

Brick[™] Fuses

6125TD Series, Time Delay

Description

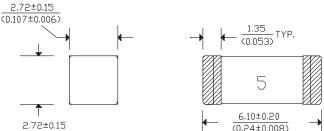
- Time Delay surface mount fuse capable of replacing glass tube fuses in certain applications
- Environmentally rugged, complies with EIA-IS-722 Standard
- Solder Immersion Compatible
- Targeted for Consumer Electronics

ELECTRICAL CHARACTERISTICS							
% of Amp Rating Opening Time							
100%	4 Hours Minimum						
200%	1 Second Minimum						
200%	2-4 Seconds Typical						
200%	60 Seconds Maximum						

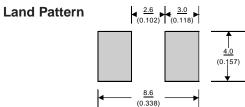
Agency Information


- UL Recognition Guide & File numbers: JDYX2 & E19180.
- CSA Component Acceptance: 053787 C 000 & Class No: 1422 30.

Environmental Data


- Life Test: MIL-STD-202, Method 108A, Test Condition D
- Load Humidity: MIL-STD-202, Method 103B
- Moisture Resistance: MIL-STD-202, Method 106E
- Thermal Shock: MIL-STD-202, Method 107D, air-to-air
- Case Resistance: EIA/IS-722
- Resistance to Dissolution of Metallization: ANSI J-STD-002, Test D
- Mechanical Shock: MIL-STD-202, Method 213B, Test Condition A
- High Frequency Vibration: MIL-STD-202, Method 204D, Test Condition D
- Resistance to Solvents: MIL-STD-202, Method 215A

Ordering


Specify product code and packaging code

Dimensions mm/(inches)

(0.107±0.006)

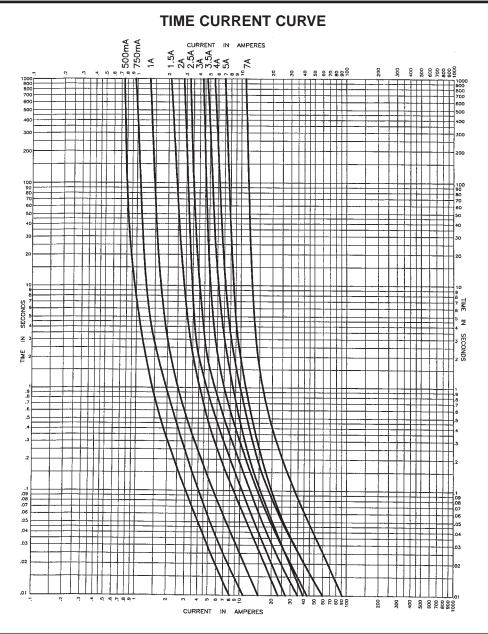
Soldering Method

- Wave Immersion: 260°C, 3 sec max.
- Infrared: 260°C, 30 sec max.

	SPECIFICATIONS								
Product	Volt	age	Interru	upting		DC Colo	ł	Typical	Typical
Code	Rat	ing	Rati	ng*	Resistance** (ohms)			Melting	Voltage
	AC	DC	125VAC	60VDC	min.	typ.	max.	l²t†	Drop‡
6125TD500mA	125V	60V	50A	50A	.3350	.4025	.4700	0.716	245 mV
6125TD750mA	125V	60V	50A	50A	.2000	.2350	.2700	1.07	250 mV
6125TD1A	125V	60V	50A	50A	.1350	.1680	.2000	2.88	256 mV
6125TD1.5A	125V	60V	50A	50A	.0550	.0630	.0700	2.35	125 mV
6125TD2A	125V	60V	50A	50A	.0380	.0480	.0580	9.45	133 mV
6125TD2.5A	125V	60V	50A	50A	.0280	.0350	.0420	16.2	130 mV
6125TD3A	125V	60V	50A	50A	.0225	.0263	.0300	15.3	97 mV
6125TD3.5A	125V	60V	50A	50A	.0170	.0195	.0220	14.5	95 mV
6125TD4A	125V	60V	50A	50A	.0160	.0185	.0210	38.8	106 mV
6125TD5A	125V	60V	50A	50A	.0115	.0133	.0150	34.4	100 mV
6125TD7A	125V	60V	50A	50A	.0073	.0087	.0100	90.2	99 mV

AC Interrupting Rating (Measured at designated voltage, 100% power factor); DC Interrupting Rating (Measured at designated voltage, time constant of less than 50 microseconds, battery source)

DC Cold Resistance (Measured at 10% of rated current)


Typical Melting I't (Measured with a battery bank at rated DC voltage, 10x-rated current (not to exceed IR), time constant of calibrated circuit less than 50 microseconds) Typical Voltage Drop (Measured at rated current after temperature stabilizes)

Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.

Brick[™] Fuses 6125TD Series, Time Delay

COOPER Bussmann

 PACKAGING CODE

 Packaging Code
 Description

 SP2
 50 piece sample

 TR1
 Standard Package: (This is an insert)

 1000 pieces of fuses on 12mm tape-and-reel on a 7 inch (177mm) reel per EIA Standard 481

 OC-2530 Rev. M
 5/03
 Visit us on the Web at www.cooperET.com

 © Cooper Electronic Technologies 2003

 3601 Quantum Boulevard Boynton Beach, Florida 33426-8638 Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178

 This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Download from Www.Somanuals.com. All Manuals Search And Download.

Description

- The first and most reliable surface mount telecom circuit protector designed to protect against power cross faults and comply with all surge requirements.
- Allows compliance with telecom regulatory standards including Bellcore GR 1089, UL 1950/60950, and FCC part 68. Application circuit testing is recommended.
- Eliminates the need for a current limiting resistor.
- Protects against overcurrent conditions found in telecom tip and ring applications.
- RoHS Compliant version available (-R option)

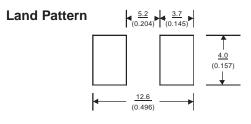
ELECTRICAL CHARACTERISTICS							
% of Amp Rating	Opening Time						
100%	4 Hours Minimum						
250%	1 Second Minimum						
250%	4-10 Seconds Typical						
250%*	120 Seconds Maximum						
300%	10 Seconds Maximum						

* If the device does not open at 250% within 120 seconds, increase current to 300% of amp rating. Device must open in 10 seconds max.

Agency Information

- UL Recognition Card: JDYX2/E19180
- CSA Component Certification Record and Class No.: 053787C000, 1422 30

Environmental Data


- Life Test: MIL-STD-202, Method 108A, Test Condition D
- Load Humidity: MIL-STD-202, Method 103B
- Moisture Resistance: MIL-STD-202, Method 106E
- Thermal Shock: MIL-STD-202, Method 107D, air-to-air
- Case Resistance: EIA/IS-722
- Resistance to Dissolution of Metallization: ANSI J-STD-002, Test D
- Mechanical Shock: MIL-STD-202, Method 213B, Test Condition A
- High Frequency Vibration: MIL-STD-202, Method 204D, Test Condition D
- Resistance to Solvents: MIL-STD-202, Method 215A

Dimensions mm/(inches)

Soldering Method

- Wave Immersion: 260°C, 3 sec max.
- Infrared: 240°C, 30 sec max.

LIGHTNING SURGE SPECIFICATIONS									
Surge Specification	Surge	Repetitions	Waveform	Current (A)	Voltage (V)	Performance			
			(µSec.)			Requirement			
	TCP 500mA tested								
FCC 47 Part 68	Longitudinal Type B	2	5x320	37.5	N/A	Fuse cannot open			
FCC 47 Part 68	Metallic Type A	2	10x560	100	800	Fuse must open safely			
Surge out		25	10x160	65	N/A	Fuse cannot open			
		TCP 1.25A	and TCP2A tes	sted					
FCC 47 Part 68	Longitudinal Type A	2	10x160	100 per fuse	1500	Fuse cannot open			
FCC 47 Part 68	Metallic Type B	2	10x560	100	800	Fuse cannot open			
Bellcore GR-1089-CORE	First Level Lightning	50	10x1000	100	1000	Fuse cannot open			
Bellcore GR-1089-CORE	First Level Lightning	50	2x10	500	2500	Fuse cannot open			
Surge out		1	10x160	160	N/A	Fuse cannot open			
Surge out		1	10x560	115	N/A	Fuse cannot open			

