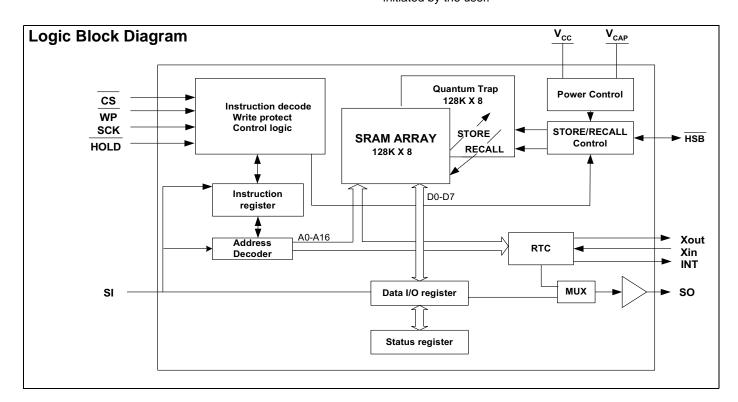


1 Mbit (128K x 8) Serial SPI nvSRAM with Real Time Clock


Features

- 1 Mbit NonVolatile SRAM
 - □ Internally organized as 128K x 8
 - □ STORE to QuantumTrap[®] nonvolatile elements initiated automatically on power down (AutoStore[®]) or by user using HSB pin (Hardware Store) or SPI instruction (Software Store)
 - □ RECALL to SRAM initiated on power up (Power Up Recall®) or by SPI Instruction (Software Recall)
 - Automatic STORE on power down with a small capacitor
- High Reliability
 - □ Infinite Read, Write, and RECALL cycles
 - □ 200,000 STORE cycles to QuantumTrap
 - □ Data Retention: 20 Years
- Real Time Clock
 - □ Full featured Real Time Clock
 - Watchdog timer
 - Clock alarm with programmable interrupts
 - □ Capacitor or battery backup for RTC
 - □ Backup current of 300 nA
- High Speed Serial Peripheral Interface (SPI)
 - □ 40 MHz Clock rate RTC Read at 25 MHz
 - □ Supports SPI Modes 0 (0,0) and 3 (1,1)

- Write Protection
 - ☐ Hardware Protection using Write Protect (WP) Pin
- □ Software Protection using Write Disable Instruction
- □ Software Block Protection for 1/4, 1/2, or entire Array
- Low Power Consumption
 - □ Single 3V +20%, -10% operation
 - □ Average Vcc current of 10 mA at 40 MHz operation
- Industry Standard Configurations
 - Commercial and industrial temperatures
 - □ 16-pin SOIC Package
- □ RoHS compliant

Overview

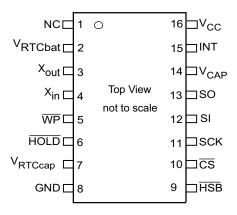
The Cypress CY14B101P combines a 1 Mbit nonvolatile static RAM with full featured real time clock in a monolithic integrated circuit with serial SPI interface. The memory is organized as 128K words of 8 bits each. The embedded nonvolatile elements incorporate the QuantumTrap technology, creating the world's most reliable nonvolatile memory. The SRAM provides infinite read and write cycles, while the QuantumTrap cells provide highly reliable nonvolatile storage of data. Data transfers from SRAM to the nonvolatile elements (STORE operation) takes place automatically at power down. On power up, data is restored to the SRAM from the nonvolatile memory (RECALL operation). The STORE and RECALL operations can also be initiated by the user.

Cypress Semiconductor Corporation

Document #: 001-44109 Rev. *B

198 Champion Court

San Jose, CA 95134-1709


408-943-2600

Revised February 2, 2009

Pinouts

Figure 1. Pin Diagram - 16-Pin SOIC

Table 1. Pin Definitions

Pin Name	I/O Type	Description
CS	Input	Chip Select . Activates the device when pulled LOW. Driving this pin HIGH puts the device in low power standby mode.
SCK	Input	Serial Clock . Runs at speeds up to a maximum of 25 MHz. All inputs are latched at the rising edge of this clock. Outputs are driven at the falling edge of the clock.
SI	Input	Serial Input. Pin for input of all SPI instructions and data.
SO	Output	Serial Output. Pin for output of data through SPI.
WP	Input	Write Protect. Implements hardware write protection in SPI.
HOLD	Input	HOLD Pin. Suspends Serial Operation.
HSB	Input/Output	Hardware Store Busy: A weak internal pull up keeps this pin pulled HIGH. If not used, this pin is left as No Connect. Output: Indicates busy status of nvSRAM when LOW. Input: Hardware Store implemented by pulling this pin LOW externally.
V _{CAP}	Power Supply	AutoStore Capacitor . Supplies power to the nvSRAM during power loss to STORE data from the SRAM to nonvolatile elements. If AutoStore is not needed, this pin must be left as No Connect. It must never be connected to GND.
V _{RTCcap}	Power Supply	Capacitor Backup for RTC. Left unconnected if V _{RTCbat} is used.
V _{RTCbat}	Power Supply	Battery Backup for RTC. Left unconnected if V _{RTCcap} is used.
Xout	Output	Crystal Output connection. Drives crystal on start up.
Xin	Input	Crystal Input connection. For 32.768 kHz crystal.
INT	Output	Interrupt Output. Programmable to respond to the clock alarm, the watchdog timer, and the power monitor. Also programmable to either active HIGH (push or pull) or LOW (open drain).
NC	No Connect	No Connect. This pin is not connected to the die.
GND	Power Supply	Ground
V _{CC}	Power Supply	Power Supply (2.7-3.6V)

Device Operation

CY14B101P is a 1-Mbit nvSRAM memory with integrated RTC and SPI interface. All the reads and writes to nvSRAM happen to the SRAM which gives nvSRAM the unique capability to handle infinite writes to the memory. The data in SRAM is secured by a STORE sequence that transfers the data in parallel to the nonvolatile Quantum Trap cells. A small capacitor (V_{CAP}) is used to AutoStore the SRAM data in nonvolatile cells when power goes down providing power down data security. The Quantum Trap nonvolatile elements built in the reliable SONOS technology make nvSRAM the ideal choice for secure data storage.

In CY14B101P, the 1-Mbit memory array is organized as 128K words x 8 bits. The memory is accessed through a standard SPI interface that enables very high clock speeds upto 40 MHz with zero delay read and write cycles. CY14B101P supports SPI modes 0 and 3 (CPOL, CPHA = 0, 0 & 1, 1) and operates as SPI slave. The device is enabled using the Chip Select pin (CS) and accessed through Serial Input (SI), Serial Output (SO), and Serial Clock (SCK) pins.

CY14B101P provides the feature for hardware and software write protection through WP pin and WRDI instruction. CY14B101P also provides mechanisms for block write protection (1/4, 1/2, or full array) using BP0 and BP1 pins in the status register. Further, the HOLD pin is used to suspend any serial communication without resetting the serial sequence.

CY14B101P uses the standard SPI opcodes for memory access. In addition to the general SPI instructions for read and write, CY14B101P provides four special instructions that allow access to four nvSRAM specific functions: STORE, RECALL, AutoStore Disable (ASDISB), and AutoStore Enable (ASENB).

The major benefit of nvSRAM SPI over serial EEPROMs is that all reads and writes to nvSRAM are performed at the speed of SPI bus with zero cycle delay. Therefore, no wait time is required after any of the memory accesses. The STORE and RECALL operations need finite time to complete and all memory accesses are inhibited during this time. While a STORE or RECALL operation is in progress, the busy status of the device is indicated by the Hardware Store Busy (HSB) pin and also reflected on the RDY bit of the Status Register.

SRAM Write

All writes to nvSRAM are carried out on the SRAM and do not use up any endurance cycles of the nonvolatile memory. This enables user to *perform infinite* write operations. A write cycle is performed through the SPI WRITE instruction. The WRITE instruction is issued through the SI pin of the nvSRAM and consists of the WRITE opcode, 3 bytes of address and 1 byte of data. Writes to nvSRAM is done at SPI bus speed with zero cycle delay.

CY14B101P allows burst mode writes to be performed through SPI. This enables write operations on consecutive addresses without issuing a new WRITE instruction. When the last address in memory is reached in burst mode, the address rolls over to 0x0000 and the device continues to write.

The SPI write cycle sequence is defined in the Memory Access section of SPI Protocol Description.

SRAM Read

A read cycle in CY14B101P is performed at the SPI bus speed and the data is read out with zero cycle delay after the READ instruction is performed. The READ instruction is issued through the SI pin of the nvSRAM and consists of the READ opcode and 3 bytes of address. The data is read out on the SO pin.

CY14B101P allows burst mode reads to be performed through SPI. This enables reads on consecutive addresses without issuing a new READ instruction. When the last address in memory is reached in burst mode read, the address rolls over to 0x0000 and the device continues to read.

The SPI read cycle sequence is defined in the Memory Access section of SPI Protocol Description

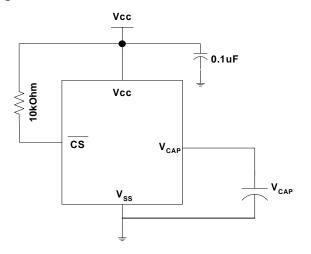
STORE Operation

STORE operation transfers the data from the SRAM to the nonvolatile Quantum Trap cells. The CY14B101P STOREs data to the nonvolatile cells using one of the three STORE operations: AutoStore, activated on device power down; Software Store, activated by a STORE instruction in the SPI; and Hardware Store, activated by the HSB. During the STORE cycle, an erase of the previous nonvolatile data is first performed, followed by a program of the nonvolatile elements. After a STORE cycle is initiated, further input and output are disabled until the cycle is completed.

The HSB signal or the RDY bit in the Status register can be monitored by the system to detect if a STORE cycle is in progress. The busy status of nvSRAM is indicated by HSB being pulled LOW or RDY bit being set to '1'. To avoid unnecessary nonvolatile STOREs, AutoStore and Hardware Store operations are ignored unless at least one write operation has taken place since the most recent STORE or RECALL cycle. However, software initiated STORE cycles are performed regardless of whether a write operation has taken place.

AutoStore Operation

The AutoStore operation is a unique feature of nvSRAM which automatically stores the SRAM data to QuantumTrap during power down. This STORE mechanism is implemented using a capacitor (V_{CAP}) and enables the device to safely STORE the data in the nonvolatile memory when power goes down.


During normal operation, the device draws current from V_{CC} to charge the capacitor connected to the V_{CAP} pin. When the voltage on the V_{CC} pin drops below V_{SWITCH} during power down, the device inhibits all memory accesses to nvSRAM and automatically performs a conditional STORE operation using the charge from the V_{CAP} capacitor. The AutoStore operation is not initiated if no write cycle has been performed since last RECALL.

