device that can be re-written with updated code if necessary. The ROM is write-protected with a Black Box* security feature. The Black Box feature uses the Administrator password to protect against unauthorized writes to the flash ROM. During the boot sequence, the BIOS checks for the presence of the ROMPAQ diskette. If ROMPAQ is detected and the password is locked into the Black Box with the Protect Resources command, an Access Resources command followed by Administrator password entry must occur before the ROM can be flashed. If the Permanently Lock Resources command has been invoked, the power must be cycled before the ROM can be flashed. The system ROM is write-protected as follows:

Start Addr.	End Addr.	Data Type	Protection
C0000h	EFFFFh	Option ROM	Password write-protected
F0000h	F7FFFh	System BIOS	Password write-protected
F8000h	F9FFFh	ESCD	Never write-protected
FA000h	FFFFFh	Boot Block	Always write-protected

The flashing functions are handled using the INT15 AX-E822h BIOS interface.

4.8.2 PASSWORD PROTECTION

When enabled, the user is prompted to enter the power-on password during POST. If an incorrect entry is made, the system halts and does not boot. The Power-On password is stored in eight bytes at configuration memory locations 37h-3Fh. These locations are physically located within the 87307. At the time a new password is written into 37h-3Fh, the password is also written into Black Box* logic contained within the System Security ASIC. The Black Box logic is used for power-on password protection support instead of the port 92 sequence used on other systems. The Black Box logic prevents inadvertent or unauthorized access to the password bytes of the 87307 by monitoring I/O ports 70/71h for access to the 37h-3Fh CMOS range and inhibiting the AEN signal to the 87307 if such access is detected. Slot 1 of the Black Box logic can be written to at runtime, allowing the user to change the power on password without cycling power and going through the F10 method. The Black Box password cannot be read.

The power-on password function can be disabled by setting DIP SW1 position 1 to on (closed).

The administrator password is stored in eight bytes at configuration memory locations 78h-7Fh. If the administrator password function is enabled, the user is prompted to enter the password before running F10-Setup or before booting from a ROMPAQ diskette. If an incorrect entry is made, the system halts and does not boot. The administrator password is also stored in the Black Box* logic. Black Box logic acting as the sentry for the administrator password by preventing inadvertent or unauthorized writing to the Flash ROM.

^{*} Black Box logic is Compaq-proprietary and controlled exclusively through the BIOS ROM.

4.8.3 I/O SECURITY

The 87307 I/O controller allows various I/O functions to be disabled through configuration registers. In addition, the configuration registers of the 87307 are further protected by Client Management (CM) logic (contained within a Compaq ASIC) that can be set (using BIOS call INT 15 AX=E829h) to block access to the 87307 configuration registers of the following functions:

- ♦ Diskette drive
- ♦ Serial port
- ♦ Parallel port

In blocking 87307 functions, the CM logic monitors ISA I/O cycles and can detect, through index address-matching, when an attempt is made to access a function provided by the 87307. If the CM logic has been set to block access, then ISA bus signal AEN or IOWC-, both which the CM logic provides to the 87307, is disabled, effectively inhibiting the I/O access.

The USB controller can also be blocked from access by the CM logic. In this case the CM logic can be set to block the routing of the REQ/GNT signals to the USB controller, thereby disabling the interface.

4.8.4 USER SECURITY

When enabled, the user is prompted to enter the power-on password during POST. If an incorrect entry is made, the system halts and does not boot. The Power-On password is stored in eight bytes at configuration memory locations 37h-3Fh. These locations are physically located within the 87307.

The power-on password function can be disabled by setting DIP SW1 position 1 to on (closed).

The administrator password is stored in eight bytes at configuration memory locations 78h-7Fh. If the administrator password function is enabled, the user is prompted to enter the password before running F10-Setup or before booting from a ROMPAQ diskette. If an incorrect entry is made, the system halts and does not boot.

The QuickLock feature allows, if enabled in F10-Setup through CMOS location 13h bit <2>, the user to lock the keyboard by invoking the **Ctrl-Alt-L** keystrokes. This initiates an SMI and the SMI handler then takes the action required to lock the keyboard. If the QuickBlank feature is enabled at that time then the screen will be blanked as well. The user then must enter the power-on password to re-activate the keyboard and/or display.

NOTE: Although the SMI is used for initiating QuickLock/QuickBlank functions, these functions are not considered power management features.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

4.8.5 TEMPERATURE SENSING

This system employs two sensors for monitoring the temperature inside the chassis. A thermister attached to the heat sink of the Pentium II SEC cartridge is used to detect the caution level. This thermister, connected to the system board through header P15, is part of sensing logic that provides input to a Compaq ASIC. The sensing logic is set to trip when 179.6 °F (82 °C) is reached. At that time the Compaq ASIC can generate an SMI (if so configured, see registers below) resulting in a warning to the user and/or the chassis fan being turned on. Three general purpose input ports of the 82371south bridge monitor status of the Thermal Caution circuitry. They are listed below with their default values:

- 1. 82371 GPI #19 Chassis fan connection (1 = fan connected)
- 2. 82371 GPI #20 Thermal Caution event status (0 = caution event has not occurred)
- 3. 82371 GPI #21 Thermal sensor connection status (0 = connected)

The Pentium II processor contains a sensor utilized to detect a deadly condition. When the processor temperature reaches 135 °F the THERMTRIP- signal is asserted and recorded in a Compaq ASIC (see following registers). Assertion of THERMTRIP- also results in turning off the system's clock generator, effectively shutting down the system.

The following two indexed registers are used by BIOS and available to software for controlling the temperature sense function.

I/O Port C51.02h, Temperature Status/Clear Register

	, , , , , , , , , , , , , , , , , , , ,
Bit	Function
72	Reserved
1	Temperature Deadly (RO)
	0 = Normal
	1 = Critical temperature detected
0	Reserved

NOTE: Bits 1,0 are cleared when read but will be instantly reset if condition remains.

I/O Port C51.03h, Temperature Interrupt/SMI Enable Register

40 1 of t controlly remperature interrupt our Enable Region	
Bit	Function
73	Reserved
2	Temperature Deadly Shutdown Disable:
	0 = Initiate shutdown w/deadly condition.
	1 = Do not initiate shutdown.
1,0	Reserved

4.8.6 SMART COVER LOCK

The chassis cover (also known as the "hood") can be locked to prevent unauthorized personnel from removing the cover and changing the system hardware. The locking mechanism consists of a solenoid controlled by the Setup utility through the Client Management logic in a Compaq ASIC. The presence of the Smart Cover Lock (actually of the solenoid) is detected by logic and readable by software at 87307 GPIO port 1 bit <6>.

The cover lock mechanism can be bypassed in an emergency by removing three screws on the rear of the chassis with the Smart Cover Lock Failsafe Key.

4.8.7 SMART COVER REMOVAL SENSOR

This system includes a cover removal indication function. The system can, upon power-up, notify the user if the computer cover has been removed. The sensor consists of a plunger switch mounted on the backplane (riser card) that comes in contact with the chassis cover. When the cover is removed, the switch is activated and the battery-backed logic places a high at 87307 GPIO port 1 bit <4>. This bit will remain set (whether or not the cover is replaced) until the system is powered up and the user completes the boot sequence successfully, at which time the hood alarm bit <5> will be cleared. Through Setup, the user can set this function to one of three levels of support for a "hood removed" condition:

Level 0 - Hood removal indication is essentially disabled at this level. During POST, Bit <4> is cleared and no other action is taken by BIOS.

Level 1 - During POST the message "The computer's cover has been removed since the last system start up" is displayed and time stamps in CMOS and SIT are updated.

Level 2 - During POST the "The computer's cover has been removed since the last system start up" message is displayed, time stamps in CMOS and SIT are updated, and user is prompted for administrator password.

NOTE: If the user invokes Setup through F10 the administrator password is not requested again.

4.8.8 POWER MANAGEMENT

This system provides baseline hardware support of ACPI- and APM-compliant firmware and software. The major power-consuming components (processor, chipset, I/O controller, and fan) can be placed into a reduced power mode upon software command either automatically or by user control. The system can then be brought back up ("wake-up") by events defined by the ACPI specification. The ACPI wake-up events supported by this system are listed as follows:

ACPI Wake-Up Event	System Wakes From
Power Button	Sleep/Soft-Off
RTC Alarm	Sleep/Soft-Off
Wake on LAN (w/NIC)	Sleep/Soft-Off
PME	Sleep/Soft-Off
Serial port Ring	Sleep/Soft-Off
USB	Sleep
Keyboard	Sleep
Mouse	Sleep

4.8.8.1 Power Button

This system uses an ACPI-compliant power button that also provides a legacy mode as well. In legacy mode the system is alternately powered on or off each time the button is pressed and released. In ACPI mode the power supply, when on, will turn off only after the button is pressed and held for over four seconds. The power button mode is controlled by ROM-based Setup through a Compaq ASIC. A detailed description of system power control is provided in Chapter 7 "Power and Signal Distribution."

4.8.8.2 Fan Control

The system contains two fans; a power supply fan (contained within the power supply assembly) and a chassis fan mounted in the front of the chassis. The operation of both fans involves temperature conditions and energy conservation but different logic is used for each.

The power supply fan is on during normal operation. In sleep mode the power supply fan is (normally) shut down by software using logic in a Compaq ASIC, which asserts a FAN OFF signal routed to the power supply assembly. The power supply assembly, however, includes a temperature sensor that can override the FAN OFF signal if necessary.

The chassis fan is controlled by the thermister attached to the processor heat sink as well as shut down logic. The temperature-sensing operation is discussed in section 4.8.5. To conserve energy during sleep mode 82371 GPO port #27 is cleared resulting in the chassis fan being shut down.

4.8.8.3 Hard Drive Spindown Control

The timeout parameter stored in the SIT record 04h and indexed through CMOS location 2Ah (bits <4..0>) represents the period of hard drive inactivity required to elapse before the hard drive is allowed to spin down. The timeout value is downloaded from CMOS to a timer on the hard drive. The timeout period can be set in incremental values of 0 (timeout disabled), 10, 15 (default), 20, 30, and 60 minutes. A timed-out and spun-down hard drive will automatically spin back up upon the next drive access. It is normal for the user to detect a certain amount of access latency in this situation.

4.8.8.4 Monitor Power Control

The VESA display power management signaling protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals of the monitor interface to select a monitor's power condition. This capability is dependent on the graphics controller employed in the system. For compliance to the monitor power control feature refer to the applicable appendix of the installed graphics controller card.

Спарієї 4	System Support		
		This page is intentionally blank.	

Chapter 5 INPUT/OUTPUT INTERFACES

5.1 INTRODUCTION

This chapter describes the standard (i.e., system board) interfaces that provide input and output (I/O) porting of data and specifically discusses interfaces that are controlled through I/O-mapped registers. The I/O interfaces are integrated functions of the south bridge (82371) and the I/O controller (87307). The following I/O interfaces are covered in this chapter:

ge 5-1
ge 5-9
ge 5-14
ge 5-20
ge 5-27
ge 5-34
֡

5.2 ENHANCED IDE INTERFACE

The enhanced IDE (EIDE) interface consists of primary and secondary controllers (integrated into the south bridge component) that can support IDE devices each. Devices that may connect to the IDE interface include hard drives, CD-ROM drives, PD-CD-ROM drives, and 120-MB floptical drives.

Two 40-pin keyed IDE data connectors (one for each controller) are provided on the system board. Each connector can support two devices and can be configured independently for PIO modes 1-4, DMA modes 1-2, or Ultra ATA modes 0-2. In standard configuration an IDE drive is attached to the primary connector and the CD-ROM (if installed) is attached to the secondary connector.

NOTE: With only one device connected to a controller, a 40-conductor cable 10 inches or shorter will allow UATA mode 2 operation. Two devices on the same 40-pin/10"cable will limit operation to UATA mode 1 (25 MB/s). For a controller to provide UATA mode 2 operation with two devices connected requires an optional 80-conductor cable. Pin 34 is used by BIOS for 40-/80-conductor cable detection. On the 40-conductor cable, pin 34 is high (+5 VDC). On the 80-conductor cable, pin 34 is low (grounded).

5.2.1 IDE PROGRAMMING

The IDE interface is configured as a PCI device and controlled through standard I/O mapped registers.

5.2.1.1 IDE Configuration Registers

The IDE controller is integrated into the south bridge (82371) component and configured as a PCI device with bus mastering capability. The PCI configuration registers for the IDE controller function (PCI device #20, function #1) are listed in Table 5-1.

Table 5-1. EIDE PCI Configuration Registers (82371 Function 1)						
PCI		Value	PCI		Value	
Conf.		on	Conf.		on	
Addr.	Register	Reset	Addr.	Register	Reset	
00-01h	Vender ID	8086h	24-3Fh	Reserved		
02-03h	Device ID	7111h	40, 41h	IDE Timing (Primary)		
04-05h	PCI Command	0000h	42, 43h	IDE Timing (Secondary)		
06-07h	PCI Status	0000h	44h	Slave IDE Timing		
_08h	Revision ID	0Ah	45-47h	Reserved		
09h	Programming	01h	48h	UDMA Timing		
0Ah	Sub-Class	01h	49h	Reserved		
0Bh	Base Class Code	80h	4A, 4Bh	UDMA Timing		
0Dh	Master Latency Timer	0000h	4C-F7h	Reserved		
0Eh	Header Type	80h	F8-FBh	Manufacturer's ID		
0F-1Fh	Reserved	00h	FC-FFh	Reserved		
20-23h	BMIDE Base Address	00h				

NOTE:

Assume unmarked gaps are reserved and/or not used.

5.2.1.2 IDE Bus Master Control Registers

The IDE interface can perform PCI bus master operations using the I/O mapped control registers listed in Table 5-2.

Table 5-2. IDE Bus Master Control Registers					
I/O Addr. Size Default Offset (Bytes) Register Value					
00h	2	Bus Master IDE Command (Primary)	00h		
02h	2	Bus Master IDE Status (Primary)	00h		
04h	4	Bus Master IDE Descriptor Ptr (Pri.)	0000 0000h		
08h	2	Bus Master IDE Command (Secondary)	00h		
0Ah	2	Bus Master IDE Status (Secondary)	00h		
0Ch	4	Bus Master IDE Descriptor Ptr (Sec.)	0000 0000h		

5.2.1.3 IDE ATA Control Registers

The IDE controller of the 82586 decodes the addressing of the standard AT attachment (ATA) registers for the connected drive, which is where the ATA control registers actually reside. The primary and secondary interface connectors are mapped as shown in Table 5-3.

Table 5-3. IDE ATA Control Registers				
Primary I/O Addr.	Secondary I/O Addr.	Register	R/W	
1F0h	170h	Data	R/W	
1F1h	171h	Error	R	
1F1h	171h	Features	W	
1F2h	172h	Sector Count	R/W	
1F3h	173h	Sector Number	R/W	
1F4h	174h	Cylinder Low	R/W	
1F5h	175h	Cylinder High	R/W	
1F6h	176h	Drive/Head	R/W	
1F7h	177h	Status	R	
1F7h	177h	Command	W	
3F6h	376h	Alternate Status	R	
3F6h	376h	Drive Control	W	
3F7h	377h	Drive Address	R	
3F7h	377h	n/a for hard drive	W	

The following paragraphs describe the IDE ATA control registers.

Data Register, I/O Port 1F0h/170h

This register is used for transferring all data to and from the hard drive controller. This register is also used for transferring the sector table during format commands. All transfers are high-speed 16-bit I/O operation except for Error Correction Code (ECC) bytes during Read/Write Long commands.

Error Register, I/O Port 1F1h/171h (Read Only)

The Error register contains error status from the last command executed by the hard drive controller. The contents of this register are valid when the following conditions exist:

- Error bit is set in the Status register
- ♦ Hard drive controller has completed execution of its internal diagnostics

The contents of the Error register are interpreted as a diagnostic status byte after the execution of a diagnostic command or when the system is initialized.

Bit	Function
7	Bad Block Mark Detected in Requested Sector ID Field (if set)
6	Non-correctable Data Error (if set)
5	Reserved
4	Requested Sector ID Field Not Found (if set)
3	Reserved
2	Requested Command Aborted Due To Invalid Hard Drive
	Status or Invalid Command Code (if set)
1	Track 0 Not Found During Re-calibration Command (if set)
0	Data Address Mark Not Found After Correct ID Field (if set)

Set Features Register, I/O Port 1F1h/171h (Write Only)

This register is command-specific and may be used to enable and disable features of the interface.

Sector Count Register, I/O Port 1F2h/172h

This register defines either:

- the number of sectors of data to be read or written
- the number of sectors per track for format commands

If the value in this register is zero, a count of 256 sectors is specified. The sector count is decremented as each sector is accessed, so that the value indicates the number of sectors left to access when an error occurs in a multi-sector operation. During the Initialize Drive Parameters command, this register contains the number of sectors per track.

Sector Number Register, I/O Port 1F3h/173h

The Sector Number register contains the starting sector number for a hard drive access.

Cylinder Low, Cylinder High Registers, I/O Port 1F4h, 1F5h/174h, 175h

These registers contain the starting cylinder number for each hard drive access. The three most-significant bits of the value are held in byte address 1F5h (bits <2..0>) while the remaining bits are held in location 1F4h.

Drive Select/Head Register, I/O Port 1F6h/176h

Bit	Function		
7	Reserved		
6,5	Sector Size:		
	00 = Reserved		
	01 = 512 bytes/sector		
	10, 11 = Reserved		
4	Drive Select:		
	0 = Drive 1		
	1 = Drive 2		
30	Head Select Number:		
	0000 = 0 1000 = 8		
	0001 = 1 1001 = 9		
	0010 = 2 1010 = 10		
	0011 = 3 1011 = 11		
	0100 = 4		
	0101 = 5 1101 = 13		
	0110 = 6 1110 = 14		
	0111 = 7		

NOTE:

Setting bit <4> to 1 when Drive 2 is not present may cause remaining controller registers to not respond until Drive 1 is selected again.

Status Register, I/O Port 1F7h/177h (Read Only)

The contents of this register are updated at the completion of each command. If the Busy bit is set, no other bits are valid. Reading this register clears the IRQ14 interrupt.

Bit	Function
7	Controller Busy. If set, controller is executing a command.
6	READY- Signal Active (if set).
5	WRITE FAULT- Signal Active (if set).
4	SEEK COMPLETE- Signal Active (if set)
3	Data Request. If set, the controller is ready for a byte or word-
	length data transfer. Bit should be verified before each transfer.
2	Correctable Data Error Flag. If set, data error has occurred and
	has been corrected.
1	INDEX- Signal Active (if set).
0	Error Detected. When set, indicates error has occurred. Other
	bits in register should be checked to determine error source.

NOTE:

Register status of an error condition does not change until register is read.

The alternate Status register at location 3F6h holds the same status data as location 1F7h but does not clear hardware conditions when read.

Command Register, I/O Port 1F7h/177h (Write Only)

The IDE controller commands are written to this register. The command write action should be prefaced with the loading of data into the appropriate registers. Execution begins when the command is written to 1F7h/177h. Table 5-4 lists the standard IDE commands.

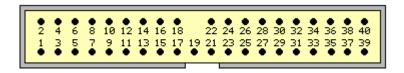
Table 5-4.	
IDE Controller Commands	
Command	Value
Initialize Drive Parameters	91h
Seek	7xh
Recalibrate	1xh
Read Sectors with Retries	20h*
Read Long with Retries	22h*
Write Sectors with Retries	30h*
Write Long with Retries	32h*
Verify Sectors with Retries	40h
Format Track	50h
Execute Controller Diagnostic	90h
Idle	97h, E3h
Idle Immediate	95h, E1h
Enter Low Power and Enable/Disable Timeout	96h
Enter Idle and Enable/Disable Timeout	97h
Check Status	98h
Identify	ECh
Read Buffer	E4h
Write Buffer	E8h
NOP	00h
Read DMA with Retry	C8h
Read DMA without Retry	C9h
Read Multiple	C4h
Set Features	EFh
Set Multiple Mode	C6h
Sleep	99h, E6h
Standby	96h, E2h
Standby Immediate	94h, E0h
Write DMA with Retry	CAh
Write DMA without Retry	CBh
Write Multiple	C5h
Write Same	E9h
Write Verify	3Ch

^{*} Without retries, add one to the value.

Alternate Status Register, I/O Port 3F6h/376h (Read Only)

The alternate Status register at location 3F6h holds the same status data as location 1F7h but does not clear hardware conditions when read.

Drive Control Register, I/O Port 3F6h/376h (Write Only)


Bit	Function		
73	Reserved		
2	Controller Control:		
	0 = Re-enable		
	1 = Reset		
1	Interrupt Enable/Disable		
	0 = Disable interrupts		
	1 = Enable interrupts		
0	Reserved		

Drive Access Register, I/O Port 3F7h/377h (Read Only)

Bit	Function			
7	Reserved			
6	WRITE GATE-	Signal Active (if set)		
52	Head Select:			
	0000 = 15	1000 = 7		
	0001 = 14	1001 = 6		
	0010 = 13	1010 = 5		
	0011 = 12	1011 = 4		
	0100 = 11	1100 = 3		
	0101 = 10	1101 = 2		
	0110 = 9	1110 = 1		
	0111 = 8	1111 = 0		
1,0	Drive Select:			
	00 = Disabled			
	01 = Drive 1 selected			
	10 = Drive 0 selected			
	11 = Invalid			

5.2.2 IDE CONNECTOR

This system uses a standard 40-pin connector for IDE devices. Device power is supplied through a separate connector.

Figure 5–1. 40-Pin IDE Connector.

	Table 5-5.						
	40-Pin IDE Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description		
1	RESET-	Reset	21	DRQ	DMA Request		
2	GND	Ground	22	GND	Ground		
3	DD7	Data Bit <7>	23	IOW-	I/O Write		
4	DD8	Data Bit <8>	24	GND	Ground		
_5	DD6	Data Bit <6>	25	IOR-	I/O Read		
6	DD9	Data Bit <9>	26	GND	Ground		
_ 7	DD5	Data Bit <5>	27	IORDY	I/O Channel Ready		
8	DD10	Data Bit <10>	28	CSEL	Cable Select		
9	DD4	Data Bit <4>	29	DAK-	DMA Acknowledge		
10	DD11	Data Bit <11>	30	GND	Ground		
11	DD3	Data Bit <3>	31	IRQn	Interrupt Request [1]		
12	DD12	Data Bit <12>	32	IO16-	16-bit I/O		
13	DD2	Data Bit <2>	33	DA1	Address 1		
14	DD13	Data Bit <13>	34	DSKPDIAG	Pass Diagnostics		
15	DD1	Data Bit <1>	35	DA0	Address 0		
16	DD14	Data Bit <14>	36	DA2	Address 2		
17	DD0	Data Bit <0>	37	CS0-	Chip Select		
18	DD15	Data Bit <15>	38	CS1-	Chip Select		
19	GND	Ground	39	HDACTIVE-	Drive Active (front panel LED) [2]		
20		Key	40	GND	Ground		

NOTES:

^[1] Primary connector wired to IRQ14, secondary connector wired to IRQ15.

^[2] Pin 39 is used for spindle sync and drive activity (becomes SPSYNC/DACT-) when synchronous drives are connected.

5.3 DISKETTE DRIVE INTERFACE

The diskette drive interface supports up to two diskette drives, each of which connect to a standard 34-pin diskette drive connector. All models come standard with a 3.5-inch 1.44-MB diskette drive installed as drive A. An additional diskette drive (either a 3.5-inch 720-KB, 1.44-MB, or 2.88-MB drive or a 5.25-inch 360-KB or 1.2-MB drive) may also be installed as drive B. The drive designation is determined by which connector is used on the diskette drive cable. The drive attached to the end connector is drive A while the drive attached to the second (next to the end) connector) is drive B.

On all models, the diskette drive interface function is integrated into the 87307 I/O controller component. The internal logic of the I/O controller is software-compatible with standard 82077-type logic. The diskette drive controller has three operational phases in the following order:

- Command phase The controller receives the command from the system.
- Execution phase The controller carries out the command.
- Results phase Status and results data is read back from the controller to the system.

The Command phase consists of several bytes written in series from the CPU to the data register (3F5h/375h). The first byte identifies the command and the remaining bytes define the parameters of the command. The Main Status register (3F4h/374h) provides data flow control for the diskette drive controller and must be polled between each byte transfer during the Command phase.

The Execution phase starts as soon as the last byte of the Command phase is received. An Execution phase may involve the transfer of data to and from the diskette drive, a mechnical control function of the drive, or an operation that remains internal to the diskette drive controller. Data transfers (writes or reads) with the diskette drive controller are by DMA, using the DRQ2 and DACK2- signals for control.

The Results phase consists of the CPU reading a series of status bytes (from the data register (3F5h/375h)) that indicate the results of the command. Note that some commands do not have a Result phase, in which case the Execution phase can be followed by a Command phase.

During periods of inactivity, the diskette drive controller is in a non-operation mode known as the Idle phase.

5.3.1 DISKETTE DRIVE PROGRAMMING

5.3.1.1 Diskette Drive Interface Configuration

The diskette drive controller must be configured for a specific address and also must be enabled before it can be used. Address selection and enabling of the diskette drive interface are affected by firmware through the PnP configuration registers of the 87307 I/O controller.

The PnP configuration registers are accessed through I/O registers 15Ch (index) and 15Dh (data). The diskette drive I/F is initiated by firmware selecting logical device 3 of the 87307. This is accomplished by the following sequence:

- 1. Write 07h to I/O register 15Ch.
- 2. Write 03h to I/O register 15Dh (this selects the diskette drive I/F).
- 3. Write 30h to I/O register 15Ch.
- 4. Write 01h to I/O register 15Dh (this activates the interface).

The diskette drive I/F configuration registers are listed in the following table:

Table 5-6. Diskette Drive Interface Configuration Registers				
Index			Reset	
Address	Function	R/W	Value	
30h	Activate	R/W	01h	
31h	I/O Range Check	R/W	00h	
60h	Base Address MSB	R/W	03h	
61h	Base Address LSB	R/W	F0h	
70h	Interrupt Select	R/W	06h	
71h	Interrupt Type	R/W	03h	
74h	DMA Channel Select	R/W	02h	
75h	Report DMA Assignment	RO	04h	
F0h	Configuration Data	R/W		
F1h	Drive ID	R/W		

5.3.1.2 Diskette Drive Interface Control

The BIOS function INT 13 provides basic control of the diskette drive interface. The diskette drive interface can be controlled by software through I/O-mapped registers listed in Table 5-7.

Table 5-7. Diskette Drive Interface Control Registers				
Primary	Alternate			
Address	Address	Register	R/W	
3F1h	371h	Media ID	R	
3F2h	372h	Drive Control	W	
3F4h	374h	Main Status	R	
3F5h	375h	Data	R/W	
3F7h	377h	Drive Status	R	
		Data Transfer Rate	W	

The base address (3F1h or 371h) and enabling of the diskette drive controller is selected through the Function Enable Register (FER, addr. 399.00h) of the 87307 I/O controller. Address selection and enabling is automatically done by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The following paragraphs describe the diskette drive interface control registers.

Media ID Register, I/O Port 3F1h/371h (Read Only)

Bit	Function		
75	Media Type:		
	xx1 = Invalid		
	000 = 5.25 inch drive		
	010 = 2.88 MB (3.5 inch drive)		
	100 = 1.44 MB (3.5 inch drive)		
	110 = 720 KB (3.5 inch drive)		
42	Reserved		
1,0	Tape Select:		
	00 = None 10 = Drive 2		
	01 = Drive 1		

Drive Control Register, I/O Port 3F2h/372h (Write Only)

Bit	Function
7,6	Reserved
5	Drive 2 Motor
	0 = Off, 1 = On
4	Drive 1 Motor 0 = Off, 1 = On
3	Interrupt / DMA Enable
	0 = Disabled, 1 = Enabled
2	Controller Enable
	0 = Reset controller, 1 = Enable controller
1,0	Drive Select
	00 = Drive 1
	01 = Drive 2
	10 = Reserved
	11 = Tape drive

Main Status Register, I/O Port 3F4h/374h (Read Only)

Bit	Function
7	Request for Master. When set, indicates the controller is ready to send or receive data from the CPU. Cleared immediately
	after a byte transfer. Indicates interrupt pin status during non- DMA phase.
6	Data I/O Direction. 0 = Expecting a write 1 = Expecting a read
5	Non-DMA Execution. When set, indicates controller is in the execution phase of a byte transfer in non-DMA mode.
4	Command In Progress. When set, indicates that first byte of command phase has been received. Cleared when last byte in result phase is read.
30	Drive Busy Indicators. Bit is set after the last byte of the command phase of a seek or recalibrate command is given by the corresponding drive: <3>, Drive 3 <2>, Drive 2 <1>, Drive 1 <0>, Drive 0

Data Register, I/O Port 3F5h/375h

Data commands are written to, and data and status bytes are read from this register.

Data Transfer Rate Register, I/O Port 3F7h/377h (Write Only)

Bit	Function
7	Software Reset
6	Low Power Mode (if set)
5	Reserved
42	Write Precompensation Delay
	000 = Default values for selected data rate (default)
1,0	Data Rate Select:
	00 = 500 Kb/s
	01 = 300 Kb/s
	10 = 250 Kb/s
	11 = 1 or 2 Mb/s (depending on TUP reg. Bit <1>)

5.3.2 DISKETTE DRIVE CONNECTOR

This system uses a standard 34-pin connector (refer to Figure 5-2 and Table 5-8 for the pinout) for diskette drives. Drive power is supplied through a separate connector.

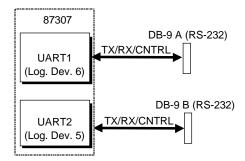


Figure 5–2. 34-Pin Diskette Drive Connector.

	Table 5-8. 34-Pin Diskette Drive Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description	
1	GND	Ground	18	DIR-	Drive head direction control	
2	LOW DEN-	Low density select	19	GND	Ground	
3		(KEY)	20	STEP-	Drive head track step control	
4	MEDIA ID-	Media identification	21	GND	Ground	
5	GND	Ground	22	WR DATA-	Write data	
6	DRV 4 SEL-	Drive 4 select	23	GND	Ground	
_7	GND	Ground	24	WR ENABLE-	Enable for WR DATA-	
88	INDEX-	Media index is detected	25	GND	Ground	
9	GND	Ground	26	TRK 00-	Heads at track 00 indicator	
10	MTR 1 ON-	Activates drive motor	27	GND	Ground	
11	GND	Ground	28	WR PRTK-	Media write protect status	
12	DRV 2 SEL-	Drive 2 select	29	GND	Ground	
13	GND	Ground	30	RD DATA-	Data and clock read off disk	
14	DRV 1 SEL-	Drive 1 select	31	GND	Ground	
15	GND	Ground	32	SIDE SEL-	Head select (side 0 or 1)	
16	MTR 2 ON-	Activates drive motor	33	GND	Ground	
17	GND	Ground	34	DSK CHG-	Drive door opened indicator	

5.4 SERIAL INTERFACES

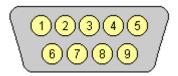

The serial interfaces transmit and receive asynchronous serial data with external devices. The serial interface function is provided by the 87307 I/O controller component, which includes two 16550/16450-compatible UARTs. Each UART is supported by a DB-9 connector on the rear of the chassis.