ELECTRICAL AND POWER CROSS SPECIFICATIONS

Product	Voltage	Interr	upting	DC Cold		Typical	Maximum	Typical	Alpha	Code					
Code	Rating	Rating*		Resistance** (ohms)		Resistance** (ohms)		Resistance** (ohms)		Resistance** (ohms)		Total	Voltage	Mar	king
	AC	250VAC	600VAC	min.	typ.	max.	l²t†	Clearing	Drop‡	1st Code	2nd Code				
TCP500mA	250 V	50 A	40 A	0.420	0.530	0.640	1.3 A ² s	100 A ² s	471mV	F					
TCP1.25A	250 V	50 A	60 A	0.070	0.090	0.110	22.2 A ² s	100 A ² s	150mV	J	R***				
TCP2A	250 V	50 A	60 A	0.050	0.075	0.100	30 A ² s	100 A ² s	205mV	N					

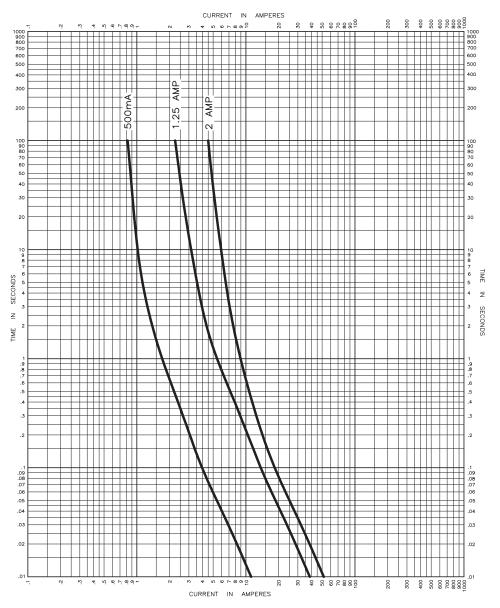
* AC Interrupting Rating (Measured at designated voltage, 100% power factor)

** DC Cold Resistance (Measured at 10% of rated current)

*** On RoHS Compliant Version (-R option)

Typical Melting I't (Measured with a battery bank at 60V DC, 10x-rated current, time constant of calibrated circuit less than 50 microseconds)

Typical Voltage Drop (Measured at rated current after temperature stabilizes)



Bussmann[®] The Power to Protect[®]

TCP[™] Series Telecom Circuit Protector

TIME CURRENT CURVE

 Option Code (Suffix)
 Description

 -R
 RoHS Compliant Version (Sn plating w/ Ni barrier)

	PACKAGING CODE
Packaging Code	Description
TR2	2500 pieces of fuses on 24mm tape-and-reel on 13 inch (330mm) reel per EIA Standard 481, 8mm pitch

COOPER Bussmann

Visit us on the web at: www.CooperET.com

Datasheet: 98076 6/15/04 - SB04124

© Cooper Electronic Technologies 2004 Cooper Electronic Technologies 3601 Quantum Boulevard Boynton Beach, FL 33426-8638 Tel: 1-561-752-5000 Fax: 1-561-742-0134 Toll Free: 1-888-414-2645

 North America

 nologies
 Cooper Bussmann

 rd
 P.O. Box 14460

 26-8638
 St. Louis, MO 63178-4460

 Tel: 1-636-394-2877
 Fax: 1-800-544-2570

Europe

Cooper Electronic Technologies Cooper (UK) Limited Burton-on-the-Wolds Leicestershire • LE12 5TH UK Tel: +44 (0) 1509 882 737 Fax: +44 (0) 1509 882 786 Asia Pacific

Cooper Electronic Technologies 1 Jalan Kilang Timor #06-01 Pacific Tech Centre Singapore 159303 Tel: +65 278 6151 Fax: +65 270 4160

Description

- Designed to IEC 127-4
- Surface Mount fuse, time lag
- Solder Immersion Compatible
- Overcurrent protection of systems up to 250VAC

ELECTRICAL CHARACTERISTICS						
% of Amp Rating Opening Time						
125%	1 Hours Minimum					
200%	2 Minutes Maximum					
200%	1 Second Minimum					
1000%	0.01 0.1 Seconds					

Approvals

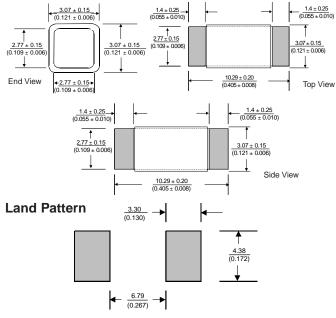
• Designed to IEC 127, Sheet 4 (approval pending)

Environmental Data

- Termination Strength: IEC 127-4 Clause 8.3.2
- Soldered Joints: IEC 127-1 Clause 8.5
- Solderability: IEC 127-4 Clause 8.6.2 subjected to Test Td of IEC-68-2-58 with the following conditions; Aging: none. Immersion conditions: exceeds IEC 127-4.
 Depth of immersion: entire metal surface. Flux type: non-activated. Solder type: 60% tin and 40% lead according to IEC 68-2-20, Appendix B.
- Resistance to Soldering Heat: IEC 127-4 Clause 8.7 subjected to Test Td of IEC 68-2-58 with the following conditions; Aging: none. Immersion conditions: 260°C ± 5°C, 10 seconds ± 1 sec. Depth of immersion: 10mm. Flux type: activated. Solder type: 60% tin and 40% lead
- Insulation Resistance: IEC 127-4, Clause 9.3.3 (resistance ≥ 0.1Mohms)

Ordering

· Specify product code and packaging code



Brick[™] Fuses 1025T Series

Time Lag, Low Breaking Capacity

Dimensions "M(inches)

Drawing Not to Scale

Soldering Method

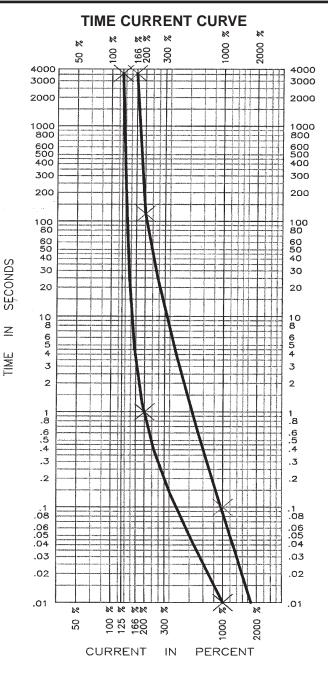
- Wave Immersion: 260°C, 10 sec max.
- Infrared: 260°C, 30 sec max.

	SPECIFICATIONS										
	Volt	age	Interr	upting	DC Cold			Typical	Typical	Max.	Marking
Product Code	Rat	ing	Rat	ing*	Resistance** (ohms)			Melting	Voltage	Voltage	Code
	AC	DC	250VAC	125VDC	min.	typ.	max.	l²t†	Drop‡	Drop‡	
1025T250mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	800	Dt
1025T500mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	600	Ft
1025T800mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	400	KKt
1025T1A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	300	Ht
1025T1.6A	250V	125V	100A	50A	0.064	0.074	0.083	12.26	155 mV	300	MMt
1025T2A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	300	Nt
1025T2.5A	250V	125V	100A	50A	0.045	0.048	0.051	32.91	TBD	300	Ot
1025T3.15A	250V	125V	100A	50A	0.030	0.034	0.038	54.98	184 mV	300	Qt
1025T4A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	300	St
1025T5A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	300	Tt
1025T6.3A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	300	OOt

* AC Interrupting Rating (Measured at designated voltage, greater than 95% power factor); DC Interrupting Rating (Measured at designated voltage, time constant of the calibrated circuit is less than 1 millisecond, battery source)

** DC Cold Resistance (Measured at ≤10% of rated current)

† Typical Melting I²t (Measured with a battery bank at rated DC voltage, 10x-rated current, not to exceed IR, time constant of calibrated circuit less than 50 microseconds)


‡ Typical Voltage Drop (Measured at rated current after temperature stabilizes)

• Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.

Brick[™] **Fuses** 1025T Series Time Lag, Low Breaking Capacity

PACKAGING CODE
Description
2,500 pieces of fuses on 24mm tape-and-reel on 13 inch (330mm) reel per EIA Standard 481
50 pieces of fuses on 24mm tape packaged in a plastic box per EIA Standard 481

COOPER Bussmann

OC-2536 Rev. XF 5/03 Visit us on the Web at www.cooperET.com © Cooper Electronic Technologies 2003 3601 Quantum Boulevard Boynton Beach, Florida 33426-8638 Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178 This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Description

- Surface mount fuse, fast acting
- Designed to IEC 127-4
- Surface Mount
- Solder Immersion Compatible
- Overcurrent protection of systems up to 250 VAC

ELECTRICAL CHARACTERISTICS						
% of Amp Rating	Opening Time					
125%	1 Hour Minimum					
200%	2 Minutes Maximum					
1000%	0.001 - 0.01 Seconds					

Approvals

• Designed to IEC 127, Sheet 4 (approval pending)

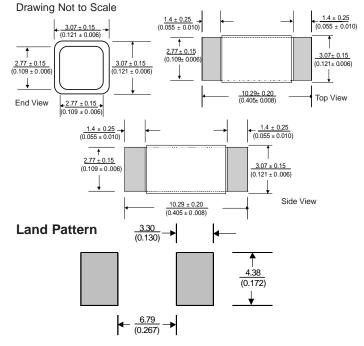
Environmental Data

- Termination Strength: IEC 127-4 Clause 8.3.2
- Soldered Joints: IEC 127-1 Clause 8.5
- Solderability: IEC 127-4 Clause 8.6.2
- Resistance to Soldering Heat: IEC 127-4 Clause 8.7
- Insulation Resistance: IEC 127-4 Clause 9.3.3

Soldering Method

- Wave Immersion: 260°C, 10 sec max.
- Infrared: 260°C, 30 sec max.