During power down, the memory accesses are inhibited after the voltage on V_{CC} pin drops below $V_{SWITCH}.$ To avoid inadvertent writes, ensure that \overline{CS} is not left floating prior to this event. Therefore, during power down the device must be deselected and \overline{CS} must be allowed to follow $V_{CC}.$

Figure 2 shows the proper connection of the storage capacitor (V_{CAP}) for AutoStore operation. Refer to DC Electrical Characteristics on page 22 for the size of the V_{CAP}

Figure 2. AutoStore Mode

Software Store Operation

Software Store allows the user to trigger a STORE operation through a special SPI instruction. This operation is initiated irrespective of whether a write has been performed since last nv operation.

A STORE cycle takes t_{STORE} time to complete, during <u>whi</u>ch all the memory accesses to nv<u>SRA</u>M are inhibited. The RDY bit of the Status register or the HSB pin may be polled to find the Ready/Busy status of the nvSRAM. After the t_{STORE} cycle time is completed, the SRAM is activated again for read and write operations.

Hardware Store and HSB pin Operation

The HSB pin in CY14B101P is used to control and acknowledge STORE operations. If no STORE/RECALL is in progress, this pin can be used to request a Hardware Store cycle. When the HSB pin is driven LOW, the CY14B101P conditionally initiates a STORE operation after t_{DELAY} duration. An actual STORE cycle starts only if a write to the SRAM has been performed since the last STORE or RECALL cycle. Reads and Writes to the memory are inhibited for t_{STORE} duration or as long as HSB pin is LOW.

The $\overline{\text{HSB}}$ pin also acts as an open drain driver that is internally driven LOW to indicate a busy condition, when a STORE cycle (initiated by any means) or Power up Recall is in progress. Upon completion of the STORE operation, CY14B101P remains disabled until the HSB pin returns HIGH. HSB pin must be left unconnected if not used.

RECALL Operation

A RECALL operation transfers the data stored in the nonvolatile Quantum Trap elements to the SRAM. In CY14B101P, a RECALL may be initiated in two ways: Hardware Recall, initiated on power up; and Software Recall, initiated by a SPI RECALL instruction.

Internally, RECALL is a two step procedure. First, the SRAM data is cleared. Next, the nonvolatile information is transferred into the SRAM cells. All memory accesses are inhibited while a RECALL

cycle is in progress. The RECALL operation in no way alters the data in the nonvolatile elements.

Hardware Recall (Power Up)

During power up, when V_{CC} crosses V_{SWITCH} , an automatic RECALL sequence is initiated which transfers the content of nonvolatile memory on to the SRAM.

A Power Up Recall cycle takes t_{FA} time to <u>complete</u> and the memory access is disabled during this time. HSB pin is used to detect the Ready status of the device.

Software Recall

Software Recall allows the user to initiate a RECALL operation to restore the content of nonvolatile memory on to the SRAM. In CY14B101P, this can be done by issuing a RECALL instruction in SPI.

A Software Recall takes t_{RECALL} to complete during which all memory accesses to nvSRAM are inhibited. The controller must provide sufficient delay for the RECALL operation to complete before issuing any memory access instructions.

Disabling and Enabling AutoStore

If the application does not require the AutoStore feature, it can be disabled in CY14B101P by using the ASDISB instruction. If this is done, the nvSRAM does not perform a STORE operation at power down.

AutoStore can be re-enabled by using the ASENB instruction. However, these operations are not nonvolatile and if the user needs this setting to survive power cycle, a STORE operation must be performed following Autostore Disable or Enable operation.

Note CY14B101P comes from the factory with AutoStore Enabled.

Note If AutoStore is disabled and V_{CAP} is not required, it is recommended that the V_{CAP} pin is left open. V_{CAP} pin must never be connected to GND. Power Up Recall operation cannot be disabled in any case.

Serial Peripheral Interface

SPI Overview

The SPI is a four-pin interface with Chip Select ($\overline{\text{CS}}$), Serial Input (SI), Serial Output (SO), and Serial Clock (SCK) pins. CY14B101P provides serial access to nvSRAM through SPI interface. The SPI bus on CY14B101P can run at speeds up to 40 MHz for all instructions except RDRTC which runs at 25 MHz.

The SPI is a synchronous serial interface which uses clock and data pins for memory access and supports multiple devices on the data bus. A device on SPI bus is activated using the Chip Select pin.

The relationship between chip select, clock, and data is dictated by the SPI mode. CY14B101P supports SPI modes 0 and 3. In both these modes, data is clocked into the nvSRAM on the rising edge of SCK starting from the first rising edge after CS goes active.

The SPI protocol is controlled by opcodes. These opcodes specify the commands from the bus master to the slave device. After $\overline{\text{CS}}$ is activated the first byte transferred from the bus

master is the opcode. Following the opcode, any addresses and data are then transferred. The CS must go inactive after an operation is complete and before a new opcode can be issued.

The commonly used terms used in SPI protocol are given below:

SPI Master

The SPI Master device controls the operations on a SPI bus. An SPI bus may have only one master with one or more slave devices. All the slaves share the same SPI bus lines and master may select any of the slave devices using the Chip Select pin. All the operations must be initiated by the master activating a slave device by pulling the CS pin of the slave LOW. The master also generates the Serial Clock (SCK) and all the data transmission on SI and SO lines are synchronized with this clock.

SPI Slave

SPI slave device is activated by the master through the Chip Select line. A slave device gets the Serial Clock (SCK) as an input from the SPI master and all the communication is synchronized with this clock. SPI slave never initiates a communication on the SPI bus and acts on the instruction from the master.

CY14B101P operates as a slave device and may share the SPI bus with multiple CY14B101P devices or other SPI devices.

Chip Select (CS)

For selecting any <u>slave</u> device, the master needs to pull down the corresponding CS pin. <u>Any</u> instruction can be issued to a slave device only while the CS pin is LOW.

The CY14B101P is selected when the \overline{CS} pin is LOW. When the device is not selected, data through the SI pin is ignored and the serial output pin (SO) remains in a high impedance state.

Note A <u>new</u> instruction must begin with the falling edge of Chip Select (CS). Therefore, only one opcode can be issued for each active Chip Select cycle.

Serial Clock (SCK)

Serial clock is generated by the SPI master and the communication is synchronized with this clock after CS goes LOW.

CY14B101P allows SPI modes 0 and 3 for data communication. In both these modes, the inputs are latched by the slave device on the rising edge of SCK and outputs are issued on the falling edge. Therefore, the first rising edge of SCK signifies the arrival of first bit (MSB) of SPI instruction on the SI pin. Further, all data inputs and outputs are synchronized with SCK.

Data Transmission SI/SO

SPI data bus consists of two lines, SI and SO, for serial data communication. The SI is also referred to as MOSI (Master Out Slave In) and SO is referred to as MISO (Master In Slave Out). The master issues instructions to the slave through the SI pin, while slave responds through the SO pin. Multiple slave devices may share the SI and SO lines as described earlier.

CY14B101P has two separate pins for SI and SO which can be connected with the master as shown in Figure 3 on page 6.

Most Significant Bit (MSB)

The SPI protocol requires that the first bit to be transmitted is the Most Significant Bit (MSB). This is valid for both address and data transmission.

CY14B101P requires a 3-byte address for any read or write operation. However, since the actual address is only 17 bits, it implies that the first seven bits, which are fed in, are ignored by the device. Although these seven bits are 'don't care', Cypress recommends that these bits are treated as 0s to enable seamless transition to higher memory densities.

Serial Opcode

After the slave device is selected with $\overline{\text{CS}}$ going LOW, the first byte received is treated as the opcode for the intended operation.

CY14B101P uses the standard opcodes for memory accesses. In addition to the memory accesses, CY14B101P provides additional opcodes for the nvSRAM specific functions: STORE, RECALL, AutoStore Enable, and AutoStore Disable. Refer to Table 2 on page 7 for details on opcodes.

Invalid Opcode

If an invalid op-code is received, the op-code is ignored and the device ignores any additional serial data on the SI pin. and no valid data is sent out on the SO pin. Opcode for <u>a new</u> instruction is recognized only after the next falling edge of CS.

Status Register

CY14B101P has an 8-bit status register. The bits in the status register are used to configure the SPI bus. These bits are described in the Table 4 on page 8.

Document #: 001-44109 Rev. *B Page 5 of 32

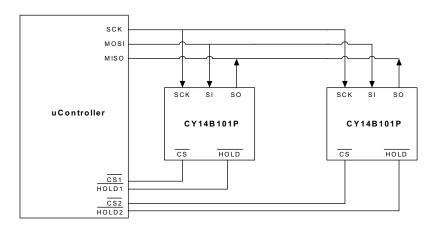
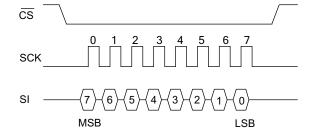


Figure 3. System Configuration Using SPI nvSRAM

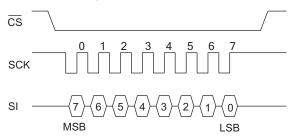

SPI Modes

CY14B101P device may be driven by a microcontroller with its SPI peripheral running in either of the following two modes:

- SPI Mode 0 (CPOL=0, CPHA=0)
- SPI Mode 3 (CPOL=1, CPHA=1)

For both these modes, input data is latched in on the rising edge of Serial Clock (SCK) starting from the first rising edge after CS goes active. If the clock starts from a HIGH state (in mode 3), the first rising edge after the clock toggles are considered. The output data is available on the falling edge of Serial Clock (SCK).

Figure 4. SPI Mode 0



The two SPI modes are shown in Figure 4 and Figure 5. The status of clock when the bus master is in Standby mode and not transferring data is:

- SCK remains at 0 for Mode 0
- SCK remains at 1 for Mode 3

CPOL and CPHA bits must be set in the SPI controller for the either Mode 0 or Mode 3. CY14B101P detects the SPI mode from the status of SCK pin when device is selected by bringing the CS pin LOW. If SCK pin is LOW when device is selected, SPI Mode 0 is assumed and if SCK pin is HIGH, CY14B101P works in SPI Mode 3.

Figure 5. SPI Mode 3

SPI Operating Features

Power Up

Power up is defined as the condition when the power supply is turned on and \underline{V}_{CC} crosses Vswitch voltage. During this time, the Chip Select (CS) must be enabled to follow the V_{CC} voltage. Therefore, CS must be connected to V_{CC} through a suitable pull up resistor. As a built in safety feature, Chip Select (CS) is both edge sensitive and level sensitive. After power up, the device is not selected until a falling edge is detected on Chip Select (CS). This ensures that Chip Select (CS) must have been HIGH, before going Low to start the first operation.

As described earlier, nvSRAM performs a Power Up Recall operation after power up and therefore, all memory <u>acce</u>sses are disabled for t_{RECALL} duration after power up. The HSB pin can be probed to check the ready/busy status of nvSRAM after power up.

Power On Reset

A Power On Reset (POR) circuit is included to prevent inadvertent writes. At power up, the device does not respond to any instruction until the V_{CC} reaches the Power On Reset threshold voltage (V_{SWITCH}). After V_{CC} transitions the POR threshold, the device is internally reset and performs a Power Up Recall operation. The device is in the following state after POR:

- Deselected (after Power up, a falling edge is required on Chip Select (CS) before any instructions are started).
- Standby Power mode
- Not in the Hold Condition
- Status register state:
 - □ Write Enable (WEN) bit is reset to 0.
 - □ WPEN, BP1, BP0 unchanged from previous power down

The WPEN, BP1, and BP0 bits of the Status Register are nonvolatile bits and remain unchanged from the previous power down.