Figure 5–3. Serial Interfaces Block Diagram

5.4.1 RS-232 INTERFACE

The DB-9 connector-based interface complies with EIA standard RS-232-C, which includes modem control signals and supports baud rates up to 115.2 Kbps. The DB-9 connector is shown in the following figure and the pinout of the connector is listed in Table 5-9.

Figure 5–4. Serial Interface Connector (Male DB-9 as viewed from rear of chassis)

Table 5-9. DB-9 Serial Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description
1	CD	Carrier Detect	6	DSR	Data Set Ready
2	RX Data	Receive Data	7	RTS	Request To Send
3	TX Data	Transmit Data	8	CTS	Clear To Send
4	DTR	Data Terminal Ready	9	RI	Ring Indicator
5	GND	Ground			

Each DB-9 port is independently configurable as to it's COMn (address) designation.

5.4.2 SERIAL INTERFACE PROGRAMMING

5.4.2.1 Serial Interface Configuration

The serial interfaces must be configured for a specific address range (COM1, COM2, etc.) and also must be activated before it can be used. Address selection and activation of the serial interface are affected through the PnP configuration registers of the 87307 I/O controller.

The PnP configuration registers are accessed through I/O registers 15Ch (index) and 15Dh (data). Each serial interface is initiated by firmware selecting logical device 5 or 6 of the 87307. This is accomplished by the following sequence:

- 1. Write 07h to I/O register 15Ch.
- 2. Write 05h or 06h to I/O register 15Dh (for selecting UART2 or UART1).
- 3. Write 30h to I/O register 15Ch.
- 4. Write 01h to I/O register 15Dh (this activates the interface).

The serial interface configuration registers are listed in the following table:

	Table 5-10).	
	Serial Interface Configurat	ion Registers	
Index			Reset
Address	Function	R/W	Value [1]
30h	Activate	R/W	00h / 00h
31h	I/O Range Check	R/W	00h / 00h
60h	Base Address MSB	R/W	02h / 03h
61h	Base Address LSB	R/W	F8h / F8h
70h	Interrupt Select	R/W	03h / 04h
71h	Interrupt Type	R/W	03h / 03h
74h	DMA Channel Select	R/W	04h / 04h
75h	Report DMA Assignment	RO	04h / 04h
F0h	Configuration Data	R/W	

NOTES:

[1] Device 5 (UART2) / Device 6 (UART1)

5.4.2.2 Serial Interface Control

The BIOS function INT 14 provides basic control of the serial interface. The serial interface can be controlled by software through the registers listed in Table 5-11.

	Table 5-11.	
	Serial Interface Control Registers	
Address	Register	R/W
Base	Receive Buffer / Transmit Holding [1]	R/W
Base, Base + 1	Baud Rate Divisor Latch [2]	R/W
Base + 1	Interrupt Enable	R/W
Base + 2	Interrupt ID	RO
Base + 3	Line Control	R/W
Base + 4	Modem Control	R/W
Base + 5	Line Status	RO
Base + 6	Modem Status	RO
Base + 7	Scratch Pad	R/W

NOTES:

Base Address:

COM1 = 3F8hCOM2 = 2F8h

- [1] This register holds receive data when read from and transmit data when written to.
- [2] When bit <7> of the Line Control register is set (1), writing to 3F8h and 3F9h programs the divisor rate for the baud rate generator.

Receive Buffer / Transmit Holding Register, I/O Port 3F8h/2F8h

When read by the CPU, this byte contains receive data. When written to by the CPU, the byte contains data to be transmitted.

Baud Rate Divisor Latch Register, I/O Port 3F8h, 3F9h/2F8, 2F9h

When bit <7> of the Line Control register is set (1), a write to this pair of locations loads the decimal value used to divide the 1.8462-MHz clock to create the desired baud rate for serial transmission. The possible baud rates are shown as follows:

Baud Rate	Decimal Divisor	Baud Rate	Decimal Divisor
50	2304	2400	48
75	1536	3600	32
110	1047	4800	24
134.5	857	7200	16
150	768	9600	12
300	384	19200	6
600	192	38400	3
1200	96	57600	2
1800	64	115200	1
2000	58		

Divisor = 1846200 / (Desired baud rate X 16)

Interrupt Enable Register, I/O Port 3F9h/2F9h

Bits <3..0> of this register are used for enabling interrupt sources. A set bit enables interrupt generation by the associated source.

Bit	Function
74	Reserved
3	Modem Status Interrupt Enable (if set) (CTS, DSR, RI, CD)
2	Receiver Line Status Interrupt Enable (if set) (Overrun error, parity error, framing error, break)
1	Transmitter Holding Register Empty Interrupt Enable (if set)
0	Baud Rate Divisor Interrupt Enable (if set)

Interrupt ID Register, I/O Port 3FAh/2FAh (Read Only)

This read-only register indicates the serial controller as the source of the interrupt (bit <0>) as well as the reason (bits <3..1>) for the interrupt. Reading this register clears the interrupt and sets bit <0>.

Bit	Function
7,6	FIFO Enable/Disable
	0 = Disabled
	1 = Enabled
5,4	Reserved
31	Interrupt Source:
	000 = Modem status (lowest priority)
	001 = Transmitter holding reg. Empty
	010 = Received data available
	011 = Receiver line status reg.
	100,101 = Reserved
	110 = Character time-out (highest priority)
	111 = Reserved
0	Interrupt Pending (if cleared)

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

FIFO Control Register, I/O Port 3FAh/2FAh (Write Only)

This write-only register enables and clears the FIFOs and sets the trigger level and DMA mode.

Bit	Function	
7,6	Receiver Trigger Level	
	00 = 1 byte 10 = 8 bytes	
	01 = 4 bytes	
53	Reserved	
2	Transmit FIFO Reset (if set)	
1	Receive FIFO Reset (if set)	
0	FIFOs Enable/Disable	
	0 = Disable TX/RX FIFOs, 1 = Enable TX/RX FIFOs	

Line Control Register, I/O Port 3FBh/2FBh

This register specifies the data transmission format.

Bit	Function		
7	RX Buffer / TX Holding Reg. And Divisor Rate Reg. Access		
	0 = RX buffer, TX holding reg., and Interrupt En. Reg. Are accessable.		
	1 = Divisor Latch reg. is accessable.		
6	Break Control (forces SOUT signal low if set)		
5	Stick Parity. If set, even parity bit is logic 0, odd parity bit is logic 1		
4	Parity Type		
	0 = Odd, 1 = Even		
3	Parity Enable:		
	0 = Disabled, 1 = Enabled		
2	Stop Bit:		
	0 = 1 stop bit, $1 = 2$ stop bits		
1,0	Word Size:		
	00 = 5 bits $10 = 7 bits$		
	01 = 6 bits		

Modem Control Register, I/O Port 3FCh/2FCh

This register controls the modem signal lines

Bit	Function	
75	Reserved	
4	nternal Loopback Enabled (if set)	
3	Serial Interface Interrupts Enabled (if set)	
2	Reserved	
1	RTS Signal Active (if set)	
0	DTR Signal Active (if set)	

5-18 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Line Status Register, I/O Port 3FDh/2FDh (Read Only)

This register contains the status of the current data transfer. Bits <2..0> are cleared when read.

Bit	Function		
7	Parity Error, Framing Error, or Break Cond. Exists (if set)		
6	TX Holding Reg. and Transmitter Shift Reg. Are Empty (if set)		
5	TX Holding Reg. Is Empty (if set)		
4	Break Interrupt Has Occurred (if set)		
3	Framing Error Has Occurred (if set)		
2	Parity Error Has Occurred (if set)		
1	Overrun Error Has Occurred (if set)		
0	Data Register Ready To Be Read (if set)		

Modem Status Register, I/O Port 3FEh/2FEh (Read Only)

This register contains the status of the modem signal lines. A set bit indicates that the associated signal is active.

Bit	Function			
7	DCD- Active			
6	RI- Active			
5	DSR Active			
4	CTS Active			
3	DCD- Changed Since Last Read			
2	RI- Changed From Low to High Since Last Read			
1	DSR- Has Changed State Since Last Read			
0	CTS- Has Changed State Since Last Read			

Scratch Pad Register, I/O Port 3FFh/2FFh

This register is not used in this system.

5.5 PARALLEL INTERFACE

The parallel interface provides connection to a peripheral device that has a compatible interface, the most common being a printer. The parallel interface function is integrated into the 87307 I/O controller component and provides bi-directional 8-bit parallel data transfers with a peripheral device. The parallel interface supports three main modes of operation:

- ♦ Standard Parallel Port (SPP) mode
- ♦ Enhanced Parallel Port (EPP) mode
- ♦ Extended Capabilities Port (ECP) mode

These three modes (and their submodes) provide complete support as specified for an IEEE 1284 parallel port.

5.5.1 STANDARD PARALLEL PORT MODE

The Standard Parallel Port (SPP) mode uses software-based protocol and includes two sub-modes of operation, compatible and extended, both of which can provide data transfers up to 150 KB/s. In the compatible mode, CPU write data is simply presented on the eight data lines. A CPU read of the parallel port yields the last data byte that was written.

The following steps define the standard procedure for communicating with a printing device:

- 1. The system checks the Printer Status register. If the Busy, Paper Out, or Printer Fault signals are indicated as being active, the system either waits for a status change or generates an error message.
- 2. The system sends a byte of data to the Printer Data register, then pulses the printer STROBE signal (through the Printer Control register) for at least 500 ns.
- 3. The system then monitors the Printer Status register for acknowledgment of the data byte before sending the next byte.

In extended mode, a direction control bit (CTR 37Ah, bit <5>) controls the latching of output data while allowing a CPU read to fetch data present on the data lines, thereby providing bidirectional parallel transfers to occur.

The SPP mode uses three registers for operation: the Data register (DTR), the Status register (STR) and the Control register (CTR). Address decoding in SPP mode includes address lines A0 and A1.

5.5.2 ENHANCED PARALLEL PORT MODE

In Enhanced Parallel Port (EPP) mode, increased data transfers are possible (up to 2 MB/s) due to a hardware protocol that provides automatic address and strobe generation. EPP revisions 1.7 and 1.9 are both supported. For the parallel interface to be initialized for EPP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with EPP mode. If compatible, then EPP mode can be used. In EPP mode, system timing is closely coupled to EPP timing. A watchdog timer is used to prevent system lockup.

Five additional registers are available in EPP mode to handle 16- and 32-bit CPU accesses with the parallel interface. Address decoding includes address lines A0, A1, and A2.

5.5.3 EXTENDED CAPABILITIES PORT MODE

The Extended Capabilities Port (ECP) mode, like EPP, also uses a hardware protocol-based design that supports transfers up to 2 MB/s. Automatic generation of addresses and strobes as well as Run Length Encoding (RLE) decompression is supported by ECP mode. The ECP mode includes a bi-directional FIFO buffer that can be accessed by the CPU using DMA or programmed I/O. For the parallel interface to be initialized for ECP mode, a negotiation phase is entered to detect whether or not the connected peripheral is compatible with ECP mode. If compatible, then ECP mode can be used.

Ten control registers are available in ECP mode to handle transfer operations. In accessing the control registers, the base address is determined by address lines A2-A9, with lines A0, A1, and A10 defining the offset address of the control register. Registers used for FIFO operations are accessed at their base address + 400h (i.e., if configured for LPT1, then 378h + 400h = 778h).

The ECP mode includes several sub-modes as determined by the Extended Control register. Two submodes of ECP allow the parallel port to be controlled by software. In these modes, the FIFO is cleared and not used, and DMA and RLE are inhibited.

NOTE: The 87307 does not support ECP v1.7 submode of ECP mode 4.

5.5.4 PARALLEL INTERFACE PROGRAMMING

5.5.4.1 Parallel Interface Configuration

The parallel interface must be configured for a specific address range (LPT1, LPT2, etc.) and also must be enabled before it can be used. When configured for EPP or ECP mode, additional considerations must be taken into account. Address selection, enabling, and EPP/ECP mode parameters of the parallel interface are affected through the PnP configuration registers of the 87307 I/O controller. Address selection and enabling are automatically done by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The PnP configuration registers are accessed through I/O registers 15Ch (index) and 15Dh (data). The parallel interface is initiated by firmware selecting logical device 4 of the 87307. This is accomplished by the following sequence:

- 1. Write 07h to I/O register 15Ch.
- 2. Write 04h to I/O register 15Dh (for selecting the parallel interface).
- 3. Write 30h to I/O register 15Ch.
- 4. Write 01h to I/O register 15Dh (this activates the interface).

The parallel interface configuration registers are listed in the following table:

Table 5-12.				
	Parallel Interface Configuration Registers			
Index			Reset	
Address	Function	R/W	Value	
30h	Activate	R/W	01h	
31h	I/O Range Check	R/W	00h	
60h	Base Address MSB	R/W	02h	
61h	Base Address LSB	R/W	78h	
70h	Interrupt Select	R/W	07h	
71h	Interrupt Type	R/W	00h	
74h	DMA Channel Select	R/W	04h	
75h	Report DMA Assignment	RO	04h	
F0h	Configuration Data	R/W		

5.5.4.2 Parallel Interface Control

The BIOS function INT 17 provides simplified control of the parallel interface. Basic functions such as initialization, character printing, and printer status are provide by subfunctions of INT 17. The parallel interface is controllable by software through a set of I/O mapped registers. The number and type of registers available depends on the mode used (SPP, EPP, or ECP). Table 5-13 lists the parallel registers and associated functions based on mode.

Table 5-13. Parallel Interface Control Registers				
	1/0	SPP Mode	EPP Mode	ECP Mode
Register	Address	Ports	Ports	Ports
Data	Base	LPT1,2,3	LPT1,2	LPT1,2,3
Status	Base + 1h	LPT1,2,3	LPT1,2	LPT1,2,3
Control	Base + 2h	LPT1,2,3	LPT1,2	LPT1,2,3
Address	Base + 3h		LPT1,2	
Data Port 0	Base + 4h		LPT1,2	
Data Port 1	Base + 5h		LPT1,2	
Data Port 2	Base + 6h		LPT1,2	
Data Port 3	Base + 7h		LPT1,2	
Parallel Data FIFO	Base + 400h			LPT1,2,3
ECP Data FIFO	Base + 400h			LPT1,2,3
Test FIFO	Base + 400h			LPT1,2,3
Configuration Register A	Base + 400h			LPT1,2,3
Configuration Register B	Base + 401h			LPT1,2,3
Extended Control Register Base + 4				LPT1,2,3

Base Address:

LPT1 = 378h

LPT2 = 278h

LPT3 = 3BCh

The following paragraphs describe the individual registers. Note that only the LPT1-based addresses are given in these descriptions.

Data Register, I/O Port 378h

Data written to this register is presented to the data lines D0-D7. A read of this register when in SPP-compatible mode yields the last byte written. A read while in SPP-extended or ECP mode yields the status of data lines D0-D7 (i.e., receive data).

In ECP mode in the forward (output) direction, a write to this location places a tagged command byte into the FIFO and reads have no effect.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Status Register, I/O Port 379h, Read Only

This register contains the current printer status. Reading this register clears the interrupt condition of the parallel port.

Bit	Function			
7	Printer Busy (if 0)			
6	Printer Acknowledgment Of Data Byte (if 0)			
5	Printer Out Of Paper (if 1)			
4	Printer Selected/Online (if 1)			
3	Printer Error (if 0)			
2	Reserved			
1	EPP Interrupt Occurred (if set while in EPP mode)			
0	EPP Timeout Occurred (if set while in EPP mode)			

Control Register, I/O Port 37Ah

This register provides the printer control functions.

Bit	Function			
7,6	Reserved			
5	Direction Control for PS/2 and ECP Modes:			
	0 = Forward. Drivers enabled. Port writes to peripheral (default)			
	1 = Backward. Tristates drivers and data is read from peripheral			
4	Acknowledge Interrupt Enable			
	0 = Disable ACK interrupt			
	1 = Enable interrupt on rising edge of ACK			
3	Printer Select (if 0)			
2	Printer Initialize (if 1)			
1	Printer Auto Line Feed (if 0)			
0	Printer Strobe (if 0)			

Address Register, I/O Port 37Bh (EPP Mode Only)

This register is used for selecting the EPP register to be accessed.

Data Port Registers 0-3, I/O Ports 37C-Fh (EPP Mode Only)

These registers are used for reading/writing data. Port 0 is used for all transfers. Ports 1-3 are used for transferring the additional bytes of 16- or 32-bit transfers through port 0.

FIFO Register, I/O Port 7F8h (ECP Mode Only)

While in ECP/forward mode, this location is used for filling the 16-byte FIFO with data bytes. Reads have no effect (except when used in Test mode). While in ECP/backward mode, reads yield data bytes from the FIFO.

Configuration Register A, I/O Port 7F8h (ECP Mode Only)

A read of this location yields 10h, while writes have no effect.

Configuration Register B, I/O Port 7F9h (ECP Mode, Read Only)

A read of this location yields the status defined as follows:

Bit	Function	
7	Reserved (always 0)	
6	Status of Selected IRQn.	
5,4	Selected IRQ Indicator: 00 = IRQ7 11 = IRQ5 All other values invalid.	
3	Reserved (always 1)	
20	Reserved (always 000)	

Extended Control Register B, I/O Port 7FAh (ECP ModeOnly)

This register defines the ECP mode functions.

Bit	Function
75	ECP Submode Select: 000 = Standard forward mode (37Ah <5> forced to 0). Writes are controlled by software and FIFO is reset. 001 = PS/2 mode. Reads and writes are software controlled and FIFO is reset. 010 = Parallel Port FIFO forward mode (37Ah <5> forced to 0). Writes are hardware controlled. 011 = ECP FIFO mode. Direction determined by 37Ah, <5>. Reads and writes are hardware controlled.
4	ECP Interrupt Mask:
	0 = Interrupt is generated on ERR- assertion. 1 = Interrupt is inhibited.
3	ECP DMA Enable/Disable. 0 = Disabled 1 = Enabled
2	ECP Interrupt Generation with DMA 0 = Enabled 1 = Disabled
1	FIFO Full Status (Read Only) 0 = Not full (at least 1 empty byte) 1 = Full
0	FIFO Empty Status (Read Only) 0 = Not empty (contains at least 1 byte) 1 = Empty

5.5.5 PARALLEL INTERFACE CONNECTOR

Figure 5-5 and Table 5-14 show the connector and pinout of the parallel interface connector.

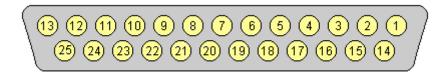
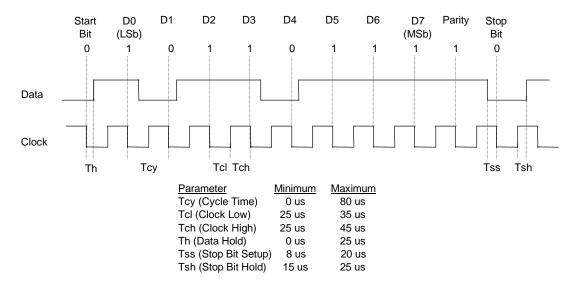


Figure 5–5. Parallel Interface Connector (Female DB-25 as viewed from rear of chassis)

	Table 5-14. DB-25 Parallel Connector Pinout					
Pin						
1	STB-	Strobe	14	LF-	Line Feed	
2	D0	Data 0	15	ERR-	Error	
3	D1	Data 1	16	INIT-	Initialize Paper	
4	D2	Data 2	17	SLCTIN-	Select In	
5	D3	Data 3	18	GND	Ground	
6	D4	Data 4	19	GND	Ground	
7	D5	Data 5	20	GND	Ground	
8	D6	Data 6	21	GND	Ground	
9	D7	Data 7	22	GND	Ground	
10	ACK-	Acknowledge	23	GND	Ground	
11	BSY	Busy	24	GND	Ground	
12	PE	Paper End	25	GND	Ground	
13	SLCT	Select				

5.6 KEYBOARD/POINTING DEVICE INTERFACE


The keyboard/pointing device interface provides the connection of an enhanced keyboard and a mouse using PS/2-type connections. The keyboard/pointing device interface function is provided by the 87307 I/O controller component, which integrates 8042-compatible keyboard controller logic (hereafter referred to as simply the "8042") to communicate with the keyboard and pointing device using bi-directional serial data transfers. The 8042 handles scan code translation and password lock protection for the keyboard as well as communications with the pointing device. This section describes the interface itself. The keyboard is discussed in the Appendix C.

5.6.1 KEYBOARD INTERFACE OPERATION

The data/clock link between the 8042 and the keyboard is uni-directional for Keyboard Mode 1 and bi-directional for Keyboard Modes 2 and 3. (These modes are discussed in detail in Appendix C). This section describes Mode 2 (the default) mode of operation.

Communication between the keyboard and the 8042 consists of commands (originated by either the keyboard or the 8042) and scan codes from the keyboard. A command can request an action or indicate status. The keyboard interface uses IRQ1 to get the attention of the CPU.

The 8042 can send a command to the keyboard at any time. When the 8042 wants to send a command, the 8042 clamps the clock signal from the keyboard for a minimum of 60 us. If the keyboard is transmitting data at that time, the transmission is allowed to finish. When the 8042 is ready to transmit to the keyboard, the 8042 pulls the data line low, causing the keyboard to respond by pulling the clock line low as well, allowing the start bit to be clocked out of the 8042. The data is then transferred serially, LSb first, to the keyboard (Figure 5-6). An odd parity bit is sent following the eighth data bit. After the parity bit is received, the keyboard pulls the data line low and clocks this condition to the 8042. When the keyboard receives the stop bit, the clock line is pulled low to inhibit the keyboard and allow it to process the data.

Figure 5–6. 8042-To-Keyboard Transmission of Code EDh, Timing Diagram

Compaq Deskpro EN Series of Personal Computers
Desktop and Minitower Form Factors

Control of the data and clock signals is shared by the 8042and the keyboard depending on the originator of the transferred data. Note that the clock signal is always generated by the keyboard. After the keyboard receives a command from the 8042, the keyboard returns an ACK code. If a parity error or timeout occurs, a Resend command is sent to the 8042.

Table 5-15 lists and describes commands that can be issued by the 8042 to the keyboard.

	T:	able 5-15.
804		board Commands
Command	Value	Description
Set/Reset Status Indicators	EDh	Enables LED indicators. Value EDh is followed by an option byte that specifies the indicator as follows: Bits <73> not used Bit <2>, Caps Lock (0 = off, 1 = on) Bit <1>, NUM Lock (0 = off, 1 = on) Bit <0>, Scroll Lock (0 = off, 1 = on)
Echo	EEh	Keyboard returns EEh when previously enabled.
Invalid Command	EFh/F1h	These commands are not acknowledged.
Select Alternate Scan Codes	F0h	Instructs the keyboard to select another set of scan codes and sends an option byte after ACK is received: 01h = Mode 1 02h = Mode 2 03h = Mode 3
Read ID	F2h	Instructs the keyboard to stop scanning and return two keyboard ID bytes.
Set Typematic Rate/Display	F3h	Instructs the keyboard to change typematic rate and delay to specified values: Bit <7>, Reserved - 0 Bits <6,5>, Delay Time 00 = 250 ms 01 = 500 ms 10 = 750 ms 11 = 1000 ms Bits <40>, Transmission Rate: 00000 = 30.0 ms 00001 = 26.6 ms 00010 = 24.0 ms 00011 = 21.8 ms : 11111 = 2.0 ms
Enable	F4h	Instructs keyboard to clear output buffer and last typematic key and begin key scanning.
Default Disable	F5h	Resets keyboard to power-on default state and halts scanning pending next 8042 command.
Set Default	F6h	Resets keyboard to power-on default state and enable scanning.
Set Keys - Typematic	F7h	Clears keyboard buffer and sets default scan code set. [1]
Set Keys - Make/Brake	F8h	Clears keyboard buffer and sets default scan code set. [1]
Set Keys - Make	F9h	Clears keyboard buffer and sets default scan code set. [1]
Set Keys - Typematic/Make/Brake	FAh	Clears keyboard buffer and sets default scan code set. [1]
Set Type Key - Typematic	FBh	Clears keyboard buffer and prepares to receive key ID. [1]
Set Type Key - Make/Brake	FCh	Clears keyboard buffer and prepares to receive key ID. [1]
Set Type Key - Make	FDh	Clears keyboard buffer and prepares to receive key ID. [1]
Resend	FEh	8042 detected error in keyboard transmission.
Reset	FFh	Resets program, runs keyboard BAT, defaults to Mode 2.

Note:

[1] Used in Mode 3 only.

5.6.2 POINTING DEVICE INTERFACE OPERATION

The pointing device (typically a mouse) connects to a 6-pin DIN-type connector that is identical to the keyboard connector both physically and electrically. The operation of the interface (clock and data signal control) is the same as for the keyboard. The pointing device interface uses the IRQ12 interrupt.

5.6.3 KEYBOARD/POINTING DEVICE INTERFACE PROGRAMMING

5.6.3.1 8042 Configuration

The keyboard/pointing device interface must be enabled and configured for a particular speed before it can be used. Enabling and speed parameters of the 8042 logic are affected through the PnP configuration registers of the 87307 I/O controller. Enabling and speed control are automatically set by the BIOS during POST but can also be accomplished with the Setup utility and other software.

The PnP configuration registers are accessed through I/O registers 15Ch (index) and 15Dh (data). The keyboard and mouse interfaces are initiated by firmware selecting logical device 0 or 1 of the 87307. This is accomplished by the following sequence:

- 1. Write 07h to I/O register 15Ch.
- 2. Write 00h or 01h to I/O register 15Dh (for selecting the keyboard or mouse interface).
- 3. Write 30h to I/O register 15Ch.
- 4. Write 01h to I/O register 15Dh (this activates the interface).

The parallel interface configuration registers are listed in the following table:

Table 5-16.					
K	Ceyboard/Mouse Interface Configu	ration Regis	ters		
Index			Reset		
Address	Function	R/W	Value [2]		
30h	Activate	R/W	01h / 00h		
31h	I/O Range Check [1]	R/W	00h / na		
60h	Base Address MSB [1]	R/W	02h / na		
61h	Base Address LSB [1]	R/W	78h / na		
62h	Command Base Address MSB [1]	R/W	00h / na		
63h	Command Base Address LSB [1]	R/W	00h / na		
70h	Interrupt Select	R/W	01h / 0Ch		
71h	Interrupt Type	R/W	01h / 01h		
74h	DMA Channel Select	R/W	04h / 04h		
75h	Report DMA Assignment	RO	04h / 04h		
F0h	Configuration Data [1]	R/W	/ na		

NOTES:

- [1] Keyboard I/F only.
- [2] Keyboard I/F / Mouse I/F

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

5.6.3.2 8042 Control

The BIOS function INT 16 is typically used for controlling interaction with the keyboard. Subfunctions of INT 16 conduct the basic routines of handling keyboard data (i.e., translating the keyboard's scan codes into ASCII codes). The keyboard/pointing device interface is accessed by the CPU through I/O mapped ports 60h and 64h, which provide the following functions:

- Output buffer reads
- ♦ Input buffer writes
- ♦ Status reads
- Command writes

Ports 60h and 64h can be accessed using the IN instruction for a read and the OUT instruction for a write. Prior to reading data from port 60h, the "Output Buffer Full" status bit (64h, bit <0>) should be checked to ensure data is available. Likewise, before writing a command or data, the "Input Buffer Empty" status bit (64h, bit <1>) should also be checked to ensure space is available.

I/O Port 60h

I/O port 60h is used for accessing the input and output buffers. This register is used to send and receive data from the keyboard and the pointing device. This register is also used to send the second byte of multi-byte commands to the 8042 and to receive responses from the 8042 for commands that require a response.

A read of 60h by the CPU yields the byte held in the output buffer. The output buffer holds data that has been received from the keyboard and is to be transferred to the system.

A CPU write to 60h places a data byte in the input byte buffer and sets the CMD/ DATA bit of the Status register to DATA. The input buffer is used for transferring data from the system to the keyboard. All data written to this port by the CPU will be transferred to the keyboard **except** bytes that follow a multibyte command that was written to 64h

I/O Port 64h

I/O port 64h is used for reading the status register and for writing commands. A read of 64h by the CPU will yield the status byte defined as follows:

Bit	Function
74	General Purpose Flags.
3	CMD/DATA Flag (reflects the state of A2 during a CPU write).
	0 = Data
	1 = Command
2	General Purpose Flag.
1	Input Buffer Full. Set (to 1) upon a CPU write. Cleared by
	IN A, DBB instruction.
0	Output Buffer Full (if set). Cleared by a CPU read of the buffer.

A CPU write to I/O port 64h places a command value into the input buffer and sets the CMD/DATA bit of the status register (bit <3>) to CMD.

Table 5-18 lists the commands that can be sent to the 8042 by the CPU. The 8042 uses IRQ1 for gaining the attention of the CPU.