Ordering


Specify product code and packaging code

Brick[™] Fuses 1025F Series

Fast Acting, Low Breaking Capacity

Dimensions mm/(inches)

	SPECIFICATIONS									
	Volt	Voltage Inte		Interrupting DC Cold			Typical	Typical	Marking	
Product Code	Rat	ing	Rating*		Resistance** (ohms)			Melting	Voltage	Code
	AC	DC	250VAC	125VDC	min.	typ.	max.	l²t†	Drop‡	
1025F250mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	D f
1025F500mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	Ff
1025F800mA	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	KK f
1025F1A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	Ηf
1025F1.6A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	MM f
1025F2A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	N f
1025F2.5A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	O f
1025F3.15A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	Q f
1025F4A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	S f
1025F5A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	Τf
1025F6.3A	250V	125V	100A	50A	TBD	TBD	TBD	TBD	TBD	OO f

* AC Interrupting Rating (Measured at designated voltage, greater than 95% power factor); DC Interrupting Rating (Measured at designated voltage,

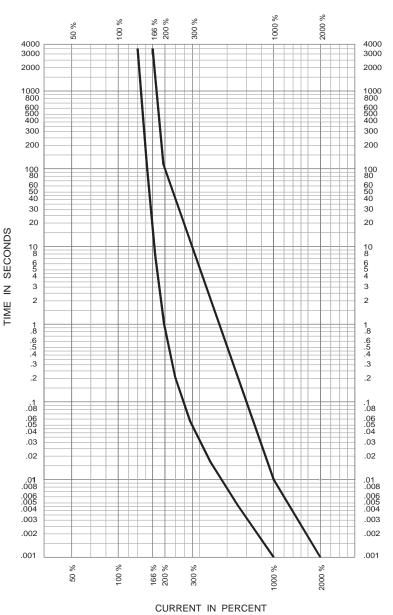
time constant of the calibrated circuit is less than 1 millisecond, battery source)

** DC Cold Resistance (Measured at ≤10% of rated current)

† Typical Melting I²t (Measured with a battery bank at 10x-rated current, not to exceed IR,

time constant of calibrated circuit less than 50 microseconds)

‡ Typical Voltage Drop (Measured at rated current after temperature stabilizes)


• Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.

COOPER Bussmann

Brick[™] Fuses 1025F Series Fast Acting, Low Breaking Capacity

TIME CURRENT CURVE

	PACKAGING CODE
Packaging Code	Description
TR2	2500 pieces of fuses on 24mm tape-and-reel on a 13 inch (330mm) reel per EIA Standard 481
TR3	50 pieces of fuses on 24mm tape packaged in a plastic box per EIA Standard 481
TR3	50 pieces of fuses on 24mm tape packaged in a plastic box per EIA Standard 481

COOPER Bussmann

OC-2548 Rev. X2 5/03 Visit us on the Web at www.cooperET.com

© Cooper Electronic Technologies 2003 3601 Quantum Boulevard Boynton Beach, Florida 33426-8638 Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178

This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Description

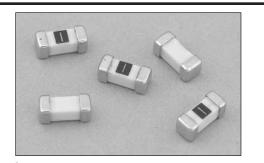
- Surface Mount
- Environmentally rugged, complies with the EIA-IS-722 Standard
- Solder Immersion Compatible
- Targeted for Consumer Electronics
- Overcurrent protection of systems up to 125VAC/DC
- Wire-in-air design

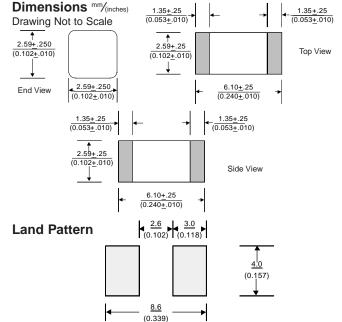
ELECTRICAL CHARACTERISTICS					
% of Amp Rating	Opening Time				

/o of / and / adding	opening
100%	4 Hours Minimum
200%	5 Seconds Maximum

Agency Information

- UL Listed Guide and File Numbers (250mA-12A): JDYX & E195337
- UL Recognized Guide and File Numbers (15A): JDYX2 & E195337
- CSA Component Acceptance: 053787 C 000 & Class No: 1422 30


Environmental Data


- Shock: MIL-STD-202, Method 213, Test Condition 1 (100 G's peak for 6 milliseconds)
- Vibration: MIL-STD-202, Method 201 (10-55 Hz, 0.06 inch, total excursion)
- Salt Spray: MIL-STD-202, Method 101, Test Condition B (48 hrs)
- Insulation Resistance: MIL-STD-202, Method 302, Test Condition A (After Opening) 10,000 ohms minimum
- Resistance to Solder Heat: MIL-STD-202, Method 210, Test Condition F (20 sec, at 260° C)
- Thermal Shock: MIL-STD-202, Method 107, Test Condition B (-65° C to +125° C)

Ordering

Specify product code and packaging code

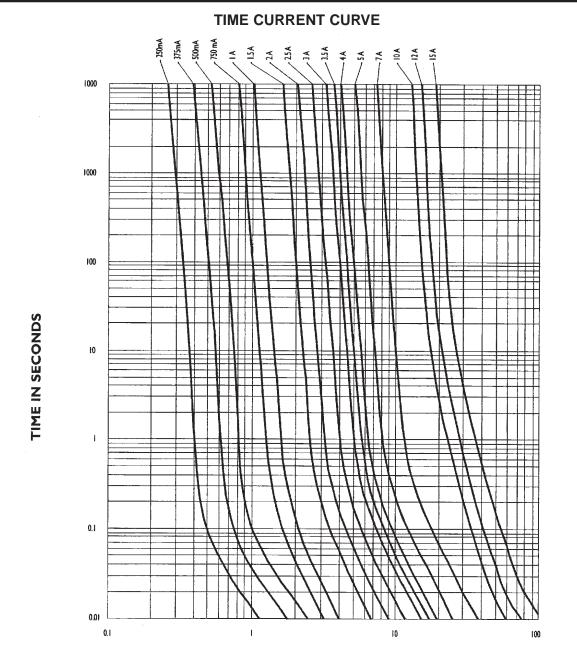
Brick[™] Fuses 6125FA Series, Fast Acting

Soldering Method

- Wave Solder: 260°C, 10 sec max.
 - (MIL-STD-202, Method 210)
- Infrared Reflow: 260°C, 30 sec max.

SPECIFICATIONS									
Product Code	AC	Voltage Rating DC	Interrupting Rating* 125V AC 125V DC 86V DC			Resistance (ohms)** Typ.	Typical Melt I ² t†	Typical Voltage Drop (V)‡	
6125FA250mA	125V	125V	DC 86V	50A	300A	10.000A	0.65	0.01	0.30
6125FA375mA	125V	125V	86V	50A	300A	10,000A	0.36	0.03	0.25
6125FA500mA	125V	125V	86V	50A	300A	10,000A	0.24	0.06	0.22
6125FA750mA	125V	125V	86V	50A	300A	10,000A	0.15	0.07	0.17
6125FA1A	125V	125V	86V	50A	300A	10,000A	0.11	0.14	0.17
6125FA1.25A	125V	125V	86V	50A	300A	10,000A	0.09	0.24	0.16
6125FA1.5A	125V	125V	86V	50A	300A	10,000A	0.07	0.41	0.15
6125FA2A	125V	125V	86V	50A	300A	10,000A	0.05	0.80	0.15
6125FA2.5A	125V	125V	86V	50A	300A	10,000A	0.038	1.4	0.14
6125FA3A	125V	125V	86V	50A	300A	10,000A	0.028	2.4	0.13
6125FA3.5A	125V	125V	86V	50A	300A	10,000A	0.025	3.3	0.13
6125FA4A	125V	125V	86V	50A	300A	10,000A	0.022	4.4	0.13
6125FA5A	125V	125V	86V	50A	300A	10,000A	0.016	7.8	0.12
6125FA6.3A	125V	125V	86V	50A	300A	10,000A	0.012	14.0	0.12
6125FA7A	125V	125V	86V	50A	300A	10,000A	0.011	19.0	0.114
6125FA10A	125V	N/A	86V	50A	N/A	10,000A	0.007	44	0.107
6125FA12A	125V	N/A	86V	50A	N/A	10,000A	0.006	69	0.103
6125FA15A	N/A	N/A	86V	N/A	N/A	10,000A	0.004	124	0.098

AC Interrupting Rating (Measured at designated voltage, 100% power factor); DC Interrupting Rating (Measured at designated voltage, time constant of less than 50 microseconds, battery source) DC Cold Resistance (Measured at 10% of rated current)


Typical Melting I't (Measured with a battery bank at rated DC voltage, 10x-rated current, time constant of calibrated circuit less than 50 microseconds)

Typical Voltage Drop (Measured at rated current after temperature stabilizes) Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.