Before selecting and issuing instructions to the memory, a valid and stable V_{CC} voltage must be applied. This voltage must remain valid until the end of the transmission of the instruction.

Power Down

At power down (continuous decay of V_{CC}), when V_{CC} drops from the normal operating voltage and below the V_{SWITCH} threshold voltage, the device stops responding to any instruction sent to it. If a write cycle is in progress during power down, it is allowed t_{DELAY} time to complete after Vcc transitions below V_{SWITCH} . After this, all memory accesses are inhibited and a conditional AutoStore operation is performed (AutoStore is not performed if no writes have happened since last RECALL cycle). This feature prevents inadvertent writes to nvSRAM from happening during power down.

However, to avoid the possibility of inadvertent writes during power down, ensure that the device is deselected and is in Standby Power Mode, and the Chip Select ($\overline{\text{CS}}$) follows the voltage applied on V_{CC} .

Active Power and Standby Power Modes

When Chip Select (CS) is LOW, the device is selected, and is in the Active Power mode. The device consumes I_{CC} current, as specified in DC Electrical Characteristics on page 22. When Chip Select (CS) is HIGH, the device is deselected and the device goes into the Standby Power mode if a STORE or RECALL cycle is not in progress. If a STORE/RECALL cycle is in progress, the device goes into the Standby Power Mode after the STORE/RECALL cycle is completed. In the Standby Power mode the current drawn by the device drops to I_{SB} .

SPI Functional Description

The CY14B101P uses an 8-bit instruction register. Instructions and their operation codes are listed in Table 2. All instructions, addresses, and data are transferred with the MSB first and start with a HIGH to LOW CS transition. There are, in all, 12 SPI instructions which provide access to most of the functions in nvSRAM. Further, the WP and HOLD pins provide additional functionality driven through hardware.

Table 2. Instruction Set

Instruction Category	Instruction Name	Opcode	Operation	
	WREN	0000 0110	Set Write Enable Latch	
Status Register	WRDI	0000 0100	Reset Write Enable Latch	
Instructions	RDSR	0000 0101	Read Status Register	
	WRSR	0000 0001	Write Status Register	
SRAM Read/Write	READ	0000 0011	Read Data From Memory Array	
Instructions	WRITE	0000 0010	Write Data To Memory Array	
RTC Read/Write	WRTC	0001 0010	Write RTC Registers	
Instructions	RDRTC	0001 0011	Read RTC Registers	
	STORE	0011 1100	Software Store	
Special NV	RECALL	0110 0000	Software Recall	
Instructions	ASENB	0101 1001	AutoStore Enable	
	ASDISB	0001 1001	AutoStore Disable	
Reserved	- Reserved -	0001 1110	Reserved for Internal use	

The SPI instructions in CY14B101P are divided based on their functionality in following types:

- □ Status Register Access: WRSR and RDSR instructions
- □ Write Protection Functions: WREN and WRDI instructions along with WP pin and WEN, BP0 and BP1 bits
- □ SRAM memory Access: READ and WRITE instructions
- □ RTC access: RDRTC and WRTC instructions
- nvSRAM special instructions: STORE, RECALL, ASENB and ASDISB

Document #: 001-44109 Rev. *B Page 7 of 32

Status Register

The status register bits <u>are</u> listed in Table 3. The status register consists of Ready bit (\overline{RDY}) and data protection bits BP1, BP0, WEN and WPEN. The \overline{RDY} bit can be polled to check the Ready/Busy status while a nvSRAM STORE cycle is in progress. The status register can be modified by WRSR instruc-

tion and read by RDSR instruction. However, only WPEN, BP1 and BP0 bits of the Status Register can be modified by using WRSR instruction. WRSR instruction has no effect on WEN and RDY bits. The default value shipped from the factory for BP1, BP2 and WPEN bits is '0'.

Table 3. Status Register Format

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WPEN (0)	X	X	X	BP1 (0)	BP0 (0)	WEN	RDY

Table 4. Status Register Bit Definition

Bit	Definition	Description
Bit 0 (RDY)	Ready	Read Only bit indicates the ready status of device to perform a memory access. This bit is set to "1" by the device while a STORE or Software Recall cycle is in progress.
Bit 1 (WEN)	Write Enable	WEN indicates if the device is write-enabled. Setting WEN = '1' enables writes and setting WEN = '0' disables all write operations
Bit 2 (BP0)	Block Protect bit '0'	Used for block protection. For details see Table 5 on page 9.
Bit 3 (BP1)	Block Protect bit '1'	Used for block protection. For details see Table 5 on page 9.
Bit 7(WPEN)	Write Protect Enable bit	Used for enabling the function of Write Protect Pin (WP). For details see Table 6 on page 10.

Read Status Register (RDSR) Instruction

The Read Status Register instruction provides access to the status register. This instruction is used to probe the Write <u>Ena</u>ble Status of the device or the Ready status of the device. RDY bit is set by the device to 1 whenever a STORE cycle is in progress. The Block Protection and WPEN bits indicate the extent of protection employed.

This instruction is issued after the falling edge of $\overline{\text{CS}}$ using the opcode for RDSR.

Write Status Register (WRSR) Instruction

The WRSR instruction enables the user to write to the Status register. However, this instruction cannot be used to modify bit 0 and bit 1 (WEN and RDY). The BP0 and BP1 bits can be used

to select one of four levels of block protection. Further, <u>WPEN</u> bit must be set to '1' to enable the use of Write Protect (WP) pin.

WRSR instruction is a write instruction and needs writes to be enabled (WEN bit set to '1') using the WREN instruction before it is issued. The instruction is issued after the falling edge of CS using the opcode for WRSR followed by eight bits of data to be stored in the Status Register. Since, only bits 2, 3, and 7 can be modified by WRSR instruction, it is recommended to leave the other bits as '0' while writing to the Status Register.

Note In CY14B101P, the values written to Status Register are saved to nonvolatile memory only after a STORE operation. If AutoStore is disabled, any modifications to the Status Register must be secured by using a Software STORE operation

Figure 6. Read Status Register (RDSR) Instruction Timing

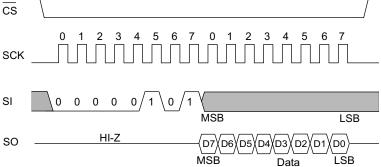
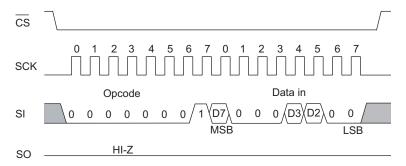
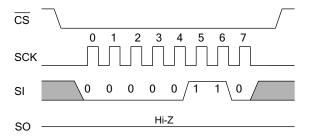



Figure 7. Write Status Register (WRSR) Instruction Timing

Write Protection and Block Protection

CY14B101P provides features for both software and hardware write protection using WRDI instruction and WP. Additionally, this device also provides block protection mechanism through BP0 and BP1 pins of the Status Register.

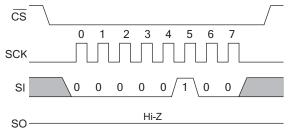

The write enable and disable status of the device is indicated by WEN bit of the status register. The write instructions (WRSR, WRITE, and WRTC) and nvSRAM special instruction (STORE, RECALL, ASENB, ASDISB) need the write to be enabled (WEN bit = 1) before they can be issued.

Write Enable (WREN) Instruction

On power up, the device is always in the write disable state. The following WRITE, WRSR, WRTC, or nvSRAM special instruction must therefore be preceded by a Write Enable instruction. If the device is not write enabled (WEN = '0'), it ignores the write instructions and returns to the standby state when CS is brought HIGH. A new CS falling edge is required to re-initiate serial communication. The instruction is issued following the falling edge of CS. When this instruction is used, the WEN bit of status register is set to '1'.

Note After completion of a write instruction (WRSR, WRITE, or WRTC) or nvSRAM special instruction (STORE, RECALL, ASENB, ASDISB) instruction, WEN bit is cleared to '0'. This is done to provide protection from any inadvertent writes. Therefore, WREN instruction needs to be used before a new write instruction can be issued.

Figure 8. WREN Instruction



Write Disable (WRDI) Instruction

Write Disable instruction disables the write by clearing the WEN bit to '0' in order to protect the device against inadvertent writes. This instruction is issued following the falling edge of CS followed

by opcode for WRDI instruction. The WEN bit is cleared on the rising edge of CS following a WRDI instruction.

Figure 9. WRDI Instruction

Block Protection

Block protection is provided using the BP0 and BP1 pins of the Status register. These bits can be set using WRSR instruction and probed using the RDSR instruction. The nvSRAM is divided into four array segments. One-quarter, one-half, or all of the memory segments can be protected. Any data within the protected segment is read only. Table 5 shows the function of Block Protect bits.

Table 5. Block Write Protect Bits

Level	Status Re	gister Bits	Array Addresses Protected				
Level	BP1	BP0	Array Addresses i Totected				
0	0	0	None				
1 (1/4)	0	1	0x18000-0x1FFFF				
2 (1/2)	1	0	0x10000-0x1FFFF				
3 (AII)	1	1	0x00000-0x1FFFF				

Hardware Write Protection (WP Pin)

The write <u>protect</u> pin (WP) is used to provide hardware write protection. WP pin allows all <u>normal</u> read and write operations when held HIGH. When the WP pin is brought LOW and WPEN bit is "1", all write operations to the status register are inhibited. The hardware write protection function is blocked when the WPEN bit is "0". This <u>allows</u> the user to install the CY14B101P in a system with the WP pin tied to ground, and still write to the status register.

WP pin can be used along with WPEN and Block Protect bits (BP1 and BP0) of the status register to inhibit writes to memory.

When $\overline{\text{WP}}$ pin is LOW and WPEN is set to "1", any modifications to status register are disabled. Therefore, the memory is protected by setting the BP0 and BP1 bits and the $\overline{\text{WP}}$ pin inhibits any modification of the status register bits, providing hardware write protection.

Note WP going LOW when \overline{CS} is still LOW has no effect on any of the ongoing write operations to the status register.

Table 6 summarizes all the protection features provided in the CY14B101P.

Table 6. Write Protection Operation

WPEN	WP	WEN	Protected Blocks	Unprotected Blocks	Status Register
Х	Х	0	Protected	Protected	Protected
0	Х	1	Protected	Protected Writable	
1	LOW	1	Protected	Writable	Protected
1	HIGH	1	Protected	Writable	Writable

Memory Access

All memory accesses are done using the READ and WRITE instructions. These instructions cannot be used while a STORE or RECALL cycle is in progress. A STORE cycle in progress is indicated by the RDY bit of the status register and the HSB pin.