	Table 5-17.				
	CPU Commands To The 8042				
Value	Command Description				
20h	Put current command byte in port 60h.				
60h	Load new command byte. This is a two-byte operation described as follows:				
0011	Write 60h to port 64h.				
	Write the command byte to port 60h as follows:				
	Bit <7> Reserved				
	<6> Keyboard Code Conversion				
	0 = Do not convert codes				
	1 = Convert codes to 9-bit 8088/8086-compatible format				
	Bit <5> Pointing Device Enable				
	0 = Enable pointing device				
	1 = Disable pointing device				
	Bit <4> Keyboard Enable				
	0 = Enable keyboard				
	1 = Disable keyboard				
	Bit <3> Reserved				
	Bit <2> System Flag				
	0 = Cold boot				
	1 = CPU reset (exit from protected mode)				
	Bit <1> Pointing Device Interrupt Enable				
	0 = Disable interrupt				
	1 = Enable interrupt				
	Bit <0> Keyboard Interrupt Enable				
	0 = Disable interrupt				
	1 = Enable interrupt				
A4h	Test password installed. Tests whether or not a password is installed in the 8042:				
	If FAh is returned, password is installed.				
	If F1h is returned, no password is installed.				
A5h	Load password. This multi-byte operation places a password in the 8042 using the following manner:				
	1. Write A5h to port 64h.				
	2. Write each character of the password in 9-bit scan code (translated) format to port 60h.				
	3. Write 00h to port 60h.				
A6h	Enable security. This command places the 8042 in password lock mode following the A5h command.				
	The correct password must then be entered before further communication with the 8042 is allowed.				
A7h	Disable pointing device. This command sets bit <5> of the 8042 command byte, pulling the clock line of the pointing device interface law.				
A8h	of the pointing device interface low.				
Aon	Enable pointing device. This command clears bit <5> of the 8042 command byte, activating the clock line of the pointing device interface.				
A9h	Test the clock and data lines of the pointing device interface and place test results in the output buffer.				
AJII	00h = No error detected				
	01h = Clock line stuck low				
	02h = Clock line stuck high				
	03h = Data line stuck low				
	04h = Data line stuck high				
AAh	Initialization. This command causes the 8042 to inhibit the keyboard and pointing device and places				
	55h into the output buffer.				
ABh	Test the clock and data lines of the keyboard interface and place test results in the output buffer.				
	00h = No error detected				
	01h = Clock line stuck low				
	02h = Clock line stuck high				
	03h = Data line stuck low				
	04h = Data line stuck high				
ADh	Disable keyboard command (sets bit <4> of the 8042 command byte).				
AEh	Enable keyboard command (clears bit <4> of the 8042 command byte).				
	Continued				

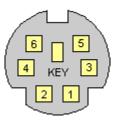

Continued

Table 5-17. CPU Commands To The 8042 (Continued)

Value	Command Description
C0h	Read input port of the 8042. This command directs the 8042 to transfer the contents of the input port
	to the output buffer so that they can be read at port 60h. The contents are as follows:
	Bit <7> Password Enable:
	0 = Disabled
	1 = Enabled
	Bit <6> External Boot Enable:
	0 = Enabled
	1 = Disabled
	Bit <5> Setup Enable:
	0 = Enabled
	1 = Disabled
	Bit <4> VGA Enable:
	0 = Enabled
	1 = Disabled
	Bit <3> Diskette Writes:
	0 = Disabled
	1 = Enabled
	Bit <2> Reserved
	Bit <1> Pointing Device Data Input Line
	Bit <0> Keyboard Data Input Line
C2h	Poll Input Port High. This command directs the 8042 to place bits <74> of the input port into the
	upper half of the status byte on a continous basis until another command is received.
C3h	Poll Input Port Low. This command directs the 8042 to place bits <30> of the input port into the lower
	half of the status byte on a continous basis until another command is received.
D0h	Read output port. This command directs the 8042 to transfer the contents of the output port to the
	output buffer so that they can be read at port 60h. The contents are as follows:
	Bit <7> Keyboard data stream
	Bit <6> Keyboard clock
	Bit <5> IRQ12 (pointing device interrupt)
	Bit <4> IRQ1 (keyboard interrupt)
	Bit <3> Pointing device clock
	Bit <2> Pointing device data
	Bit <1> A20 Control:
	0 = Hold A20 low
	1 = Enable A20
	Bit <0> Reset Line Status;
	0 = Inactive
	1 = Active
D1h	Write output port. This command directs the 8042 to place the next byte written to port 60h into the
	output port (only bit <1> can be changed).
D2h	Echo keyboard data. Directs the 8042 to send back to the CPU the next byte written to port 60h as if
	it originated from the keyboard. No 11-to-9 bit translation takes place but an interrupt (IRQ1) is
	generated if enabled.
D3h	Echo pointing device data. Directs the 8042 to send back to the CPU the next byte written to port 60h
	as if it originated from the pointing device. An interrupt (IRQ12) is generated if enabled.
D4h	Write to pointing device. Directs the 8042 to send the next byte written to 60h to the pointing device.
E0h	Read test inputs. Directs the 8042 to transfer the test bits 1 and 0 into bits <1,0> of the output buffer.
F0h-	Pulse output port. Controls the pulsing of bits $<30>$ of the output port (0 = pulse, 1 = don't pulse).
FFh	Note that pulsing bit <0> will reset the system.

5.6.4 KEYBOARD/POINTING DEVICE INTERFACE CONNECTOR

There are separate connectors for the keyboard and pointing device. Both connectors are identical both physically and electrically. Figure 5-7 and Table 5-18 show the connector and pinout of the keyboard/pointing device interface connectors.

Figure 5–7. Keyboard or Pointing Device Interface Connector (as viewed from rear of chassis)

Table 5-18. Keyboard/Pointing Device Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description
1	DATA	Data	4	+ 5 VDC	Power
2	NC	Not Connected	5	CLK	Clock
3	GND	Ground	6	NC	Not Connected

5.7 UNIVERSAL SERIAL BUS INTERFACE

The Universal Serial Bus (USB) interface provides up to 12 Mb/s data transfers between the host system and peripherals designed with a compatible USB interface. This high speed interface supports hot-plugging of compatible devices, making possible system configuration changes without powering down or even rebooting systems. The USB interface supports both isochronous and asynchronous communications, and integrates a 5 VDC power bus that can eliminate the need for external powering of small remote peripherals.

5.7.1 USB KEYBOARD CONSIDERATIONS

The BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

The system does not support hot-plugging of a USB keyboard, nor is a keyboard attached to a USB hub supported. A PS/2 keyboard and a USB keyboard can, however, be connected and used simultaneously.

5.7.2 USB CONFIGURATION

The USB interface functions as a PCI device (7) within the 82371AB component (function 2) and is configured using PCI Configuration Registers as listed in Table 5-19.

Table 5-19. USB Interface Configuration Registers					
PCI Config.	PCI Config. Reset PCI Config. Re				
Addr.	Register	Value	Addr.	Register	Value
00, 01h	Vender ID	8086h	0Dh	Latency Timer	00h
02, 03h	Device ID	7112h	0Eh	Header Type	80h
04, 05h	PCI Command	0000h	20-23h	I/O Space Base Address	All 0's
06, 07h	PCI Status	0280h	3Ch	Interrupt Line	00h
08h	Revision ID	00h	3Dh	Interrupt Pin	04h
09h	Programming I/F	00h	60h	Miscellaneous Control 1	10h
0Ah	Sub Class Code	03h	C0, C1h	Miscellaneous Control 2	2000h
0Bh	Base Class Code	0Ch			

NOTES:

Assume unmarked locations/gaps as reserved.

Refer to applicable Intel documentation for detailed descriptions of registers.

5-34 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

5.7.3 USB CONTROL

The USB is controlled through I/O registers as listed in table 5-20.

Table 5-20.				
	USB Control Registers			
I/O Addr.	Register			
00, 01h	Command			
02, 03h	Status			
04, 05h	Interupt Enable			
06, 07	Frame No.			
08, 0B	Frame List Base Address			
0Ch	Start of Frame Modify			
10, 11h	Port 1 Status/Control			
12, 13h	Port 2 Status/Control			

5.7.4 USB CONNECTOR

The USB interface provides two identical connectors (ports A and B).

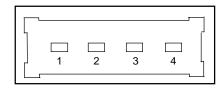


Figure 5–8. Universal Serial Bus Connector (one of two as viewed from rear of chassis)

Table 5-21. USB Connector Pinout						
Pin	Signal	Description	Pin	Signal	Description	
1	Vcc	+5 VDC	3	USB+	Data (plus)	
2	USB-	Data (minus)	4	GND	Ground	

napter 3	Input/Output InterJaces		
		This page is intentionally blank.	
	Common Doolone FM Coming		

Chapter 6 **AUDIO SUBSYSTEM**

6.1 INTRODUCTION

This chapter describes the audio subsystem, which features Compaq Premier Sound. The audio subsystem is compatible with software written for industry-standard sound subsystems. The audio subsystem can capture and playback .WAV files (as used in most Windows applications). Support for FM synthesis for playback of MIDI (.MID) files is also included.

This chapter covers the following subjects:

◆ Functional description (6.2) page 6-2
 ◆ Programming (6.3) page 6-8
 ◆ Specifications (6.4) page 6-11

6.2 FUNCTIONAL DESCRIPTION

A block diagram of the audio subsystem is shown in Figure 6-1. The architecture is based on the ES1869 audio controller that provides the ADC, DAC, FM synthesis, spatializer 3D audio, and mixing functions. The audio output is processed though a six-level equalizer designed to compensate for chassis acoustics. A 5-watt low-distortion amplifier (TDA7056A) drives a long-excursion speaker for optimum sound. All audio functions are controlled by software. The software volume control uses 6-bit resolution providing 64 levels.

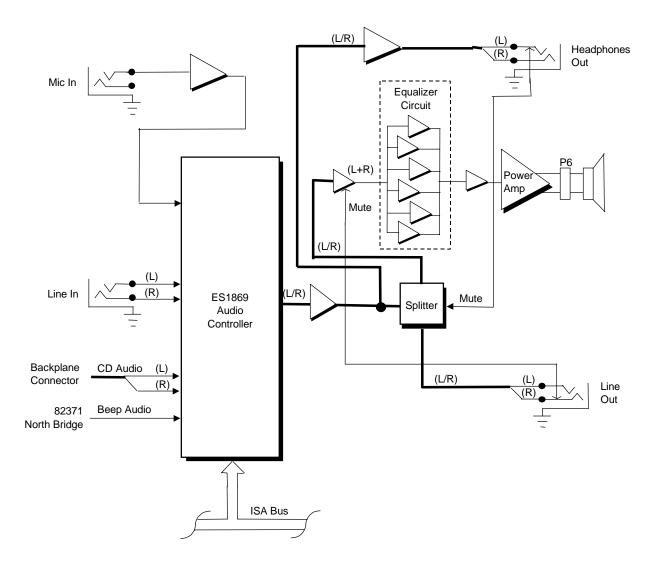
In addition to the connections provided for CD-ROM, four analog interfaces are provided to connect to external audio devices and are discussed in the following paragraphs.

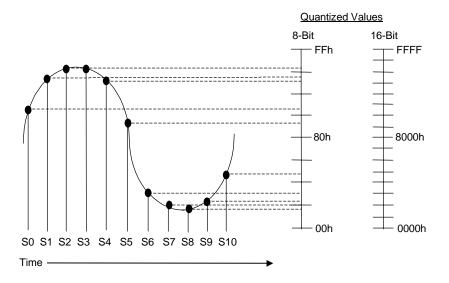
Line In - This input uses a three-conductor (stereo) mini-jack for connecting left and right channel line-level signals (20-K ohm impedance). A typical connection would be to a tuner's Line Out or Record Out jacks, or to a tape deck's Line Out or Playback Output jacks. A less optimum but acceptable connection would be to the headphone output of the tape deck or CD player.

Line Out - This output uses a three-conductor (stereo) mini-jack for connecting left and right channel line-level signals (20-K ohm impedance). A typical connection would be to a tape recorder's Line In or Record In jacks, to an amplifier's Line In jacks, or to "powered" computer speakers that contain amplifiers. Plugging into the Line Out mutes the internal speaker.

Mic In - This input uses a three-conductor (stereo) mini-jack that is specifically designed for connecting a condenser microphone with an impedance of 1-K ohms. This is the default recording input after a system reset.

Headphone Out - This output uses a three-conductor (stereo) mini-jack for connecting a pair of stereo headphones with a minimum impedance of 16 ohms. This jack can also be used to connect a pair of un-powered or powered speakers of the type designed to be used with portable radio/cassette/CD players). Using this connector defeats (mutes) the internal speaker and Line Out signals.




Figure 6–1. Audio Subsystem Block Diagram

6.2.1 PCM AUDIO PROCESSING

The audio subsystem uses pulse code modulation (PCM) for processing audio that is applied from external sources to the Mic In and Line In input jacks, as well as audio from an installed CD-ROM drive. The PCM method is also used in playback of .WAV file data commonly used in Windows applications.

6.2.1.1 ADC Operation

The Analog-to-Digital Converter (ADC) receives an analog signal and, using pulse code modulation (PCM) converts it into digital data that can be handled by normal logic circuitry. The conversion process consists of measuring (sampling) the analog signal at intervals to determine the amplitude and frequency (see Figure 6-2). The frequency of sampling intervals is a programmable parameter known as the sampling rate. The higher the sampling rate, the more accurate the digital representation will be.

Figure 6–2. Analog Signal Sampling/Quantizing

Each sample is quantized into a digital code that specifies the voltage level of the analog signal at that particular time. The quantizing format options are as follows:

Mono or stereo 8- or 16-bit Signed or unsigned

6-4 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

6.2.1.2 DAC Operation

The digital-to-analog conversion (DAC) simply reverses the procedure of the ADC. The digital audio data stream is received by the DAC and the quantized values are decoded at the sampling rate (Figure 6-3A) into DC levels, resulting in a discrete level wave form (Figure 6-3B). A filter provides the final shaping of the wave (Figure 6-3C) before it is applied to the analog output circuitry.

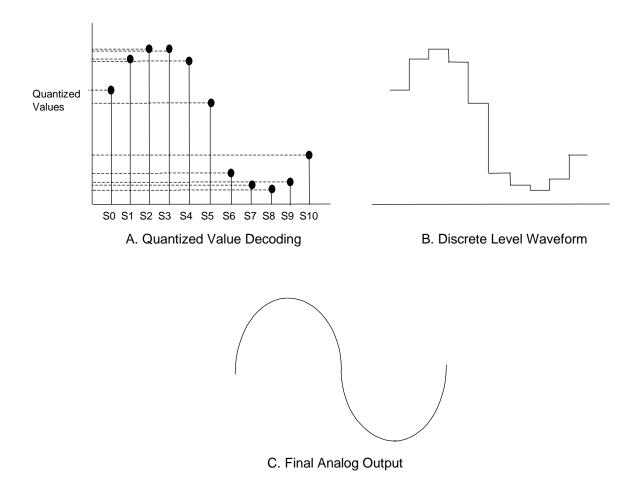


Figure 6–3. DAC Operation

Compressed sound formats efficiently use space by concentrating sampling/quantizing in the middle of the sound spectrum and are suited for voice capture/playback. The DAC of the ES1869 controller supports two type of compressed sound; ADPCM and ESPCM. The ADPCM compressed format is compatible with common industry sound subsystems while ESPCM is a proprietary format that offers greater performance.

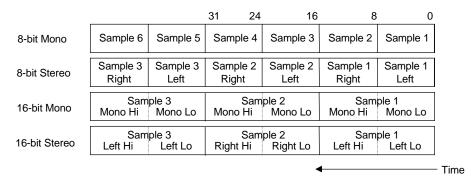
6.2.1.3 PCM Configuration Modes

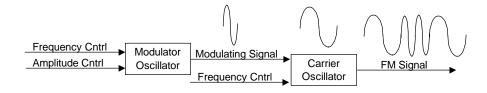
PCM operation can be configured for compatible (common sound board functionality) mode or set up for extended mode, which has some performance advantages. Table 6-1 lists the differences between the modes of operation.

Table 6-1. Audio Mode Differences					
Function	Compatibility Mode	Extended Mode			
FIFO Size Available	64 bytes (SW Control)	256 bytes (HW Control)			
Mono 8-bit ADC, DAC	44 KHz Max Sampling	44 KHz Max Sampling			
Mono 16-bit ADC, DAC	22 KHz Max Sampling	44 KHz Max Sampling			
Stereo 8-bit ADC, DAC	22 KHz Max Sampling	44 KHz Max Sampling			
Stereo 16-bit ADC	n/a	44 KHz Max Sampling			
Stereo 16-bit DAC	11 KHz Max Sampling	44 KHz Max Sampling			
Signed/Unsigned Control	No	Yes			
AGC During Capture	Mono Only (22 KHz)	No			
Programmed I/O Block Transfer	No	Yes			
FIFO Status Flags	No	Yes			
Auto Reload DMA	Yes	Yes			
Time Base for Programmable Time	1 MHz or 1.5 MHz	800 KHz or 400 KHz			
ADC/DAC Jitter	+/- 2 usec	None			
Sound Blaster Pro Compatible	Yes	No			

6.2.1.4 PCM Bus Cycles

The I/O and DMA cycles used by PCM operations to process .WAV data follow standard ISA bus conventions. All bus transfers occur at the bytes level. Programmed I/O cycles are always used for programming the control registers and may also be used for transferring audio data to and from the audio subsystem as well. Quantized audio data is built using the "little endian" format (LSB occupies the lowest memory address). Data transfers over the ISA occur as shown below.




Figure 6-4. Audio Subsystem-to-ISA Bus PCM Audio Data Formats / Byte Ordering

⁶⁻⁶ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

6.2.2 FM SYNTHESIS AUDIO PROCESSING

The audio subsystem supports playback of MIDI (.MID) files. A .MID file does not contain audio information in the same way that .WAV files do. In .MID files, audio data consists of note on/off, tone type, and amplification information. Audio stored in the .MID file format has the benefit of taking up far less space than audio stored as .WAV files.

The ES1869 controller includes a 20-voice, four-operator frequency modulated (FM) synthesizer. In FM synthesis, one signal (the carrier) is forced to vary from it's center frequency by another signal (the modulator) resulting in a sideband or "harmonic" frequency. The frequency of the harmonic is determined by the original carrier frequency and the modulating frequency. The number of harmonics generated is determined by the strength (amplitude) of the modulating signal. The microsystem that produces the FM signal is called a patch (Figure 6-5).

Figure 6–5. FM Synthesis Patch

Note that while an analog representation is shown in Figure 6-6. Synthesis occurs as a digital operation with the results being sent to the DAC.

The FM synthesis process is a playback-only operation involving the writing of .MID data to the audio subsystem over the ISA bus. The only reads involve checking the controller for status. Figure 6-6 shows the ISA bus transaction for FM synthesis. Note that if a succeeding data byte is meant for the same location as the previous byte, the address does not need to be re-written.

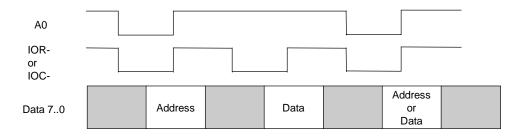


Figure 6–6. Audio Car-to-ISA Bus FM Audio Data Format

6.3 PROGRAMMING

All programming aspects of the audio subsystem relate directly to the programmability of the ES1869 controller, upon which the audio subsystem is based. This section describes only the basic mapping of the audio functions. For a detailed description of the ES1869s registers and capabilities refer to the ES1869 AudioDrive Data Sheet, ESS Technology, Inc.

6.3.1 CONFIGURATION

The audio subsystem is automatically configured as to base address, DMA, and interrupts following installation and power up through an on-board EEPROM that provides Plug 'n Play support. Software can identify the ES1869 controller by reading indexed address 2n5.40h successively (where n=2 for primary address or 4 for secondary address), which should yield the values 18h, 69h, followed by the base address of the ES1869.

The typical reset/power-up configuration for the audio subsystem is as follows:

Base Address: 220h Interrupt: IRQ5 DMA Channel: 1

Power Management: Automatic

The audio subsystem can be configured or either single DMA channel mode or dual DMA channel mode. Single DMA channel mode means that capture and playback operations share the same (playback) DMA channel and only one operation, capture **or** playback, is possible at a time. Dual DMA channel operation allows simultaneous capture/playback (full duplex) operation to occur if desired, but requires the use of two DMA channels. Typically, dual DMA operation would use DMA channel 1 for capture (recording) and DMA channel 0 or 3 for playback.

6.3.2 CONTROL

The audio subsystem is controlled through I/O mapped registers listed in Table 6-2.

Table 6-2.	
Audio Subsystem I/O Maj	ρ

I/O		I/O	
Address	Function	Address	Function
201h	Joystick	2nAh	Read Buffer Input Data
2n0-2n3	FM Synthesizer Address/Data [1]	2nCh (Read)	Status
2n4h	Mixer Address	2nCh (Write)	Command/Data
2n5h	Mixer Data	2nEh	Data Available Status
2n6h (Read)	Activity/Power Status	2nFh	FIFO I/O Address (Extended Mode)
2n6h (Write)	Reset Control	3n0, 3n1h	MPU-401 Port
2n7h	Power Management	388-38Bh	FM Synthesizer (alias of 2n0-2n3h)
2n8, 2n9h	FM Synthesizer Address/Data [2]		

NOTES:

n = 2 for primary address (default), = 4 for secondary address.

[1] 20-voice operation

[2] 11-voice operation

Not supported

6.3.2.1 PCM Control

The audio subsystem can operate in either Sound Blaster-compatible mode (the default) or in extended capability mode.

Table 6-3 lists the audio mixer control registers used by software written for Sound Blaster and other common audio peripherals. These registers are accessed by writing the index value to I/O port 2n4h and reading the value from or writing the value to I/O port 2n5h.

Table 6-3.
Compatibility Mode Audio Mixer Control Register Mapping

Index	Function	Index	Function	
00h	Mixer Reset	22h	Master Volume	
04h	Voice Volume	26h	FM Volume	
0Ah	Mic Volume	28h	CD Volume	
0Ch	ADC Recording Source [1]	2Eh	Line Volume	
0Eh	Stereo/Mono Switch [1]			

NOTE: Refer to OEM's ES1869 data sheet for detailed register descriptions.

[1] The filter functions used in Sound Blaster subsystems are not used in the audio subsystem.

The Extended Mode registers are listed in Table 6-4. Like the compatibility registers listed previously, these registers are accessed by writing the index value to I/O port 2n4h and reading the value from or writing the value to I/O port 2n5h. Extended mode offers better performance by providing more precise (higher bit resolution) control of audio levels and more control of audio processing.

Table 6-4.
Extended Mode Audio Mixer Control Register Mapping

Index	Function	Index	Function
14h	Voice Volume	60, 62h	Master Volume (Left, Right)
1Ah	Mic Volume	64h	Master Volume Control
1Ch	ADC (recording) Source	66h	Volume Int. Req. Clear
1Eh	Stereo/Mono Switch	74h	DMA Transfer(2 nd) Count Reload (Low)
32h	Master Volume	76h	DMA Transfer (2 nd) Count Reload (Hi)
36h	FM Volume	78h	2 nd DMA Control 1
38h	CD Volume	7Ah	2 nd DMA Control 2
3Eh	Line Volume	7Eh	Test Register

NOTE: Refer to OEM's ES1869 data sheet for detailed registers descriptions.

6.3.2.2 FM Synthesis Control

The FM synthesis logic is typically mapped at 388h-38Bh. A total of 243 registers in two banks are available. Accessing the registers is accomplished by first writing the index to register 388h (for bank 0) or 38Ah (for bank 1) followed by writing the data to either 389h or 38Bh (for bank 0 or bank 1 respectively). If a succeeding data byte is destined for the same location then the address need not be re-written. Location 388h can be read for FM synthesizer status. Table 6-5 lists the FM synthsizer control registers.

Table 6-5. FM Synthesizer Control Register Mapping

Index	Bank 0 Function	Bank 1 Function
01h	Test - all 0s	Test - all 0s
02h	Timer 1	Not Used
03h	Timer 2	Not Used
04h	Timer Mask/Timer Start	4-Operator Configure
05h	Not Used	4-Operator Enable
08h	Key Scale (KSR) # Determiner	Not Used
20-35h	AM, Vib, EG Type, KSR, Mult.	Same as bank 0
40-55h	Key Scale Level, Tone Level	Same as bank 0
60-75h	Attack Rate, Decay Rate	Same as bank 0
80-95h	Sustain Level, Release Rate	Same as bank 0
A0-A8h	Frequency Number	Same as bank 0
B0-B8h	Key On, Block Octave, Frequency No.	Same as bank 0
BDh	Depth of Block Octave, Frequency No.	Not Used
C0-C8h	Stereo Left/Right, Feedback, Connection	Same as bank 0
E0-F5h	Wave Select	Same as bank 0

NOTE: Refer to OEM's ES1869 data sheet for detailed registers descriptions. Abbreviations:

AM Amplitude Modulation (tremolo) Vib Vibrato

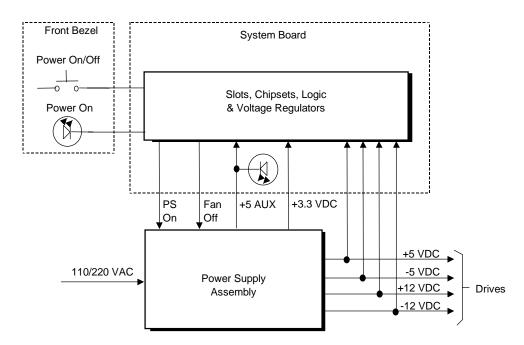
6-10 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

6.4 SPECIFICATIONS

Table 6-6.				
Audio Subsystem Specifications				
Paramemter Measurement				
Sampling Rate	5.51 KHz to 44 KHz (prgmbl)			
Maximum Input Voltage:				
Mic In	.125 Vp-p			
Line In	1.4 Vrms			
Impedance				
Mic In	1 K ohms (nom)			
Line In	30 K ohms (nom)			
Line Out	30 K ohms (nom)			
Headphone Out	16 ohms (min)			
Power output (max):				
Headphone output	60 mW into 16 ohms			
Power amp	5 watts into 8 ohms			
Total Harmonic Distortion (power amp):				
@ 0.5 watts	1 %			
@ 5 watts	10 %			
Mic Preamp Gain	26 db			
Volume Range				
Input	0 - 22.5 db			
Output	-46.5 - +10 db			
Frequency Response (speaker)	450 - 4000 Hz			

Chapter 6 Audio Subsys	stem				
		This page is in	ntentionally blan	k	
		Tills page is in	itentionarry oran	к.	
6-12 Compaq Deskpro Desktop and Mini	EN Series of Per tower Form Fact	rsonal Compute tors	ers		

Chapter 7 POWER and SIGNAL DISTRIBUTION


7.1 INTRODUCTION

This chapter describes the power supply and method of general power and signal distribution in the Compaq Deskpro INDY Personal Computer. Topics covered in this chapter include:

◆ Power supply assembly/control (7.2) page 7-1
 ◆ Power distribution (7.3) page 7-5
 ◆ Signal distribution (7.4) page 7-7

7.2 POWER SUPPLY ASSEMBLY/CONTROL

This system features a power supply assembly that is controlled through programmable logic (Figure 7-1).

NOTE:

All signals shown entering and exiting the system board pass through the backplane card.

Figure 7–1. Power Distribution and Control, Block Diagram

7.2.1 POWER SUPPLY ASSEMBLY

The power supply assembly is contained in a single unit that features a selectable input voltage: 90-132 VAC and 180-264 VAC. The power supply assembly provides +3.3 VDC, +5 VDC, -5 VDC, +12 VDC, and -12 VDC potentials for the system board, expansion board(s), and installed drives. These voltages are controlled through the power button on the front panel of the system unit. Pressing and releasing the power button results in system board logic asserting the PS On signal, which activates the power supply assembly.

The power supply also produces an auxiliary voltage (+5 AUX). The +5 AUX voltage is used for powering the power button and other logic required for wake-up operation and is produced as long as the unit is plugged into a live AC outlet.

NOTE: Minimum loading requirements for the power supply must be met at all times to ensure normal operation and to meet specifications.

Table 7-1 shows the specifications for the power supply.

Table 7-1.				
Power Supply Assembly Specifications				
(P/N 334112-xxx)				

Parameter	Range/ Tolerance	Min. Current Loading [1]	Max. Current	Surge Current [2]	Max. Ripple
Input Line Voltage:	TOICIGITOC	Louding[i]	Ourron	Ourrent [2]	Пірріс
110 VAC Setting	90 - 132 VAC				
220 VAC Setting	180-264 VAC				
Line Frequency	47 - 63 Hz				
Steady State Input (VAC) Current:			5.50 A		
+3.3 VDC Output	+/- 1%	1.40 A	10.0 A	10.0 A	50 mV
+5 VDC Output	+/- 5 %	1.40 A	25.0 A	25.0 A	50 mV
-5 VDC Output	+/- 10 %	0.00 A	0.15 A	0.15 A	100 mV
+5 AUX Output	+/- 5 %	0.10 A	2.00 A	2.00 A	50 mV
+12 VDC Output	+/- 5 %	0.07 A	4.50 A	7.00 A	120 mV
-12 VDC Output	+/- 10 %	0.00 A	0.15 A	0.15 A	200 mV

NOTES:

The power supply assembly contains a fan that can be shut down by the Fan Off signal, which is asserted from the system board logic during sleep (suspend) states. The power supply can override the Fan Off signal if the temperature in the power supply assembly is too high.

^[1] Minimum loading requirements must be met at all times to ensure normal operation and specification compliance.

^[2] Surge duration no longer than 10 seconds and +12 tolerance +/- 10%.

7.2.2 POWER CONTROL

The power supply assembly is controlled digitally by the PS On signal (Figure 6-1). When PS On is asserted, the Power Supply Assembly is activated and all voltage outputs (+3 VDC, +5 AUX, +/-5 VDC, +/-12 VDC) are produced. When PS On is de-asserted, the Power Supply Assembly is off and all voltages (except +5 AUX) are not generated. Note that +5 AUX is always produced as long as the system is connected to a live AC source (as indicated by an illuminated system board LED).

7.2.2.1 Power Button

The PS On signal is typically controlled through the Power Button which, when pressed and released, applies a negative (grounding) pulse to the power control logic. (Refer to section 7.2.2.3 for PS On control select.) The resultant action of pressing the power button depends on the state and mode of the system at that time and is described as follows:

System State	Pressed Power Button Results In:
Off	Negative pulse, of which the falling edge results in power control logic asserting PS On signal to Power Supply Assembly, which then initializes. ACPI four-second counter is not active.
On, ACPI Disabled	Negative pulse, of which the falling edge causes power control logic to de-assert the PS On signal. ACPI four-second counter is not active.
On, ACPI Enabled	Pressed and Released Under Four Seconds: Negative pulse, of which the falling edge causes power control logic to generate SMI-, set a bit in the SMI source register, set a bit for button status, and start four-second counter. Software should clear the button status bit within four seconds and the Suspend state is entered. If the status bit is not cleared by software in four seconds PS On is de-asserted and the power supply assembly shuts down (this operation is meant as a guard if the OS is hung).
	Pressed and Held At least Four Seconds Before Release: If the button is held in for at least four seconds and then released, PS On is negated, de-activating the power supply.

7.2.2.2 Power LED Indications

Two LEDs are used to indicate system power status. The front panel (bezel) power LED provides a visual indication of three key system conditions listed as follows:

Power LED	<u>Condition</u>
Steady On	Normal full-on operation
Blinking @ 1 Hz	Sleep (suspend) state
Blinking @ 4 Hz	Thermal condition: processor has overheated and shut down

An additional LED is mounted on the system board. This LED is connected to the +5 AUX bus and will be on as long as the system unit is connected to live AC power **regardless of the status of the PS On signal**. The AC line cord should always be disconnected and the system board LED should **not** be illuminated before servicing the unit.