Brick[™] Fuses 6125FA Series, Fast Acting

PACKAGING CODE

Packaging Code	Description
SP2	50 piece sample
TR2	5000 pieces of fuses on 12mm tape-and-reel on a 13 inch (330mm) reel per EIA Standard 481

COOPER Bussmann

OC-2531 Rev. 1 5/03 Visit us on the Web at www.cooperET.com © Cooper Electronic Technologies 2003 3601 Quantum Boulevard Boynton Beach, Florida 33426-8638 Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178 This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Download from Www.Somanuals.com. All Manuals Search And Download.

Brick[™] Fuses

1025FA Series, Fast Acting

Description

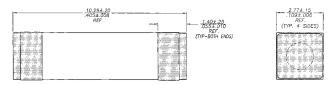
- Surface Mount
- Environmentally rugged, satisfies the EIA/IS-722 Standard
- Solder Immersion Compatible
- Targeted for Consumer Electronics

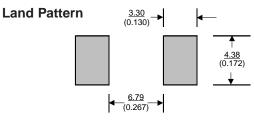
ELECTRICAL CHARACTERISTICS					
% of Amp Rating Opening Time					
100%	4 Hours Minimum				
200% (250mA-5A)	5 Seconds Maximum				
250% (250mA-5A fuse)	1 Second Maximum				
200% (7A-15A fuse)	20 Seconds Maximum				
250% (7A-15A fuse)	4 Seconds Maximum				


Note: 30vde constant current source required for 200% overload tests on 250ma-1a.

Agency Information

- UL Recognition Guide & File numbers: JDYX2 & E19180 (250mA - 15A)
- CSA Component Acceptance: File # 053787 C000, Class # 1422 30


Environmental Data


- Life Test: MIL-STD-202, Method 108A, Test Condition D
- Load Humidity: MIL-STD-202, Method 103B
- Moisture Resistance: MIL-STD-202, Method 106E
- •
- Terminal Strength: MIL-STD-202, Method 211A Thermal Shock: MIL-STD-202, Method 107D, air-to-air •
- Case Resistance: EIA/IS-722 ٠
- Resistance to Dissolution of Metallization: • ANSI J-STD-002, Test D
- Mechanical Shock: MIL-STD-202, Method 213B with exceptions per EIA/IS-722 Standard
- High Frequency Vibration: MIL-STD-202, Method 204D, Test Condition D
- Resistance to Solvents: MIL-STD-202, Method 215A

Dimensions mm/(inches)

Drawing Not to Scale

Soldering Method

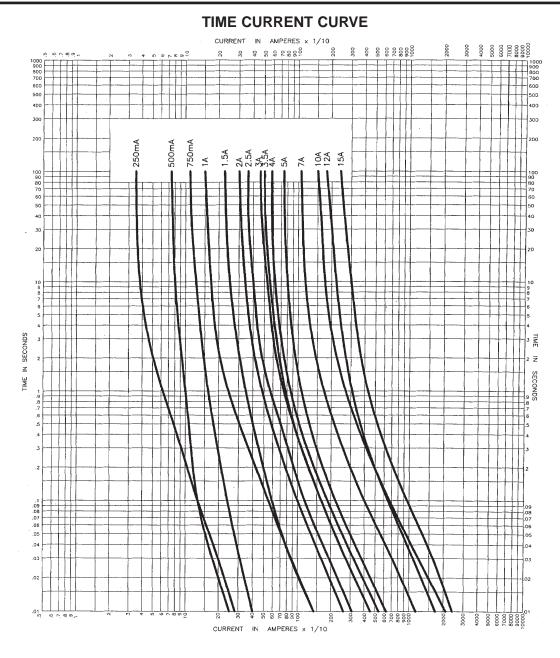
- Wave Solder: 260°C, 10 sec max.
- Infrared Reflow: 260°C, 30 sec max.

Orderina

Specify product code and packaging code

SPECIFICATIONS										
Breduct Code	Volt	-	In	terruptin	g	DC Cold	Typical	Typical	Marl	0
Product Code	Rat AC	DC	250VAC	Rating* 125VDC		Resistance** (ohms) Typical	Melting I ² t†	Voltage Drop‡	Cod	e‡‡ 3 rd
1025FA250mA	250V	125V	50A	50A	-	5.0000	0.1212	2019 mV	AD	•
1025FA500mA	250V	125V	50A	50A	-	1.2000	0.0415	1500 mV	AF	
1025FA750mA	250V	125V	50A	50A	-	0.6000	0.143	880 mV	AG	
1025FA1A	250V	125V	50A	50A	-	0.3000	1.750	560 mV	AH	
1025FA1.5A	250V	125V	50A	50A	-	0.1040	1.460	260 mV	AK	
1025FA2A	250V	125V	50A	50A	-	0.0800	6.086	258 mV	AN	U,
1025FA2.5A	250V	125V	50A	50A	-	0.0510	8.48	232 mV	AO	О, Т
1025FA3A	250V	125V	50A	50A	-	0.0390	18.15	205 mV	AP	or
1025FA3.5A	250V	125V	50A	50A	-	0.0300	17.83	185 mV	AR	S
1025FA4A	250V	125V	50A	50A	-	0.0270	23.32	190 mV	AS	0
1025FA5A	250V	125V	50A	50A	-	0.0200	38.74	180 mV	AT	
1025FA7A	250V	60V	50A	50A	-	0.0116	138	150 mV	AU	
1025FA10A	250V	60V	50A	50A	-	0.0076	457	146 mV	AW	
1025FA12A	250V	60V	50A	-	50A	0.0550	498	120 mV	AX	
1025FA15A	250V	60V	50A	-	50A	0.0041	1451	110 mV	AY	

AC Interrupting Rating (Measured at designated voltage, 100% power factor random closing); DC Interrupting Rating (Measured at designated voltage, time constant of less than 50 microseconds, battery source) DC Cold Resistance (Measured at <10% of rated current)


Typical Melting I't (Measured with a battery bank at rated DC voltage, 10x-rated current, but not exceeding the interrupting rating. Time constant of calibrated circuit less + than 50 microseconds). Test current not to exceed interruption rating of 50A. ‡ Typical Voltage Drop (Measured at rated current after temperature stabilizes) ‡ Marking Code - 3rd (U = USA, T = Taiwan and S = China)

• Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.

Brick[™] Fuses 1025FA Series, Fast Acting

COOPER Bussmann

PACKAGING CODE					
Packaging Code	Description				
SP1	50 piece sample				
TR2	2,500 pieces of fuses on 24mm tape-and-reel on 13 inch (330mm) reel per EIA Standard 481				

COOPER Bussmann

OC-2538 Rev. X6 5/03 Visit us on the Web at www.cooperET.com

© Cooper Electronic 3601 Quantum Boulevard Boynton Beach, Florida 33426-8638

Technologies 2003 Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178

This bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper Electronic Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.

Description

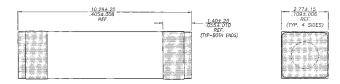
- Surface Mount
- Environmentally rugged, satisfies the EIA/IS-722 Standard
- Solder Immersion Compatible
- Targeted for Consumer Electronics

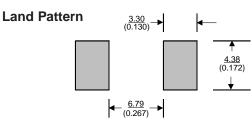
ELECTRICAL CHARACTERISTICS					
% of Amp Rating Opening Time					
100%	4 Hours Minimum				
200%	1 Second Minimum				
200%	60 Seconds Maximum				
250% *	10 Seconds Maximum				

* If fuse does not open @ 200% in 60 seconds, raise current to 250% and the fuse must open in 10 seconds maximum.