Read Sequence (READ)

The read operations on CY14B101P are performed by giving the instruction on Serial Input pin (SI) and reading the output on Serial Output (SO) pin. The following sequence needs to be followed for a read operation: After the CS line is pulled LOW to select a device, the read opcode is transmitted through the SI line followed by three bytes of address. The Most Significant address byte contains A16 in bit 0 and other bits as don't cares. Address bits A15 to A0 are sent in the following two address bytes. After the last address bit is transmitted on the SI pin, the

data (D7-D0) at the specific address is shifted out on the SO line on the falling edge of SCK. Any other data on SI line after the last address bit is ignored.

CY14B101P allows reads to be performed in bursts through SPI which can be used to read consecutive addresses without issuing a new READ instruction. If only one byte is to be read, the CS line must be driven HIGH after one byte of data comes out. However, the read sequence may be continued by holding the CS line LOW and the address is automatically incremented and data continues to shift out on SO pin. When the last data memory address (0x1FFFF) is reached, the address rolls over to 0x0000 and the device continues to read.

Write Sequence (WRITE)

The write operations on CY14B101P are performed through the Serial Input (SI) pin. To perform a write operation CY14B101P, if the device is write disabled, then the device must first be write enabled through the WREN instruction. When the writes are enabled (WEN = '1'), WRITE instruction is issued after the falling edge of CS. A WRITE instruction constitutes transmitting the WRITE opcode on SI line followed by 3-bytes address sequence and the data (D7-D0) which is to be written. The Most Significant address byte contains A16 in bit 0 with other bits being don't cares. Address bits A15 to A0 are sent in the following two address bytes.

CY14B101P allows writes to be performed in bursts through SPI which can be used to write consecutive addresses without issuing a new WRITE instruction. If only one byte is to be written, the CS line must be driven HIGH after the D0 (LSB of data) is transmitted. However, if more bytes are to be written, CS line must be held LOW and address incremented automatically. The following bytes on the SI line are treated as data bytes and written in the successive addresses. When the last data memory address (0x1FFFF) is reached, the address rolls over to 0x0000 and the device continues to write.

The WEN bit is reset to "0" on completion of a WRITE sequence.

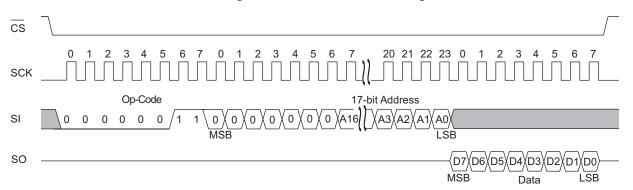


Figure 10. Read Instruction Timing

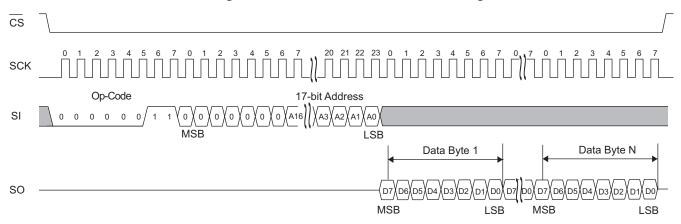


Figure 12. Write Instruction Timing

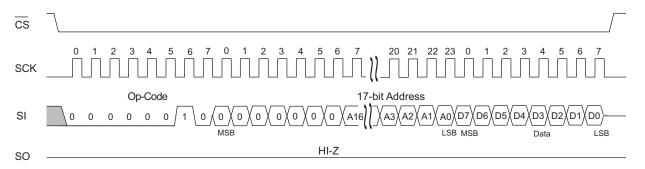
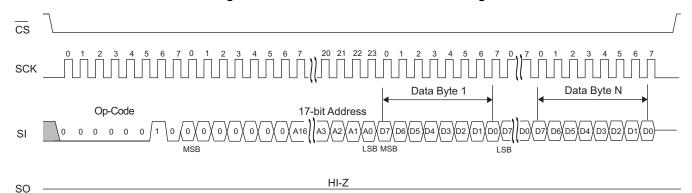
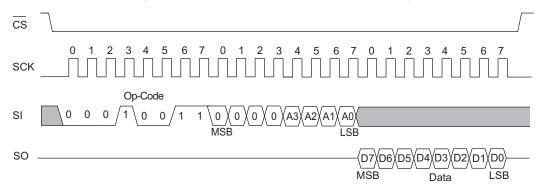



Figure 13. Burst Mode Write Instruction Timing

READ RTC (RDRTC) Instruction

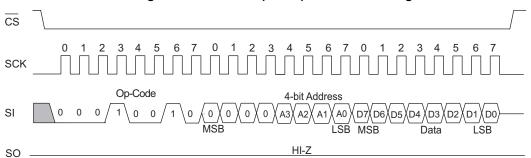
Read RTC (RDRTC) instruction allows the user to read the contents of RTC registers. Reading the RTC registers through the <u>ser</u>ial output (SO) pin requires the following sequence: After the CS line is pulled LOW to select a device, the RDRTC opcode is transmitted through the SI line followed by eight address bits for selecting the register. Any data on the SI line after the address bits is ignored. The data (D7-D0) at the specified address is then shifted out onto the SO line. RDRTC also allows burst mode read operation. When reading multiple bytes from RTC registers, the address rolls over to 0x00 after the last RTC register address (0x0F) is reached.


The R bit in RTC Flag register must be set to '1' before reading RTC time keeping registers to avoid reading transitional data. Modifying the RTC Flag registers requires a Write RTC cycle. The R bit must be cleared to '0' after completion of the read operation.

The easiest way to read RTC registers is to perform RDRTC in burst mode. The read may start from the first RTC register (0x00) and the CS must be held LOW to allow the data from all 16 RTC registers to be transmitted through the SO pin.

Note Read RTC instruction operates at a maximum clock frequency of 25 MHz.

Figure 14. Read RTC (RDRTC) Instruction Timing


WRITE RTC (WRTC) Instruction

WRITE RTC (WRTC) instruction allows the user to modify the contents of RTC registers. The WRTC instruction requires the WEN bit to be set to '1' before it can be issued. If WEN bit is '0', a WREN instruction needs to be issued before using WRTC. Writing RTC registers requires the following sequence: After the CS line is pulled LOW to select a device, WRTC opcode is transmitted through the SI line followed by eight address bits identifying the register which is to be written to and one or more bytes

of data. WRTC allows burst mode write operation. When writing more than one registers in burst mode, the address rolls over to 0x00 after the last RTC address (0x0F) is reached.

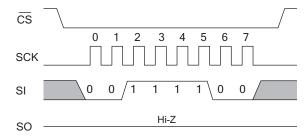
Note that writing to RTC timekeeping and control registers require the W bit to be set to '1'. The values in these RTC registers take effect only after the W bit is cleared to '0'. Write Enable bit (WEN) is automatically cleared to '0' after completion of the WRTC instruction.

Figure 15. Write RTC (WRTC) Instruction Timing

nvSRAM Special Instructions

CY14B101P provides four special instructions that allow access to the nvSRAM specific functions: STORE, RECALL, ASDISB, and ASENB. Table 7 lists these instructions.

Table 7. nvSRAM Special Instructions


Function Name	Opcode	Operation	
STORE	0011 1100	Software Store	
RECALL	0110 0000	Software Recall	
ASENB	0101 1001	AutoStore Enable	
ASDISB	0001 1001	AutoStore Disable	

Software Store (STORE)

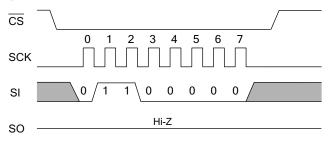
When a STORE instruction is executed, CY14B101P performs a Software Store operation. The STORE operation is issued

irrespective of whether a write has taken place since last STORE or RECALL operation.

Figure 16. Software STORE Operation

To issue this instruction, the device must be write enabled (WEN bit = '1'). The instruction is performed by transmitting the STORE opcode on the SI pin following the falling edge of \overline{CS} . The WEN

Document #: 001-44109 Rev. *B Page 12 of 32

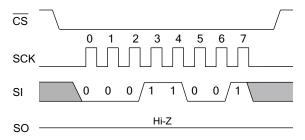

bit is cleared on the positive edge of \overline{CS} following the STORE instruction.

Software Recall (RECALL)

When a RECALL instruction is executed, CY14B101P performs a Software Recall operation. To issue this instruction, the device must be write enabled (WEN = '1').

The instruction is performed by transmitting the RECALL opcode on the SI pin following the falling edge of CS. The WEN bit is cleared on the positive edge of CS following the RECALL instruction.

Figure 17. Software RECALL Operation

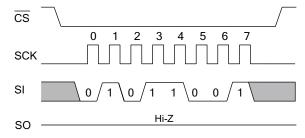


AutoStore Disable (ASDISB)

AutoStore is enabled by default in CY14B101P. The AutoStore Disable instruction disables the AutoStore on CY14B101P. This setting is not nonvolatile and needs to be followed by a STORE sequence if this is desired to survive power cycle.

To issue this instruction, the device must be write enabled (WEN = '1'). The instruction is performed by transmitting the ASDISB opcode on the SI pin following the falling edge of $\overline{\text{CS}}$. The WEN bit is cleared on the positive edge of $\overline{\text{CS}}$ following the ASDISB instruction.

Figure 18. AutoStore Disable Operation

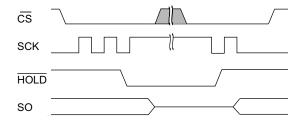

AutoStore Enable (ASENB)

The AutoStore Enable instruction enables the AutoStore on CY14B101P. This setting is not nonvolatile and needs to be followed by a STORE sequence if this is desired to survive power cycle.

To issue this instruction, the device must be write enabled (WEN = '1'). The instruction is performed by transmitting the ASENB opcode on the SI pin following the falling edge of CS. The WEN

bit is cleared on the positive edge of $\overline{\text{CS}}$ following the ASENB instruction.

Figure 19. AutoStore Enable Operation



HOLD Pin Operation

The HOLD pin is used to pause the serial communication. When the device is selected and a serial sequence is underway, HOLD is used to pause the serial communication with the master device without resetting the ongoing serial sequence. To pause, the HOLD pin must be brought LOW when the SCK pin is LOW. To resume serial communication, the HOLD pin must be brought HIGH when the SCK pin is LOW (SCK may toggle during HOLD). While the device serial communication is paused, inputs to the SI pin are ignored and the SO pin is in the high impedance state.

This pin can be used by the master with the CS pin to pause the serial communication by bringing the pin HOLD LOW and deselecting an SPI slave to establish communication with another slave device, without the serial communication being reset. The communication may be resumed at a later point by selecting the device and setting the HOLD pin HIGH.

Figure 20. HOLD Operation

Real Time Clock Operation

nvTIME Operation

The CY14B101P offers internal registers that contain clock, alarm, watchdog, interrupt, and control functions. The RTC registers occupy a separate address space from nvSRAM and are accessible through Read RTC (RDRTC) and Write RTC (WRTC) instructions on register addresses 0x00 to 0x0F. Internal double buffering of the clock and the timer information registers prevents accessing transitional internal clock data during a read or write operation. Double buffering also circumvents disrupting normal timing counts or the clock accuracy of the internal clock when accessing clock data. Clock and alarm registers store data in BCD format.