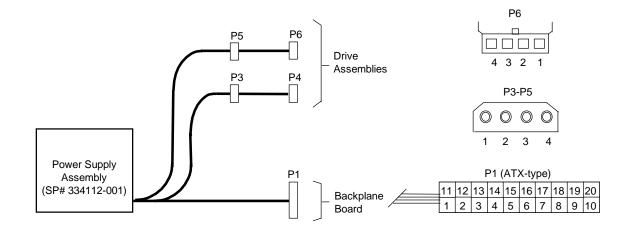
7.2.2.3 PS On Control Select

The assertion of the PS On signal can be controlled through DIP switch SW1-6 as follows:

SW1-6 Closed (on) – PS On signal is asserted when unit is plugged into a live AC socket and power supply assembly produces all voltages (system boots immediately).

SW1-6 Open (off) – PS On signal asserted by pressed power button.

7.2.2.4 Wake Up Events


The PS On signal can also be activated with a power "wake-up" of the system due to the occurrence of a magic packet, serial port ring, or PCI power management (PME) event. These events can be individually enabled by the Setup utility through the GPIO of the system security ASIC to wake up the system from a sleep (low power) state. The wake up sequence for each event occurs as follows:

- Wake On LAN (WOL) If a compliant network interface controller is installed and enabled for remote wake-up, reception of a "Magic Packet" results in the assertion of the high R-MPKT pulse signal (received through the WOL header P9) to the power control logic, which will assert PS On. Note that the NIC adapter must be able to draw five volts power from header P9 during the system sleep state.
- ♦ Modem Ring A ring indication on serial port A (COM1) will, if enabled, be detected by the power control logic and cause the PS On signal to be asserted.
- ♦ PME Event A power management event that asserts the PME- signal on the PCI bus can be enabled to cause the power control logic to generate the PS On signal. Note that the PCI card must have a second source of power to operate during the system unit's sleep state.

7.3 POWER DISTRIBUTION

7.3.1 3.5/5/12 VDC DISTRIBUTION

The power supply assembly includes a multi-connector cable assembly that routes +3.3 VDC, +5 VDC, -5 VDC, +12 VC, and -12 VDC to the system board as well as to the individual drive assemblies.

Connector	Pin 1	Pin 2	Pin 3	Pin 4	Pin 5	Pin 6	Pin 7	Pin 8	Pin 9	Pin 10
P1	+3.3	+3.3RS	RTN	+5	RTN	+5	RTN	Fan Off	+5AUX	+12
P1 [1]	+3.3	-12	RTN	PS On	RTN	RSRTN	RTN	-5	+5	+5
P3-P5	+12	GND	GND	+5						
P6	+5	GND	GND	+12						

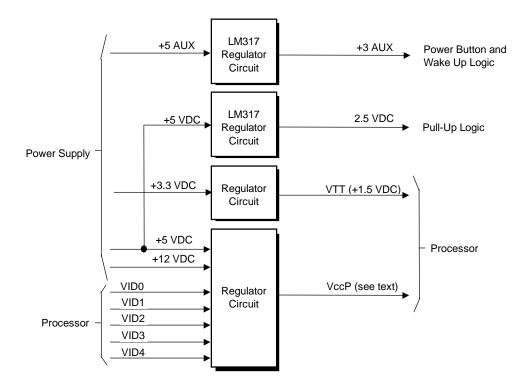
NOTES:

[1] This row represents pins 11-20 of the P1 connector.

All + and - values are VDC.

RTN = Return (signal ground)

GND = Power ground


RS = Remote sense

= Deviation from ATX standard. PWR GD signal is produced by the south bridge component.

Figure 7–2. Power Cable Diagram

7.3.2 LOW VOLTAGE DISTRIBUTION

Voltages less than 3.3 VDC and processor core voltage are produced through regulator circuitry on the system board.

Figure 7–3. Low Voltage Supply, Block Diagram

The VccP regulator produces the VccP (processor core) voltage according to the state of the VID4..0 signals from the processor. This allows automatic selection of the proper core voltage depending on the installed processor component. The possible voltages available are listed as follows:

VID40	VccP	VID40	VccP	VID40	VccP
10000	3.5 VDC	11011	2.4 VDC	00111	1.70 VDC
10001	3.4 VDC	11100	2.3 VDC	01000	1.65 VDC
10010	3.3 VDC	11101	2.2 VDC	01001	1.60 VDC
10011	3.2 VDC	11110	2.1 VDC	01010	1.55 VDC
10100	3.1 VDC	00000	2.05 VDC	01011	1.50 VDC
10101	3.0 VDC	00001	2.00 VDC	01100	1.45 VDC
10110	2.9 VDC	00010	1.95 VDC	01101	1.40 VDC
10111	2.8 VDC	00011	1.90 VDC	01110	1.35 VDC
11000	2.7 VDC	00100	1.85 VDC	01111	1.30 VDC
11001	2.6 VDC	00101	1.80 VDC	11111	CPU not installed
11010	2.5 VDC	00110	1.75 VDC		

⁷⁻⁶ Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

7.4 SIGNAL DISTRIBUTION

Figure 7-4 shows general signal distribution between the main subassemblies of the system unit.

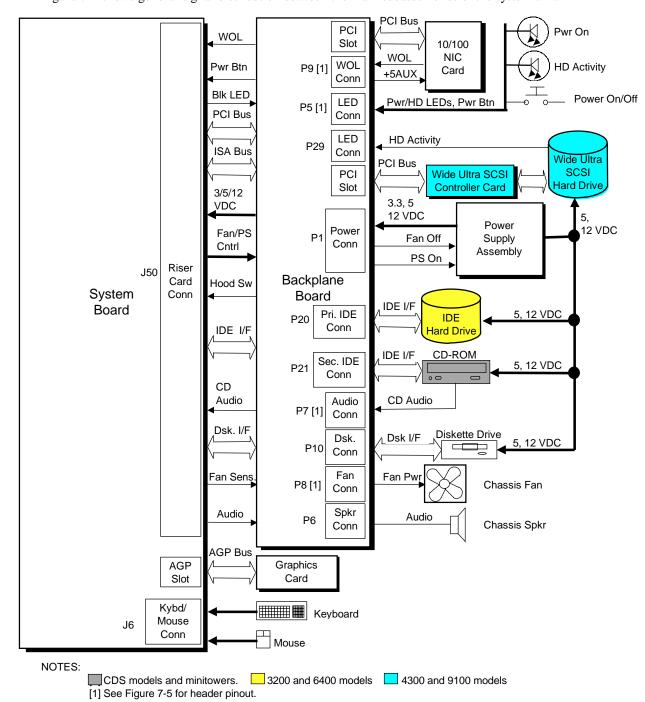
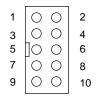



Figure 7–4. Signal Distribution Diagram

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

Header P5 (Panel LEDs, Pwr Btn)

Pins	Function				
1,3	Cover Lock & 12 VDC				
2,3	Cover Unlock & 12 VDC				
4	Not connected				
5	Power LED (-)				
6	HD LED (-)				
7	Power LED (+)				
8	HD LED (+)				
9,10	Power Button				

Header P7 (CD Audio)

1	0
2	0
3	0
4	$ \bigcirc $

Pins	Function		
1,3	Signal ground		
2	Left Audio Channel		
4	Right Audio Channel		

Header P8 (Chassis Fan)

Pins	Function			
1	Fan present sense			
2	Fan Power (-)			
3	Key			
4	Fan Power (+)			

Header P9 (Wake On LAN)

1	0
2	0
3	0

Pins	Function		
1	+5 AUX		
2	Ground		
3	WOL signal		

NOTE:

No polarity consideration required for cable connection to header P6 (speaker) or P29 (SCSI HD LED).

Figure 7–5. Backplane Header Pinouts

Chapter 8 BIOS ROM

8.1 INTRODUCTION

The Basic Input/Output System (BIOS) of the computer is a collection of machine language programs stored as firmware in read-only memory (ROM). The BIOS ROM includes such functions as Power-On Self Test (POST), PCI device initialization, Plug 'n Play support, power management activities, and Setup. This chapter includes the following topics:

♦	Boot/reset functions (8.2)	page 8-2
•	Memory detection and configuration (8.3)	page 8-3
•	Desktop management support (8.4)	page 8-4
•	PnP support (8.5)	page 8-19
♦	Power management functions (8.6)	page 8-21

The firmware contained in the BIOS ROM supports the following operating systems and specifications:

- ♦ DOS 6.2
- ♦ Windows 3.1
- Windows for Workgroups 3.11
- ♦ Windows 95
- ♦ Windows 98
- ♦ Windows NT 3.5 and 4.0
- ♦ OS/2 ver 2.1
- ♦ OS/2 Warp
- SCO Unix
- ♦ DMI 2.0
- ♦ Intel Wired for Management (WfM) initiative

The microprocessor accesses the BIOS ROM as a 128-KB block from E0000h to FFFFFh. The BIOS data is shadowed in a 64-KB block in the upper memory area. The BIOS segments are dynamically paged in and out of the 64-KB block as they are needed.

NOTE: This chapter describes BIOS in general and focuses on aspects of BIOS unique to this particular system. For detailed information regarding the BIOS, refer to the *Compaq Basic Input/Output System Technical Reference Guide*.

8.2 BOOT/RESET FUNCTIONS

The system supports new system boot functions to support remote ROM flashing and PC97 requirements. This system also supports the EL Torito specification for bootable CDs.

8.2.1 BOOT BLOCK

This system includes 24 KB of write-protected boot block ROM that provides a way to recover from a failed remote flashing of the system BIOS ROM. Early during the boot process, the boot block code checks the system ROM. If validated, the system BIOS continues the boot sequence. If the system ROM fails the check, the boot block code provides the minimum amount of support necessary to allow booting the system from the diskette drive (bypassing the security measures) re-flashing the system ROM with a ROMPAQ diskette. Since video is not available during the initial boot sequence the boot block routine uses the keyboard LEDs to communicate status as follows:

Num Lock	Caps Lock	Scroll Lock	<u>Meaning</u>
Off	On	Off	Administrator password required.
On	Off	Off	Boot failed. Reset required for retry.
Off	Off	On	Flash failed (set by ROMPAQ).
On	On	On	Flash complete (set by ROMPAQ).

8.2.2 QUICKBOOT

The QuickBoot mode (programmable through the INT 15, AX=E845h call) skips certain portions of the POST (such as the memory count) during the boot process **unless** the hood has been detected as being removed. The QuickBoot mode is programmable as to be invoked always, never (default) or every x-number of days.

8.2.3 SILENTBOOT

When in the SilentBoot mode, the boot process skips certain audio and visual aspects of POST (such as the speed beeps and screen messages). Error messages are still displayed. The QuickBoot mode is programmable by the Setup utility (through the INT 15, AX=E845h call) as to either TERSE (default) or VERBOSE mode.

8.2.4 RESET

There are two types of system resets: hard and soft. A hard reset is traditionally generated after power-up and produced by the circuitry generating the PWRGOOD signal. The 82371 south bridge, however, allows software to generate a hard reset. This is accomplished by first writing a one (1) to bit <1> of I/O port 0CF9h. A one is then written to bit <2> of 0CF9h. This causes the 82371 to create a hard reset by asserting CPURST#, PCIRST#, and RSTDRV for at least 1 ms. After the reset the 82371 automatically clears bit <2> of 0CF9h.

8-2 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

8.3 MEMORY DETECTION AND CONFIGURATION

This system uses the Serial Presence Detect (SPD) method of determining the installed DIMM configuration. The BIOS communicates with an EEPROM on each DIMM through an I²C-type bus to obtain data on the following DIMM parameters:

- ♦ Presence
- ♦ Size
- ♦ Type
- ♦ Timing/CAS latency

NOTE: Refer to Chapter 3, "Processor/Memory Subsystem" for the SPD format and DIMM data specific to this system.

The BIOS performs memory detection and configuration with the following steps:

- Set Memory Buffer Strength The memory controller must be configured for correct buffer drive strength. The BIOS provides this function by reading the number of module banks, ECC enable/disable status, and SDRAM width data from the DIMMs and transferring that data to the memory controller. SPD bytes checked: 5, 11, 13
- 2. Determine DIMM Presence/Type The BIOS checks each memory socket for DIMM presence. If present, the DIMM type and CAS latency is determined. SPD bytes checked: 2, 9, 10, 18, 23, 24.

Check Sequence:

- a. SPD byte 2 is read for all slots first. A failed read or returned value of other than 02h (EDO) or 04h (SDRAM) results in the slot marked as empty. If mixed types are detected then only SDRAMs are used (see chapter 3 for details).
- b. SPD byte 18 is read for maximum CAS latency, followed by reads of bytes 9 and 10 for bus speed compatibility. A DIMM detected as too-slow results in an error.
- c. If the DIMM can handle the memory bus speed at maximum CAS latency then bytes 23 and 24 are checked to see if the DIMM can work maximum CAS latency minus 1. Once all slots are checked, the greatest CAS latency (2 or 3) is used. A DIMM detected as incompatible will result in a bit in CMOS being set and the Num Lock LED on the keyboard will blink for a short time. Depending on the progress of the BIOS routine a POST message may be displayed before the system locks up.
- 3. Initialize SDRAM If SDRAM are installed then each row containing SDRAM will be initialized. This step includes pre-charging all banks, sending a CAS-before-RAS command, sending a Mode-Register-Set-Enable command, reading DIMM location/CAS latency data, and sending a Normal Op command.
- 4. Memory Sizing The SPD bytes 3, 4, and 17 are checked for number of row and column addresses and (for SDRAM) the number of internal banks.
- 5. Memory Timing For SDRAM, the memory controller requires the RAS pre-charge time and the RAS-to-CAS delay time. SPD bytes checked: 27and 29.

8.4 DESKTOP MANAGEMENT SUPPORT

Desktop Management deals with issues of security, identification, and system management functions. Desktop Management is provided by BIOS INT 15 functions listed Table 8-1.

	Table 8-1.		
	Desktop Management Functions (INT15)		
AX	Function	Mode	
E800h	Get system ID	Real, 16-, & 32-bit Prot.	
E807h	Get System Information Table	Real, 16-, & 32-bit Prot.	
E813h	Get monitor information	Real, 16-, & 32-bit Prot.	
E814h	Get system revision	Real, 16-, & 32-bit Prot.	
E816h	Get temperature status	Real, 16-, & 32-bit Prot.	
E817h	Get drive attribute	Real	
E818h	Get drive off-line test	Real	
E819h	Get chassis serial number	Real, 16-, & 32-bit Prot.	
E81Ah	Write chassis serial number	Real	
E81Bh	Get drive threshold	Real	
E81Eh	Get drive ID	Real	
E820h	System Memory Map	Real	
E822h	Flash ROM/Sys. Admin. Fnc.	Real, 16-, & 32-bit Prot.	
E827h	DIMM EEPROM Access	Real, 16-, & 32-bit Prot.	
E828h	Inhibit power button	Real, 16-, & 32-bit Prot.	
E845h	Access CMOS Feature Bits	Real, 16-, & 32-bit Prot.	
E846h	Security Functions	Real, 16-, & 32-bit Prot.	

All 32-bit protected mode calls are accessed by using the industry-standard BIOS32 Service Directory. Using the service directory involves three steps:

- 1. Locating the service directory.
- 2. Using the service directory to obtain the entry point for the client management functions.
- 3. Calling the client management service to perform the desired function.

The BIOS32 Service Directory is a 16-byte block that begins on a 16-byte boundary between the physical address range of 0E0000h-0FFFFh. The format is as follows:

<u>Offset</u>	No. Bytes	<u>Description</u>
00h	4	Service identifier (four ASCII characters)
04h	4	Entry point for the BIOS32 Service Directory
08h	1	Revision level
09h	1	Length of data structure (no. of 16-byte units)
0Ah	1	Checksum (should add up to 00h)
0Bh	5	Reserved (all 0s)

To support Windows NT an additional table to the BIOS32 table has been defined to contain 32-bit pointers for the DDC and SIT locations. The Windows NT extension table is as follows:

; Extension to BIOS SERVICE directory table (next paragraph)

```
db
          "32OS"
db
          2
                               ; number of entries in table
db
          "$DDC"
                               ; DDC POST buffer sig
dd
                               ; 32-bit pointer
dw
                               ; byte size
          "$SIT"
db
                                ; SIT sig
                                ; 32-bit pointer
dd
                                ; byte size
dw
db
          "$ERB"
                                ; ESCD sig
dd
          ?
                                ; 32-bit pointer
                               ; bytes size
dw
```

The service identifier for Desktop Management functions is "\$CLM." Once the service identifier is found and the checksum verified, a FAR call is invoked using the value specified at offset 04h to retrieve the CM services entry point. The following entry conditions are used for calling the Desktop Management service directory:

EAX	= Service Identifier [\$CLM]
EBX (318)	= Reserved
EBX (70)	= Must be set to 00h
CS	 Code selector set to encompass the physical page holding entry point as well as the immediately following physical page. It must have the same base. CS is execute/read.
DS	= Data selector set to encompass the physical page holding

entry point as well as the immediately following physical page. It must have the same base. DS is read only.

SS = Stack selector must provide at least 1K of stack space and be 32-bit.

(I/O permissions must be provided so that the BIOS can support as necessary)

OUTPUT:

INPUT:

AL	= Return code:
	00h, requested service is present
	80h, requested service is not present
	81h, un-implemented function specified in BL
	86h and CF=1, function not supported
EBX	= Physical address to use as the selector BASE for the

ECX = Value to use as the selector LIMIT for the service

EDX = Entry point for the service relative to the BASE returned in EBX

The following subsections describe aspects of Desktop Management **unique to this system**. For a general description of these BIOS functions refer to the *Compaq BIOS Technical Reference Guide*.

8.4.1 SYSTEM ID

The INT 15, AX=E800h BIOS function can be used to identify the system board. This function will return the system ID in the BX register.

System Board	CMOS ID	ROM Type	System ID
007998 or 008123	7Eh	686T3	0400h

8.4.2 SYSTEM INFORMATION TABLE

The System Information Table (SIT) is a comprehensive list of fixed configuration information arranged into records. The INT 15 AX=E807h BIOS function accesses the SIT by returning a pointer in ES:BX to indicate the location of the SIT. This section lists the default values that should be read from the SIT. For specific bit descriptions and more detailed information on the SIT refer to the *Compaq Basic Input/Output System (BIOS) Technical Reference Guide*.

Power Conservation Record, SIT Record 01h

Byte	Function	Default Value
00h	Record ID	01h
01h	No. of Data Bytes in Record	0Bh
02h	Volume, CPU Speed, Screensave, PWR Consv. Mode	07h
03h	LED Blink, Popup, APM, PC Level, MAXBRIGHT Control	C4h
04h	SW Power Cntrl., Screensave/Hard Drive Timeouts, PWR	90h
05h	Magic Packet Flag, SMI, Modem Installed	[1]
06h-0Bh	Popup Location	[2]
0Ch	Quick Engy. Save, Magic Packet PWR, Suspend, CPU Sp.	39h

NOTES:

- [1] Will be determined at runtime
- [2] Unsupported function read all 0s.

Timeout Counter Record (System Standby), SIT Record 02h

Byte	Function	Default Value
00h	Record ID for System Standby Timeout	02h
01h	No. of Data Bytes in Record	09h
02h	First Value	0
03h		10
04h		15
05h		20
06h		30
07h		60
08h		120
09h		180
0Ah	Last Value	240

Timeout Counter Record (Video Screensave), SIT Record 03h

Byte [1]	Function	Default Value
00h	Record ID for Video Screensave Timeout	03h
01h	No. of Data Bytes in Record	0Ch
02h	First Value	0
03h		5
04h		10
05h		15
06h		20
07h		30
08h		40
09h		50
0Ah		60
0Bh		120
0Ch		180
0Dh	Last Value	240

NOTE:

[1] Offset from byte 00h of timeout record 02h.

Timeout Counter Record (Hard Drive), SIT Record 04h

		Default
Byte [1]	Function	Value
15h	Record ID for Hard Drive Timeout	04h
16h	No. of Data Bytes in Record	06h
17h	First Value	0
18h		10
19h		15
1Ah		20
1Bh		30
1Ch	Last Value	60

NOTE:

[1] Offset from byte 00h of timeout record 02h.

Security Record, SIT Record 05h

Byte	Function	Default Value
00h	Record ID	05h
01h	No. of Data Bytes in Record	04h
02h	NVRAM/HD Lock, QuickLock/QuickBlank, FD Boot, PWR Pwd	7Fh
03h	Virus Detect, Serial/Parallel Cntrl., FD Drive Cntl., Stby Cntrl.	1Fh
04h	Diskette Drive Fnct., Password Functions	7Ah
05h	Password Locking, Ownership Tag Length	[1]

NOTE:

[1] Determined by system at runtime.

Processor/Memory/Cache Record, SIT Record 06h

Byte	Function	Default Value
00h	Record ID	06h
01h	No. of Data Bytes in Record	0Eh
02h, 03h	Installed Microprocessor Speed	[1]
04h	Cache Configuration	07h
05h	L2 Cache Size	20h
06h	L2 Cache Speed	00h
07h	Total Memory Amount Adjustment	06h
08h, 09h	Total Soldered Memory	0000h
0Ah, 0Bh	Maximum Memory Installable	8001h
0Ch, 0Dh	Reserved	0000h
0Eh	Processor Designer	00h
0Fh	System Cache Error Correction	01h

NOTE: [1] Determined by system at runtime.

Peripheral and Input Device Record, SIT Record 07h

Byte	Function	Default Value
00h	Record ID	07h
01h	No. of Data Bytes in Record	3Ah
02h	DMA Functions, SCSI Support, Flashable ROM, Setup	27h
02	Partition, 101 Keyboard	
03h	Erase-Eaze Kybd. Support in ROM, El Torito CD Boot	53h
	Support, QuickBoot, ROM Functions	
04h	Formfactor	[1]
05h	Softdrive 1 & 2 Data	FFh
06h	Softdrive 3 & 4 Data	FFh
07h-0Ah	Softdrive 1-4 Starting Address	B0 B5 BA BFh
0Bh	Panel ID	00h
0Ch	Integrated Monitor, ROM Socket, No. of Prog. Serial Ports	12h
0Dh	Parallel Port Mode, Modem Type	00h
0Eh	Drive Fault Prediction Support for Drives 0-3	[1]
0Fh, 10h	PCI Bus Master CMOS Data	0000h
11h, 12h	VGA Palette Snoop Function	0000h
13h	Misc. PCI Information	01h
14h, 15h	I/O Address for I ² C Device	0000h
16h	I ² C Information Byte	00h
17h	ATAPI Device Information (Logical Devices 1 & 2)	[1]
18h	ATAPI Device Information (Logical Devices 3 & 4)	[1]
19h	3-D Audio Support	00h
1Ah	BIOS Supported Features	01h
1Bh	Misc. Features (Power Inhibit Support)	01h
1Ch, 1Dh	Back-to-Back I/O Delay Index 0	[1]
1Eh, 1Fh	Back-to-Back I/O Delay Index 1	[1]
20h, 21h	Back-to-Back I/O Delay Index 2	[1]
22h, 23h	Back-to-Back I/O Delay Index 3	[1]
24h	Back-to-Back I/O Delay NVRAM Location	n/a
25h	Bit Mask for Byte 24h	n/a
26h	O/S Boot NVRAM Location	00h
27h	Bit Mask for Byte 26h	00h
28h-2Bh	IDE Drive 0-3 Max DMA/PIO Mode	[1]
2Ch-2Dh	Offset Address in EBDA for Bezel Button	n/a
2Eh	Processor Upgrade Mounting	06h
2Fh	Parallel Port Connector Type/Pinout	41h
30h	Serial Port Connector Type	01h
31h	Serial Port Maximum Speed	01h
32h	Serial Port Maximum Speed	C2h
33h	Serial Port Maximum Speed	00h
34h	DMA Burst Mode Support	[1]
35h	Keyboard Connector Type	03h
36h	System UDMA Capabilities	0Fh
37h	Diskette Type Installed	01h
38h	On-Board NIC Speed	00h
39h	On-Board NIC Attributes	00h
3Ah	General Purpose Software Support	[1]
3Bh	System EDMA Support	0Fh

NOTE:

[1] Determined at run time.

Memory Module Information Record, SIT Record 08h

Byte	Function	Default Value
00h	Record ID	08h
01h	No. of Data Bytes in Record	0Dh
02h	No. of Sockets	03h
03h	Memory Socket Location 0	00h
04h	Memory Installed In Location 0	[1]
05h	Memory Speed In Location 0	[1]
06h	Memory Form Factor 0	03h
07h	Memory Socket Location 1	01h
08h	Memory Installed In Location 1	[1]
09h	Memory Speed In Location 1	[1]
0Ah	Memory Form Factor 1	03h
0Bh	Memory Socket Location 2	02h
0Ch	Memory Installed In Location 2	[1]
0Dh	Memory Speed In Location 2	[1]
0Eh	Memory Form Factor 2	03h

NOTE: [1] Determined at runtime.

Timeout Default Record, SIT Record 09h

Byte	Function	Default Value
00h	Record ID	09h
01h	No. of Data Bytes in Record	0Ah
02h	High Power - Standby	15 min
03h	High Power - Hard Drive/System Idle	15 min
04h	High Power - Screensave	15 min
05h	High Power - Maximum Brightness	100 min
06h	High Power - Processor Speed	100 min
07h	Medium Power - Standby	15 min
08h	Medium Power - Hard Drive/System Idle	15 min
09h	Medium Power - Screensave	15 min
0Ah	Medium Power - Maximum Brightness	100 min
0Bh	Medium Power - Processor Speed	100 min

CMOS/NVRAM Information Record, SIT Record 0Ah

Byte	Function	Default Value
00h	Record ID	0Ah
01h	No. of Data Bytes in Record	05h
02h	Size of EISA NVRAM or Extended CMOS (Low Byte)	00h
03h	Size of EISA NVRAM or Extended CMOS (High Byte)	00h
04h	Size of High CMOS (Low Byte)	00h
05h	Size of High CMOS (High Byte)	00h
06h	NVRAM Storage Device Access Type	00h

Automatic Server Recovery Record, SIT Record 0Bh (Not Used)

Memory Banks Information Record, SIT Record 0Ch (Not Used)

Multiprocessor Feature Information Record, SIT Record 0Dh (Not Used)

8-10 Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors Extended Disk Support Record, SIT Record 0Eh

		Default
Byte	Function	Value
00h	Record ID	0Eh
01h	No. of Data Bytes in Record	02h
02h	Pointer To Extended Disk table (High Byte)	[1]
03h	Pointer To Extended Disk table (Low Byte)	[1]

NOTE: [1] Determined at runtime.

System Record, SIT Record 0Fh (Not Used)

Product Name Header Record, SIT Record 10h

Byte	Function	Default Value
00h	Record ID	10h
01h	No. of Data Bytes in Record	12h
02h-12	Product Name	"Compaq Deskpro EN"
13h	Terminator Byte	00h

DC-DC Converter Record, SIT Record 11h (Not Used)

Processor Microcode Patch Record, SIT Record 12h

Byte	Function	Default Value
00h	Record ID	12h
01h	No. of Data Bytes in Record	3Ch
02h-05h	Patch 1 Version	00000020h
06h-09h	Patch 1 Date	09031996h
0Ah-0Dh	Patch 1 Family/Model/Stepping	00000632h
0Eh-11h	Patch 2 Version	00000032h
12h-15h	Patch 2 Date	12121996h
16h-19h	Patch 2 Family/Model/Stepping	00000633h
1Ah-1Dh	Patch 3 Version	00000033h
1Eh-21h	Patch 3 Date	06161997h
22h-25h	Patch 3 Family/Model/Stepping	00000634h
26h-29h	Patch 4 Version	00000005h
2Ah-2Dh	Patch 4 Date	08151997h
2Eh-31h	Patch 4 Family/Model/Stepping	00000650h
32h-35h	Patch 5 Version	00000015h
36h-39h	Patch 5 Date	11241997h
3Ah-3Dh	Patch 5 Family/Model/Stepping	00000650h

System Hood Removal Record, SIT Record 13h

Byte	Function	Default Value
00h	Record ID	13h
01h	No. of Data Bytes in Record	09h
02h-05h	Hood Removed Time Stamp (Year/Month/Day/Hours/Min/Sec	[1]
06h	Hood Removal Support CMOS Byte Offset	00h
07h	Hood Removal Support Bit Location	30h
08h	Hood Removal NOBOOT CMOS Byte Offset	00h
09h	Hood Removal NOBOOT CMOS Bit Location	00h
0Ah	Software Hood Lock	[1]

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors NOTE: [1] Determined at runtime.

DMI System Slots Support Record, SIT Record 16h

_	_	Default
Byte	Function	Value
00h	Record ID	16h
01h	No. of Data Bytes in Record	1Ah
02h	Number of Slots	[1]
03h	Type of Slot	0Fh
04h	Data Width of Slot	05h
05h	Slot Usage/Length/Virtual	[1]
06h	Slot Category	03h
07h	Slot ID	00h
08h	Type of Slot	06h
09h	Data Width of Slot	05h
0Ah	Slot Usage/Length/Virtual	[1]
0Bh	Slot Category	03h
0Ch	Slot ID	01h
0Dh	Type of Slot	06h
0Eh	Data Width of Slot	05h
0Fh	Slot Usage/Length/Virtual	[1]
10h	Slot Category	03h
11h	Slot ID	02h
12h	Type of Slot	06h
13h	Data Width of Slot	05h
14h	Slot Usage/Length/Virtual	[1]
15h	Slot Category	03h
16h	Slot ID	03h
17h	Type of Slot	06h
18h	Data Width of Slot	05h
19h	Slot Usage/Length/Virtual	[1]
1Ah	Slot Category	03h
1Bh	Slot ID	04h

NOTE:

[1] Determined at runtime.