Agency Information

- UL Recognition Guide & File numbers: JDYX2 & E19180 (250mA - 5A)
- CSA Component Acceptance: File # 053787 C000, Class # 1422 30


Environmental Data


- Life Test: MIL-STD-202, Method 108A, Test Condition D
- Load Humidity: MIL-STD-202, Method 103B
- Moisture Resistance: MIL-STD-202, Method 106E
- Terminal Strength: MIL-STD-202, Method 211A
- Thermal Shock: MIL-STD-202, Method 107D, air-to-air
- Case Resistance: EIA/IS-722
- Resistance to Dissolution of Metallization: ANSI J-STD-002, Test D
- Mechanical Shock: MIL-STD-202, Method 213B with exceptions per EIA/IS-722 Standard
- High Frequency Vibration: MIL-STD-202, Method 204D, Test Condition D
- Resistance to Solvents: MIL-STD-202, Method 215A

Dimensions mm/(inches)

Drawing Not to Scale

Ordering

Specify product code and packaging code

Soldering Method

- Wave Immersion: 260°C, 10 sec max.
- Infrared: 260°C, 30 sec max.

SPECIFICATIONS									
	Volt	tage	Interr	upting	DC Cold	Typical	Typical	Marl	king
Product Code	Rat	ting	Rat	ing*	Resistance** (ohms)	Melting	Voltage	Cod	e‡‡
	AC	DC	250VAC	125VDC	Typical	l²t†	Drop‡	1st & 2nd	3 rd
1025TD250mA	250V	125V	50A	50A	4.200	0.128	1900 mV	DD	
1025TD500mA	250V	125V	50A	50A	0.5500	1.47	455 mV	DF	
1025TD750mA	250V	125V	50A	50A	0.317	0.93	400 mV	DG	
1025TD1A	250V	125V	50A	50A	0.2030	9.91	387 mV	DH	
1025TD1.5A	250V	125V	50A	50A	0.1025	11.79	310 mV	DK	U, T
1025TD2A	250V	125V	50A	50A	0.0680	17.27	250 mV	DN	or
1025TD2.5A	250V	125V	50A	50A	0.0420	16.51	201 mV	DO	S
1025TD3A	250V	125V	50A	50A	0.0330	42.74	184 mV	DP	0
1025TD3.5A	250V	125V	50A	50A	0.0270	43.33	180 mV	DR	
1025TD4A	250V	125V	50A	50A	0.0220	66.96	152 mV	DS	
1025TD5A	250V	125V	50A	50A	0.0160	88.38	145 mV	DT	

* AC Interrupting Rating (Measured at designated voltage, 100% power factor random closing); DC Interrupting Rating (Measured at designated voltage, time constant of the calibrated circuit is less than 50 microseconds, battery source)

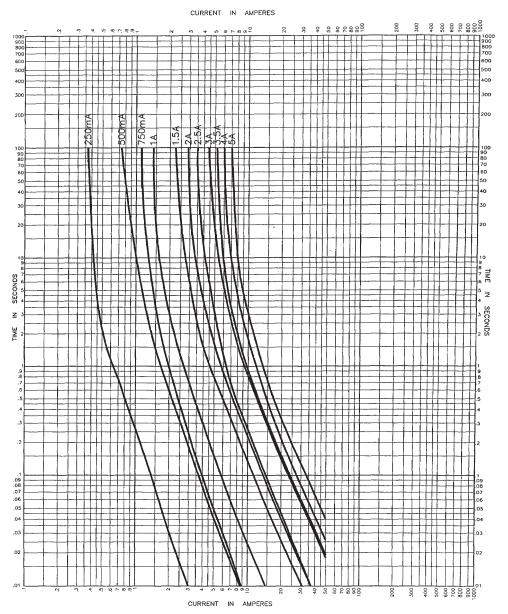
** DC Cold Resistance (Measured at ≤10% of rated current)

† Typical Melting I2t (Measured with a battery bank at rated DC voltage, 10x-rated current, time constant of calibrated circuit less than 50 microseconds)

‡ Typical Voltage Drop (Measured at rated current after temperature stabilizes)

 $\ddagger Marking Code - 3rd (U = USA, T = Taiwan and S = China)$

• Device designed to carry rated current for four hours minimum. An operating current of 80% or less of rated current is recommended, with further derating required at elevated ambient temperatures.



Brick[™] **Fuses** 1025TD Series, Time Delay

TIME CURRENT CURVE

PACKAGING CODE					
Description					
50 piece sample					
2,500 pieces of fuses on 24mm tape-and-reel on 13 inch (330mm) reel per EIA Standard 481					

COOPER Bussmann

OC-2537 Rev. XH 5/03 Visit us on the Web at www.cooperET.com [©] Cooper Electronic Technologies 2003 ³⁶⁰¹ Quantum Boulevard Boynton Beach, Florida 33426-8638 ^{Tel: +1-561-752-5000 Toll Free: +1-888-414-2645 Fax: +1-561-742-1178 ^{This} bulletin is intended to present product design solutions and technical information that will help the end user with design applications. Cooper ^{Electronic} Technologies reserves the right, without notice, to change design or construction of any products and to discontinue or limit distribution of any products. Cooper Electronic Technologies also reserves the right to change or update, without notice, any technical information contained in this bulletin. Once a product has been selected, it should be tested by the user in all possible applications.}

Engineering Product Specification

TCP TM Telecom Circuit Protector

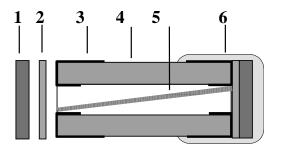
	ormation contained in this document is the property of Cooper Industries, Inc. It is not for public disclosure			
	t convey any right to loan, sell or disclose the CONFIDENTIAL information. Unauthorized reproduction			
prohibite	ed. This document is to be returned to Cooper Industries, Inc. Upon completion of the purposes for which it	is loaned of	or upon requ	iest.
Rev. #	Revision Description	Date	Author	Appr
L	Redraw the Maximum Offset of Tube to make it legible. Correct the minimum tube size from .103"SQ to .101"SQ. Add comment to indicate the cap and tube SQ sizes are minimum dimensions. Update UL card to indicate 2A. Remove the ink color from the alpha mark spec. Add the alpha mark designations for the China and Costa Rica facilities. Update mfgr info.	2/21/01	VK	DB
K	Rename TCP1.251A product to TCP2A. No change in electrical characteristics. Add China facility.	8/23/00	VK	DB
J	Add 1.251A version. Add ISO registration information. Change alpha code: 500mA from A to F and 1.25A from B to J.	6/8/00	DR	EC
Ι	Detail marking specification in section 7.	4/28/00	DR	EC
Н	Add maximum total clearing I^2 t in section 5.5.	1/19/00	DR	EC
G	Added nickel flash. Added cold resistance for TCP-500mA (min 0.541, typ 0.614, max. 0.686) Added typ. Melt I ² t (500mA=1.3a ² sec, 1.25A=22.2 a ² sec). Added typ. Voltage drop on 500mA(471mV), changed voltage drop of 1.25A to 205mV. Added TCC for both ratings. Changed max. temp from 85°C to 125°C. Added max. tube offset drawing.	10/99	CR	EC
F	5.2.1 Changed .500mA 600v int. rating to 40A; 5.4 Added DC cold resistance for TCP1.25 min-0.107, type -0.128, max0.150; 5.6 Added 0.205 typ voltage drop to TCP 1.25A; 6.1 Added UL Recognition card; 6.2 Added CSA component acceptance card; 12 Removed copper from wire, plate end plates and mark in flow chart.	9/99	CR	EC
Е	Changed area code, removed Nickel flash on post plating, removed marking of fuse	6/99	CR	EC
D	Changed Interrupting Rating to 60A, changed Time vs. Current requirement for 1.25A, & removed specification data results.	4/99	DG	EC
С	Added new logo and disclaimer	1/99	DG	EC
В	Final for prerelease	3/98	EC	EC
А	Original	2/18	EC	EC

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 2 of 18

Table of Contents

Section	Title	Page
1.	Scope	3
2.	Manufacturer and Production Facility	3
3.	Catalog Symbol and Part Numbering System	3
4.	Mechanical Specifications	4
5.	Electrical Specifications	6
6.	Standards and Agency information	11
7.	Marking Specification	13
8.	Soldering Method	13
9.	Land Pattern	14
10.	Temperature Derating Curve	14
11.	Packaging Specification	15
12.	Process Flow Chart	15
13.	Environmental (Reliability / Qualification) Data	16
14.	End	18