Clock Operations

The clock registers maintain time up to 9,999 years in one-second increments. The time can be set to any calendar time and the clock automatically keeps track of days of the week and month, leap years, and century transitions. There are eight registers dedicated to the clock functions, which are used to set time with a write cycle and to read time during a read cycle. These registers contain the time of day in BCD format. Bits defined as '0' are currently not used and are reserved for future use by Cypress.

Reading the Clock

The double buffered RTC register structure reduces the chance of reading incorrect data from the clock. The user must stop internal updates to the CY14B101P time keeping registers before reading clock data, to prevent reading of data in transition. Stopping the register updates does not affect clock accuracy.

The updating process is stopped by writing a '1' to the read bit 'R' (in the flags register at 0x00), and does not restart until a '0' is written to the read bit. The RTC registers are read while the internal clock continues to run. After a '0' is written to the read bit ('R'), all RTC registers are simultaneously updated within 20 ms.

Setting the Clock

Setting the write bit 'W' (in the flags register at 0x00) to a '1' stops updates to the time keeping registers and enables the time to be set. The correct day, date, and time is then written into the registers and must be in 24-hour BCD format. The time written is referred to as the "Base Time". This value is stored in nonvolatile registers and used in the calculation of the current time. Resetting the write bit to '0' transfers the values of timekeeping registers to the actual clock counters, after which the clock resumes normal operation.

If the time written to the timekeeping registers is not in the correct BCD format, each invalid nibble of the RTC registers continue counting to 0xF before rolling over to 0x0 after which RTC resumes normal operation.

Note The values entered in the timekeeping, alarm, calibration, and interrupt registers must be saved to nonvolatile memory by a STORE operation. Therefore, while working in AutoStore disabled mode, perform a STORE operation after writing into the RTC registers for the modifications to be correctly recorded.

Backup Power

The RTC in the CY14B101P is intended for permanently powered operation. The V_{RTCcap} or V_{RTCbat} pin is connected depending on whether a capacitor or battery is chosen for the application. When the primary power, V_{CC} , fails and drops below V_{SWITCH} the device switches to the backup power supply.

The clock oscillator uses very little current, which maximizes the backup time available from the backup source. Regardless of the clock operation with the primary source removed, the data stored in the nvSRAM is secure, having been stored in the nonvolatile elements when power was lost.

During backup operation, the CY14B101P consumes a maximum of 300 nanoamps at room temperature. The user must choose capacitor or battery values according to the application.

Backup time values based on maximum current specifications are shown in the following table. Nominal backup times are approximately two times longer.

Table 8. RTC Backup Time

Capacitor Value	Backup Time
0.1F	72 hours
0.47F	14 days
1.0F	30 days

Using a capacitor has the obvious advantage of recharging the backup source each time the system is powered up. If a battery is used, a 3V lithium is recommended and the CY14B101P sources current only from the battery when the primary power is removed. However, the battery is not recharged at any time by the CY14B101P. The battery capacity must be chosen for total anticipated cumulative down time required over the life of the system.

Stopping and Starting the Oscillator

The OSCEN bit in the calibration register at 0x08 controls the enable and disable of the oscillator. This bit is nonvolatile and is shipped to customers in the "enabled" (set to 0) state. To preserve the battery life when the system is in storage, OSCEN must be set to '1'. This turns off the oscillator circuit, extending the battery life. If the OSCEN bit goes from disabled to enabled, it takes approximately one second (two seconds maximum) for the oscillator to start.

While system power is off, If the voltage on the backup supply (V_{RTCcap} or V_{RTCbat}) falls below their respective minimum level, the oscillator may fail. The CY14B101P has the ability to detect oscillator failure when system power is restored. This is recorded in the OSCF (Oscillator Failed bit) of the flags register at the address 0x00. When the device is powered on (V_{CC} goes above V_{SWITCH}) the OSCEN bit is checked for "enabled" status. If the OSCEN bit is enabled and the oscillator is not active within the first 5 ms, the OSCF bit is set to "1". The system must check for this condition and then write '0' to clear the flag. Note that in addition to setting the OSCF flag bit, the time registers are reset to the "Base Time" (see Setting the Clock on page 14), which is the value last written to the timekeeping registers. The control or calibration registers and the OSCEN bit are not affected by the 'oscillator failed' condition.

The value of OSCF must be reset to '0' when the time registers are written for the first time. This initializes the state of this bit which may have become set when the system was first powered on.

To reset OSCF, set the write bit "W" (in the Flags register at 0x00) to a "1" to enable writes to the Flag register. Write a "0" to the OSCF bit and then reset the write bit to "0" to disable writes.

Calibrating the Clock

The RTC is driven by a quartz controlled crystal with a nominal frequency of 32.768 kHz. Clock accuracy depends on the quality of the crystal and calibration. The crystals available in market typically have an error of ±20 ppm to ±35 ppm. However, CY14B101P employs a calibration circuit that improves the accuracy to +1/–2 ppm at 25°C. This implies an error of +2.5 seconds to -5 seconds per month.

The calibration circuit adds or subtracts counts from the oscillator divider circuit to achieve this accuracy. The number of pulses that are suppressed (subtracted, negative calibration) or split (added, positive calibration) depends upon the value loaded into the five calibration bits found in Calibration register at 0x08. The calibration bits occupy the five lower order bits in the Calibration register. These bits are set to represent any value between '0' and 31 in binary form. Bit D5 is a sign bit, where a '1' indicates positive calibration and a '0' indicates negative calibration. Adding counts speeds the clock up and subtracting counts slows the clock down. If a binary '1' is loaded into the register, it corresponds to an adjustment of 4.068 or -2.034 ppm offset in oscillator error, depending on the sign.

Calibration occurs within a 64-minute cycle. The first 62 minutes in the cycle may, once per minute, have one second shortened by 128 or lengthened by 256 oscillator cycles. If a binary '1' is loaded into the register, only the first two minutes of the 64-minute cycle are modified. If a binary 6 is loaded, the first 12 are affected, and so on. Therefore, each calibration step has the effect of adding 512 or subtracting 256 oscillator cycles for every 125,829,120 actual oscillator cycles, that is, 4.068 or –2.034 ppm of adjustment per calibration step in the Calibration register.

To determine the required calibration, the CAL bit in the Flags register (0x00) must be set to '1'. This causes the INT pin to toggle at a nominal frequency of 512 Hz. Any deviation measured from the 512 Hz indicates the degree and direction of the required correction. For example, a reading of 512.01024 Hz indicates a +20 ppm error. Hence, a decimal value of -10 (001010b) must be loaded into the Calibration register to offset this error.

Note Setting or changing the Calibration register does not affect the test output frequency.

To set or clear CAL, set the write bit "W" (in the flags register at 0x00) to "1" to enable writes to the Flag register. Write a value to CAL, and then reset the write bit to "0" to disable writes.

Alarm

The alarm function compares user programmed values of alarm time and date (stored in the registers 0x01-5) with the corresponding time of day and date values. When a match occurs, the alarm internal flag (AF) is set and an interrupt is generated on INT pin if Alarm Interrupt Enable (AIE) bit is set.

There are four alarm match fields - date, hours, minutes, and seconds. Each of these fields has a match bit that is used to determine if the field is used in the alarm match logic. Setting the match bit to '0' indicates that the corresponding field is used in the match process. Depending on the match bits, the alarm occurs as specifically as once a month or as frequently as once every minute. Selecting none of the match bits (all 1s) indicates that no match is required and therefore, alarm is disabled. Selecting all match bits (all 0s) causes an exact time and date match.

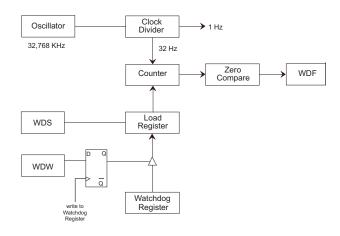
There are two ways to detect an alarm event: by reading the AF flag or monitoring the INT pin. The AF flag in the flags register at 0x00 indicates that a date or time match has occurred. The AF bit is set to "1" when a match occurs. Reading the flags register clears the alarm flag bit (and all others). A hardware interrupt pin may also be used to detect an alarm event.

To set, clear or enable an alarm, set the 'W' bit (in Flags Register - 0x00) to '1' to enable writes to Alarm Registers. After writing the alarm value, clear the 'W' bit back to "0" for the changes to take effect.

Note CY14B101P requires the alarm match bit for seconds (0x02 - D7) to be set to '0' for proper operation of Alarm Flag and Interrupt.

Watchdog Timer

The Watchdog Timer is a free running down counter that uses the 32 Hz clock (31.25 ms) derived from the crystal oscillator. The oscillator must be running for the watchdog to function. It begins counting down from the value loaded in the Watchdog Timer register.


The timer consists of a loadable register and a free running counter. On power up, the watchdog time out value in register 0x07 is loaded into the Counter Load register. Counting begins on power up and restarts from the loadable value any time the Watchdog Strobe (WDS) bit is set to '1'. The counter is compared to the terminal value of '0'. If the counter reaches this value, it causes an internal flag and an optional interrupt output. You can prevent the time out interrupt by setting WDS bit to '1' prior to the counter reaching '0'. This causes the counter to reload with the watchdog time out value and to be restarted. As long as the user sets the WDS bit prior to the counter reaching the terminal value, the interrupt and WDT flag never occur.

New time out values are written by setting the watchdog write bit to '0'. When the WDW is '0', new writes to the watchdog time out value bits D5-D0 are enabled to modify the time out value. When WDW is '1', writes to bits D5-D0 are ignored. The WDW function enables a user to set the WDS bit without concern that the watchdog timer value is modified. A logical diagram of the watchdog timer is shown in Figure 21 on page 16. Note that setting the watchdog time out value to '0' disables the watchdog function.

The output of the watchdog timer is the flag bit WDF that is set if the watchdog is allowed to time out. If the Watchdog Interrupt Enable (WIE) bit in the Interrupt register is set, a hardware interrupt on INT pin is also generated on watchdog timeout. The flag and the hardware interrupt are both cleared when user reads the Flags registers.

Figure 21. Watchdog Timer Block Diagram

Power Monitor

The CY14B101P provides a power management scheme with power fail interrupt capability. It also controls the internal switch to backup power for the clock and protects the memory from low V_{CC} access. The power monitor is based on an internal band gap reference circuit that compares the V_{CC} voltage to V_{SWITCH} threshold.

As described in the section "AutoStore Operation" on page 3, when V_{SWITCH} is reached as V_{CC} decays from power loss, a data store operation is initiated from SRAM to the nonvolatile elements, securing the last SRAM data state. Power is also switched from V_{CC} to the backup supply (battery or capacitor) to operate the RTC oscillator.

When operating from the backup source, read and write operations to nvSRAM are inhibited and the clock functions are not available to the user. The clock continues to operate in the background. The updated clock data is available to the user $t_{\mbox{HRECALL}}$ delay after $V_{\mbox{CC}}$ is restored to the device (see "AutoStore or Power Up RECALL" on page 26).