8.4.3 EDID RETRIEVE

The BIOS function INT 15, AX=E813h is a tri-modal call that retrieves the VESA extended display identification data (EDID). Two subfunctions are provided: AX=E813h BH=00h retrieves the EDID information while AX=E813h BX=01h determines the level of DDC support.

```
Input:
                 = E813h
        AX
        BH
                = 00 \text{ Get EDID}.
                = 01 Get DDC support level
        BH
        If BH = 00 then
        DS:(E)SI = Pointer to a buffer (128 bytes) where ROM will return block
        If 32-bit protected mode then
        DS:(E)SI = Pointer to $DDC location
Output:
(Successful)
        If BH
                DS:SI=Buffer with EDID file.
        CX
                = Number of bytes written
        CF
        AH
                =00h Completion of command
        If BH
                = 1:
        BH
                = System DDC support
                  <0>=1 DDC1 support
                  <1>=1 DDC2 support
        BL
                = Monitor DDC support
                  <0>=1 DDC1 support
                  <1>=1 DDC2 support
                  <2>=1 Screen blanked during transfer
(Failure)
        CF
                = 1
                = 86h \text{ or } 87h
        AH
```

8.4.4 DRIVE FAULT PREDICTION

The Compaq BIOS provides direct Drive Fault Prediction support for IDE-type hard drives. This feature is provided through two BIOS calls. Function INT 15, AX=E817h is used to retrieve a 512-byte block of drive attribute data while the INT 15, AX=E81Bh is used to retrieve the drive's warranty threshold data. If data is returned indicating possible failure then the following message is displayed:

"1720-Intellisafe Hard Drive detects imminent failure"

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

8.4.5 SYSTEM MAP RETRIEVAL

The BIOS function INT 15, AX=E820h will return base memory and ISA/PCI memory contiguous with base memory as normal memory ranges. This real mode call will indicate chipset-defined address holes that are not in use, motherboard memory-mapped devices, and all occurrences of the system BIOS as reserved. Standard PC address ranges will not be reported.

```
Input:
        EBX
                = continuation value or 00000000h to start at beginning of map
                = number of bytes to copy (>=20)
        ECX
        EDX
                = 534D4150h ('SMAP')
        ES:DI
                = buffer for result (see below)
        Offset Size Description
        00h QWORD base address
        08h
              QWORD length in bytes
        10h DWORD type of address range
        01h memory, available to OS
        02h reserved, not available (e.g. system ROM, memory-mapped device)
        other: not defined
Output:
If CF=0 (success)
        EAX
                = 534D4150h ('SMAP')
                = next offset from which to copy or 00000000h if finished
        EBX
        ECX
                = actual length returned in bytes
        ES:DI
                buffer filled
If CF=1 (failure)
        AH = Error Code (86h)
In order to determine the entire memory map, multiple calls must be made.
For example, the first call would be:
Input:
        EDX = 534D4150h
        EBX = 00h
```

 $EBX = 01h \\ ECX = 14h \\ ES:DI = 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ FC\ 09\ 00\ 00\ 00\ 00\ 00\ 00\ 00\ 00$ (indicates 0-639k is available to the OS)

Consecutive calls would continue until EBX returns with 0, indicating that the memory map is complete.

ECX = 14h

EAX = 534D4150h

Output:

ES:DI = some buffer to store information.

8.4.6 FLASH ROM FUNCTIONS

The system BIOS may be upgraded by flashing the ROM using the INT 15, AX=E822h BIOS interface, which includes the necessary subfunctions. An upgrade utility is provided on a ROMPAQ diskette. The upgrade procedure is described at the end of this chapter. Corrupted BIOS code will be indicated by the keyboard LEDs during the boot sequence as described previously in section 8.2.1.

8.4.7 POWER BUTTON FUNCTIONS

The BIOS includes an interface for controlling the system unit's power button. The power button can be disabled and enabled.

The INT 15, AX=E822h, BL=08h function can be invoked to disable the power button, preventing a user from inadvertently powering down the system. This tri-modal function is typically used in the ROM flashing procedure to reduce the chance of an accidental power down while the BIOS is being upgraded.

```
Entry:
AX = E822h
BL = 08h
Return:
(Successful)
CF = 0
AH = 00
```

(Failure) CF = 1

AH = 86, not supported

NOTE: With the Disable function invoked the system can **still** be powered down by holding the power button in for four seconds or more.

The INT 15, AX=E822h, BL=09h function is used to restore the power button to the state it was in prior to invoking the Disable (BL=08h) function.

Entry:

$$\begin{array}{ll} AX & = E822h \\ BL & = 09h \end{array}$$

Return:

(Successful)

 $\begin{array}{ll} CF & = 0 \\ AH & = 00 \end{array}$

(Failure)

CF = 1

AH = 86, call not supported

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors

8.4.8 ACCESSING CMOS

Configuration memory data can be retrieved with the BIOS call INT 15, AX=E823h. This trimodal function retrieves a single byte from the CMOS map described in Chapter 4. The function is described as follows:

```
INPUT:
        EAX
                = E823h
        BH
                = 0, Read
                = 1, Write
                = Value to write (if a write is specified)
        BL
        CX
                = Bytes number (zero-based)
OUTPUT:
(Successful)
                = 0
        CF
                = 00h
        AH
        AL
                = Byte value (on a read)
(Failure)
        CF
        AH
                = 86h, Function not supported
                = FFh, byte does not exist
```

8.4.9 ACCESSING CMOS FEATURE BITS

The BIOS function INT 15, AX=E845h is a tri-modal call for accessing areas in non-volatile memory (CMOS) used for storing variables for various features. Note that this function differs from the previously discussed call since data blocks of varying lengths are retrieved.

```
INPUT:
        EAX
                = E845h
        BL
                = 0, Read
                = 1. Write
                = Value Read/to Write
        BH
        CX
                = Feature Bits Number (refer to following description box)
        DS:SI = Pointer to buffer passing multiple byte features
OUTPUT:
(Successful)
        CF
                = 0
        EAX
                = Reserved
                = Value read (on a read)
        BH
(Failure)
        CF
                = 1
        AH
                = 86h, Function not supported
```

СХ	Function	Default Value
0000h	PCI 2.1 Mode (Enabled)	1b
0001h	Erase Eaze Keyboard (off)	11b
0002h	Comm/IR Port Designation (Comm port)	0b
0003h	No Rejection of SETs By PnP (reject SETs)	0b
0004h	PCI VGA Snoop (snoop disabled)	0b
0005h	PCI Bus Mastering BIOS Support (enabled)	1b
0006h	Auto Prompt for Auto Setup (prompt for F1, F2, F10)	00b
0007h	Mode 2 Configuration Support (enabled)	1b
0008h	Secondary Hard Drive Controller Enabled (enabled)	1b
0009h	Secondary Hard Drive Controller IRQ (IRQ15)	11b
000Ah	Custom Drive Type #1	40 bits, all 0s
000Bh	Custom Drive Type #2	40 bits, all 0s
000Ch	Custom Drive Type #3	40 bits, all 0s
000Dh	Custom Drive Type #4	40 bits, all 0s
000Eh	POST Verbose/Terse or "Silent Boot" Mode (Terse)	1b
000Fh	Drive Translation Mode (translate)	0b
0010h	Mfg. Process Number Bytes	30 bits, [1]
0011h	Administrator Password	72 bits, [1]
0012h	Power-On Password	32 bits, [1]
0013h	Ownership Tag	640 bits, [1]
0014h	Warm Boot Password Mode (disabled)	0b
0015h	Hood Lock (enabled)	0b
0016h	Hood Removal (disabled)	00b
0017h	USB Security (disabled)	1b
0018h	Configurable Power Supply (legacy mode)	1b
0019h	QuickBoot Mode (full boot always)	11111b
001A-001Ch	Onboard NIC (1A)/SCSI (1B)/Pri. IDE (1C) Enables	1b/1b/1b
001Dh	Ultra SCSI Mode	1b
001E, 001Fh	QuickLock/QuickBlank Enables	0b/0b
0020, 0021h	Serial Port 1/Port 2 Security	1b/1b
0022h	Parallel Port Security	1b
0023, 0024h	Diskette Drive Bootability/Writeability	0b/0b
0025h	Asset Tag	[1]
0026h	Back-to-Back I/O Delay	00b
0027h	CMOS /10h-2Fh Backup	[1]
0027H	QuickLock after Standby Enable	0b
0029-002Ch	Audio Enable/IRQ/DMA/Address	1b/01b/10b/00b
002Dh	ECP DMA Configuration	011b
002E, 002Fh	Serial Port 1 Base I/O Address/Interrupt	3Fh/00b
0030, 0031h	Serial Port 2 Base I/O Address/Interrupt	1Fh/00b
0032h	Ultra DMA-33 Enable	1111b
0032H	Network Server Mode Enable	0b
0033h	CIA BOM No. Bytes	[1]
0035h	Copy Standard CMOS to Backup Location	[1]
0036h	AGP Monochrome Adapter Search Enable	1b
0037h	APM Fan Throttle	1b
0038h	Manufacturing Diags Mode	0b
0039h	RIPL ROM Boot Mode	0b
0039H	Exit Clean Boot Screen	[1]
003B-003Dh	Ethernet Speed/Mode/Connector Type	000b/00b/001b
003Eh	ACPI Enable	1b
003Fh	S/W BOM Serial Number of Bytes	[1]
003FH	Select ECP Mode	1b

NOTE:

For full bit definitions refer to the Compaq BIOS Technical Reference Guide.

Compaq Deskpro EN Series of Personal Computers Desktop and Minitower Form Factors [1] Determined at runtime.

8.4.10 **SECURITY FUNCTIONS**

The INT 15 AX=E846h BIOS function is used to control various security features of the system. This function may be issued by a remote system (over a network). The issuing driver must build a request buffer for each security feature prior to making the call. This system supports the following security features:

- ♦ QuickLock
- ♦ QuickBlank
- Diskette drive boot disable
- ♦ Diskette drive write disable
- ♦ IDE controller disable
- ♦ Serial ports disable
- Parallel port disable
- ♦ Change administrator password
- ♦ QuickLock on suspend
- ♦ Ownership tag
- USB disable

The write-protect function that determines diskette write control is extended to cover all drives that use removable read/write media (i.e., if diskette write protect is invoked, then any diskette drive, power drive (SCSI and/or ATAPI), and floptical drive installed will be inaccessible for (protected from) writes). Client management software should check the following bytes of SIT record 07h for the location and access method for this bit:

System Information Table, Peripheral and Input Device Record (07h) (partial listing)

Bvte	Bit	Function
1Fh	7-0	Removable Read/Write Media Write Protect Enable Byte Offset (0-255)
20h		Removable Read/Write Media Write Protect Enable Bit Location:
	74	CMOS Type:
		0000 = CMOS
		0001 = High CMOS
		0010 = NVRAM 0011 = Flat model NVRAM
	30	Bit Location:
	00	0000 = Bit 0 0100 = Bit 4
		0001 = Bit 1 0101 = Bit 5
		0010 = Bit 2 0110 = Bit 6
		0011 = Bit 3 0111 = Bit 7

8.5 PNP SUPPORT

The BIOS includes Plug 'n Play (PnP) support for PnP version 1.0A.

NOTE: For full PnP functionality to be realized, all peripherals used in the system must be designed as "PnP ready." Any installed ISA peripherals that are not "PnP ready" can still be used in the system, although configuration parameters may need to be considered (and require intervention) by the user.

Table 8-2 shows the PnP functions supported (for detailed PnP information refer to the Compaq BIOS Technical Reference Guide):

Table 8-2.		
PnP BIOS Functions		
Function	Register	
00h	Get number of system device nodes	
01h	Get system device node	
02h	Set system device node	
03h	Get event	
04h	Send message	
50h	50h Get SMBIOS Structure Information	
51h	Get Specific SMBIOS Structure	

The BIOS call INT 15, AX=E841h, BH=01h can be used by an application to retrieve the default settings of PnP devices for the user. The application should use the following steps for the display function:

- 1. Call PnP function 01(get System Device Node) for each devnode with bit 1 of the control flag set (get static configuration) and save the results.
- 2. Call INT 15, AX=E841h, BH=01h.
- 3. Call PnP "Get Static Configuration" for each devnode and display the defaults.
- 4. If the user chooses to save the configuration, no further action is required. The system board devices will be configured at the next boot. If the user wants to abandon the changes, then the application must call PnP function 02 (Set System Device Node) for each devnode (with bit 1 of the control flag set for static configuration) with the results from the calls made prior to invoking this function.

8.5.1 SMBIOS

<u>Type</u>

<u>Data</u>

In support of the DMI specification the PnP functions 50h and 51h are used to retrieve the SMBIOS data. Function 50h retrieves the number of structures, size of the largest structure, and SMBIOS version. Function 51h retrieves a specific structure. This system supports SMBIOS version 2.1 and the following structure types:

0	BIOS Information
1	System Information
3	System Enclosure or Chassis
4	Processor Information
5	Memory Controller Information
6	Memory Module Information
7	Cache Information
8	Port Connector Information
9	System Slots
10	On Board Device Information
12	System Configuration Options
13	BIOS Language Information
16	Physical Memory Array
17	Memory Devices
18	Memory Error Information
19	Memory Array Mapped Addresses
20	Memory Device Mapped Addresses

8.6 POWER MANAGEMENT FUNCTIONS

The BIOS ROM provides three types of power management support: independent PM support; APM support, and ACPI support.

8.6.1 INDEPENDENT PM SUPPORT

The BIOS ROM can provide power management of the system independently from any software (OS or application) that is running on the system. In this mode the BIOS uses a timer to determine when to switch the system to a different power state. State switching is not reported to the OS and occurs as follows:

On – The computer is running normally and is drawing full power.

Standby – The computer is in a low power state. In this state the processor and chipset are still running and the VSYNC signal to the monitor is turned off. Returning to the On state requires very little time and will be initiated by any of the following actions:

- a. key stroke
- b. mouse movement

Off – The computer is not running and drawing practically no power at all.

8.6.2 ACPI SUPPORT

This system meets the hardware and firmware requirements for being ACPI compliant. The BIOS function INT 15 AX=E845h can be used to check or set the ACPI enable/disable status of the system, which defaults to the "ACPI enabled" state. The setup option for ACPI should be disabled if APM/PnP is to be used with Windows 98 or when disabling power management and PnP support for NT5.0. A hardware redetection should be made with Windows 98 and a reinstall of Windows NT5.0 should be performed when an ACPI switch is made.

This system supports the following ACPI functions:

- ♦ PM timer
- ♦ Power button
- Power button override
- ♦ RTC alarm
- ♦ Sleep/Wake logic (S1, S4 (NT), S5
- ♦ Legacy/ACPI select
- ♦ C1 state (Halt)
- ♦ C2 state (STOPGRANT)
- ♦ C3 state (no clock)
- ♦ PCI PME

8.6.3 APM SUPPORT

Advanced Power Management (APM) BIOS support provides interaction between the BIOS ROM and the operating system (OS). The BIOS advises the OS when a power state transition should occur. The OS then notifies the appropriate driver(s) and reports back to the BIOS. For maximum energy-conservation benefit, APM functionality should be implemented using the following three layers:

- ♦ BIOS layer (APM BIOS (ver. 1.2, 1.1, 1.0))
- ♦ Operating system (OS) layer (APM driver)
- ♦ Application layer (APM-aware application or device driver)

The process starts with the OS or driver making a connection with the BIOS through an APM BIOS call. In a DOS environment POWER.EXE makes a Real mode connection. In Windows 3.1 and in Windows 95, a 32-bit connection is made. Currently Windows NT does not make an APM connection.

With power management enabled, inactivity timers are monitored. When an inactivity timer times out, an SMI is sent to the microprocessor to invoke the SMI handler. The SMI handler works with the APM driver and APM BIOS to take appropriate action based on which inactivity timer timed out.

Two I/O ports are used for APM communication with the SMI handler:

Port Address	<u>Name</u>
0B2h	APM Control
0B3h	APM Status

Three power states are defined under power management:

On - The computer is running, all subsystems are on and drawing full power. Any activity in the following subsystems will reset the activity timer, which has a default setting of 15 minutes before Standby entered:

- a. Keyboard
- b. Mouse
- c. Serial port
- d. Diskette drive
- e. Hard drive

Standby - The computer is in a low power state: video is off, some subsystems may be drawing less power, and the microprocessor is halted except for servicing interrupts. Video graphics controller is under driver control and/or VSYNC is off and the power supply fan is turned off. Any of the following activities will generate a wake-up SMI and return the system to On:

- a. Keyboard
- b. Mouse
- c. Serial port
- d. Diskette drive
- e. Hard drive
- f. RTC Alarm

If no APM connection is present, the BIOS will set an APM timer to 45 minutes, at which time the Suspend will be entered if no activity has occurred. This function can be defeated (so that Suspend will **not** be achieved). If an APM connection is present, the BIOS APM timer is not used and Suspend is entered only by user request either through an icon in Windows 95 or by pressing and releasing the power button under 4 seconds.

Suspend - The computer is in a low power state: video graphics controller is under driver control and/or HSYNC and VSYNC are off, some subsystems may be drawing less power, and the microprocessor is halted except for servicing interrupts. Any of the following activities will generate a wake-up SMI and return the system to On:

- a. Keyboard
- b. Mouse
- c. Serial port
- d. Diskette drive
- e. Hard drive
- f. RTC Alarm
- g. Network interface controller

The APM BIOS for this system supports APM 1.2 as well as previous versions 1.1 and 1.0. The APM BIOS functions are listed in Table 8-3.

	Table 8-3.	
APM BIOS Functions (INT15)		
AX Function		
5300h	APM Installation Check	
5301h	APM Connect (Real Mode)	
5302h	APM Connect (16-bit Protected Mode)	
5303h	APM Connect (32-bit Protected Mode)	
5304h	Interface Disconnect	
5305h	CPU Idle	
5306h	CPU Busy	
5307h	Set Power State [1]	
5308h	Enable/Disable Power Management	
5309h	Restore Power On Defaults	
530Ah	Get Power Status	
530Bh	Get PM Event	
530Ch	Get Power State	
530Dh	Enable/Disable Device Power Management	
530Eh	APM Driver Version	
530Fh	Engage/Disengage Power Management	
5380h	OEM (Compaq) Specific APM Function	

8.7 USB LEGACY SUPPORT

The BIOS ROM checks the USB port, during POST, for the presence of a USB keyboard. This allows a system with only a USB keyboard to be used during ROM-based setup and also on a system with an OS that does not include a USB driver.

On such a system a keystroke will generate an SMI and the SMI handler will retrieve the data from the device and convert it to PS/2 data. The data will be passed to the keyboard controller and processed as in the PS/2 interface. Changing the delay and/or typematic rate of a USB keyboard though BIOS function INT 16 is not supported.

The system does not support hot-plugging of a USB keyboard, nor is a keyboard attached to a USB hub supported. A PS/2 keyboard and a USB keyboard can, however, be connected and used simultaneously.

8.8 BIOS UPGRADING

The flash ROM device can be re-written with updated BIOS code if necessary. The flashing procedure is as follows:

- 1. Create a system (bootable) diskette using the FORMAT A: /S command in DOS.
- 2. Download the appropriate BIOS firmware from the Compag web site.
- 3. Copy the downloaded BIOS file and the flash utility file onto the boot diskette.
- 4. Unzip the BIOS and flash utility files, which should result in an .exe file and a .bin file.
- 5. Place the boot diskette into drive A: and reboot the system.
- 6. At the A: prompt, type in "filename.exe filename.bin" (there is a space between the file names) and press **Enter.**
- 7. At the Flash Memory Write menu, to the question "Do you want to save BIOS?" select Y. If you want to save the current BIOS then type the current BIOS name and the extension after "File name to save" (example: type in 613j900.bin). Alternately, select N if you do not want to save the current BIOS.
- 8. To the question "Are you sure to program?" select Y.
- 9. Wait until the message "Power Off or Reset the system," indicating the BIOS has been loaded successfully. Then remove the boot diskette. Should power be lost or the system reset during this time (before the message is displayed) the BIOS code in ROM will likely be corrupted and the procedure will have to be repeated (starting at step 5).
- 10. Turn off (power down) the system.
- 11. While holding the **End** key down, turn on (power up) the system, making sure the **End** key is held down until the Setup utility is entered.
- 12. Complete the Setup utility as appropriate.
- 13. Re-boot the system.

If the BIOS code is corrupted due to a failed ROM flash the keyboard LEDs provide an indication of the problem during the boot process as described in section 8.2.1.

Appendix A ERROR MESSAGES AND CODES

A.1 INTRODUCTION

This appendix lists the error codes and a brief description of the probable cause of the error. Note that not all errors listed in this appendix may be applicable to a particular system depending on the model and/or configuration.

A.2 POWER-ON MESSAGES

Table A-1.			
Power-On Messages			
	_	 _	

Message	Beeps	Probable Cause
CMOS Time and Date Not Set	(None)	Invalid time or date
(none)	2 short	Power-On successful
Run Setup	(None)	Any failure

A.3 BEEP/KEYBOARD LED CODES

Table A-2.				
	Beep/Keyboard LED Codes			
Beeps	LED Blinking [1]	Probable Cause		
1 short, 2 long	NUM Lock	Base memory failure.		
1 long, 2 short CAP Lock Video/graphics controller failure.				
2 long, 1 short	Scroll Lock	System failure (prior to video initialization).		

NOTE:

[1] PS/2 keyboard only.

A.4 POWER-ON SELF TEST (POST) MESSAGES

Table A-3. Power-On Self Test (POST) Messages		
Error Message	Probable Cause	
Bad PnP Serial ID Checksum	Serial ID checksum of PnP card was invalid.	
Address Lines Short!	Error in address decoding circuitry on system board.	
Cache Memory Failure, Do Not Enable	Defective cache memory, CPU has failed.	
Cache!		
CMOS Battery Failed	Low RTC/CMOS battery	
CMOS Checksum Invalid	Previous and current checksum value mismatch.	
CMOS System Options Not Set	Corrupt or non-existant CMOS values.	
CMOS Display Type Mismatch	Graphics/video type in CMOS does not match type detected by BIOS.	
CMOS Memory Size Mismatch	Memory amount detected does not match value stored in CMOS.	
CMOS Time and Date Not Set	Time and date are invalid.	
Diskette Boot Failure	Boot disk in drive A: is corrupt.	
DMA Bus Timeout	Bus driven by device for more than 7.8 us	
DMA Controller Error	Error in one or both DMA controllers.	
Drive Not Ready Error	BIOS cannot access the diskette drive.	
Diskette Drive Controller Failure	BIOS cannot communicate with diskette drive controller.	
Diskette Drive Controller Resource	Diskette drive controller has requested a resource already in use.	
Conflict	Diskette drive controller has requested a resource already in use.	
Diskette Drive A: Failure	BIOS cannot access drive A:.	
Diskette Drive A: Failure	BIOS cannot access drive A.:	
Gate A20 Failure	Gate A20 of keyboard controller not working.	
Invalid Boot Diskette	BIOS can read but cannot boot system from drive A:.	
Keyboard Controller Error	Keyboard controller failure.	
Keyboard is LockedPlease Unlock It	Locked keyboard.	
Keyboard Stuck Key Detected	Key pressed down.	
Master DMA Controller Error	Error exists in master DMA controller.	
Master Interrupt Controller Error	Master interrupt controller failure.	
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
Memory Size Decreased	Amount of memory detected is less than stated value in CMOS. ESCD data was re-initialized due to NVRAM checksum error.	
NVRAM Checksum Error, NVRAM	ESCD data was re-initialized due to NVRAIVI checksum error.	
Cleared	NIV/DAM has been sleaved by reasonal of improve	
NVRAM Cleared By Jumper	NVRAM has been cleared by removal of jumper.	
NVRAM Data Invalid, NVRAM Cleared	Invalid entry in ESCD.	
Off Board Parity Error Addr. (HEX) = X	Parity error occurred in expansion memory, x= address of error.	
Parallel Port Resource Conflict	Parallel port has requested a resource already in use.	
PCI Error Log is Full	PCI conflict error limit (15) has been reached.	
PCI I/O Port Conflict	Two devices requested the same resource.	
PCI Memory Conflict	Two devices requested the same resource.	
Primary Boot Device Not Found	Designated primary boot device could not be found.	
Primary IDE Cntrl. Resource Conflict	Primary IDE controller requested a resource already in use.	
Primary Input Device Not Found	Designated primary input device could not be found.	
Secondary IDE Controller Resource	Secondary IDE controller has requested a resource already in use.	
Serial Port 1 Resource Conflict	Serial port 1 requested a resource already in use.	
Serial Port 2 Resource Conflict	Serial port 2 requested a resource already in use.	
Slave DMA Controller Error	Error exists in slave DMA controller.	
Slave Interrupt Controller Error	Slave interrupt controller failure.	
Static Device Resource Conflict	A non-PnP ISA card has requested a resource already in use.	
System Board Device Resource Conflict	A non-PnP ISA card has requested a resource already in use.	
System Memory Size Mismatch	Amount of memory detected on system board is different from	
	amount indicated in CMOS.	

NOTE:

PCI and PnP messages are displayed with bus, device, and function information.

A.5 PROCESSOR ERROR MESSAGES (1xx-xx)

•	Table A-4.	
Processor	Error Messages	

Message	Probable Cause	Message	Probable Cause
101-01	CPU test failed	105-08	Port 61 bit <1> not at one
101-02	32-bit CPU test failed	105-09	Port 61 bit <0> not at one
101-9194	Multiplication test failed	105-10	Port 61 I/O test failed
102-01	FPU initial sts. word incorrect	105-11	Port 61 bit <7> not at zero
102-02	FPU initial cntrl. Word incorrect	105-12	Port 61 bit <2> not at zero
102-03	FPU tag word not all ones	105-13	No interrupt generated by failsafe timer
102-04	FPU tag word not all zeros	105-14	NMI not triggered by failsafe timer
102-05	FPU exchange command failed	106-01	Keyboard controller test failed
102-06	FPU masked exception error	107-01	CMOS RAM test failed
102-07	FPU unmasked exception error	108-02	CMOS interrupt test failed
102-08	FPU wrong mask status bit set	108-03	CMOS not properly initialized (interrupt test)
102-09	FPU unable to store real number	109-01	CMOS clock load data test failed
102-10	FPU real number calc test failed	109-02	CMOS clock rollover test failed
102-11	FPU speed test failed	109-03	CMOS not properly initialized (clock test)
102-12	FPU pattern test failed	110-01	Programmable timer load data test failed
102-15	FPU is inoperative or not present	110-02	Programmable timer dynamic test failed
102-16	Weitek not responding	110-03	Program timer 2 load data test failed
102-17	Weitek failed register trnsfr. Test	111-01	Refresh detect test failed
102-18	Weitek failed arithemetic ops test	112-01	Speed test Slow mode out of range
102-19	Weitek failed data conv. Test	112-02	Speed test Mixed mode out of range
102-20	Weitek failed interrupt test	112-03	Speed test Fast mode out of range
102-21	Weitek failed speed test	112-04	Speed test unable to enter Slow mode
103-01	DMA page registers test failed	112-05	Speed test unable to enter Mixed mode
103-02	DMA byte controller test failed	112-06	Speed test unable to enter Fast mode
103-03	DMA word controller test failed	112-07	Speed test system error
104-01	Master int. cntlr. test fialed	112-08	Unable to enter Auto mode in speed test
104-02	Slave int. cntlr. test failed	112-09	Unable to enter High mode in speed test
104-03	Int. cntlr. SW RTC inoperative	112-10	Speed test High mode out of range
105-01	Port 61 bit <6> not at zero	112-11	Speed test Auto mode out of range
105-02	Port 61 bit <5> not at zero	112-12	Speed test variable speed mode inoperative
105-03	Port 61 bit <3> not at zero	113-01	Protected mode test failed
105-04	Port 61 bit <1> not at zero	114-01	Speaker test failed
105-05	Port 61 bit <0> not at zero	116-xx	Way 0 read/write test failed
105-06	Port 61 bit <5> not at one	199-00	Installed devices test failed
105-07	Port 61 bit <3> not at one		

A.6 MEMORY ERROR MESSAGES (2xx-xx)

Table A-5.		
	Memory Error Messages	
Message	Probable Cause	
200-04	Real memory size changed	
200-05	Extended memory size changed	
200-06	Invalid memory configuration	
200-07	Extended memory size changed	
200-08	CLIM memory size changed	
201-01	Memory machine ID test failed	
202-01	Memory system ROM checksum failed	
202-02	Failed RAM/ROM map test	
202-03	Failed RAM/ROM protect test	
203-01	Memory read/write test failed	
203-02	Error while saving block in read/write test	
203-03	Error while restoring block in read/write test	
204-01	Memory address test failed	
204-02	Error while saving block in address test	
204-03	Error while restoring block in address test	
204-04	A20 address test failed	
204-05	Page hit address test failed	
205-01	Walking I/O test failed	
205-02	Error while saving block in walking I/O test	
205-03	Error while restoring block in walking I/O test	
206-xx	Increment pattern test failed	
210-01	Memory increment pattern test	
210-02	Error while saving memory during increment pattern test	
210-03	Error while restoring memory during increment pattern test	
211-01	Memory random pattern test	
211-02	Error while saving memory during random memory pattern test	
211-03	Error while restoring memory during random memory pattern test	
213-xx	Incompatible DIMM in slot x	
214-xx	Noise test failed	
215-xx	Random address test	

A.7 KEYBOARD ERROR MESSAGES (30x-xx)

	Table A-6.				
	Keyboard Error Messages				
Message	lessage Probable Cause Message Probable Cause				
300-xx	Failed ID test	303-05	LED test, LED command test failed		
301-01	Kybd short test, 8042 self-test failed	303-06	LED test, LED command test failed		
301-02	Kybd short test, interface test failed	303-07	LED test, LED command test failed		
301-03	Kybd short test, echo test failed	303-08	LED test, command byte restore test failed		
301-04	Kybd short test, kybd reset failed	303-09	LED test, LEDs failed to light		
301-05	Kybd short test, kybd reset failed	304-01	Keyboard repeat key test failed		
302-xx	Failed individual key test	304-02	Unable to enter mode 3		
302-01	Kybd long test failed	304-03	Incorrect scan code from keyboard		
303-01	LED test, 8042 self-test failed	304-04	No Make code observed		
303-02	LED test, reset test failed	304-05	Cannot /disable repeat key feature		
303-03	LED test, reset failed	304-06	Unable to return to Normal mode		
303-04	LED test, LED command test failed				

A.8 PRINTER ERROR MESSAGES (4xx-xx)

•	Table A-7.				
	Printer Error Messages				
Message	Message Probable Cause Message Probable Cause				
401-01	Printer failed or not connected	402-10	Interrupt test and control reg. failed		
402-01	Printer data register failed	402-11	Interrupt test, data/cntrl. reg. failed		
402-02	Printer control register failed	402-12	Interrupt test and loopback test failed		
402-03	Data and control registers failed	402-13	Int. test, LpBk. test., and data register failed		
402-04	Loopback test failed	402-14	Int. test, LpBk. test., and cntrl. register failed		
402-05	Loopback test and data reg. failed	402-15	Int. test, LpBk. test., and data/cntrl. reg. failed		
402-06	Loopback test and cntrl. reg. failed	402-16	Unexpected interrupt received		
402-07	Loopback tst, data/cntrl. reg. failed	402-01	Printer pattern test failed		
402-08	Interrupt test failed	498-00	Printer failed or not connected		
402-09	Interrupt test and data reg. failed				

A.9 VIDEO (GRAPHICS) ERROR MESSAGES (5xx-xx)