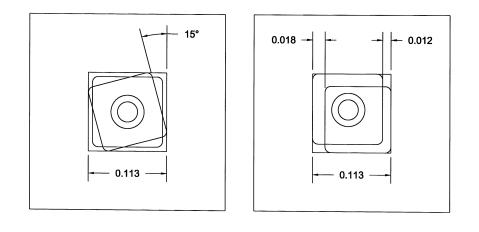
Engineering Product Specification T	elecom Circuit Protector	Revisio			
ed on: 7/14/2003		Sheet	3	of	18
1.SCOPE					
1.1 This Specification a	pplies to Bussmann TCP	series p	rotecto	rs.	
'					
2. MANUFACTURER AND PF	RODUCTION FACILITY				
2.1 Manufacturer	Cooper Electronic Techr 3601 Quantum Boulevar Boynton Beach, FL 3342 Phone: (561) 752-5000 Fax: (561) 742-0134	ď			
2.2 Production Facility	1) Bussmann 114 Old State Road Ellisville, MO 63021 (US	SA)		Í Ta T	59-12, 9 Lin ^r suo Li, Chu Nan Chen LiHsien, Taiwan, R.O.C
	3) Xin Min Industrial Esta Changan DongGuan Guangdong Province Ch			Juar Sare	M Al Este Del Aeropurto n Santamarita, Zona Franca et, Edificio B-05 Segundo Alajuela, Costa Rica
2.3 ISO Registration	1) ISO 9002, File Numbe 3) ISO 9002, Certificate				9001, File Number A6444 9002, File Number A7346
3. CATALOG SYMBOL AND P	ART NUMBERING SYSTE	ΞM			
3.1 Catalog Symbol					
3.1.1 Example	TR1/TC	P500m/	4		
	$\begin{array}{c c} \underline{TR1}/ & \underline{TCP} \\ \downarrow & \downarrow \\ 1 & 2 \end{array}$	<u>500mA</u> ↓ 3			
	 Packaging Code: Series Number: Ampere Rating: 		TR1/ TCP 500m/	A	
3.2 Part Numbering Sy	stem				
3.2.1 Packagin	g Code				
Packaging Code		Descript	ion		
	Tape in a Plastic Bag (E			mples)	
	Tape with a Leader and	-	-	. ,	(Engineering Samples)
	in Tape and Reel (13 inc				
	in Tape and Reel (13 inc	-	-		

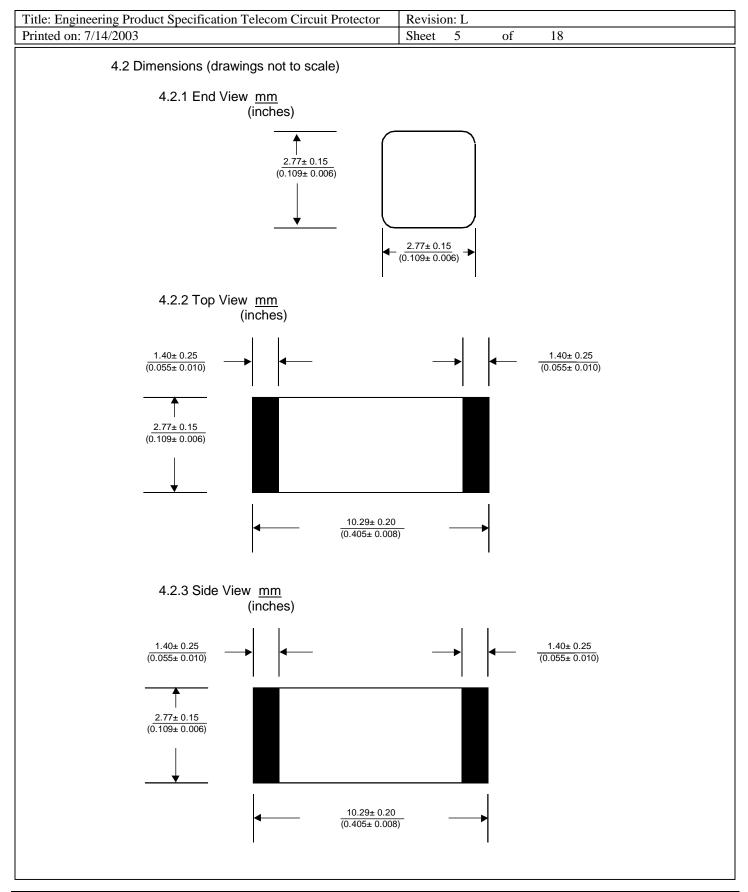

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 4 of 18

3.2.2 Ampere Rating

Catalog	Descript	Description	
Symbol			
TCP500mA	500mA	Fuse	
TCP1.25A	1.25A	Fuse	
TCP2A	2A	Fuse	

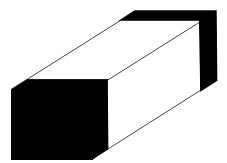
4. MECHANICAL SPECIFICATIONS


4.1 Construction (drawing not to scale)


- 1. End plate
- 2. High temperature solder preform
- 3. Metallization of ceramic body
- 4. Ceramic body
- 5. Fuse element
- 6. End termination overcoat on both ends (Nickel Flash, Tin/Lead Overcoat)

4.1.2 Maximum Offset of Tube

MINIMUM MATERIAL CONDITIONS FIXTURE OPENING .112±.001



CAP SIZE IS .095"SQ. MINIMUM TUBE SIZE IS .101"SQ. MINIMUM

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 6 of 18

4.2.4 Orthogonal View

5. ELECTRICAL SPECIFICATIONS

5.1 Voltage Rating

	Voltage Rating
Catalog Symbol	AC
TCP500mA	250 V
TCP1.25A	250 V
TCP2A	250 V

5.2 Interrupting Rating

5.2.1 AC Interrupting Rating (Measured at designated voltage, 100% power factor)

Catalog Symbol	Interrupting Rating AC	
	250 V	600 V*
TCP500mA	50 A	40A
TCP1.25A	50 A	60 A
TCP2A	50 A	60 A

*600V, 60A Interrupting ratings test were performed by closing the circuit between 50° and 70° on the voltage wave.

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 7 of 18

5.3 Time vs. Current Characteristic (Measured with a Kepco constant current power supply)

5.3.1 For TCP500mA and TCP1.25A

% of Amp Rating	Opening Time
100%	4 Hours Minimum
250%	1 Second Minimum
250%	4 -10 Seconds Typical
250%	120 Seconds Maximum
300%*	10 Seconds Maximum

*If the device does not open at 250% within 120 seconds, increase current to 300% of amp rating. Device must open in 10 seconds maximum.

5.3.2 For TCP2A

Current Level	Opening Time
2.2A**	30 minutes minimum
7A	opens before Bussmann MDL-2
25A	opens before Bussmann MDL-2
40A	opens before Bussmann MDL-2

% of Amp Rating	Opening Time
100%	4 Hours Minimum
250%	1 Second Minimum
250%	4 - 10 Seconds Typical
250%	120 Seconds Maximum
300%*	10 Seconds Maximum

*If the device does not open at 250% within 120 seconds, increase current to 300% of amp rating. Device must open in 10 seconds maximum.

** The TCP2A may have a maximum temperature rise of 100°C after carrying 2.2A for thirty minutes.

5.4 DC Cold Resistance

(Measured at 10% of rated current)

Catalog Symbol	Resistance (ohms)			
	Min.	Тур.	Max.	
TCP500mA	0.420	0.530	0.640	
TCP1.25A	0.107	0.128	0.150	
TCP2A	0.050	0.075	0.100	

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 8 of 18

5.5 l²t

- 5.5.1 Typical Melt I²t is measured with a battery bank at 60V DC, 10x-rated current, time constant of calibrated circuit less than 50 microseconds.
 - 5.5.2 Maximum Total Clearing is measured on a 40A, 600V AC, unity power factor circuit.

