

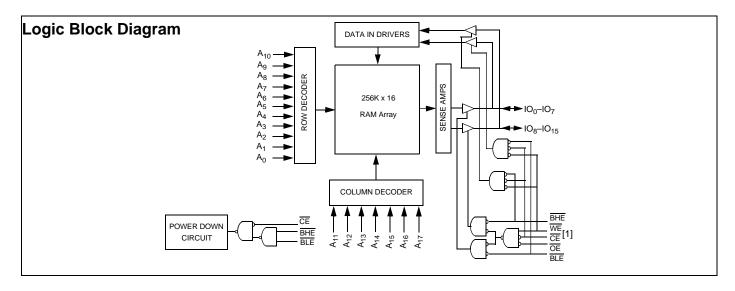
# CY62147EV30 MoBL<sup>®</sup> 4-Mbit (256K x 16) Static RAM

#### Features

- Very high speed: 45 ns
- Temperature ranges
   □ Industrial: -40°C to +85°C
   □ Automotive-A: -40°C to +85°C
   □ Automotive-E: -40°C to +125°C
- Wide voltage range: 2.20V to 3.60V
- Pin compatible with CY62147DV30
- Ultra low standby power
   Typical standby current: 1 μA
   Maximum standby current: 7 μA (Industrial)
- Ultra low active power
   Typical active current: 2 mA at f = 1 MHz
- Easy memory expansion with CE<sup>[1]</sup> and OE features
- Automatic power down when deselected
- CMOS for optimum speed and power
- Available in Pb-free 48-ball VFBGA (single/dual CE option) and 44-pin TSOPII packages
- Byte power down feature

#### **Functional Description**

The CY62147EV30 is a high performance CMOS static RAM organized as 256K words by 16 bits. This device features advanced circuit design to provide ultra low active current. It is


ideal for providing More Battery Life<sup>TM</sup> (MoBL<sup>®</sup>) in portable applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99% when deselected (CE HIGH or both BLE and BHE are HIGH). The input and output pins (IO<sub>0</sub> through IO<sub>15</sub>) are placed in a high impedance state when:

- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- Both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH)
- Write operation is active (CE LOW and WE LOW)

To write to the device, take Chip Enable  $\overline{(CE)}$  and Write Enable  $\overline{(WE)}$  inputs LOW. If Byte Low Enable (BLE) is LOW, then data from IO pins (IO<sub>0</sub> through IO<sub>7</sub>) is written into the location specified on the address pins (A<sub>0</sub> through A<sub>17</sub>). If Byte High Enable (BHE) is LOW, then data from IO pins (IO<sub>8</sub> through IO<sub>15</sub>) is written into the location specified on the address pins (A<sub>0</sub> through A<sub>17</sub>).

To read <u>from</u> the device, take Chip Enable ( $\overline{CE}$ ) and Output Enable ( $\overline{OE}$ ) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins appear on IO<sub>0</sub> to IO<sub>7</sub>. If Byte High Enable (BHE) is LOW, then data from memory appears on IO<sub>8</sub> to IO<sub>15</sub>. See the Truth Table on page 9 for a complete description of read and write modes.

For best practice recommendations, refer to the Cypress application note AN1064, SRAM System Guidelines.



#### Note

1. BGA packaged device is offered in single CE and dual CE options. In this data sheet, for a dual CE device,  $\overline{CE}$  refers to the internal logical combination of  $\overline{CE}_1$  and  $CE_2$  such that when  $CE_1$  is LOW and  $CE_2$  is HIGH, CE is LOW. For all other cases CE is HIGH.

**198 Champion Court** 

٠

Cypress Semiconductor Corporation Document #: 38-05440 Rev. \*G San Jose, CA 95134-1709 • 408-943-2600 Revised March 31, 2009



#### **Product Portfolio**

|               |              |     |                           |     |               |                           |     | Power D                        | issipatio | on                                |     |
|---------------|--------------|-----|---------------------------|-----|---------------|---------------------------|-----|--------------------------------|-----------|-----------------------------------|-----|
| Product       | Range        | ٧c  | <sub>;C</sub> Range (V)   |     | Speed<br>(ns) | Speed Operating           |     | Operating I <sub>CC</sub> (mA) |           | Standby                           | L   |
|               |              |     |                           |     | ()            | f = 1 MHz                 |     | f = f <sub>max</sub>           |           | Standby I <sub>SB2</sub> (μΑ<br>x |     |
|               |              | Min | <b>Typ</b> <sup>[2]</sup> | Max |               | <b>Typ</b> <sup>[2]</sup> | Max | <b>Typ</b> <sup>[2]</sup>      | Max       | <b>Typ</b> <sup>[2]</sup>         | Max |
| CY62147EV30LL | Ind'l/Auto-A | 2.2 | 3.0                       | 3.6 | 45 ns         | 2                         | 2.5 | 15                             | 20        | 1                                 | 7   |
|               | Auto-E       | 2.2 | 3.0                       | 3.6 | 55 ns         | 2                         | 3   | 15                             | 25        | 1                                 | 20  |