Table A-8. Video (Graphics) Error Messages						
Message	essage Probable Cause Message Probable Cause					
501-01	Video controller test failed	508-01	320x200 mode, color set 0 test failed			
502-01	Video memory test failed	509-01	320x200 mode, color set 1 test failed			
503-01	Video attribute test failed	510-01	640x200 mode test failed			
504-01	Video character set test failed	511-01	Screen memory page test failed			
505-01	80x25 mode, 9x14 cell test failed	512-01	Gray scale test failed			
506-01	80x25 mode, 8x8 cell test failed	514-01	White screen test failed			
507-01	40x25 mode test failed	516-01	Noise pattern test failed			

A.10 DISKETTE DRIVE ERROR MESSAGES (6xx-xx)

	Table A-9.				
Diskette Drive Error Messages					
Message	Probable Cause	Message	Probable Cause		
6xx-01	Exceeded maximum soft error limit	6xx-20	Failed to get drive type		
6xx-02	Exceeded maximum hard error limit	6xx-21	Failed to get change line status		
6xx-03	Previously exceeded max soft limit	6xx-22	Failed to clear change line status		
6xx-04	Previously exceeded max hard limit	6xx-23	Failed to set drive type in ID media		
6xx-05	Failed to reset controller	6xx-24	Failed to read diskette media		
6xx-06	Fatal error while reading	6xx-25	Failed to verify diskette media		
6xx-07	Fatal error while writing	6xx-26	Failed to read media in speed test		
6xx-08	Failed compare of R/W buffers	6xx-27	Failed speed limits		
6xx-09	Failed to format a tract	6xx-28	Failed write-protect test		
6xx-10	Failed sector wrap test				
600-xx = Dis	kette drive ID test	60	8-xx = Diskette drive write-protect test		
601-xx = Dis	kette drive format	60	9-xx = Diskette drive reset controller test		
602-xx = Dis	kette read test	61	0-xx = Diskette drive change line test		
603-xx = Diskette drive R/W compare test		69	4-00 = Pin 34 not cut on 360-KB drive		
604-xx = Diskette drive random seek test		69	7-00 = Diskette type error		
605-xx = Dis	kette drive ID media	69	8-00 = Drive speed not within limits		
606-xx = Dis	kette drive speed test	69	9-00 = Drive/media ID error (run Setup)		
607-xx = Diskette drive wrap test			, , , ,		

A.11 SERIAL INTERFACE ERROR MESSAGES (11xx-xx)

	Table A-10. Serial Interface Error Messages				
Message	Message Probable Cause Message Probable Cause				
1101-01	Port test, UART DLAB bit failure	1101-12	Port test, DRVR/RCVR cntrl. signal failure		
1101-02	Port test, line input or UART fault	1101-13	Port test, UART cntrl. signal interrupt failure		
1101-03	Port test, address line fault	1101-14	Port test, DRVR/RCVR data failure		
1101-04	Port test, data line fault	1109-01	Clock register initialization failure		
1101-05	Port test, UART cntrl. signal failure	1109-02	Clock register rollover failure		
1101-06	Port test, UART THRE bit failure	1109-03	Clock reset failure		
1101-07	Port test, UART Dta RDY bit failure	1109-04	Input line or clock failure		
1101-08	Port test, UART TX/RX buffer failure	1109-05	Address line fault		
1101-09	Port test, interrupt circuit failure	1109-06	Data line fault		
1101-10	Port test, COM1 set to invalid INT	1150-xx	Comm port setup error (run Setup)		
1101-11	Port test, COM2 set to invalid INT				

MODEM COMMUNICATIONS ERROR MESSAGES (12xx-xx) A.12

	Table A-11.				
	Serial Interface Error Messages				
Message	Probable Cause	Message	Probable Cause		
1201-XX	Modem internal loopback test	1204-03	Data block retry limit reached [4]		
1201-01	UART DLAB bit failure	1204-04	RX exceeded carrier lost limit		
1201-02	Line input or UART failure	1204-05	TX exceeded carrier lost limit		
1201-03	Address line failure	1204-06	Time-out waiting for dial tone		
1201-04	Data line fault	1204-07	Dial number string too long		
1201-05	UART control signal failure	1204-08	Modem time-out waiting for remote response		
1201-06	UART THRE bit failure	1204-09	Modem exceeded maximum redial limit		
1201-07	UART DATA READY bit failure	1204-10	Line quality prevented remote response		
1201-08	UART TX/RX buffer failure	1204-11	Modem time-out waiting for remote connection		
1201-09	Interrupt circuit failure	1205-XX	Modem auto answer test		
1201-10	COM1 set to invalid inturrupt	1205-01	Time-out waiting for SYNC [5]		
1201-11	COM2 set to invalid	1205-02	Time-out waiting for response [5]		
1201-12	DRVR/RCVR control signal failure	1205-03	Data block retry limit reached [5]		
1201-13	UART control signal interrupt failure	1205-04	RX exceeded carrier lost limit		
1201-14	DRVR/RCVR data failure	1205-05	TX exceeded carrier lost limit		
1201-15	Modem detection failure	1205-06	Time-out waiting for dial tone		
1201-16	Modem ROM, checksum failure	1205-07	Dial number string too long		
1201-17	Tone detect failure	1205-08	Modem time-out waiting for remote response		
1202-XX	Modem internal test	1205-09	Modem exceeded maximum redial limit		
1202-01	Time-out waiting for SYNC [1]	1205-10	Line quality prevented remote response		
1202-02	Time-out waiting for response [1]	1205-11	Modem time-out waiting for remote connection		
1202-03	Data block retry limit reached [1]	1206-XX	Dial multi-frequency tone test		
1202-11	Time-out waiting for SYNC [2]	1206-17	Tone detection failure		
1202-12	Time-out waiting for response [2]	1210-XX	Modem direct connect test		
1202-13	Data block retry limit reached [2]	1210-01	Time-out waiting for SYNC [6]		
1202-21	Time-out waiting for SYNC [3]	1210-02	Time-out waiting for response [6]		
1202-22	Time-out waiting for response [3]	1210-03	Data block retry limit reached [6]		
1202-23	Data block retry limit reached [3]	1210-04	RX exceeded carrier lost limit		
1203-XX	Modem external termination test	1210-05	TX exceeded carrier lost limit		
1203-01	Modem external TIP/RING failure	1210-06	Time-out waiting for dial tone		
1203-02	Modem external data TIP/RING fail	1210-07	Dial number string too long		
1203-03	Modem line termination failure	1210-08	Modem time-out waiting for remote response		
1204-XX	Modem auto originate test	1210-09	Modem exceeded maximum redial limit		
1204-01	Time-out waiting for SYNC [4]	1210-10	Line quality prevented remote response		
1204-02	Time-out waiting for response [4]	1210-11	Modem time-out waiting for remote connection		

NOTES:

- [1] Local loopback mode
- [2] Analog loopback originate mode

- [3] Analog loopback answer mode
- [4] Modem auto originate test
- [5] Modem auto answer test
- [6] Modem direct connect test

A.13 HARD DRIVE ERROR MESSAGES (17xx-xx)

Table A-12.	
Hard Drive Error Messag	ges

Message	Probable Cause	Message	Probable Cause
17xx-01	Exceeded max. soft error limit	17xx-51	Failed I/O read test
17xx-02	Exceeded max. Hard error limit	17xx-52	Failed file I/O compare test
17xx-03	Previously exceeded max. soft error limit	17xx-53	Failed drive/head register test
17xx-04	Previously exceeded max.hard error limit	17xx-54	Failed digital input register test
17xx-05	Failed to reset controller	17xx-55	Cylinder 1 error
17xx-06	Fatal error while reading	17xx-56	Failed controller RAM diagnostics
17xx-07	Fatal error while writing	17xx-57	Failed controller-to-drive diagnostics
17xx-08	Failed compare of R/W buffers	17xx-58	Failed to write sector buffer
17xx-09	Failed to format a track	17xx-59	Failed to read sector buffer
17xx-10	Failed diskette sector wrap during read	17xx-60	Failed uncorrectable ECC error
17xx-19	Cntlr. failed to deallocate bad sectors	17xx-62	Failed correctable ECC error
17xx-40	Cylinder 0 error	17xx-63	Failed soft error rate
17xx-41	Drive not ready	17xx-65	Exceeded max. bad sectors per track
17xx-42	Failed to recalibrate drive	17xx-66	Failed to initialize drive parameter
17xx-43	Failed to format a bad track	17xx-67	Failed to write long
17xx-44	Failed controller diagnostics	17xx-68	Failed to read long
17xx-45	Failed to get drive parameters from ROM	17xx-69	Failed to read drive size
17xx-46	Invalid drive parameters from ROM	17xx-70	Failed translate mode
17xx-47	Failed to park heads	17xx-71	Failed non-translate mode
17xx-48	Failed to move hard drive table to RAM	17xx-72	Bad track limit exceeded
17xx-49	Failed to read media in file write test	17xx-73	Previously exceeded bad track limit
17xx-50	Failed I/O write test		

1700-xx = Hard drive ID test 1710-xx = Hard drive park head test 1701-xx = Hard drive format test 1714-xx = Hard drive file write test 1702-xx = Hard drive read test 1715-xx = Hard drive head select test 1703-xx = Hard drive read/write compare test 1716-xx = Hard drive conditional format test 1704-xx = Hard drive random seek test 1717-xx = Hard drive ECC test 1705-xx = Hard drive controller test 1719-xx = Hard drive power mode test 1706-xx = Hard drive ready test 1721-xx = SCSI hard drive imminent failure 1707-xx = Hard drive recalibrate test 1724-xx = Net work preparation test 1708-xx = Hard drive format bad track test 1736-xx = Drive monitoring test 1709-xx = Hard drive reset controller test 1799-xx = Invalid hard drive type

A.14 HARD DRIVE ERROR MESSAGES (19xx-xx)

l able A-1	13.
Hard Drive Error N	Messages

Message	Probable Cause	Message	Probable Cause
19xx-01	Drive not installed	19xx-21	Got servo pulses second time but not first
19xx-02	Cartridge not installed	19xx-22	Never got to EOT after servo check
19xx-03	Tape motion error	19xx-23	Change line unset
19xx-04	Drive busy erro	19xx-24	Write-protect error
19xx-05	Track seek error	19xx-25	Unable to erase cartridge
19xx-06	Tape write-protect error	19xx-26	Cannot identify drive
19xx-07	Tape already Servo Written	19xx-27	Drive not compatible with controller
19xx-08	Unable to Servo Write	19xx-28	Format gap error
19xx-09	Unable to format	19xx-30	Exception bit not set
19xx-10	Format mode error	19xx-31	Unexpected drive status
19xx-11	Drive recalibration error	19xx-32	Device fault
19xx-12	Tape not Servo Written	19xx-33	Illegal command
19xx-13	Tape not formatted	19xx-34	No data detected
19xx-14	Drive time-out error	19xx-35	Power-on reset occurred
19xx-15	Sensor error flag	19xx-36	Failed to set FLEX format mode
19xx-16	Block locate (block ID) error	19xx-37	Failed to reset FLEX format mode
19xx-17	Soft error limit exceeded	19xx-38	Data mismatch on directory track
19xx-18	Hard error limit exceeded	19xx-39	Data mismatch on track 0
19xx-19	Write (probably ID) error	19xx-40	Failed self-test
19xx-20	NEC fatal error	19xx-91	Power lost during test

1900-xx = Tape ID test failed
1904-xx = Tape BOT/EOT test failed
1901-xx = Tape servo write failed
1902-xx = Tape format failed
1903-xx = Tape format failed
1903-xx = Tape drive sensor test failed
1907-xx = Tape write-protect failed

A.15 VIDEO (GRAPHICS) ERROR MESSAGES (24xx-xx)

Table A-14.Hard Drive Error Messages

Message	Probable Cause	Message	Probable Cause
2402-01	Video memory test failed	2418-02	EGA shadow RAM test failed
2403-01	Video attribute test failed	2419-01	EGA ROM checksum test failed
2404-01	Video character set test failed	2420-01	EGA attribute test failed
2405-01	80x25 mode, 9x14 cell test failed	2421-01	640x200 mode test failed
2406-01	80x25 mode, 8x8 cell test failed	2422-01	640x350 16-color set test failed
2407-01	40x25 mode test failed	2423-01	640x350 64-color set test failed
2408-01	320x200 mode color set 0 test failed	2424-01	EGA Mono. text mode test failed
2409-01	320x200 mode color set 1 test failed	2425-01	EGA Mono. graphics mode test failed
2410-01	640x200 mode test failed	2431-01	640x480 graphics mode test failed
2411-01	Screen memory page test failed	2432-01	320x200 256-color set test failed
2412-01	Gray scale test failed	2448-01	Advanced VGA controller test failed
2414-01	White screen test failed	2451-01	132-column AVGA test failed
2416-01	Noise pattern test failed	2456-01	AVGA 256-color test failed
2417-01	Lightpen text test failed, no response	2458-xx	AVGA BitBLT test failed
2417-02	Lightpen text test failed, invalid response	2468-xx	AVGA DAC test failed
2417-03	Lightpen graphics test failed, no resp.	2477-xx	AVGA data path test failed
2417-04	Lightpen graphics test failed, invalid resp.	2478-xx	AVGA BitBLT test failed
2418-01	EGA memory test failed	2480-xx	AVGA linedraw test failed

Compaq Personal Computers

A.16 AUDIO ERROR MESSAGES (3206-xx)

	Table A-15.
	Audio Error Message
Message	Probable Cause
3206-xx	Audio subsystem internal error

A.17 NETWORK INTERFACE ERROR MESSAGES (60xx-xx)

Table A-16. Network Interface Error Messages					
Message	Probable Cause	Message	Probable Cause		
6000-xx	Pointing device interface error	6054-xx	Token ring configuration test failed		
6014-xx	Ethernet configuration test failed	6056-xx	Token ring reset test failed		
6016-xx	Ethernet reset test failed	6068-xx	Token ring int. loopback test failed		
6028-xx	Ethernet int. loopback test failed	6069-xx	Token ring ext. loopback test failed		
6029-xx	Ethernet ext. loopback test failed	6089-xx	Token ring open		

A.18 SCSI INTERFACE ERROR MESSAGES (65xx-xx, 66xx-xx, 67xx-xx)

Table A-17.							
SCSI Interface Error Messages							
Message	Probable Cause	Message	Probable Cause				
6nyy-02	Drive not installed	6nyy-33	Illegal controller command				
6nyy-03	Media not installed	6nyy-34	Invalid SCSI bus phase				
6nyy-05	Seek failure	6nyy-35	Invalid SCSI bus phase				
6nyy-06	Drive timed out	6nyy-36	Invalid SCSI bus phase				
6nyy-07	Drive busy	6nyy-39	Error status from drive				
6nyy-08	Drive already reserved	6nyy-40	Drive timed out				
6nyy-09	Reserved	6nyy-41	SSI bus stayed busy				
6nyy-10	Reserved	6nyy-42	ACK/REQ lines bad				
6nyy-11	Media soft error	6nyy-43	ACK did not deassert				
6nyy-12	Drive not ready	6nyy-44	Parity error				
6nyy-13	Media error	6nyy-50	Data pins bad				
6nyy-14	Drive hardware error	6nyy-51	Data line 7 bad				
6nyy-15	Illegal drive command	6nyy-52	MSG, C/D, or I/O lines bad				
6nyy-16	Media was changed	6nyy-53	BSY never went busy				
6nyy-17	Tape write-protected	6nyy-54	BSY stayed busy				
6nyy-18	No data detected	6nyy-60	Controller CONFIG-1 register fault				
6nyy-21	Drive command aborted	6nyy-61	Controller CONFIG-2 register fault				
6nyy-24	Media hard error	6nyy-65	Media not unloaded				
6nyy-25	Reserved	6nyy-90	Fan failure				
6nyy-30	Controller timed out	6nyy-91	Over temperature condition				
6nyy-31	Unrecoverable error	6nyy-92	Side panel not installed				
6nyy-32	Controller/drive not connected	6nyy-99	Autoloader reported tape not loaded properly				

n = 5, Hard drive

yy = 00, ID

= 03, Power check

= 05, Read

= 06, SA/Media

= 08, Controller;

= 23, Random read

= 28, Media load/unload

A.19 POINTING DEVICE INTERFACE ERROR MESSAGES (8601-xx)

Table A-18.						
Pointing Device Interface Error Messages						
Message	Probable Cause	Message	Probable Cause			
8601-01	Mouse ID fails	8601-06	Left block not selected			
8601-02	Left mouse button is inoperative	8601-07	Right block not selected			
8601-03	Left mouse button is stuck closed	8601-08	Timeout occurred			
8601-04	Right mouse button is inoperative	8601-09	Mouse loopback test failed			
8601-05	Right mouse button is stuck closed	8601-10	Pointing device is inoperative			

Compaq Personal Computers A-11

^{= 6,} CD-ROM drive

^{= 7,} Tape drive.

A.20 CEMM PRIVILEDGED OPS ERROR MESSAGES

Table A-19. CEMM Privileged Ops Error Messages						
Message	Probable Cause	Message	Probable Cause			
00	LGDT instruction	04	LL3 instruction			
01	LIDT instruction	05	MOV CRx instruction			
02	LMSW instruction	06	MOV DRx instruction			
03	LL2 instruction	07	MOV TRx instruction			

A.21 CEMM EXCEPTION ERROR MESSAGES

	Table A-20.							
	CEMM Exception Error Messages							
Message	Probable Cause	Message	Probable Cause					
00	Divide	10	Invalid TSS					
01	Debug	11	Segment not present					
02	NMI or parity	12	Stack full					
03	INT 0 (arithmetic overflow)	13	General protection fault					
04	INT 3	14	Page fault					
05	Array bounds check	16	Coprocessor					
06	Invalid opcode	32	Attempt to write to protected area					
07	Coprocessor device not available	33	Reserved					
08	Double fault	34	Invalid software interrupt					
09	Coprocessor segment overrun							

Appendix B ASCII CHARACTER SET

B.1 INTRODUCTION

This appendix lists, in Table B-1, the 256-character ASCII code set including the decimal and hexadecimal values. All ASCII symbols may be called while in DOS or using standard text-mode editors by using the combination keystroke of holding the **Alt** key and using the Numeric Keypad to enter the decimal value of the symbol. The extended ASCII characters (decimals 128-255) can only be called using the **Alt** + Numeric Keypad keys.

NOTE: Regarding keystrokes, refer to notes at the end of the table. Applications may interpret multiple keystroke accesses differently or ignore them completely.

	Table B-1.										
				1	ASCII Ch	aracte	r Set				
Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol	Dec	Hex	Symbol
0	00	Blank	32	20	Space	64	40	@	96	60	í
1	01	\odot	33	21	!	65	41	Α	97	61	а
2	02		34	22	"	66	42	В	98	62	b
3	03	♥	35	23	#	67	43	С	99	63	С
4	04	•	36	24	\$	68	44	D	100	64	d
5	05	*	37	25	%	69	45	Ε	101	65	е
6	06	^	38	26	&	70	46	F	102	66	f
7	07	•	39	27	'	71	47	G	103	67	g
8	80	0	40	28	(72	48	Н	104	68	h
9	09		41	29)	73	49	l	105	69	I
10	0A		42	2A	*	74	4A	J	106	6A	j
11	0B	Ø	43	2B	+	75	4B	K	107	6B	k
12	0C	Ą	44	2C	`	76	4C	L	108	6C	I
13	0D		45	2D	-	77	4D	M	109	6D	m
14	0E	P	46	2E		78	4E	N	110	6E	n
15	0F	\Omega	47	2F	/	79	4F	0	111	6F	0
16	10	•	48	30	0	80	50	Р	112	70	р
17	11	•	49	31	1	81	51	Q	113	71	q
18	12	‡	50	32	2	82	52	R	114	72	r
19	13	!!	51	33	3	83	53	S	115	73	S
20	14	¶	52	34	4	84	54	Т	116	74	t
21	15	§	53	35	5	85	55	U	117	75	u
22	16	<u>-</u> \$	54	36	6	86	56	V	118	76	V
23	17		55	37	7	87	57	W	119	77	W
24	18	↑	56	38	8	88	58	X	120	78	X
25	19	\downarrow	57	39	9	89	59	Υ	121	79	У
26	1A	\rightarrow	58	3A	:	90	5A	Z	122	7A	Z
27	1B	\leftarrow	59	3B	;	91	5B	[123	7B	{
28	1C		60	3C	<	92	5C	\	124	7C	1
29	1D	\leftrightarrow	61	3D	=	93	5D]	125	7D	}
30	1E	_	62	3E	>	94	5E	٨	126	7E	`~
31	1F	▼	63	3F	?	95	5F	_	127	7F	△ [1]
										C	ontinued

Compaq Personal Computers

Table B-1. ASCII Code Set (Continued)

Dec	Hex	Symbol									
128	80	Ç	160	A0	á	192	C0	•	224	E0	•
129	81	ü	161	A1	í	193	C1	•	225	E1	ß
130	82	é	162	A2	Ó	194	C2	•	226	E2	•
131	83	â	163	A3	ú	195	C3	•	227	E3	•
132	84	ä	164	A4	ñ	196	C4	•	228	E4	•
133	85	à	165	A5	Ñ	197	C5	•	229	E5	•
134	86	å	166	A6	a	198	C6	•	230	E6	μ
135	87	Ç	167	A7	0	199	C7	•	231	E7	•
136	88	ê	168	A8	خ	200	C8	•	232	E8	•
137	89	ë	169	A9	•	201	C9	•	233	E9	•
138	8A	è	170	AA	7	202	CA	•	234	EA	•
139	8B	ï	171	AB	1/2	203	CB	•	235	EB	•
140	8C	î	172	AC	1/4	204	CC	•	236	EC	•
141	8D	ì	173	AD	ī	205	CD	•	237	ED	•
142	8E	Ä	174	ΑE	«	206	CE	•	238	EE	•
143	8F	Å	175	AF	>>	207	CF	•	239	EF	•
144	90	É	176	B0	•	208	D0	•	240	F0	•
145	91	æ	177	B1	•	209	D1	•	241	F1	±
146	92	Æ	178	B2	•	210	D2	•	242	F2	•
147	93	ô	179	В3	•	211	D3	•	243	F3	•
148	94	ö	180	B4	•	212	D4	•	244	F4	•
149	95	ò	181	B5	•	213	D5	•	245	F5	•
150	96	û	182	B6	•	214	D6	•	246	F6	÷
151	97	ù	183	B7	•	215	D7	•	247	F7	•
152	98	ÿ	184	B8	•	216	D8	•	248	F8	0
153	99	Ö	185	B9	•	217	D9	•	249	F9	•
154	9A	Ü	186	BA	•	218	DA	•	250	FA	•
155	9B	¢	187	BB	•	219	DB	•	251	FB	•
156	9C	£	188	BC	•	220	DC	•	252	FC	•
157	9D	¥	189	BD	•	221	DD	•	253	FD	2
158	9E	•	190	BE	•	222	DE	•	254	FE	•
159	9F	f	191	BF	•	223	DF	•	255	FF	Blank

NOTES:

[1] Symbol not displayed.

Keystroke Guide:

Dec#	Keystroke(s)
0	Ctrl 2
1-26	Ctrl A thru Z respectively
27	Ctrl [
28	Ctrl
29	Ctrl]
30	Ctrl 6
31	Ctrl -
32	Space Bar
33-43	Shift and key w/corresponding symbol
44-47	Key w/corresponding symbol
48-57	Key w/corresponding symbol, numerical keypad w/Num Lock active
58	Shift and key w/corresponding symbol
59	Key w/corresponding symbol
60	Shift and key w/corresponding symbol
61	Key w/corresponding symbol
62-64	Shift and key w/corresponding symbol
65-90	Shift and key w/corresponding symbol or key w/corresponding symbol and Caps Lock active
91-93	Key w/corresponding symbol
94, 95	Shift and key w/corresponding symbol
96	Key w/corresponding symbol
97-126	Key w/corresponding symbol or Shift and key w/corresponding symbol and Caps Lock active
127	Ctrl -
128-255	Alt and decimal digit(s) of desired character

Appendix C KEYBOARD

C.1 INTRODUCTION

This appendix describes the Compaq keyboard that is included as standard with the system unit. The keyboard complies with the industry-standard classification of an "enhanced keyboard" and includes a separate cursor control key cluster, twelve "function" keys, and enhanced programmability for additional functions.

This appendix covers the following keyboard types:

- Standard enhanced keyboard.
- Space-Saver Windows-version keyboard featuring three additional keys for specific support of the Windows operating system.

Only one type of keyboard is supplied with each system. Other types may be available as an option.

NOTE: This appendix discusses only the keyboard unit. The keyboard interface is a function of the system unit and is discussed in Chapter 5, Input/Output Interfaces.

Topics covered in this appendix include the following:

♦ Keystroke processing (C.2)

page C-2

C.2 KEYSTROKE PROCESSING

A functional block diagram of the keystroke processing elements is shown in Figure C-1. Power (+5 VDC) is obtained from the system through the PS/2-type interface. The keyboard uses a Z86C14 (or equivalent) microprocessor. The Z86C14 scans the key matrix drivers every 10 ms for pressed keys while at the same time monitoring communications with the keyboard interface of the system unit. When a key is pressed, a Make code is generated. A Break code is generated when the key is released. The Make and Break codes are collectively referred to as scan codes. All keys generate Make and Break codes with the exception of the Pause key, which generates a Make code only.

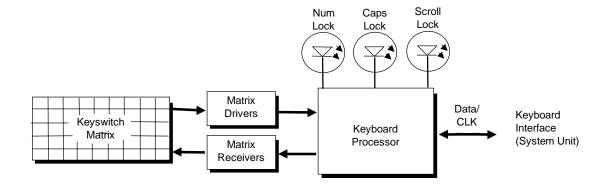


Figure C-1. Keystroke Processing Elements, Block Diagram

When the system is turned on, the keyboard processor generates a Power-On Reset (POR) signal after a period of 150 ms to 2 seconds. The keyboard undergoes a Basic Assurance Test (BAT) that checks for shorted keys and basic operation of the keyboard processor. The BAT takes from 300 to 500 ms to complete.

If the keyboard fails the BAT, an error code is sent to the CPU and the keyboard is disabled until an input command is received. After successful completion of the POR and BAT, a completion code (AAh) is sent to the CPU and the scanning process begins.

The keyboard processor includes a 16-byte FIFO buffer for holding scan codes until the system is ready to receive them. Response and typematic codes are not buffered. If the buffer is full (16 bytes held) a 17th byte of a successive scan code results in an overrun condition and the overrun code replaces the scan code byte and any additional scan code data (and the respective key strokes) are lost. Multi-byte sequences must fit entirely into the buffer before the respective keystroke can be registered.

C.2.1 TRANSMISSIONS TO THE SYSTEM

The keyboard processor sends two main types of data to the system; commands (or responses to system commands) and keystroke scan codes. Before the keyboard sends data to the system (specifically, to the 8042-type logic within the system), the keyboard verifies the clock and data lines to the system. If the clock signal is low (0), the keyboard recognizes the inhibited state and loads the data into a buffer. Once the inhibited state is removed, the data is sent to the system. Keyboard-to-system transfers consist of 11 bits as shown in Figure C-2.

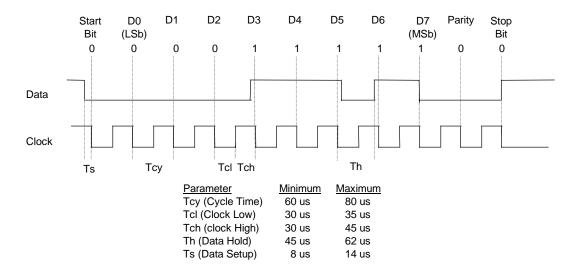
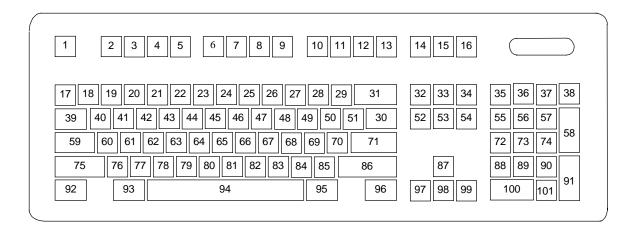


Figure C–2. Keyboard-To-System Transmission of Code 58h, Timing Diagram

The system can halt keyboard transmission by setting the clock signal low. The keyboard checks the clock line every 60 us to verify the signal state. If a low is detected, the keyboard will finish the current transmission **if** the rising edge of the clock pulse for the parity bit has not occurred.


The enhanced keyboard has three operating modes:

- ♦ Mode 1 PC-XT compatible
- ♦ Mode 2 PC-AT compatible (default)
- Mode 3 Select mode (keys are programmable as to make-only, break-only, typematic)

Modes can be selected by the user or set by the system. Mode 2 is the default mode. Each mode produces a different set of scan codes. When a key is pressed, the keyboard processor sends that key's make code to the 8042 logic of the system unit. The When the key is released, a release code is transmitted as well (except for the Pause key, which produces only a make code). The 8042-type logic of the system unit responds to scan code reception by asserting IRQ1, which is processed by the interrupt logic and serviced by the CPU with an interrupt service routine. The service routine takes the appropriate action based on which key was pressed.

C.2.2 KEYBOARD LAYOUTS

C.2.2.1 Standard Enhanced Keyboards

Figure C–3. U.S. English (101-Key) Keyboard Key Positions

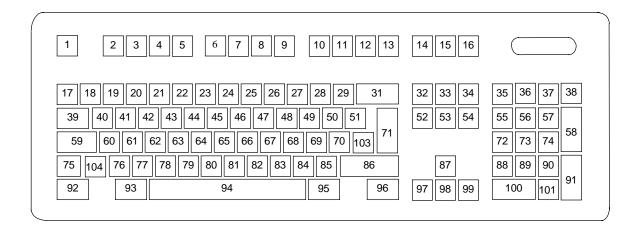


Figure C-4. National (102-Key) Keyboard Key Positions

C.2.2.2 Windows Enhanced Keyboards

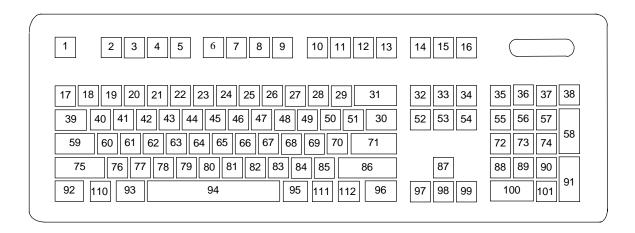


Figure C–5. U.S. English Windows (101W-Key) Keyboard Key Positions

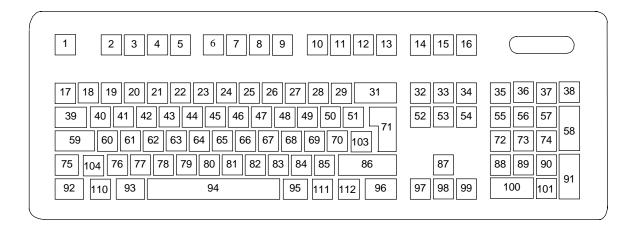


Figure C-6. National Windows (102W-Key) Keyboard Key Positions

C.2.3 KEYS

All keys generate a make code (when pressed) and a break code (when released) with the exception of the **Pause** key (pos. 16), which produces a make code only. All keys, again, with the exception of the **Pause** key, are also typematic, although the typematic action of the **Shift**, **Ctrl**, **Alt**, **Num Lock**, **Scroll Lock**, **Caps Lock**, and **Ins** keys is suppressed by the BIOS. Typematic keys, when held down, send the make code repetitively at a predetermined rate until the key is released. If two keys are held down, the last key pressed will be typematic.