Catalog Symbol	Typical	Maximum
	Melt I ² t	Total Clearing I ² t
TCP500mA	1.3 A ² s	100 A ² s
TCP1.25A	22.2 A ² s	100 A ² s
TCP2A	30 A ² s	100 A ² s

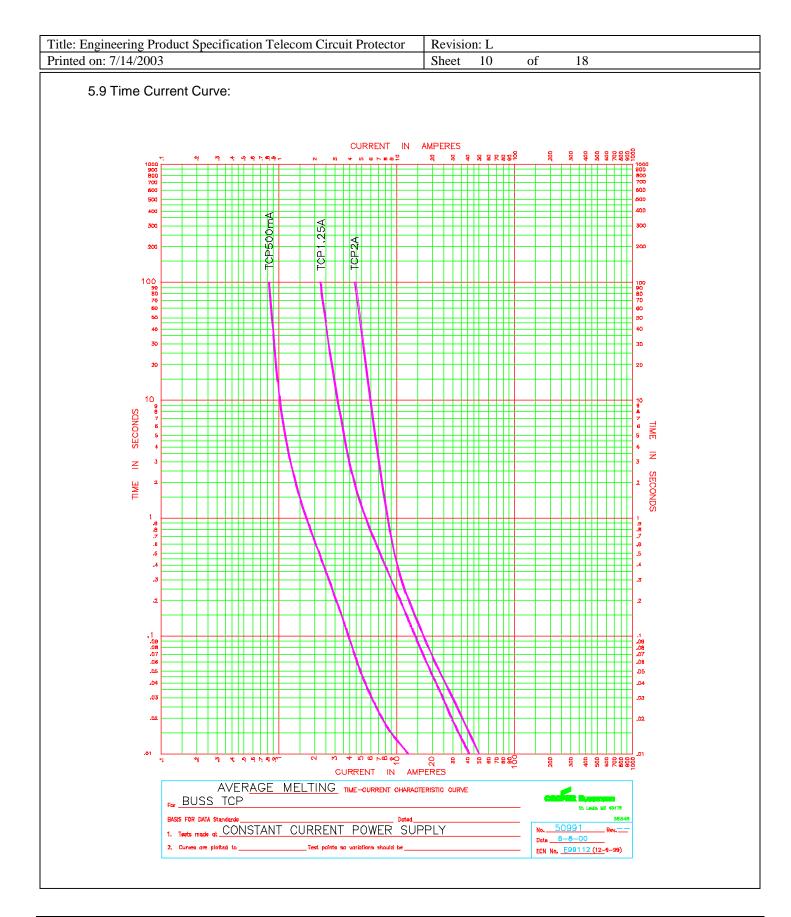
5.6 Typical Voltage Drop (Measured at rated current after temperature stabilizes)

Catalog Symbol	Typical Voltage Drop
TCP500mA	471mV
TCP1.25A	205mV
TCP2A	205mV

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 9 of 18

5.7 Surge Specifications

a) TCP 500mA tested to surge requirements listed below


			Waveform			Performance
Surge Specification	Surge	Repetitions	(µSec.)	Current (A)	Voltage (V)	Requirement
	Longitudinal					
FCC 47 Part 68	Туре В	2	5x320	37.5	N/A	Fuse cannot open
	Metallic					Fuse must open
FCC 47 Part 68	Туре А	2	10x560	100	800	safely
Surge Out		25	10x160	65	N/A	Fuse cannot open

b) TCP1.25A and TCP2A tested to surge specifications listed below

			Waveform			Performance
Surge Specification	Surge	Repetitions	(μSec.)	Current (A)	Voltage (V)	Requirements
FCC 47 Part 68	Longitudinal Type A	2	10x160	100 per fuse	1500	Fuse cannot open
FCC 47 Part 68	Metallic Type B	2	10x560	100	800	Fuse cannot open
Bellcore GR-1089-CORE	First Level Lighting	50	10x1000	100	1000	Fuse cannot open
Bellcore GR-1089-CORE	First Level Lighting	50	2x10	500	2500	Fuse cannot open
Surge Out		1	10x160	160	N/A	Fuse cannot open
Surge Out		1	10x560	115	N/A	Fuse cannot open

5.8 Maximum Temperature Rise (Measured at rated current after temperature stabilizes)

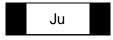
Catalog Symbol	Maximum Temperature Rise
TCP500mA	<u><</u> 75 °C (135°F)
TCP1.25A	<u><</u> 75 °C (135°F)
TCP2A	<u><</u> 75 °C (135°F)

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L		
Printed on: 7/14/2003	Sheet 11 of 18		
6. STANDARDS and APPROVALS			
6. STANDARDS and APPROVALS			
6.1 UL Recognition Card (JDYX2 / E19180)			
Underwriters Laboratories Inc			
्रास्थल अन्त्र प्रथम संसर्भनात स्ट. उद्यात्रियों स्टाइ देखी द्वित है ते हैं। जन्म स्थल अन्त्र प्रथम संसर्भनात स्ट. उद्यात्रियों स्टाइ देखी द्वित है ते हैं।			
Cat. No. SFT, 0-5A, 125 ac/dc; Cat. No. SFT, 5.1-10A, 60 V ac/90 V	V de Cat No SET 12 EA 49 V an		
Cal. NO. 3210FF, 1/4-3A, 32 V ac. 63 V ac: Cat No. 3216FF 4-75A	V ac/de: Cat No 2216IV 0-154 125 V ac/de: Cat Na 2014 110000		
rated 0.2A, 125 V ac/dc; Cat. Nos. 1206CP, 1206FA, rated 0.25-3A, 32 Cat. No. 1608FF, 250 ma-4A, 24 V dc.	2 V dc.		
Cat. No. 0603FA, 0.25-5A, 24 V dc.			
Circuit protectors. Cat. No. 3216CP, 1/4-5A, 24 V dc, 4-5A, 32 V a. Cat. No. ETF, 0.080-6.3A, 250 V ac.	ic, 32 dc.		
Micro. Cat. No. EFF, 0.05-6.3A, 250 V ac. Cat. No. TEL, 350 MA, 600 V dc.			
Telecom circuit protectors, Cat. No. TCP, rated 500 mA-1,25A, 250) V ac 600 V ac; Cat. No. TCP2A, rated 2A, 250V ac. 600V ac.		
+These fuses may be provided with the suffix letter "B" after the c Marking: Company name or trademark "Buss", rating and catalog	Catalog number and before the arms refine		
o and the second s	, or type designation on smallest snipping container.		
See General Information Preceding These Recognitions			
For use only in equipment where the acceptability of the combinat	tion is determined by Underwriters Laboratories Inc		
	· · · · · · · · · · · · · · · · · · ·		
	· · · · ·		
579980001 Page 2	of 2 JDYX2/E19180		
	January 2, 2001		
	, <i>j/ #</i> 002		
6.1.1 Marking The UL Recognition symbol appears on the label affixed to the packaging container.			
This bulletin is intended to clearly present comprehensive are dust data and	ide technical information that will belo the and upper with desire		
This bulletin is intended to clearly present comprehensive product data and provi applications. Bussmann reserves the right, without notice, to change design or c			
any products. Bussmann also reserves the right to change or update, without no product has been selected, it should be tested by the user in all possible application	otice, any technical information contained in this bulletin. Once a		

6.2 CSA 2	2A is approve	Acceptance C ed, but the car	rd has not be	en update	4) d				
·	A						<u> </u>		
	<u>U</u>					Certificatio		No: 053787 Class No: 142	
	ТСР		mA - 1.25A ac max	250% -	2 min		-50A, 1.0pF -40A, 1.0pF		
	KAA	0-30A	A, 130V ac	-		IR130-			
1	Notes:								
:	 NOT FOR I Short circuit 	BRANCH CIRCU t ratings are or ma	IT WIRING OF ty be other than	R PROTECTIO	DN. Must be Table 4 of	e evaluated in CSA Std No	n the end us 59.2.	e application.	
1	Raj								
- - 									
1 1 1				· · · ·				•	
				Page 3			DQD	No. 548-Rev B	
						e packagi			

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 13 of 18

7. MARKING SPECIFICATION


7.1 A two letter alpha code will be marked on the body of the fuse. The first letter will indicate the ampere rating. The second letter will indicate the manufacturing facility.

7.1.1 Table of alpha code marking

Ampere	1st position
Rating	alpha code
TCP500mA	F
TCP1.25A	J
TCP2A	N

Manufacturing	2nd position
Facility Location	alpha code
USA	u
Taiwan	t
China	S
Costa Rica	С

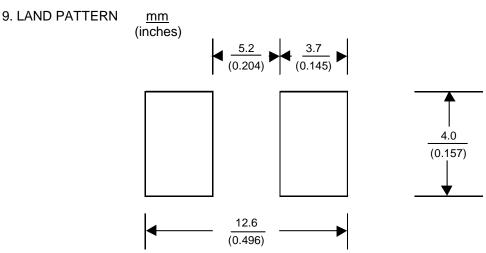
7.1.2 Example of a TCP1.25A manufactured in the USA.