Interrupts

The CY14B101P has a Flags register, Interrupt register, and Interrupt logic that can signal interrupt to the microcontroller. There are three potential sources for interrupt: watchdog timer, power monitor, and alarm timer. Each of these can be individually enabled to drive the INT pin by appropriate setting in the Interrupt register (0x06). In addition, each has an associated flag bit in the Flags register (0x00) that the host processor uses to determine the cause of the interrupt. The INT pin driver has two bits that specify its behavior when an interrupt occurs.

An Interrupt is raised only if both a flag is raised by one of the three sources and the respective interrupt enable bit in Interrupts register is enabled (set to '1'). After an interrupt source is active, two programmable bits, H/L and P/L, determine the behavior of the output pin driver on INT pin. These two bits are located in the

Interrupt register and can be used to drive level or pulse mode output from the INT pin. In pulse mode, the pulse width is internally fixed at approximately 200 ms. This mode is intended to reset a host microcontroller. In the level mode, the pin goes to its active polarity until the Flags register is read by the user. This mode is used as an interrupt to a host microcontroller. The control bits are summarized in the following section.

Interrupts are only generated while working on normal power and are not triggered when system is running in backup power mode.

Note CY14B101P generates valid interrupts only after the Powerup Recall sequence is completed. All events on INT pin must be ignored for $t_{\rm FA}$ duration after powerup.

Interrupt Register

Watchdog Interrupt Enable - WIE. When set to '1', the watchdog timer drives the INT pin and an internal flag when a watchdog time out occurs. When WIE is set to '0', the watchdog timer only affects the WDF flag in Flags register.

Alarm Interrupt Enable - AIE. When set to '1', the alarm match drives the INT pin and an internal flag. When AIE is set to '0', the alarm match only affects the AF flag in Flags register.

Power Fail Interrupt Enable - PFE. When set to '1', the power fail monitor drives the pin and an internal flag. When PFE is set to '0', the power fail monitor only affects the PF flag in Flags register.

High/Low - H/L. When set to a '1', the INT pin is active HIGH and the driver mode is push pull. The INT pin drives high only when V_{CC} is greater than V_{SWITCH} . When set to a '0', the INT pin is active LOW and the drive mode is open drain. The INT pin must be pulled up to Vcc by a 10k resistor while using the interrupt in active LOW mode.

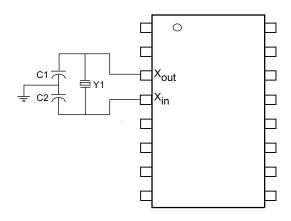
Pulse/Level - P/L. When set to a '1' and an interrupt occurs, the INT pin is driven for approximately 200 ms. When P/L is set to a '0', the INT pin is driven high or low (determined by H/L) until the Flags or Control register is read.

When an enabled interrupt source activates the INT pin, an external host reads the Flags registers to determine the cause. Remember that all flags are cleared when the register is read. If the INT pin is programmed for Level mode, then the condition clears and the INT pin returns to its inactive state. If the pin is programmed for Pulse mode, then reading the flag also clears the flag and the pin. The pulse does not complete its specified duration if the Flags register is read. If the INT pin is used as a host reset, the Flags register is not read during a reset.

Flags Register

The Flag register has three flag bits: WDF, AF, and PF, which can be used to generate an interrupt. These flags are set by the watchdog timeout, alarm match, or power fail monitor respectively. The processor can either poll this register or enable interrupts to be informed when a flag is set. These flags are automatically reset once the register is read. The flags register is automatically loaded with the value 0x00 on power up (except for the OSCF bit. See "Stopping and Starting the Oscillator" on page 14.)

Accessing the Real Time Clock through SPI

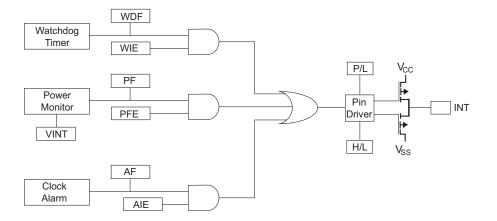

CY14B101P uses 16 registers for Real Time Clock (RTC). These registers can be read out or written to by accessing all 16 registers in burst mode or accessing each register, one at a time. The RDRTC and WRTC instructions are used to access the

All the RTC registers can be read in burst mode by issuing the RDRTC instruction and and reading all 16 bytes without bringing the CS pin HIGH. The 'R' bit must be set while reading the RTC

timekeeping registers to ensure that transitional values of time are not read.

Writes to the RTC register are performed using the WRTC instruction. Writing RTC timekeeping registers and control registers, except for the flag register needs the 'W' bit of the flag register to be set to "1". The internal counters are updated with the new date and time setting when the 'W' bit is cleared to '0'. All the RTC registers can also be written in burst mode using the WRTC instruction.

Figure 22. RTC Recommended Component Configuration



Recommended Values

Y1 = 32.768KHz $C_1 = 21pF$ $C_2 = 21pF$

Note: The recommended values for C1 and C2 include board trace capacitance.

Figure 23. Interrupt Block Diagram

WDF - Watchdog Timer Flag

WIE - Watchdog Interrupt

Enable

PF - Power Fail Flag

PFE - Power Fail Enable

AF - Alarm Flag

AIE - Alarm Interrupt Enable

P/L - Pulse Level

H/L - High/Low

Table 9. RTC Register $\mathrm{Map}^{[1,\,2]}$

Dominton				BCD For	mat Data			Function/Dense	
Register	D7	D6	D5	D4	D3	D2	D1	- Function/Range	
0x0F		10s \	Years	•		Yea	ars	•	Years: 00-99
0x0E	0	0	0	10s Months		Mor	nths		Months: 01–12
0x0D	0	0	10s Day	of Month		Day Of	Month		Day of Month: 01-31
0x0C	0	0	0	0	0		Day of wee	k	Day of week: 01–07
0x0B	0	0	10s H	lours	Hours			Hours: 00-23	
0x0A	0	1	0s Minute	S		Min	utes		Minutes: 00-59
0x09	0	1	0s Second	ls		Seco	onds		Seconds: 00-59
0x08	OSCEN (0)	0	Cal Sign (0)		Cali	bration (000	000)		Calibration Values [3]
0x07	WDS (0)	WDW (0)		l .	WDT (0	000000)			Watchdog ^[3]
0x06	WIE (0)	AIE (0)	PFE (0)	0	H/L (1)	P/L (0)	0	0	Interrupts ^[3]
0x05	M (1)	0	10s Ala	rm Date		Alarm	n Day	•	Alarm, Day of Month: 01-31
0x04	M (1)	0	10s Alar	m Hours		Alarm	Hours		Alarm, Hours: 00-23
0x03	M (1)	10	Alarm Minu	utes		Alarm N	Minutes		Alarm, Minutes: 00-59
0x02	M (1)	10 A	Alarm Seco	onds		Alarm, S	Seconds		Alarm, Seconds: 00-59
0x01		10s Ce	nturies			Cent	uries		Centuries: 00–99
0x00	WDF	AF	PF	OSCF	0	CAL (0)	W (0)	R (0)	Flags [3]

Note

- () designates values shipped from the factory.
 The unused bits of RTC registers are reserved for future use and should be set to '0'
 This is a binary value, not a BCD value.

Table 10. Register Map Detail

				Time Keepir	ng - Years						
0x0F	D7	D6	D5	D4	D3	D2	D1	D0			
	10s Years Years										
	Contains the lower two BCD digits of the year. Lower nibble (four bits) contains the value for years; upper nibble (four bits) contains the value for 10s of years. Each nibble operates from 0 to 9. The range for the register is 0–99.										
	,			Time Keeping							
	D7	D6	D5	D4	D3	D2	D1	D0			
0x0E	0	0	0	10s Month		I M	lonths				
			he month. Lower upper digit and			e lower digit a	nd operates fron	n 0 to 9; upp			
				Time Keepi	ng - Date						
	D7	D6	D5	D4	D3	D2	D1	D0			
0x0D	0	0	10s Day	of Month		Day	of Month				
CAGE	to 9; upper ni	BCD digits for the bble (two bits) comatically adju	the date of the m contains the 10s sted for.	onth. Lower nibled digit and opera	ole (four bits) tes from 0 to	contains the I 3. The range	ower digit and op for the register i	perates from s 1–31. Lea			
				Time Keepi	ng - Day						
	D7	D6	D5	D4	D3	D2	D1	D0			
0x0C	0	0	0	0	0		Day of Week				
	counts from 1 to 7 then returns to 1. The user must assign meaning to the day value, because the day is not integrated with the date.										
	_	_	·	Time Keepin							
0.00	D7	D6	D5	D4	D3	D2	D1	D0			
0x0B	0 0 10s Hours Hours										
	Contains the BCD value of hours in 24 hour format. Lower nibble (four bits) contains the lower digit and operates from 0 to 9; upper nibble (two bits) contains the upper digit and operates from 0 to 2. The range for the register is 0–23.										
		1		Time Keeping							
	D7	D6	D5	D4	D3	D2	D1	D0			
0x0A	0		10s Minutes				inutes				
	Contains the BCD value of minutes. Lower nibble (four bits) contains the lower digit and operates from 0 to 9; upper nibble (three bits) contains the upper minutes digit and operates from 0 to 5. The range for the register is 0–59.										
	middle (three	bits) contains t	ne upper minute	Time Keeping		o 5. The range	e for the register	18 0–39.			
	D7	D6	D5	D4	D3	D2	D1	D0			
	וט		_	D4	סט			D0			
0x09	10s Seconds Seconds Contains the BCD value of seconds. Lower nibble (four bits) contains the lower digit and operates from 0 to 9; upper										
0x09	Contains the			aibble (four bite)	contains the			0 to 0: uppo			
0x09		BCD value of s	seconds. Lower			lower digit ar	nd operates from	0 to 9; uppe			
0x09		BCD value of s			0 to 5. The r	lower digit ar	nd operates from	0 to 9; uppe			
	nibble (three	BCD value of s	seconds. Lower	nd operates from	0 to 5. The r	lower digit ar	nd operates from	0 to 9; uppe			
0x09 0x08	nibble (three	BCD value of s bits) contains t	seconds. Lower he upper digit ar	nd operates from Calibration	0 to 5. The r	lower digit ar	nd operates from register is 0–59.				
	nibble (three	BCD value of s bits) contains t	seconds. Lower he upper digit ar	nd operates from Calibration	0 to 5. The r	lower digit ar	nd operates from register is 0–59.				
	D7 OSCEN Oscillator En	BCD value of s bits) contains t D6 0 able. When set	D5 Calibration Sign to 1, the oscillate	Calibration D4 or is stopped. W	0 to 5. The r /Control D3	lower digit ar range for the D2 Calibration	nd operates from register is 0–59.	D0			
0X08 OSCEN	D7 OSCEN Oscillator En saves battery	BCD value of sbits) contains t D6 0 able. When set or capacitor p	D5 Calibration Sign to 1, the oscillatower during stor	Calibration D4 or is stopped. Wage.	O to 5. The root //Control D3 //hen set to 0,	lower digit arrange for the D2 Calibration the oscillator	nd operates from register is 0–59. D1 runs. Disabling	D0			
0X08	D7 OSCEN Oscillator En saves battery Determines if	BCD value of s bits) contains t D6 0 able. When set or capacitor p f the calibration	D5 Calibration Sign to 1, the oscillate	Calibration D4 or is stopped. Wage. pplied as an add	O to 5. The root //Control D3 //hen set to 0,	lower digit arrange for the D2 Calibration the oscillator	nd operates from register is 0–59. D1 runs. Disabling	D0			