### **Pin Configuration**

Figure 1. 48-Ball VFBGA (Single Chip Enable) <sup>[3, 4]</sup>

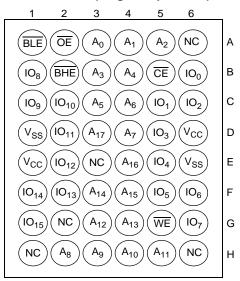



Figure 2. 48-Ball VFBGA (Dual Chip Enable)<sup>[3, 4]</sup>

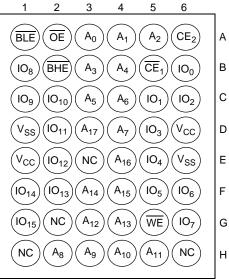



Figure 3. 44-Pin TSOP II [3]

| . 0                       |                       |
|---------------------------|-----------------------|
| A₄ ⊟ ĭ                    | 44 🗖 A <sub>5</sub>   |
| A <sub>3</sub> □ 2        | 43 🗖 A <sub>6</sub>   |
| A <sub>2</sub> <u>□</u> 3 | 42 🗖 <u>A7</u>        |
| A <sub>1</sub> <u>□</u> 4 | 41 🗖 OE               |
| A <sub>0</sub> <u></u> 5  | 40 🗆 BHE              |
|                           | 39 🗖 BLE              |
|                           | 38 🗍 IO <sub>15</sub> |
|                           | 37 🗍 IO <sub>14</sub> |
| $IO_2 \square 9$          | 36   IO <sub>13</sub> |
|                           |                       |
|                           | 35   IO <sub>12</sub> |
|                           | 34 □ V <sub>SS</sub>  |
| V <sub>SS</sub> [ 12      | 33 🛛 V <sub>CC</sub>  |
|                           | 32 🗌 IO <sub>11</sub> |
|                           | 31 🔲 IO <sub>10</sub> |
|                           | 30 🗖 IO <sub>9</sub>  |
| IO <sub>7</sub> □16       | 29 🗋 IO <sub>8</sub>  |
| WE □17                    | 28 🗆 NC               |
| A <sub>17</sub> □ 18      | 27 🗖 A <sub>8</sub>   |
| A <sub>16</sub> 19        | 26 🛛 A <sub>9</sub>   |
| A <sub>15</sub> □ 20      | 25 🗆 A <sub>10</sub>  |
| A <sub>14</sub> □ 21      | 24 🗖 A <sub>11</sub>  |
| A <sub>13</sub> 22        | 23 🗆 A <sub>12</sub>  |

Notes

2. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at  $V_{CC} = V_{CC(typ)}$ ,  $T_A = 25^\circ$ .

3. NC pins are not connected on the die.

4. Pins H1, G2, and H6 in the BGA package are address expansion pins for 8 Mb, 16 Mb, and 32 Mb, respectively.



## CY62147EV30 MoBL<sup>®</sup>

#### **Maximum Ratings**

Exceeding the maximum ratings may impair the useful life of the device. User guidelines are not tested.

| Storage Temperature65°C to + 150°C                                                                                                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ambient Temperature with<br>Power Applied55°C to + 125°C                                                                                                                           |
| Supply Voltage to Ground<br>Potential0.3V to + 3.9V ( $V_{CCmax}$ + 0.3V)<br>DC Voltage Applied to Outputs<br>in High-Z State <sup>[5, 6]</sup> 0.3V to 3.9V ( $V_{CCmax}$ + 0.3V) |

| DC Input Voltage <sup>[5, 6]</sup> 0.3V to 3.9V (V <sub>CCmax</sub> + 0.3V | √) |
|----------------------------------------------------------------------------|----|
| Output Current into Outputs (LOW) 20 m                                     | ιA |
| Static Discharge Voltage                                                   | V  |
| Latch Up Current>200 m                                                     | ıΑ |

### **Operating Range**

| Device        | Range        | Ambient<br>Temperature | V <sub>CC</sub> <sup>[7]</sup> |  |
|---------------|--------------|------------------------|--------------------------------|--|
| CY62147EV30LL | Ind'l/Auto-A | –40°C to +85°C         | 2.2V to                        |  |
|               | Auto-E       | –40°C to +125°C        | 3.6V                           |  |