J = 1.25A u = manufactured in USA

8. SOLDERING METHOD

8.1 Wave Immersion

8.1.1 Reservoir Temperature: 260° C (500°F)

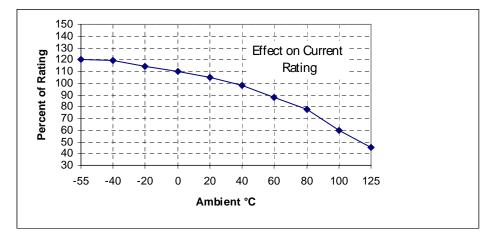

8.1.2 Time in Reservoir: 3 Seconds Maximum

8.2 Infrared

8.2.1 Temperature: 240° C (464 °F)

8.2.2 Time: 30 Seconds Maximum

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 14 of 18

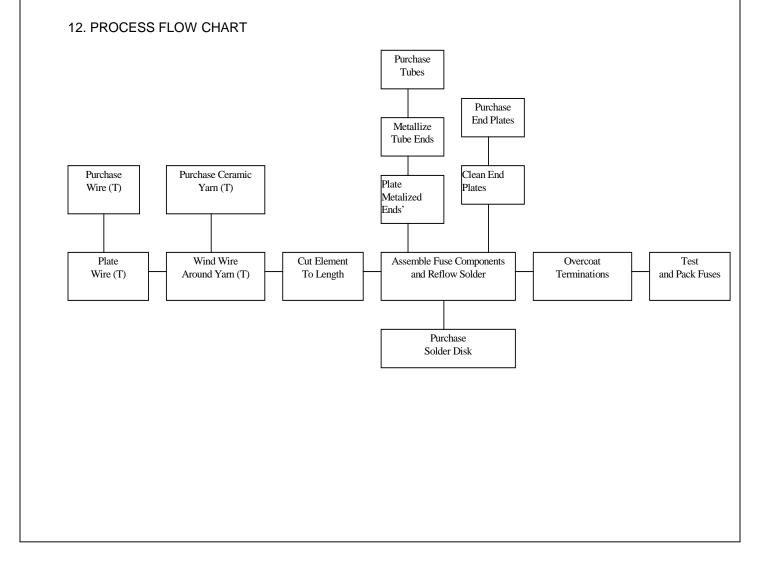


10. TEMPERATURE DERATING CURVE

10.1 Normal Operating Temperature: 25°C ± 2°C (77 °F ± 3.6 °F)

10.2 Maximum Operating Temperature: -55°C to 125°C with proper correction factor applied

10.2.2 Chart of correction factor for TCP500mA and TCP1.25A


10.2.3 Chart of correction factor for TCP2A to be created

10.3 Storage Temperature: -55°C to 125°C (-67° F to 185°F)

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 15 of 18

11. PACKAGING SPECIFICATION

- 11.1 SP1/: 10 pieces of fuses on 24mm tape, 8 mm pitch per EIA Standard 481, packaged in a plastic bag
- 11.2 SP2/: 50 pieces of fuses on 24mm tape, 8 mm pitch per EIA Standard 481, packaged in a plastic box
- 11.3 TR1/: 1000 pieces of fuses on 24mm tape and reeled on a 13 inch (330 mm) reel per EIA Standard 481, 8 mm pitch
- 11.4 TR2/: 2500 pieces of fuses on 24mm tape and reeled on a 13 inch (330 mm) reel per EIA Standard 481, 8 mm pitch

Title: Engineering Product Specification Telecom Circuit Protector	Revisio	n: L			
Printed on: 7/14/2003	Sheet	16	of	18	
13. ENVIRONMENTAL (RELIABILITIY / QUALIFICATION) DAT	A				
13.1 Life Test: MIL-STD-202, Method 108A, Test Condition D					
 13.2 Load Humidity Test: MIL-STD-202, Method 103B except: 13.2.1 Environmental chamber 85%+2% relative 13.2.2 100% of rated DC current, at any voltage la 13.2.3 At 168h, 504h, and completion of test, the after temperature stabilization. Change in and recorded. ΔR<10%. 13.2.4 After 1000 hours is completed, samples ar 13.2.5 One group is tested to the non-destructive complete, half of the samples are subject 	ess than power is n resista re split ir 100% C ted to th	n or equ s turned ince fro nto two Current e Maxir	al to rate d off. Re om the or equal lot Carry Te mum Cui	sistance re iginal value s. est. After c rrent Carry	eadings are taken e is calculated surrent carry test is Test with the
remaining samples subjected to the Time 13.2.6 The other group is tested to the destructive					neration.
 13.3 Moisture Resistance Test: MIL-STD-202, Method 106E except: 13.3.1 Samples are placed in a temperature/mois 13.3.2 Temperature and humidity measurements 13.3.3 At the completion of 50 cycles. Samples are stabilized at 25°C±5°C for a The change in resistance from the origina 13.3.4 One cycle is: Start at 90-100% RH and 25°±2°C Ramp up to 65°C±2°C within 2 ½ hour Remain at 65°C±2°C for 3 hours Ramp down to 25°C±2°C within 2 ½ hour Remain at 65°C±2°C for 3 hours Remain at 65°C±2°C for 3 hours Remain at 65°C±2°C for 3 hours 13.3.5 Samples are split into two equal lots 13.3.6 One set is tested to the non-destructive 10 	are reco minimu al value s urs with hours with ours with 90-100%	orded a im of 1 is calcu 80-100 vith 90- n 80-10 5 RH	it 0 cycle 5 minute: ilated an 0% RH 100% RI 0% RH	s, 25 cycle s and a ma d recorded H	s, and 50 cycles. aximum of 24 hours. I. ΔR <10%,
are subjected to the Time Current Charac 13.3.7 The other set is subjected to the destructiv	cteristic	Curve (Generati	on.	
13.4 Terminal Strength Test: Downward force is applied to cause a 1mm deflect or physical damage, change in resistance < 5%)	ction for	1 minu	ite (no pł	nysical evic	lence of mechanical

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 17 of 18

13.5 Thermal Shock Test:

MIL-STD-202, Method 107D, air-to-air except:

13.5.1 Samples are placed in a temperature chamber and subjected to 200 air-to-air cycles of the following:

- 1) Hold -55°C+2°C for 30+5 minutes
- 2) Transfer to 125°C+2°C within 0.5 minutes
- 3) Hold 125°C±2°C for 30±5 minutes
- 4) Transfer to -55°C±2°C within 0.5 minutes
- 5) Repeat cycle 200 times
- 13.5.2 At completion of 200 cycles, resistance readings taken after temperature stabilization (25°C±5°C for 15 minutes minimum to 24 hours maximum)
- 13.5.3 Samples divided into two equal lots of twenty
- 13.5.4 One set is tested to the non-destructive 100% current carry test. After completion, the samples are subjected to the Time Current Characteristic Curve Generation.
- 13.5.5 The other set is subjected to the destructive Current Overload Test.

13.6 Maximum Current Carry Test

- 13.6.1 Performed after the non-destructive Load Humidity and 100% Current Carry Tests (same samples used)
- 13.6.2 At the completion of the 100% Current Carry Test, the current is increased by 10% of the current rating of the fuse. Increase occurs every 15 minutes until the fuse opens. Temperature is monitored constantly.
- 13.7 Case Resistance Test EIS/IS-722
- 13.8 Resistance to Dissolution of Metallization Test ANSI J-STD-002, Test D
- 13.9 Mechanical Shock Test

MIL-STD-202, Method 213B, Test Condition A, except:

- 13.9.1 Test boards mounted to a shock test fixture, which in turn was mounted to the table of the shock machine.
- 13.9.2 Shock machine calibrated for the required shock pulse.
- 13.9.3 Samples subjected to eighteen impacts, three impacts in each of the three mutually perpendicular axis. Each shock pulse approximated a half-sine wave shape with a magnitude of 50 g's for 11±1 milliseconds.
- 13.9.4 High frequency vibration test is performed after the mechanical shock test is completed. After the high-frequency vibration test, the samples undergo the 100% current carry test and the Current overload tests.

Title: Engineering Product Specification Telecom Circuit Protector	Revision: L
Printed on: 7/14/2003	Sheet 18 of 18

13.10 High Frequency Vibration Test

- MIL-STD-202, Method 204D, Test Condition D, except:
- 13.10.1 Test boards mounted to a shock test fixture, which in turn was mounted to the table of the shock machine.
- 13.10.2 Samples subjected to a simple harmonic motion having an amplitude of 20g peak \pm 20%.

13.10.3 Vibration frequency is varied logarithmically from 10 to 2,000 Hz.

13.10.4 Cycle is performed 12 times in each of the three mutually perpendicular directions.

13.10.5 At the completion of the last cycle, resistance readings are taken after temperature stabilization. The change in resistance from the original value is calculated and recorded.

13.10.6 After the vibration test is completed, the samples undergo the non-destructive 100% current carry test and then the destructive Current Overload Test.

13.11 Resistance to Solvents Test MIL-STD-202, Method 215A

Note:

Due to the similarities of constructions for TCP1.25A and TCP2A, environmental tests were performed on TCP1.25A only.

14. END

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com