C.2.3.1 Special Single-Keystroke Functions

The following keys provide the intended function in most applications and environments.

Caps Lock - The **Caps Lock** key (pos. 59), when pressed and released, invokes a BIOS routine that turns on the caps lock LED and shifts into upper case key positions 40-49, 60-68, and 76-82. When pressed and released again, these keys revert to the lower case state and the LED is turned off. Use of the **Shift** key will reverse which state these keys are in based on the **Caps Lock** key.

Num Lock - The **Num Lock** key (pos. 32), when pressed and released, invokes a BIOS routine that turns on the num lock LED and shifts into upper case key positions 55-57, 72-74, 88-90, 100, and 101. When pressed and released again, these keys revert to the lower case state and the LED is turned off.

The following keys provide special functions that require specific support by the application.

Print Scrn - The **Print Scrn** (pos. 14) key can, when pressed, generate an interrupt that initiates a print routine. This function may be inhibited by the application.

Scroll Lock - The **Scroll Lock** key (pos. 15) when pressed and released, , invokes a BIOS routine that turns on the scroll lock LED and inhibits movement of the cursor. When pressed and released again, the LED is turned off and the function is removed. This keystroke is always serviced by the BIOS (as indicated by the LED) but may be inhibited or ignored by the application.

Pause - The **Pause** (pos. 16) key, when pressed, can be used to cause the keyboard interrupt to loop, i.e., wait for another key to be pressed. This can be used to momentarily suspend an operation. The key that is pressed to resume operation is discarded. This function may be ignored by the application.

The Esc, Fn (function), Insert, Home, Page Up/Down, Delete, and End keys operate at the discretion of the application software.

C.2.3.2 Multi-Keystroke Functions

Shift - The **Shift** key (pos. 75/86), when held down, produces a shift state (upper case) for keys in positions 17-29, 30, 39-51, 60-70, and 76-85 as long as the **Caps Lock** key (pos. 59) is toggled off. If the **Caps Lock** key is toggled on, then a held **Shift** key produces the lower (normal) case for the identified pressed keys. The **Shift** key also reverses the **Num Lock** state of key positions 55-57, 72, 74, 88-90, 100, and 101.

Ctrl - The **Ctrl** keys (pos. 92/96) can be used in conjunction with keys in positions 1-13, 16, 17-34, 39-54, 60-71, and 76-84. The application determines the actual function. Both **Ctrl** key positions provide identical functionality. The pressed combination of **Ctrl** and **Break** (pos. 16) results in the generation of BIOS function INT 1Bh. This software interrupt provides a method of exiting an application and generally halts execution of the current program.

Alt - The **Alt** keys (pos. 93/95) can be used in conjunction with the same keys available for use with the **Ctrl** keys with the exception that position 14 (**SysRq**) is available instead of position 16 (**Break**). The **Alt** key can also be used in conjunction with the numeric keypad keys (pos. 55-57, 72-74, and 88-90) to enter the decimal value of an ASCII character code from 1-255. The application determines the actual function of the keystrokes. Both **Alt** key positions provide identical functionality.

The combination keystroke of **Alt** and **SysRq** results in software interrupt 15h, AX=8500h being executed. It is up to the application to use or not use this BIOS function.

The **Ctrl** and **Alt** keys can be used together in conjunction with keys in positions 1-13, 17-34, 39-54, 60-71, and 76-84. The **Ctrl** and **Alt** key positions used and the sequence in which they are pressed make no difference as long as they are held down at the time the third key is pressed. The **Ctrl**, **Alt**, and **Delete** keystroke combination (required twice if in the Windows environment) initiates a system reset (warm boot) that is handled by the BIOS.

C.2.3.3 Windows Keystrokes

Windows-enhanced keyboards include three additional key positions. Key positions 110 and 111 (marked with the Windows logo) have the same functionality and are used by themselves or in combination with other keys to perform specific "hot-key" type functions for the Windows operating system. The defined functions of the Windows logo keys are listed as follows:

Keystroke Function Window Logo Open Start menu Window Logo + F1 Display pop-up menu for the selected object Window Logo + TAB Activate next task bar button Window Logo + E Explore my computer Find document Window Logo + F Window Logo + CTRL + F Find computer Window Logo + M Minimize all Shift + Window Logo + M Undo minimize all Window Logo + R Display Run dialog box Window Logo + PAUSE Perform system function Window Logo + 1-0 Reserved for OEM use (see following text)

The combination keystroke of the Window Logo + 1-0 keys are reserved for OEM use for auxiliary functions (speaker volume, monitor brightness, password, etc.).

Key position 112 (marked with an application window icon _____) is used in combination with other keys for invoking Windows application functions.

C.2.4 KEYBOARD COMMANDS

Table C-1 lists the commands that the keyboard can send to the system (specifically, to the 8042-type logic).

	Table C-1.					
Ke	yboard-to-S	System Commands				
Command	Value	Description				
Key Detection Error/Over/run	00h [1] FFh [2]	Indicates to the system that a switch closure couldn't be identified.				
BAT Completion	AAh	Indicates to the system that the BAT has been successful.				
BAT Failure	FCh	Indicates failure of the BAT by the keyboard.				
Echo	EEh	Indicates that the Echo command was received by the keyboard.				
Acknowledge (ACK)	FAh	Issued by the keyboard as a response to valid system inputs (except the Echo and Resend commands).				
Resend	FEh	Issued by the keyboard following an invalid input.				
Keyboard ID	83ABh	Upon receipt of the Read ID command from the system, the keyboard issues the ACK command followed by the two IDS bytes.				

Note:

[1] Modes 2 and 3.

[2] Mode 1 only.

C.2.5 SCAN CODES

The scan codes generated by the keyboard processor are determined by the mode the keyboard is operating in.

- Mode 1: In Mode 1 operation, the keyboard generates scan codes compatible with 8088-/8086-based systems. To enter Mode 1, the scan code translation function of the keyboard controller must be disabled. Since translation is not performed, the scan codes generated in Mode 1 are identical to the codes required by BIOS. Mode 1 is initiated by sending command F0h with the 01h option byte. Applications can obtain system codes and status information by using BIOS function INT 16h with AH=00h, 01h, and 02h.
- Mode 2: Mode 2 is the default mode for keyboard operation. In this mode, the 8042 logic translates the make codes from the keyboard processor into the codes required by the BIOS. This mode was made necessary with the development of the Enhanced III keyboard, which includes additional functions over earlier standard keyboards. Applications should use BIOS function INT 16h, with AH=10h, 11h, and 12h for obtaining codes and status data. In Mode 2, the keyboard generates the Break code, a two-byte sequence that consists of a Make code immediately preceded by F0h (i.e., Break code for 0Eh is "F0h 0Eh").
- ♦ Mode 3: Mode 3 generates a different scan code set from Modes 1 and 2. Code translation must be disabled since translation for this mode cannot be done.

C-9

		Table (Ç-2.	
		Keyboard Sca	an Codes	
Key		Ma	ake / Break Codes (Hex)	
Pos.	Legend	Mode 1	Mode 2	Mode 3
1	Esc	01/81	76/F0 76	08/na
2	F1	3B/BB	05/F0 05	07/na
3	F2	3C/BC	06/F0 06	0F/na
4	F3	3D/BD	04/F0 04	17/na
5	F4	3E/BE	0C/F0 0C	1F/na
6	F5	3F/BF	03/F0 03	27/na
7	F6	40/C0	0B/F0 0B	2F/na
8	F7	41/C1	83/F0 83	37/na
9	F8	42/C2	0A/F0 0A	3F/na
10	F9	43/C3	01/FO 01	47/na
11	F10	44/C4	09/F0 09	4F/na
12	F11	57/D7	78/F0 78	56/na
13	F12	58/D8	07/F0 07	5E/na
14	Print Scrn	E0 2A E0 37/E0 B7 E0 AA	E0 2A E0 7C/E0 F0 7C E0 F0 12	57/na
		E0 37/E0 B7 [1] [2]	E0 7C/E0 F0 7C [1] [2]	
		54/84 [3]	84/F0 84 [3]	
15	Scroll Lock	46/C6	7E/F0 7E	5F/na
16	Pause	E1 1D 45 E1 9D C5/na	E1 14 77 E1 F0 14 F0 77/na	62/na
		E0 46 E0 C6/na [3]	E0 7E E0 F0 7E/na [3]	
17	`	29/A9	0E/F0 E0	0E/F0 0E
18	1	02/82	16/F0 16	46/F0 46
19	2	03/83	1E/F0 1E	1E/F0 1E
20	3	04/84	26/F0 26	26/F0 26
21	4	05/85	25/F0 25	25/F0 25
22	5	06/86	2E/F0 2E	2E/F0 2E
23	6	07/87	36/F0 36	36/F0 36
24	7	08/88	3D/F0 3D	3D/F0 3D
25	8	09/89	3E/F0 3E	3E/F0 3E
26	9	0A/8A	46/F0 46	46/F0 46
27	0	0B/8B	45/F0 45	45/F0 45
28	-	0C/8C	4E/F0 4E	4E/F0 4E
29	=	0D/8D	55/F0 55	55/F0 55
30	\	2B/AB	5D/F0 5D	5C/F0 5C
31	Backspace	0E/8E	66/F0 66	66/F0 66
32	Insert	E0 52/E0 D2	E0 70/E0 F0 70	67/na
		E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 70/E0 F0 70 E0 12 [5]	
		E0 2A E0 52/E0 D2 E0 AA [6]	E0 12 E0 70/E0 F0 70 E0 F0 12 [6]	
33	Home	E0 47/E0 D2	E0 6C/E0 F0 6C	6E/na
		E0 AA E0 52/E0 D2 E0 2A [4]	E0 F0 12 E0 6C/E0 F0 6C E0 12 [5]	
		E0 2A E0 47/E0 C7 E0 AA [6]	E0 12 E0 6C/E0 F0 6C E0 F0 12 [6]	
34	Page Up	E0 49/E0 C7	E0 7D/E0 F0 7D	6F/na
	0 1	E0 AA E0 49/E0 C9 E0 2A [4]	E0 F0 12 E0 7D/E0 F0 7D E0 12 [5]	
		E0 2A E0 49/E0 C9 E0 AA [6]	E0 12 E0 7D/E0 F0 7D E0 F0 12 [6]	
35	Num Lock	45/C5	77/F0 77	76/na
36	/	E0 35/E0 B5	E0 4A/E0 F0 4A	77/na
		E0 AA E0 35/E0 B5 E0 2A [1]	E0 F0 12 E0 4A/E0 F0 4A E0 12 [1]	
37	*	37/B7	7C/F0 7C	7E/na
38	-	4A/CA	7B/F0 7B	84/na
39	Tab	0F/8F	0D/F0 0D	0D/na
40	Q	10/90	15/F0 15	15/na

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Make / Break Codes (Hex)					
Pos	Legend	Mode 1	Mode 2	Mode 3			
41	W	11/91	1D/F0 1D	1D/F0 1D			
42	Е	12/92	24/F0 24	24/F0 24			
43	R	13/93	2D/F0 2D	2D/F0 2D			
44	T	14/94	2C/F0 2C	2C/F0 2C			
45	Υ	15/95	35/F0 35	35/F0 35			
46	U	16/96	3C/F0 3C	3C/F0 3C			
47		17/97	43/F0 43	43/F0 43			
48	0	18/98	44/F0 44	44/F0 44			
49	P	19/99	4D/F0 4D	4D/F0 4D			
50	ſ	1A/9A	54/F0 54	54/F0 54			
51	1	1B/9B	5B/F0 5B	5B/F0 5B			
52	Delete	E0 53/E0 D3	E0 71/E0 F0 71	64/F0 64			
		E0 AA E0 53/E0 D3 E0 2A [4]	E0 F0 12 E0 71/E0 F0 71 E0 12 [5]				
		E0 2A E0 53/E0 D3 E0 AA [6]	E0 12 E0 71/E0 F0 71 E0 F0 12 [6]				
53	End	E0 4F/E0 CF	E0 69/E0 F0 69	65/F0 65			
		E0 AA E0 4F/E0 CF E0 2A [4]	E0 F0 12 E0 69/E0 F0 69 E0 12 [5]				
		E0 2A E0 4F/E0 CF E0 AA [6]	E0 12 E0 69/E0 F0 69 E0 F0 12 [6]				
54	Page Down	E0 51/E0 D1	E0 7A/E0 F0 7A	6D/F0 6D			
٠.	. ago 20	E0 AA E0 51/E0 D1 E0 2A [4]	E0 F0 12 E0 7A/E0 F0 7A E0 12 [5]	027. 0 02			
		E0 @a E0 51/E0 D1 E0 AA [6]	E0 12 E0 7A/E0 F0 7A E0 F0 12 [6]				
55	7	47/C7 [6]	6C/F0 6C [6]	6C/na [6]			
56	8	48/C8 [6]	75/F0 75 [6]	75/na [6]			
57	9	49/C9 [6]	7D/F0 7D [6]	7D/na [6]			
58	+	4E/CE [6]	79/F0 79 [6]	7C/F0 7C			
59	Caps Lock	3A/BA	58/F0 58	14/F0 14			
60	A	1E/9E	1C/F0 1C	1C/F0 1C			
61	S	1F/9F	1B/F0 1B	1B/F0 1B			
62	D	20/A0	23/F0 23	23/F0 23			
63	F	21/A1	2B/F0 2B	2B/F0 2B			
64	G	22/A2	34/F0 34	34/F0 34			
65	Н	23/A3	33/F0 33	33/F0 33			
66	J	24/A4	3B/F0 3B	3B/F0 3B			
67	K	25/A5	42/F0 42	42/F0 42			
68	L	26/A6	4B/F0 4B	4B/F0 4B			
69	•	27/A7	4C/F0 4C	4C/F0 4C			
70		28/A8	52/F0 52	52/F0 52			
71	Enter	1C/9C	5A/F0 5A	5A/F0 5A			
72	4	4B/CB [6]	6B/F0 6B [6]	6B/na [6]			
73	5	4C/CC [6]	73/F0 73 [6]	73/na [6]			
74	6	4D/CD [6]	74/F0 74 [6]	74/na [6]			
75	Shift (left)	2A/AA	12/F0 12	12/F0 12			
76	Z	2C/AC	1A/F0 1A	1A/F0 1A			
77	Χ	2D/AD	22/F0 22	22/F0 22			
78	С	2E/AE	21/F0 21	21/F0 21			
79	V	2F/AF	2A/F0 2A	2A/F0 2A			
80	В	30/B0	32/F0 32	32/F0 32			

Continued

([x] Notes listed at end of table.)

Table C-2. Keyboard Scan Codes (Continued)

Key		Make / Break Codes (Hex)					
Pos.	Legend	Mode 1	Mode 2	Mode 3			
81	N	31/B1	31/F0 31	31/F0 31			
82	М	32/B2	3A/F0 3A	3A/F0 3A			
83	,	33/B3	41/F0 41	41/F0 41			
84		34/B4	49/F0 49	49/F0 49			
85	/	35/B5	4A/F0 4A	4A/F0 4A			
86	Shift (right)	36/B6	59/F0 59	59/F0 59			
87	A	E0 48/E0 C8	E0 75/E0 F0 75	63/F0 63			
		E0 AA E0 48/E0 C8 E0 2A [4]	E0 F0 12 E0 75/E0 F0 75 E0 12 [5]				
		E0 2A E0 48/E0 C8 E0 AA [6]	E0 12 E0 75/E0 F0 75 E0 F0 12 [6]				
88	1	4F/CF [6]	69/F0 69 [6]	69/na [6]			
89	2	50/D0 [6]	72/F0 72 [6]	72/na [6]			
90	3	51/D1 [6]	7A/F0 7A [6]	7A/na [6]			
91	Enter	E0 1C/E0 9C	E0 5A/F0 E0 5A	79/F0 79[6]			
92	Ctrl (left)	1D/9D	14/F0 14	11/F0 11			
93	Alt (left)	38/B8	11/F0 11	19/F0 19			
94	(Space)	39/B9	29/F0 29	29/F0 29			
95	Alt (right)	E0 38/E0 B8	E0 11/F0 E0 11	39/na			
96	Ctrl (right)	E0 1D/E0 9D	E0 14/F0 E0 14	58/na			
97	+	E0 4B/E0 CB	E0 6B/Eo F0 6B	61/F0 61			
		E0 AA E0 4B/E0 CB E0 2A [4]	E0 F0 12 E0 6B/E0 F0 6B E0 12[5]				
		E0 2A E0 4B/E0 CB E0 AA [6]	E0 12 E0 6B/E0 F0 6B E0 F0 12[6]				
98	+	E0 50/E0 D0	E0 72/E0 F0 72	60/F0 60			
		E0 AA E0 50/E0 D0 E0 2A [4]	E0 F0 12 E0 72/E0 F0 72 E0 12[5]				
		E0 2A E0 50/E0 D0 E0 AA [6]	E0 12 E0 72/E0 F0 72 E0 F0 12[6]				
99	→	E0 4D/E0 CD	E0 74/E0 F0 74	6A/F0 6A			
		E0 AA E0 4D/E0 CD E0 2A [4]	E0 F0 12 E0 74/E0 F0 74 E0 12[5]				
		E0 2A E0 4D/E0 CD E0 AA [6]	E0 12 E0 74/E0 F0 74 E0 F0 12[6]				
100	0	52/D2 [6]	70/F0 70 [6]	70/na [6]			
101		53/D3 [6]	71/F0 71 [6]	71/na [6]			
102	na	7E/FE	6D/F0 6D	7B/F0 7B			
103	na	2B/AB	5D/F0 5D	53/F0 53			
104	na	36/D6	61/F0 61	13/F0 13			
110	(Win95) [7]	E0 5B/E0 DB	E0 1F/E0 F0 1F	8B/F0 8B			
	, , , , , , ,	E0 AA E0 5B/E0 DB E0 2A [4]	E0 F0 12 E0 1F/E0 F0 1F E0 12 [5]				
		E0 2A E0 5B/E0 DB E0 AA [6]	E0 12 E0 1F/E0 F0 1F E0 F0 12 [6]				
111	(Win95) [7]	E0 5C/E0 DC	E0 2F/E0 F0 27	8C/F0 8C			
	·	E0 AA E0 5C/E0 DC E0 2A [4]	E0 F0 12 E0 27/E0 F0 27 E0 12 [5]				
		E0 2A E0 5C/E0 DC E0 AA [6]	E0 12 E0 27/E0 F0 27 E0 F0 12 [6]				
112	(Win Apps)	E0 5D/E0 DD	E0 2F/E0 F0 2F	8D/F0 8D			
	[7]	E0 AA E0 5D/E0 DD E0 2A [4]	E0 F0 12 E0 2F/E0 F0 2F E0 12 [5]				
		E0 2A E0 5D E0 DD E0 AA [6]	E0 12 E0 2F/E0 F0 2F E0 F0 12 [6				

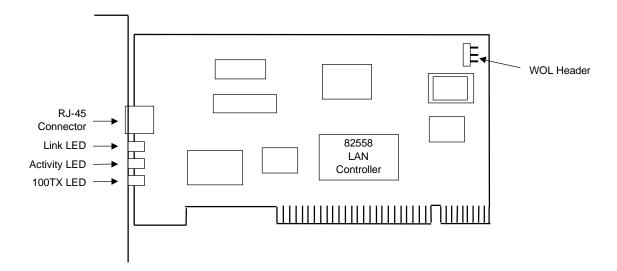
NOTES:

All codes assume Shift, Ctrl, and Alt keys inactive unless otherwise noted.

NA = Not applicable

- [1] Shift (left) key active.
- [2] Ctrl key active.
- [3] Alt key active.
- [4] Left Shift key active. For active right Shift key, substitute AA/2A make/break codes for B6/36 codes.
- [5] Left Shift key active. For active right Shift key, substitute F0 12/12 make/break codes for F0 59/59 codes.
- [6] Num Lock key active.
- [7] Windows keyboards only

Appendix D COMPAQ 10/100 TX PCI INTEL WOL UTP CONTROLLER CARD


D.1 INTRODUCTION

This appendix describes the Compaq 10/100 TX PCI Intel WOL UTP Controller card (# 323550-001). Key features of this card include:

- Intel 82558 Fast LAN controller with 32-bit architecture and 3-KB TX/RX buffers.
- ◆ Dual-mode support with auto-switching between 10BASE-T and 100BASE-TX PHY.
- Power down and Wake up support in both APM and ACPI environments (PME- and WOL).
- ♦ LED indicators for link, activity, and speed status.
- ♦ LanDesk Service Agent (LSA) ver 2.0 boot code contained in on-board flash memory.

The card installs into a PCI slot and provides Wake-On-LAN (WOL) support. This appendix covers the following subjects:

Functional description (D.2) page D-2
 Configuration/control (D.3) page D-5
 RJ-45 connector (D.4) page D-5
 Specifications (D.5) page D-5

Figure D–1. Compaq 10/100 TX WOL Controller Card Layout (PCA# 323550-001)

D.2 FUNCTIONAL DESCRIPTION

The Compaq 10/100 TX PCI Intel WOL UTP Controller card contains the 82558 controller (with ROMs and support logic), three LED status indicators, a WOL header connector, a RJ-45 network connector, and power switching logic (Figure D-2).

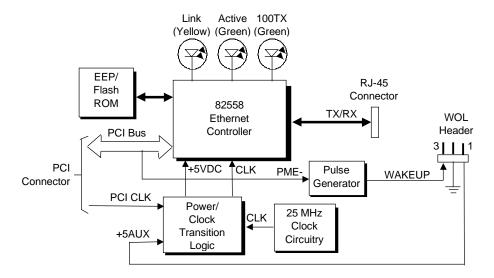


Figure D–2. Compaq 10/100 TX PCI Intel WOL UTP Controller Card Block Diagram

D.2.1 STATUS INDICATORS

The LEDs provide the following indications:

Link LED (yellow) – Indicates reception of link pulses in 10 MB/s mode, scrambler lock in 100 MB/s mode.

Activity LED (green) – Indicates network activity.

100 TX LED (green) – Indicates connection with 100 MB/s network.

D.2.2 CARD POWER AND CLOCK

The controller card includes on-board power logic that receives +5 VDC power from the PCI connector or the WOL header. The PCI CLK signal provides the clock source for the controller when the system is up and active. When the system is off or in Standby the on-board clock generator provides the clock signal.

NOTE: Lack of a WOL header connection with the main system will result in the controller board not receiving power at any time. Therefore the WOL header cable should **always** be installed **even if Wake-On-LAN functionality is not required**.

D.2.3 82558 CONTROLLER

The Intel 82558 Fast Ethernet LAN controller provides most of the functionality of the card (Figure D-3). The 82558 provides the following features:

- ♦ Dual-mode support with auto-switching between 10BASE-T to 100BASE-TX PHY.
- Digitally controlled adaptive equalization of transmission
- Optimized PCI bandwidth with enhanced support of PCI commands.
- ♦ ACPI support of power-down and wake-up states.
- ♦ Wake On LAN (WOL) support.
- ♦ LANDesk Service Agent (LSA) support.

Figure D-3 shows the internal architecture of the 82558 Ethernet controller.

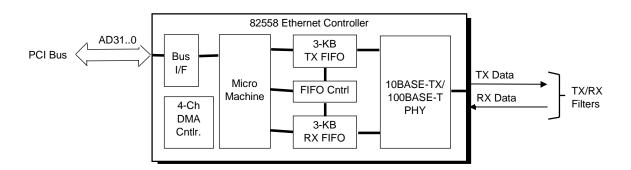


Figure D–3. 82558 Controller Internal Architecture

The 82558 controller features auto-negotiation of both speed and direction (half/full duplex). The 82558 provides high-level command support for minimum Host CPU intervention and uses 3-KB FIFOs for both transmit and receive buffers.

D.2.4 POWER MANAGEMENT SUPPORT

The controller card provides system wake up using network events and supports both APM and ACPI power management environments.

NOTE: The APM and ACPI environments use different methods to implement the Wake-On-LAN function. The cable connection between the controller card's WOL header and the system's WOL header should be complete to insure that the wake up feature will occur for both the APM and ACPI environments.

D.2.4.1 APM Environment

The Advanced Power Management (APM) functionality of system wake up is implemented through the system's APM-compliant BIOS and the controller card's Magic Packet-compliant hardware. This environment bypasses operating system (OS) intervention allowing a plugged in unit to be turned on remotely over the network (i.e., "remote wake up"). In APM mode the controller, powered by the +5AUX voltage through the WOL header, will respond upon receiving a Magic Packet, which is a packet where the node's address is repeated 16 times. Upon Magic packet detection, the controller card asserts the WAKEUP signal (for about 50 milliseconds) that is routed through the WOL header and cable to the system board where power control logic turns on the system and intitiates the boot sequence. After the boot sequence the BIOS clears the PME-signal (from which WAKEUP is derived) so that subsequent wakeup events will be detected.

D.2.4.2 ACPI Environment

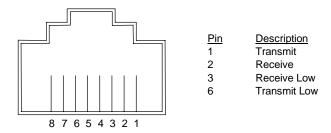
The Advanced Configuration and Power Interface (ACPI) functionality of system wake up is implemented through an ACPI-compliant OS such as Windows NT 5.0 and hardware that is compliant to the PCI power management specification. The following wakeup events may be individually enabled/disabled through the supplied software driver:

♦ Magic Packet – Packet with node address repeated 16 times in data portion

NOTE: The following functions are supported in NDIS5 drivers but implemented through remote management software applications (such as LanDesk).

- ♦ Individual address match Packet with matching user-defined byte mask
- ♦ Multicast address match Packet with matching user-defined sample frame
- ♦ ARP (address resolution protocol) packet
- ♦ Flexible packet filtering Packets that match defined CRC signature

When an enabled event is received the controller card asserts the PME- signal that is used by the system board to initiate its wakeup sequence. Note that the WAKEUP signal is also asserted but not required in the ACPI environment.


D.3 CONFIGURATION/CONTROL

The 82558 controller is a PCI device and configured though PCI configuration space registers using PCI protocol described in chapter 4.

Vender ID Bovice ID 8086h 1229h

Control is through I/O registers mapped in the 300h-30Fh range.

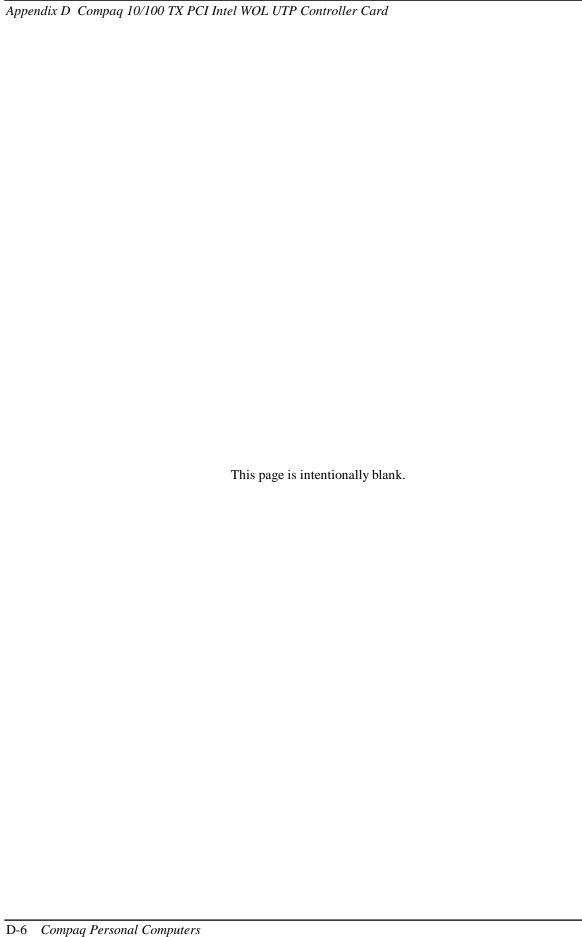

D.4 RJ-45 CONNECTOR

Figure D–4. Ethernet TPE Connector (RJ-45, viewed from card edge)

D.5 SPECIFICATIONS

Table D-1. Operating Specifications				
Parameter				
Modes Supported Half or full duplex for 10BASE-T, 100BASE-TX				
Power Management Support	APM, ACPI, PCI Power Management Spec.			
Power Consumption (nominal):				
Standby	2.41 watts			
Full On 2.61 watts				

Appendix E WIDE ULTRA SCSI HOST ADAPTER

E.1 INTRODUCTION

The Adaptec AHA-2940UW SCSI Host Adapter (Compaq p/n 334136-001) is a PCI peripheral that provides high performance interfacing with compatible SCSI peripherals, specifically hard drives. The card installs in a PCI slot and supports full bus mastering capability.

NOTE: This appendix describes the Wide Ultra SCSI Adapter in general. For detailed information on the Ultra SCSI Adapter card refer to Adaptec, Inc documentation.

This appendix covers the following subjects:

♦	Functional description (E.2)	page E-2
•	SCSI adapter programming (E.3)	page E-3
•	Specifications (E.4)	page E-3
•	User guidelines (E.5)	page E-4
•	SCSI connectors (E.6)	page E-5

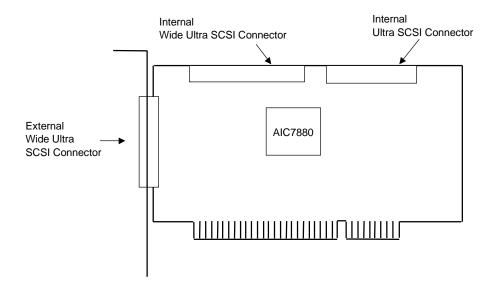


Figure E-1. Wide Ultra SCSI Host Adapter Card Layout

E.2 FUNCTIONAL DESCRIPTION

A block diagram of the Wide Ultra SCSI Card is shown in Figure E-2. The card's architecture is based on the AIC-7880 SCSI controller. The AIC-7880 controller includes an on-board SCSI sequencer that can process SCSI commands without intervention from the host microprocessor. The sequencer uses micro-code that is downloaded from the host during initialization. Single-ended SCSI drivers are built into the controller and a 256-byte FIFO in the data path allowing up to 15-byte synchronous offsets. An LED is provided to indicate SCSI bus activity.