Table 10. Register Map Detail (continued)

				WatchDo	g Timer					
0x07	D7	D6	D5	D4	D3	D2	D1	D0		
	WDS	WDW		•	WI	DT T	1			
WDS				ls and restarts th timer is reset. T						
WDW	the user to se	Watchdog Write Enable. Setting this bit to 1 disables any WRITE to the watchdog timeout value (D5–D0). This enables the user to set the watchdog strobe bit without disturbing the timeout value. Setting this bit to 0 allows bits D5–D0 to be written to the watchdog register when the next write cycle is complete. This function is explained in more detail in Watchdog Timer on page 15.								
WDT	Watchdog timeout selection. The watchdog timer interval is selected by the 6-bit value in this register. It reputation of the 32 Hz count (31.25 ms). The range of timeout value is 31.25 ms (a setting of 1) to 2 secont of 3 Fh). Setting the watchdog timer register to 0 disables the timer. These bits can be written only if the WE set to 0 on a previous cycle.									
				Interrupt Sta	tus/Control					
0x06	D7	D6	D5	D4	D3	D2	D1	D0		
	WIE	AIE	PFE	0	H/L	P/L	0	0		
WIE				and a watchdog timeout affects			g timer drives t	he INT pin a		
AIE		pt Enable. Whe		alarm match driv	es the INT pir	n and the AF fl	ag. When set t	o 0, the aları		
PFE		nable. When se ts only the PF f		n match drives t	he INT pin and	d the PF flag. \	When set to 0,	the power fa		
0	Reserved for	future use								
H/L	HIGH/LOW. \	When set to 1,	the INT pin is d	riven active HIG	H. When set to	o 0, the INT pi	n is open drain	, active LOW		
P/L				lriven active (de n to an active le	vel (as set by I					
	Alarm - Day									
0x05	D7	D6	D5	D4	D3	D2	D1	D0		
UNUU	M	0	10s Ala	rm Date		Aları	m Date			
	Contains the	alarm value for	the date of the	month and the	mask bit to se	lect or deselec	t the date valu	e.		
M	Match. When to ignore the		0, the date val	ue is used in the	alarm match.	Setting this bit	to 1 causes th	e match circ		
				Alarm -	Hours					
0x04	D7	D6	D5	D4	D3	D2	D1	D0		
0.04	М		10s Alarm Hou	rs		Alarn	n Hours			
	Contains the alarm value for the hours and the mask bit to select or deselect the hours value.									
M	Match. When to ignore the		0, the hours va	llue is used in th	e alarm match	. Setting this bi	t to 1 causes th	e match circ		
				Alarm -	Minutes					
0.402	D7	D6	D5	D4	D3	D2	D1	D0		
0x03	М	1	0s Alarm Minut	es		Alarm	Minutes			
	M 10s Alarm Minutes Alarm Minutes Contains the alarm value for the minutes and the mask bit to select or deselect the minutes value.									
	Contains the	alarm value for	r the minutes ar	nd the mask bit t	o select or des	select the minu	ıtes value.			

Table 10. Register Map Detail (continued)

				Alarm - S	Seconds								
000	D7	D6	D5	D3	D2	D1	D0						
0x02	М	10	Os Alarm Secon	ids		Alarm	Seconds						
	Contains the	alarm value for	the seconds ar	nd the mask bit	to select or de	select the seco	onds' value.						
М	Match. When this bit is set to 0, the seconds value is used in the alarm match. Setting this bit to 1 causes the matcircuit to ignore the seconds value.												
		Time Keeping - Centuries											
0x01	D7	D6	D5	D4	D3	D2	D1	D0					
		10s C	enturies			Cen	turies						
	Contains the contains the	BCD value of cupper digit and	enturies. Lower operates from (nibble contains to 9. The rang	the lower dig e for the regist	it and operates ter is 0-99 cent	from 0 to 9; u uries.	pper nibble					
		Flags											
0x00	D7	D6	D5	D4	D3	D2	D1	D0					
	WDF	AF	PF	OSCF	0	CAL	W	R					
WDF				et to 1 when the register is read			o reach 0 witho	out being rese					
AF				n the time and o			n the alarm re	gisters with the					
PF			nly bit is set to 1 read or on pow	I when power fa er up.	Ills below the p	oower fail thres	hold V _{SWITCH} .	It is cleared to					
OSCF	indicates that	: RTČ backup p	ower failed and	he oscillator is e clock value is r t check for this	no longer valid	. This bit surviv	es power cycl						
CAL				square wave is abled) on power		NT pin. When	set to 0, the IN	T pin resumes					
W	Alarm registe the RTC regis	rs, Calibration	egister, Interrup eferred to the tir	updates of the ot register and F me keeping cou	lags register.	Setting the W b	it to 0 causes t	the contents of					
R	the reading p	rocess. Set R b		updates to use e clock updates wer up.									

Maximum Ratings

Input Voltage..... -0.5V to V_{CC} + 0.5V

Transient Voltage (<20 ns) on Any Pin to Ground Potential–2.0V to V_{CC} + 2.0V
Package Power Dissipation Capability ($T_A = 25^{\circ}C$)
Surface Mount Lead Soldering Temperature (3 Seconds)+260°C
DC Output Current (1 output at a time, 1s duration) 15mA
Static Discharge Voltage > 2001V (per MIL-STD-883, Method 3015)
Latch-up Current > 200 mA

Table 11. Operating Range

Range	Ambient Temperature	V _{CC}
Commercial	0°C to +70°C	2.7V to 3.6V
Industrial	–40°C to +85°C	2.7V to 3.6V

DC Electrical Characteristics

Over the Operating Range (V_{CC} = 2.7V to 3.6V)

Parameter	Description	Test Conditions	Min	Max	Unit
I _{CC1}	Average V _{cc} Current	At f _{SCK} = 40 MHz		10	mΑ
I _{CC2}		All Inputs Don't Care, V _{CC} = Max. Average current for duration t _{STORE}		10	mA
I _{CC4}	Average V _{CAP} Current during AutoStore Cycle	All Inputs Don't Care, V _{CC} = Max. Average current for duration t _{STORE}		5	mA
I _{SB}	V _{CC} Standby Current			5	mΑ
I _{IX} ^[4]	Input Leakage Current (except HSB)	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$	-1	+1	μΑ
	InputLeakage Current (for HSB)	$V_{CC} = Max, V_{SS} \le V_{IN} \le V_{CC}$	-100	+1	μΑ
I _{OZ}	Off State Output Leakage Current	$V_{CC} = Max, V_{SS} \le V_{OUT} \le V_{CC}$	-1	+1	μΑ
V _{IH}	Input HIGH Voltage		2.0	$V_{CC} + 0.5$	V
V _{IL}	Input LOW Voltage		V _{SS} - 0.5	0.8	V
V _{OH}	Output HIGH Voltage	$I_{OUT} = -2 \text{ mA}$	2.4		V
V _{OL}	Output LOW Voltage	I _{OUT} = 4 mA		0.4	V
V _{CAP} ^[5]	Storage Capacitor	Between V _{CAP} pin and V _{SS} , 5V Rated	61	180	μF

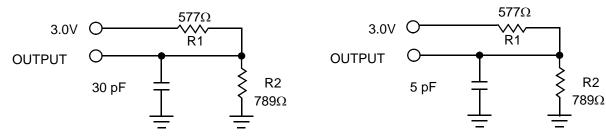
Notes

^{4.} The HSB pin has I_{OUT} = -2 uA for V_{OH} of 2.4V when both active HIGH and LOW drivers are disabled. When they are enabled standard V_{OH} and V_{OL} are valid. This parameter is characterized but not tested.

^{5.} V_{CAP} (Storage capacitor) nominal value is 68uF.

Data Retention and Endurance

Parameter	Description	Min	Unit
DATA _R	Data Retention	20	Years
NV_C	Nonvolatile STORE Operations	200	K


Capacitance

Parameter ^[6]	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1MHz,$	6	pF
C _{OUT}	Output Pin Capacitance	$V_{CC} = 3.0V$	8	pF

Thermal Resistance

Parameter ^[6]	Description	Test Conditions	16-SOIC	Unit
Θ_{JA}		Test conditions follow standard test methods and procedures for measuring thermal	TBD	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)	impedance, per EIA / JESD51.	TBD	°C/W

Figure 24. AC Test Loads and Waveforms

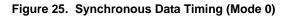
AC Test Conditions

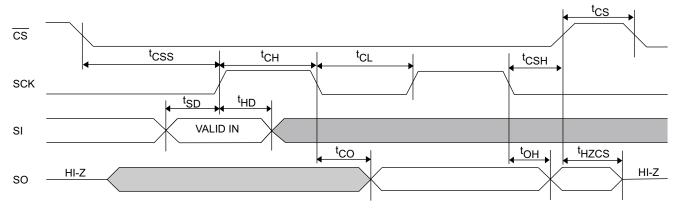
Input Pulse Levels	0V to 3V
Input Rise and Fall Times (10% - 90%)	<u><</u> 3 ns
Input and Output Timing Reference Levels	1.5V

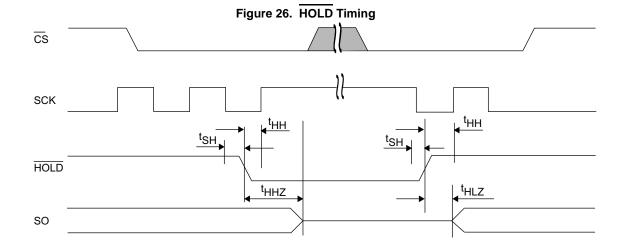
Note

^{6.} These parameters are guaranteed by design and are not tested.