The AIC provides a memory interface that is used by the Serial EEPROM and the BIOS ROM. The serial EEPROM stores non-volatile configuration data and the BIOS ROM (which is a flash ROM) contains additional configuration data and SCSI functions. The programmable array logic (PAL) controls the Serial EEPROM-to-AIC7880 interface.

SCSI operations include the processing of 32-byte SCSI command blocks (SCBs). The AIC-7880 can execute up to 254 SCBs by swapping the blocks in and out of 8-KB of system memory as there is no on-board memory. The SCBs can be handled on the byte level or as an entire block.

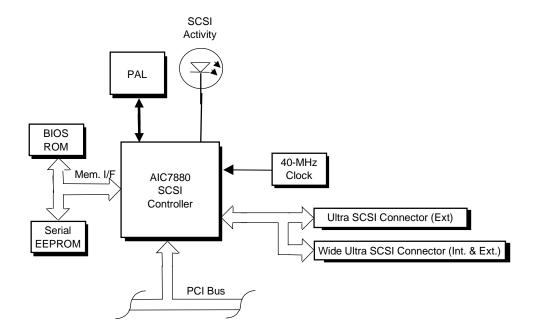


Figure E-2. Adaptec AHA-2940U Ultra SCSI Adapter Card Block Diagram

E.3 SCSI ADAPTER PROGRAMMING

E.3.1 SCSI ADAPTER CONFIGURATION

The Adaptec AHA-2940U SCSI Adapter Card is a PCI device and configured using PCI protocol and PCI Configuration Space registers (PCI addresses 00h-FFh) as discussed in Chapter 4. Configuration is accomplished by BIOS during POST and re-configurable with software.

E.3.2 SCSI ADAPTER CONTROL

Control of the SCSI host adapter is affected through I/O mapped registers mapped as listed in Table E-1.

Table E-1.
Ultra SCSI Host Adapter Card
Control Register Mapping

I/O Addr.	Function
n00h-n1Fh	SCSI Register Array
n20h-n5Fh	Scratch RAM
n60h-n7Fh	Phase Engine (Sequencer)
n80h-n9Fh	Host Registers
n00h-nFFh	SCB Array

n = prefix address supplied by the BASEADR0 PCI Config. Reg.

E.4 SPECIFCATIONS

The operating specifications are listed in Table E-2.

Table E-2.				
Ultra SCSI Host Adapter Card Specifications				
Operating Voltage	+5 VDC			
Maximum Current Draw	2 A			
Operating Temperature	32°F (0°C) to 131°F (55°C)			

E.5 USER GUIDELINES

The adapter card follows standard SCSI guidelines in supporting up to SCSI devices using SCSI identification numbers 0-6 (ID #7 is reserved for the adapter card). Each SCSI device chain must be terminated at both ends.

NOTE: The adapter card includes an external connector and two internal connectors. All connectors may be in use at the same time. However, if two or more SCSI hard drives are connected, they must all be either internal **or** external. Other SCSI peripherals (tape/CD-ROM drives can be mixed (internal and external). The device using the external connector must be terminated.

Table E-3 lists the typical parameter configuration for the SCSI adapter card installed in a system

Table E-3.				
Wide Ultra SCSI Adapter Card				
Typical Configuration				

Paramemter	Setting
SCSI Identification Numbers	
0	Hard Drive
1-4	available
5	CD-ROM (if installed)
6	available
7	Adapter Card
Parity checking	Enabled
Adapter SCSI Termination	Automatic
Boot Device Options	
Boot Target ID	0
Boot LUN Number	0
SCSI Configuration Boot Device Options:	
Initiate Sync Negotiation	Yes
Maximum Sync Transfer Rate	40.0 MB/s
Enable Disconnection	Yes
Initiate Wide Negotiation	Yes
Send Start Unit	Yes
Include BIOS Scan	Yes
Advanced Configuration Options:	
PnP SCAM Support	Disabled
Reset SCSI BIOS at IC Initialization	Enabled
Host Adapter BIOS (Config. Utility Reserves)	Enabled
Support Removable Fixed Disks Under BIOS	Disabled
Extended BIOS Translation for >1GB Drives	Enabled
Display <ctlr a=""> Message During BIOS Init.</ctlr>	Enabled
Multiple LUN Support	Disabled
BIOS Support for Bootable CD-ROM	Disabled
BIOS Support for INT 13 Extensions	Enabled
Support for Ultra SCSI Speed	Enabled
Silent/Verbose Mode Setting	Silent
POST Speedup Feature	Enabled
Write Cache	Enabled

E.6 SCSI CONNECTORS

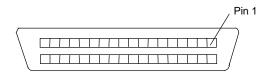


Figure E–3. Ultra SCSI Connector (50-pin, as seen from rear of card)

Table E-3.							
SCSI Connector Pinout							
Pin	Signal	Function	Pin	Signal	Function		
1	GND	Ground	26	DB0-	Data Bit 0		
2	GND	Ground	27	DB1-	Data Bit 1		
3	GND	Ground	28	DB2-	Data Bit 2		
4	GND	Ground	29	DB3-	Data Bit 3		
5	GND	Ground	30	DB4-	Data Bit 4		
6	GND	Ground	31	DB5-	Data Bit 5		
7	GND	Ground	32	DB6-	Data Bit 6		
8	GND	Ground	33	DB7-	Data Bit 7		
9	GND	Ground	34	DBP	Data Bus Pulse		
10	GND	Ground	35	GND	Ground		
11	GND	Ground	36	GND	Ground		
12	GND	Ground	37	GND	Ground		
13	RSVD	Reserved	38	TERMPWR	Termination Power		
14	GND	Ground	39	GND	Ground		
15	GND	Ground	40	GND	Ground		
16	GND	Ground	41	ATN-	Attention		
17	GND	Ground	42	GND	Ground		
18	GND	Ground	43	BSY-	Busy		
19	GND	Ground	44	ACK-	Acknowledge		
20	GND	Ground	45	SBRST-	Burst		
21	GND	Ground	46	MSG-	Message Activity		
22	GND	Ground	47	SEL-	Select		
23	GND	Ground	48	C-/D	Control/Data Transfer Indicator		
24	GND	Ground	49	REQ-	Request		
25	GND	Ground	50	I-/O	Input/Output Indicator		

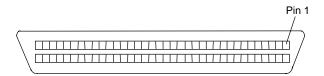
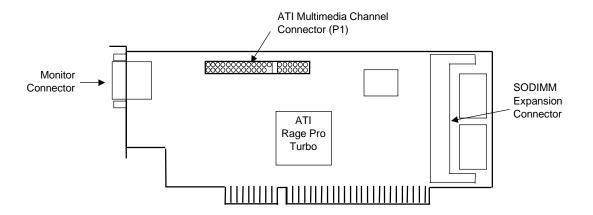


Figure E-4. Wide Ultra SCSI Connector (68-pin, as seen from top of card)

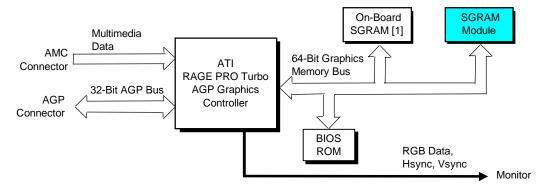

Table E-4. Wide-Ultra SCSI Connector Pinout						
Pin	Signal	Function	Pin	Signal	Function	
1	GND	Ground	35	DB12	Data Bit 12	
2	GND	Ground	36	DB13	Data Bit 13	
3	GND	Ground	37	DB14	Data Bit 14	
4	GND	Ground	38	DB15	Data Bit 15	
5	GND	Ground	39	DBP-	Data Bus Parity	
6	GND	Ground	40	DB0-	Data Bit 0	
7	GND	Ground	41	DB1-	Data Bit 1	
8	GND	Ground	42	DB2-	Data Bit 2	
9	GND	Ground	43	DB3-	Data Bit 3	
10	GND	Ground	44	DB4-	Data Bit 4	
11	GND	Ground	45	DB5-	Data Bit 5	
12	GND	Ground	46	DB6-	Data Bit 6	
13	GND	Ground	47	DB7-	Data Bit 7	
14	GND	Ground	48	DBP-	Data Bus Parity	
15	GND	Ground	49	GND	Ground	
16	GND	Ground	50	GND	Ground	
17	TERMPWR	Termination Power	51	TERMPWR	Termination Power	
18	TERMPWR	Termination Power	52	TERMPWR	Termination Power	
19	GND	Ground	53	Int_Out-	Interrupt Out	
_20	GND	Ground	54	SBRST-	Burst	
_21	GND	Ground	55	ATN-	Attention	
22	GND	Ground	56	GND	Ground	
23	GND	Ground	57	BSY-	Busy	
24	GND	Ground	58	ACK-	Acknowledge	
25	GND	Ground	59	RESET-	Reset	
_26	GND	Ground	60	MSG-	Message Activity	
27	GND	Ground	61	SEL-	Select	
_28	GND	Ground	62	C-/D	Control/Data Transfer Indicator	
_29	GND	Ground	63	REQ-	Request	
_30	GND	Ground	64	I-/O	Input/Output Indicator	
31	GND	Ground	65	DB8-	Data Bit 8	
32	GND	Ground	66	DB9-	Data Bit 9	
33	GND	Ground	67	DB10-	Data Bit 10	
34	GND	Ground	68	DB11-	Data Bit 11	

Appendix F ATI RAGE PRO AGP GRAPHICS CARDS

F.1 INTRODUCTION

This appendix describes ATI RAGE PRO AGP Graphics Cards used in some models. These graphics cards are based on the ATI RAGE PRO graphics controller. This appendix covers the following subjects:

♦	Functional description (F.2)	page F-2
•	Display modes (F.3)	page F-4
•	Programming (F.4)	page F-5
•	Monitor power management (F.5)	page F-6
•	Connectors (F.6)	page F-6


NOTES:

ATI RAGE PRO AGP Card PCA# 008061-001 (ATX) & -002 (NLX) ATI RAGE PRO AGP 2X Card P/N 334134-001 (ATX) & -002 (NLX)

Figure F-1. ATI RAGE PRO AGP Graphics Card Layout (NLX version shown)

F.2 FUNCTIONAL DESCRIPTION

The ATI RAGE PRO AGP Graphics Cards are based on the ATI RAGE PRO controller. The AGP design provides an economical approach to 3D processing by off-loading 3D effects such as texturing, z-buffering and alpha blending to the system memory while the on-board SGRAM stores the main display image. Both cards implement side band addressing for high 3D performance. The AGP 1X card, providing a peak bandwidth of 133 MB/s, comes standard with four megabytes of 100-MHz SGRAM installed. The AGP 2X card, providing a peak bandwidth of 500 MB/s, includes four megabytes of 100-MHz SGRAM on the board and an optional 4-MB SGRAM module may be added to expand the frame buffer memory to eight megabytes.

NOTES:

[1] 2 megabytes on AGP 1X card, 4 megabytes on AGP 2x card.

2-MB module installed as standard on AGP 1X card. 4-MB module optional on AGP 2X card.

Figure F-2. ATI RAGE PRO AGP Graphics Card Block diagram

The ATI RAGE PRO AGP Graphics Card includes the following software support:

- ♦ Accelerated drive support for Windows 3.x, Win95, and WinNT
- ♦ MS DirectDraw support for Win95
- ♦ MS ActiveMovie support for Win95
- ♦ MPEG-1 software playback for DOS, Windows 3.x, and Win95
- MPEG-2 software playback Win95
- ♦ MS Direct3D support for Win95
- QuickDraw 3D RAVE support for Win95 and WinNT
- ♦ OpenGL support for Win95 and WinNT
- Heidi support for WinNT
- ♦ ATI 3D CIF support for Win95

F.2.1 ATI RAGE PRO TURBO AGP GRAPHICS CONTROLLER

The ATI RAGE PRO Turbo AGP graphics controller provides most of the functionality of the integrated graphics subsystem and contains the features listed below:

- ♦ 230-MHz DAC
- ♦ 2D accelerator with:
 - Hardware BitBLT, line draw, polygon fill, h/w cursor
 - MS DirectDraw support (double buffering, virtual sprites, transparent BitBLT
 - 8-/16-/24-/32-bpp acceleration
 - 24-bpp true color w/1 MB memory
- ♦ 3D accelerator with:
 - Integrated 4-KB texture cache for improved large triangle performance
 - 3D primitive support for points, lines, triangle, lists, strips, and quadrilaterals
 - Full screen/window double buffering
 - Hidden surface removal with 16-bit Z-buffering
 - Single pass bi- and tri-linear filtering support
 - Full Direct3D texture lighting support
 - Dithering support in 16-bpp for near-24-bpp quality in less memory
- ♦ VESA DDC1 and DDC2B support
- Video processor/accelerator supporting the following formats:
 - YCrCb 4:2:2
 - RGB 5-5-5
 - RGB 5-6-5
 - Cirrus AcciPak 91m)
- ♦ Power management for full VESA DPMS and EPA Energy Star compliance
- ♦ Supports DDC2B+ PnP monitors

Figure F-3 shows the basic architecture of the ATI 3D RAGE PRO controller. Both the AGP and AGP 2X cards feature the RAGE PRO Turbo controller, with the AGP 2X card using an enhanced version of the controller that supports AGP 2X operation. The VGA core of the controller is compatible with VGA, EGA, and CGA software. Extended graphics modes are supported through video BIOS in flash ROM, which can be easily updated if necessary.

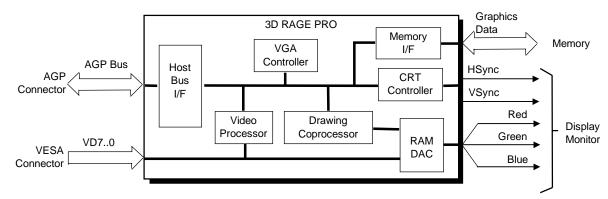


Figure F-3. ATI 3DRage Pro Graphics Controller Internal Architecture

F.3 DISPLAY MODES

The graphics modes supported by the ATI RAGE PRO AGP1X/2X card with the standard four megabytes are listed in Tables F-1 and F-2. To expand display mode support will require memory expansion and may also require a video BIOS upgrade.

Table F-1.						
2D Graphics Display Modes (w/SGRAM)						
Horizontal						
Resolution	Color Depth	Refresh Freq.	SGRAM Used			
640 x 480	256	200 Hz	512 KB			
640 x 480	65K	200 Hz	1 MB			
640 x 480	16.7M	200 Hz	1 MB			
800 x 600	256	200 Hz	512 KB			
800 x 600	65K	200 Hz	1 MB			
800 x 600	16.7M	160 Hz	1.5 MB			
1024 x 768	256	150 Hz	1 MB			
1024 x 768	65K	150 Hz	1.5 MB			
1024 x 768	16.7M	120 Hz	2.5 MB			
1152 x 864	256	120 Hz	3 MB			
1152 x 864	65K	120 Hz	3.5 MB			
1152 x 864	16.7M	85 Hz	4 MB			
1280 x 1024	256	100 Hz	1.5 MB			
1280 x 1024	65K	100 Hz	2.5 MB			
1280 x 1024	16.7M	85 Hz	4 MB			
1600 x 1200	256	85 Hz	2 MB			
1600 x 1200	65K	85 Hz	4 MB			
1920 x 1080	256	75 Hz	2 MB			
1920 x 1080	65K	75 Hz	4 MB			
1920 x 1200	256	75 Hz	4 MB			
		· ·				

NOTE:

Modes not supported with supplied driver.

Table F-2 lists the 3D graphics display modes and how the frame buffer is used.

Table F-2.								
3D Graphics Display Modes								
	Frame Front Back Z Texture Memory							
Resolution	Color Depth	Buffer	Buffer	Buffer	Buffer	w/Z	w/o Z	
512 x 384	65K	2 MB	0.38 MB	0.38 MB	0.38 MB	0.88 MB	1.25 MB	
640 x 480	65K	2 MB	0.59 MB	0.59 MB	0.59 MB	0.24 MB	0.83 MB	
640 x 480	65K	4 MB	0.59 MB	0.59 MB	0.59 MB	2.24 MB	2.83 MB	
640 x 480	16.7M	4 MB	1.17 MB	1.17 MB	0.59 MB	1.07 MB	1.66 MB	
800 x 600	65K	4 MB	0.92 MB	0.92 MB	0.92 MB	1.25 MB	2.17 MB	

F.4 PROGRAMMING

F.4.1 CONFIGURATION

The graphics card works off the AGP bus and is configured through PCI configuration space registers using PCI protocol. These registers (Table F-3) are configured by BIOS during POST

Table F-3. ATI RAGE PRO PCI Configuration Space Registers			
PCI Config.		PCI Config.	
Address	Function	Address	Function
00h	Vender ID (1002h)/Device ID (4744h)	14h	Relocateable I/O Base Address
04h	PCI Command	30h	Expansion ROM Base Address
08h	Status	3Ch	Interrupt Line / Interrupt Pin
10h	Display Memory Base Address		

For a discussion of accessing PCI configuration space registers refer to chapter 4. For a detailed description of registers refer to applicable ATI Technologies, Inc. documentation.

F.4.2 CONTROL

F.4.2.1 Standard VGA Modes

Table F-4 list the control registers used for operating in standard VGA mode. No special drivers are required for VGA, EGA, and CGA modes. For a detailed description of the registers refer to applicable ATI Technologies, Inc. documentation.

Table F-4. Standard VGA Mode I/O Mapping			
I/O Address	Function	I/O Address	Function
3B5.0026h*	CRT Controller (mono)	3C6h3C9h	RAMDAC
3BAh	VSYNC Control, Display Status	3CAh	Read VSYNC Status
3C1.0014h*	Attribute Controller	3CCh	Misc. Control, Read
3C2h	Misc. Control / Status	3CF.0008h	Graphics Controller
3C5h.0004h*	Sequencer	3D5.0026h*	CRT Controller (color)
		3DAh	VSYNC Control, Display Status (color)

^{*} Index at base minus 1 (i.e., if base is 3B5h, index is at 3B4h.

F.4.2.2 Extended VGA Modes

Extended modes use the on-board video BIOS (contained in a flash ROM) and the supplied driver (which is the same for both cards).

F.5 MONITOR POWER MANAGEMENT CONTROL

This controller provides monitor power control for monitors that conform to the VESA display power management signaling (DPMS) protocol. This protocol defines different power consumption conditions and uses the HSYNC and VSYNC signals to select a monitor's power condition. Table F-5 lists the monitor power conditions.

Table F-5.			
Monitor Power Management Conditions			
HSYNC	VSYNC	Power Mode	Description
Active	Active	On	Monitor is completely powered up. If activated, the inactivity counter counts down during system inactivity and if allowed to tiemout, generates an SMI to initiate the Suspend mode.
Active	Inactive	Suspend	Monitor's high voltage section is turned off and CRT heater (filament) voltage is reduced from 6.6 to 4.4 VDC. The Off mode inactivity timer counts down from the preset value and if allowed to timeout, another SMI is generated and serviced, resulting in the monitor being placed into the Off mode. Wake up from Suspend mode is typically a few seconds.
Inactive	Inactive	Off	Monitor's high voltage section and heater circuitry is turned off. Wake up from Off mode is a little longer than from Suspend.

F.6 CONNECTORS

There are three connectors associated with the graphics subsystem; the display/monitor connector, the ATI Multimedia Channel (AMC) connector (which includes the VESA Standard Feature Connector (VSFC)), and a SODIMM connector for frame buffer memory expansion.

NOTE: The graphic card's edge connector mates with the AGP connector on the system board. This interface is described in chapter 4.

F.6.1 MEMORY EXPANSION CONNECTOR

A memory expansion connector is included allowing the expansion of frame buffer memory. This connector accepts an industry-standard 144-pin SODIMM. The SODIMM socket on the AGP 1X card has a 2-MB SGRAM module installed as standard. The SODIMM socket on the AGP 2X card is not populated and can accept a 4-MB SGRAM module for expansion to eight megabytes.

F.6.2 MONITOR CONNECTOR

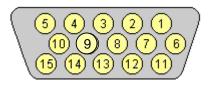


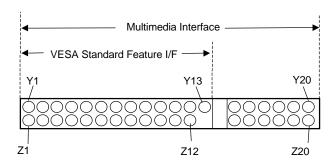
Figure F-4. VGA Monitor Connector, (Female DB-15, as viewed from rear).

Table F-6.
DB-15 Monitor Connector Pinout

Pin	Signal	Description	Pin	Signal	Description
1	R	Red Analog	9	PWR	+5 VDC (fused) [1]
2	G	Blue Analog	10	GND	Ground
3	В	Green Analog	11	NC	Not Connected
4	NC	Not Connected	12	SDA	DDC2-B Data
5	GND	Ground	13	HSync	Horizontal Sync
6	R GND	Red Analog Ground	14	VSync	Vertical Sync
7	G GND	Blue Analog Ground	15	SCL	DDC2-B Clock
8	B GND	Green Analog Ground			

NOTES:

[1] Fuse automatically resets when excessive load is removed.


F.6.3 ATI MULTIMEDIA CHANNEL CONNECTOR

The ATI Multimedia Channel (AMC) is provided through a 40-pin header (Figure F-5) that includes the VESA standard feature (VSFC) connector (also known as the VGA pass-through connector) and additional signal interface. The AMC interface can operate in one of the following three modes:

VSFC Mode – The VESA Standard Feature Connector (VFSC) mode supports an overlay peripheral such as an MPEG or TV card. This mode, available in all VGA modes and accelerated modes, receives video data through the VSFC I/F and overlays the data onto the graphics display (display clock < 80 Hz).

DVS Mode – The Digital Video Stream (DVS) mode supports connection to a video decoder.

MPP Mode – The Multimedia Peripheral Port (MPP) mode supports data streaming from Host memory out of the multimedia interface.

Figure F–5. AMC Connector (40-Pin Header P1)

Table F-7.					
Multimedia Interface Connector Pinout					
Pin	Signal	Description	Pin	Signal	Description
Z1	GND	Ground	Y1	P0	Pixel Data 0
Z2	GND	Ground	Y2	P1	Pixel Data 1
Z3	GND	Ground	Y3	P2	Pixel Data 2
Z4	EVIDEO-	Overlay Enable	Y4	P3	Pixel Data 3
Z5	ESYNC-	External Sync Enable	Y5	P4	Pixel Data 4
Z6	EDCLK	External Clock Enable	Y6	P5	Pixel Data 5
Z7	SDA	Serial Data	Y7	P6	Pixel Data 6
Z8	GND	Ground	Y8	P7	Pixel Data 7
Z9	GND	Ground	Y9	DCLK	Pixel Data Clock
Z10	GND	Ground	Y10	BLANK	DAC Output Blanking
Z11	GND	Ground	Y11	HSYNC	Horizontal Sync
Z12	SCL	Serial Clock	Y12	VSYNC	Vertical Sync
Z13		KEY	Y13	GND	Ground
Z14		KEY	Y14	AZY	
Z15	+ 5 VDC	+5 volts DC	Y15	SAD3	SA Data Bit 3
Z16	RESET-	Reset	Y16	SAD7	SA Data Bit 7
Z17	SAD6	SA Data Bit 6	Y17	SAD5	SA Data Bit 5
Z18	RESVD	Reserved	Y18	REV	
Z19	A. GND	Ground	Y19	+12 VDC	+12 volt DC
Z20	AUD R	Right Audio	Y20	AUD L	Left Audio
NOTE: VESA standard interface is unshaded.					

F-8 Compaq Personal Computers

INDEX

3D effects, F-2	IDE interface, 5-8
87307 I/O controller, 4-49	IDE/diskette drive power, 7-5
abbreviations, 1-3	ISA bus, 4-17
Accelerated Graphics Port (AGP), 4-11	keyboard/pointing device interface, 5-33
ACPI, D-4	parallel interface, 5-26
acronyms, 1-3	PCI bus, 4-3
administrator password, 4-52, 4-53	RJ-45, D-5
AGP, 4-11	serial interface (RS-232), 5-14
AGP bus, 2-10	Ultra SCSI (50-pin), E-5
analog-to-digital converter (ADC), 6-4	Universal Serial Bus interface, 5-35
APM, D-4	VGA pass-through (feature), F-8
APM BIOS functions, 8-23	Wide Ultra SCSI (68-pin), E-6
APM BIOS support, 8-22	cover lock, 4-55
* *	
architecture, system, 2-10	Desktop management, 4-51
ASCII character set, B-1	Desktop Management, 8-4
AT attachment (ATA), 5-3	digital-to-analog converter (DAC), 6-5
audio subsystem, 2-14, 6-1	DIMM detection, 8-3
backplane, 2-6	DIMM support, 8-13
battery replacement, 4-29	DIP switch, D-4
BIOS ROM, 2-13	DIP switch, power-on password disable, 4-52, 4-
BIOS upgrading, 3-5, 8-24	53
BIOS, ROM, 8-1	disabling I/O, 4-53
Black Box logic, 4-52	diskette drive interface, 5-9
boot block ROM, 8-2	display modes, F-4
cache, L1, L2, 2-13	DMA, 4-20
cartridge, SEC, 2-12	DMI, 8-20
Celeron processor, 2-12, 3-4	drive fault prediction, 8-13, 8-14, 8-15, 8-16
chipsets, support, 2-13	effects, 3D, F-2
clock distribution, 4-28	EIDE interface, 5-1
CMOS, 4-29	Enhanced Parallel Port (EPP), 5-21
CMOS, clearing, 4-30	error codes, A-1
configuration (ISA), 4-27	error messages, A-1
Configuration Cycle, 4-6	Ethernet, D-1
configuration memory, 4-29	events, wake up, 7-4
Connector	expansion card cage, 2-6
AGP bus, 4-15	Extended Capabilities Port (ECP), 5-21
AMC (multimedia/VESA), F-8	fan control, 4-56
Audio, CD, 6-3	features, standard, 2-2
Audio, CD, 6-3 Audio, Headphone Out, 6-2	flash ROM, 4-52
Audio, Tieauphone Out, 0-2 Audio, Line In, 6-2	FM synthesis, 6-7
Audio, Line Out, 6-2	general purpose I/O, 4-47
Audio, Mic In, 6-2	GPIO, 3-5, 4-47
Audio, Speaker, 6-3	I/O controller, 4-50
diskette drive interface, 5-13	south bridge, 4-47
display (VGA monitor), F-7	graphics card, ATI RAGE PRO AGP, F-1

graphics subsystem 2.14	Dlug 'n Dlay DIOS function 9 10
graphics subsystem, 2-14	Plug 'n Play BIOS function, 8-19
graphics, 3D, F-2	power button, 4-56, 7-3
guidelines, SCSI user, E-4	power distribution, 7-5
hard drive spindown, 4-57	power management, 4-56
heat sink (processor), 2-12, 3-5	Power Management BIOS function, 8-21
Host bus, 2-10	power supply, 7-1
I/O controller (87307), 4-49	power-on password, 4-52, 4-53
I/O map, 4-46	processing speed, selecting, 3-5
IDE interface, 5-1	processor upgrading, 3-5
index addressing, 1-2	processor, Celeron, 2-12, 3-4
interrupts	processor, Pentium II, 2-12, 3-3
maskable (IRQn), 4-23	QuickBoot, 8-2
nonmaskable (NMI, SMI), 4-25	QuickLock/QuickBlank, 4-53
interrupts, PCI, 4-9	RAM, 2-13
interval timer, 4-27	reference sources, 1-1
ISA bus, 2-10	remote flashing, 8-2
ISA bus, overview, 4-16	remote wake up, D-4
key (keyboard) functions, C-6	reset, 8-2
keyboard, C-1	ROM BIOS, 8-1
•	RTC, 4-29
keyboard (micro)processor, C-2	
keyboard layouts, C-4	scan codes (keyboard), C-9
keyboard/pointing device interface, 5-27	SCSI adapter card, wide ultra, E-1
L2 (secondary) cache, 3-3	SCSI user guidelines, E-4
LAN, D-1	SEC cartridge, 2-12, 3-2
LED indicatons, power, 7-3	secondary (L2) cache, 3-3
low voltages, 7-6	security functions (BIOS), 8-18
Magic Packet, 7-4, D-4	security, I/O, 4-53
media write protect function (BIOS), 8-18	sensor, cover removal, 4-55
memory detection, 8-3	sensor, tempurature, 4-54
memory map, 3-8	serial interface, 5-14
memory, cache (SRAM), 2-13	sideband addressing, 4-12
memory, ROM (BIOS), 2-13	signal distribution, 7-7
memory, system, 3-6	SilentBoot, 8-2
memory, system (RAM), 2-13	single edge connector, 3-2
mixing, 6-2	Smart Cover Lock, 4-55
MMX technology, 3-3	Smart Cover removal sensor, 4-55
monitor power control, 4-57, F-6	SMBIOS, 8-20
mouse interface, 5-29	SMI, 4-26
NIC card, D-1	spatializer, 6-2
NLX card, F-1	speaker, 6-2
notational conventions, 1-2	special cycles (PCI), 4-8
	± • • • • • • • • • • • • • • • • • • •
options, 2-3	specifications
parallel interface, 5-20	electrical, 2-15
password, administrator, 4-52, 4-53	environmental, 2-15
password, clearing, 4-30	physical, 2-15
password, power-on, 4-52, 4-53	power supply, 7-7
PCI bus, 2-10, 2-13	Specifications
PCI bus, overview, 4-2	8x CD-ROM Drive, 2-16
PCI Configuration Space, 4-7	Audio subsystem, 6-11
PCI interrupts, 4-9	Diskette Drive, 2-16
PCM audio processing, 6-4	Hard Drive, 2-18
Pentium II, 2-13, 3-3	SCSI Host Adapter, E-3
Pentium II processor, 2-12, 3-3	specifications, system, 2-15
Plug 'n Play, 2-2, 2-3, 2-14, 8-19	system board, 2-9

system ID, 8-6 system information table (SIT), 8-6 system management, 4-51 system memory, 2-13, 3-6 system ROM, 2-13, 8-1 tempurature sensor, 4-54 thermal considerations, 3-5 thermister, 4-56 timer, interval, 4-27 UART, 5-14 Universal Serial Bus (USB) interface, 5-34 upggrading BIOS, 8-24 upgrading, Ethernet interface, D-4 upgrading, processor, 3-5 USB interface, 5-34 USB legacy support, 8-24 USB ports, 2-14 VESA connector, F-8 wake up (power), 7-4 wake up events, 7-4 wake up, remote, D-4 Wake-On-LAN (WOL), D-1 WOL, 7-4

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com