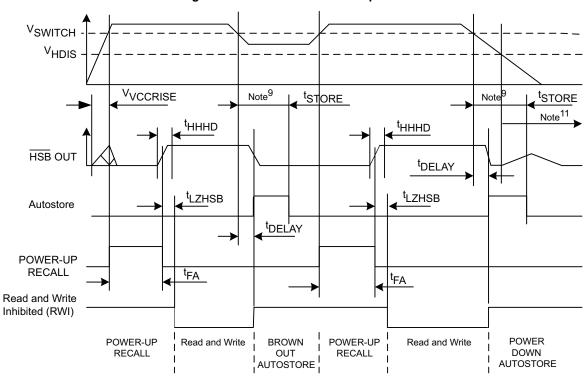
Table 12. RTC Characteristics


Parameters	Description	Test Conditions	Min	Тур	Max	Units
I _{BAK} ^[7]	RTC Backup Current	Room Temperature (25°C)			300	nA
		Hot Temperature (85°C)			450	nA
V _{RTCbat}	RTC Battery Pin Voltage		1.8	3.0	3.3	V
V _{RTCcap}	RTC Capacitor Pin Voltage		1.5	3.0	3.6	V
tocs	RTC Oscillator Time to Start			1	2	sec


AC Switching Characteristics


Cypress Parameter	Alt. Parameter	Description	iption 40 MHz			MHz nstruction)	Unit
Parameter		·	Min	Max	Min	Max	
f _{SCK}	f _{SCK}	Clock Frequency, SCK		40		25	MHz
t _{CL}	t _{WL}	Clock Pulse Width LOW	11		18		ns
t _{CH}	t _{WH}	Clock Pulse Width HIGH	11		18		ns
t _{CS}	t _{CE}	CS HIGH Time	20		20		ns
t _{CSS}	t _{CES}	CS Setup Time	10		10		ns
t _{CSH}	t _{CEH}	CS Hold Time	10		10		ns
t _{SD}	t _{SU}	Data In Setup Time	5		5		ns
t _{HD}	t _H	Data In Hold Time	5		5		ns
t _{HH}	t _{HD}	HOLD Hold Time	5		5		ns
t _{SH}	t _{CD}	HOLD Setup Time	5		5		ns
t _{CO}	t _V	Output Valid		9		15	ns
t _{HHZ}	t _{HZ}	HOLD to Output HIGH Z		15		15	ns
tH _{LZ}	t_{LZ}	HOLD to Output LOW Z		15		15	ns
t _{OH}	t _{HO}	Output Hold Time	0		0		ns
t _{HZCS}	t _{DIS}	Output Disable Time		25		25	ns

Notes7. Current drawn from either V_{RTCcap} or V_{RTCbat} when $V_{CC} < V_{SWITCH}$.


AutoStore or Power Up RECALL

Parameters	Description	CY14I	B101P	Unit
Farailleters	Description	Min	Max	Onit
t _{FA} ^[8]	Power Up RECALL Duration		20	ms
t _{STORE} [9]	STORE Cycle Duration		8	ms
t _{DELAY} [10]	Time Allowed to Complete SRAM Cycle		25	ns
V _{SWITCH}	Low Voltage Trigger Level		2.65	V
t _{VCCRISE}	VCC Rise Time	150		μs
V _{HDIS} ^[6]	HSB Output Driver Disable Voltage		1.9	V
t _{LZHSB}	HSB To Output Active Time		5	μs
t _{HHHD}	HSB High Active Time		500	ns

PRELIMINARY

Switching Waveforms

Figure 27. AutoStore or Power Up RECALL^[10]

Notes

t_{FA} starts from the time V_{CC} rises above V_{SWITCH}.
 If an SRAM write has not taken place since the last nonvolatile cycle, no AutoStore or Hardware Store takes place.
 On a Hardware Store, Software Store / Recall, AutoStore Enable / Disable and AutoStore initiation, SRAM operation continues to be enabled for time t_{DELAY}. Read and Write cycles are ignored during STORE, RECALL, and while VCC is below V_{SWITCH}.
 HSB pin is driven HIGH to VCC only by internal 100kOhm resistor, HSB driver is disabled.

Software Controlled STORE/RECALL Cycles

Parameter	Description	CY14I	B101P	Unit
Farameter	Description	Min	Max	Offic
t _{RECALL}	RECALL Duration		200	μs
t _{SS} [11, 13]	Soft Sequence Processing Time		100	μs

Figure 28. Software STORE Cycle^[13]

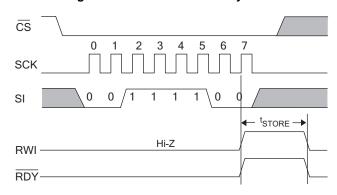
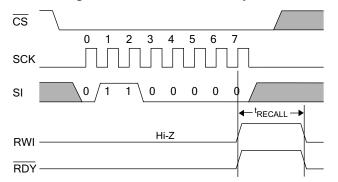
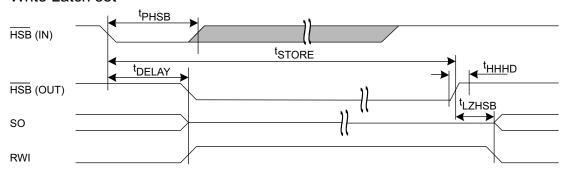



Figure 29. Software RECALL Cycle^[13]

^{12.} This is the amount of time it takes to take action on a soft sequence command. Vcc power must remain HIGH to effectively register command.

13. Commands such as STORE and RECALL lock out IO until operation is complete which further increases this time. See the specific command.



Hardware STORE Cycle

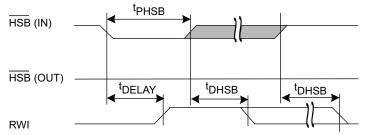
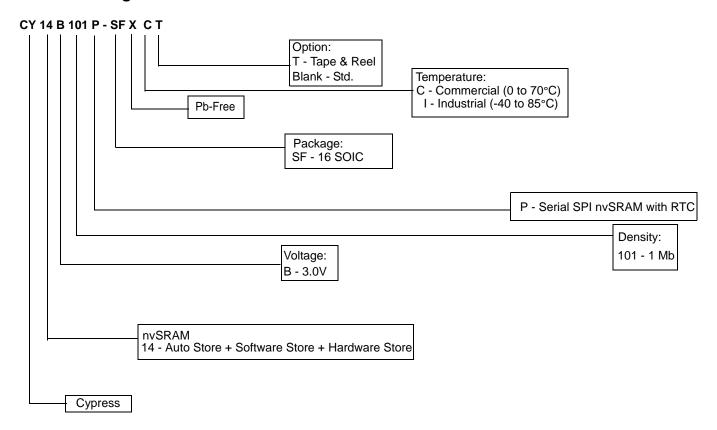

Parameter	Description	CY14B101P		Unit
Parameter	Description	Min	Max	Offic
t _{DHSB}	HSB To Output Active Time when write latch not set		25	ns
t _{PHSB}	Hardware STORE Pulse Width	15		ns

Figure 30. Hardware STORE Cycle^[9]

Write Latch set

Write Latch not set

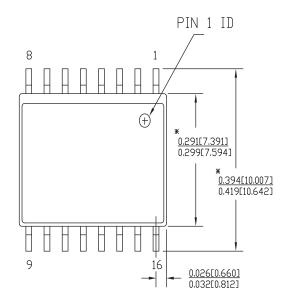
 $\overline{\text{HSB}}$ pin is driven high to V_{CC} only by Internal 100K Ω resistor, $\overline{\text{HSB}}$ driver is disabled SRAM is disabled as long as HSB (IN) is driven LOW.

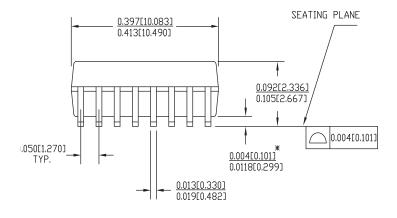


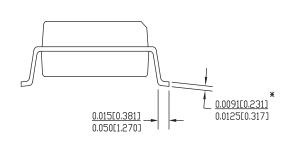
Ordering Information

Ordering Code	Package Diagram	Package Type	Operating Range	
CY14B101P-SFXCT	51-85022	16 SOIC	Commercial	
CY14B101P-SFXC	51-85022	16 SOIC		
CY14B101P-SFXIT	51-85022	16 SOIC	Industrial	
CY14B101P-SFXI	51-85022	16 SOIC	เทนนร์เกลเ	

All the above parts are Pb - free. The above table contains advance information. Contact your local Cypress sales representative for availability of these parts.


Part Numbering Nomenclature


Package Diagrams


Figure 31. 16-Pin (300 mil) SOIC Package (51-85022)

DIMENSIONS IN INCHES[MM] $\frac{\text{MIN.}}{\text{MAX.}}$ REFERENCE JEDEC MO-119

PART #								
S16.3	STANDARD PKG.							
SZ16.3	LEAD FREE PKG.							

51-85022 *B

Document History Page

Occument Title: CY14B101P 1 Mbit (128K x 8) Serial SPI nvSRAM with Real Time Clock Occument Number: 001-44109						
REV.	ECN NO.	Submission Date	Orig. of Change	Description of Change		
**	1939467	See ECN	UNC/AESA	New Data Sheet		
*A	2607447	11/21/2008	GSIN/ GVCH/AESA	Updated the "Feature" section, Clock rate changed from 40 MHz to 25 MHz Updated nvSRAM STORE, RECALL, AutoStore Enable/Disable sections Removed Soft Sequence, added SPI instructions for STORE, RECALL, AutoStore Enable and Disable, Updated SPI with following changes: Added more information for protocol Added four new SPI instruction WEN bit cleared on CS going HIGH edge after Write instructions and four nvSRAM special instructions Added RDY bit to Status Register for indicating Store/Recall in progress Added READ RTC and WRITE RTC instructions. Changed RTC recommended configuration values. Updated tOCS values for normal and room temperature Other changes as per new EROS Removed 8 SOIC package Added two new 8DFN packages Changed tCO parameter to 9 ns Updated data sheet templateReplaced CY14B101P with CY14B101PA. Changed title to "CY14B101PA 1Mbit (128K x 8) Serial SPI nvSRAM with Real-Time-Clock"		
*B	2654487	02/04/2009	GVCH/GSIN/ PYRS	Moved from Advance information to Preliminary Changed part number from CY14B101PA to CY14B101P Changed X_1 , X_2 pin names to X_{out} , X_{in} respectively Updated pin description of V_{CAP} pin Updated Device operation and SPI peripheral interface description Added Factory setting values for BP1, BP2 and WPEN bits Updated Real Time Clock operation description Added footnote 2 Added default values to RTC Register Map" table 8 Added footnote 3 Updated flag register description in Register Map Detail" table 9 Changed C1, C2 values to 21pF, 21pF respectively Changed I_{CC2} from 5 mA to 10 mA Changed I_{BAK} value from 350 nA to 450 nA at hot temperature Changed V_{RTCcap} typical value from 2.4V to 3.0V		

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

D	r٥	d١	10	te
_				-

PSoC psoc.cypress.com
Clocks & Buffers clocks.cypress.com
Wireless wireless.cypress.com
Memories memory.cypress.com
Image Sensors image.cypress.com

PSoC Solutions

General psoc.cypress.com/solutions
Low Power/Low Voltage psoc.cypress.com/low-power
Precision Analog psoc.cypress.com/precision-analog
LCD Drive psoc.cypress.com/lcd-drive
CAN 2.0b psoc.cypress.com/can
USB psoc.cypress.com/usb

© Cypress Semiconductor Corporation, 2008-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 001-44109 Rev. *B

Revised February 2, 2009

Page 32 of 32

AutoStore and QuantumTrap are registered trademarks of Cypress Semiconductor Corporation. All products and company names mentioned in this document are the trademarks of their respective holders.

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com