### **Electrical Characteristics**

Over the Operating Range

| Deveneter                       | Description                                            | Test Canditions                                                                                                                                                                             |           | 45 n | s (Ind'l/A                | uto-A)               | 55 ns (Auto-E) |                           |                       | 11:::1 |
|---------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------|---------------------------|----------------------|----------------|---------------------------|-----------------------|--------|
| Parameter                       | Description                                            | Test Conditions                                                                                                                                                                             |           | Min  | <b>Typ</b> <sup>[2]</sup> | Max                  | Min            | <b>Typ</b> <sup>[2]</sup> | Max                   | Unit   |
| V <sub>OH</sub>                 | Output HIGH                                            | I <sub>OH</sub> = -0.1 mA                                                                                                                                                                   |           | 2.0  |                           |                      | 2.0            |                           |                       | V      |
|                                 | Voltage                                                | $I_{OH} = -1.0 \text{ mA}, V_{CC} \ge 2.70^{\circ}$                                                                                                                                         | V         | 2.4  |                           |                      | 2.4            |                           |                       | V      |
| V <sub>OL</sub>                 | Output LOW                                             | I <sub>OL</sub> = 0.1 mA                                                                                                                                                                    |           |      |                           | 0.4                  |                |                           | 0.4                   | V      |
|                                 | Voltage                                                | I <sub>OL</sub> = 2.1 mA, V <sub>CC</sub> = 2.70V                                                                                                                                           |           |      |                           | 0.4                  |                |                           | 0.4                   | V      |
| V <sub>IH</sub>                 | Input HIGH                                             | V <sub>CC</sub> = 2.2V to 2.7V                                                                                                                                                              |           | 1.8  |                           | $V_{CC} + 0.3$       | 1.8            |                           | V <sub>CC</sub> + 0.3 | V      |
|                                 | Voltage                                                | V <sub>CC</sub> = 2.7V to 3.6V                                                                                                                                                              |           | 2.2  |                           | V <sub>CC</sub> +0.3 | 2.2            |                           | V <sub>CC</sub> + 0.3 | V      |
| V <sub>IL</sub>                 | Input LOW                                              | V <sub>CC</sub> = 2.2V to 2.7V                                                                                                                                                              |           | -0.3 |                           | 0.6                  | -0.3           |                           | 0.6                   | V      |
|                                 | Voltage                                                | V <sub>CC</sub> = 2.7V to 3.6V                                                                                                                                                              |           | -0.3 |                           | 0.8                  | -0.3           |                           | 0.8                   | V      |
| I <sub>IX</sub>                 | Input Leakage<br>Current                               | $GND \leq V_I \leq V_{CC}$                                                                                                                                                                  |           | -1   |                           | +1                   | -4             |                           | +4                    | μA     |
| I <sub>OZ</sub>                 | Output Leakage<br>Current                              | $GND \leq V_O \leq V_{CC}$ , Output Dis                                                                                                                                                     | sabled    | -1   |                           | +1                   | -4             |                           | +4                    | μA     |
| I <sub>CC</sub>                 | V <sub>CC</sub> Operating                              | $f = f_{max} = 1/t_{RC}$ $V_{CC} = V_{CC}$                                                                                                                                                  | C(max)    |      | 15                        | 20                   |                | 15                        | 25                    | mA     |
|                                 | Supply Current                                         | f = 1 MHz IOUT = 0 m<br>CMOS lev                                                                                                                                                            | nA<br>els |      | 2                         | 2.5                  |                | 2                         | 3                     |        |
| I <sub>SB1</sub>                | Automatic CE<br>Power Down<br>Current —<br>CMOS Inputs | $\begin{array}{l} \hline CE \geq V_{CC} - 0.2V \\ V_{IN} \geq V_{CC} - 0.2V, \ V_{IN} \leq 0.2 \\ f = f_{max} (Address and Data \\ f = 0 (OE, BHE, BLE and V \\ V_{CC} = 3.60V \end{array}$ | Only),    |      | 1                         | 7                    |                | 1                         | 20                    | μA     |
| I <sub>SB2</sub> <sup>[8]</sup> | Automatic CE<br>Power Down<br>Current —<br>CMOS Inputs | $\label{eq:central_constraint} \begin{split} \overline{CE} &\geq V_{CC} - 0.2V \\ V_{IN} &\geq V_{CC} - 0.2V \text{ or } V_{IN} \leq O \\ f &= O, \ V_{CC} = 3.60V \end{split}$             | ).2V,     |      | 1                         | 7                    |                | 1                         | 20                    | μΑ     |

#### Capacitance

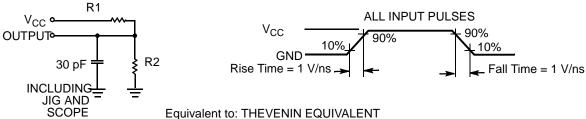
For all packages.<sup>[9]</sup>

| Parameter        | Description        | Test Conditions                         | Max | Unit |
|------------------|--------------------|-----------------------------------------|-----|------|
| C <sub>IN</sub>  | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 10  | pF   |
| C <sub>OUT</sub> | Output Capacitance | $V_{CC} = V_{CC(typ)}$                  | 10  | pF   |

Notes

5.  $V_{IL(min)} = -2.0V$  for pulse durations less than 20 ns.

V<sub>IL(min)</sub> = -2.0° for pulse durations less than 20 ns.
 V<sub>IL(min)</sub> = V<sub>CC</sub> + 0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a minimum of 100 μs ramp time from 0 to V<sub>CC</sub>(min) and 200 μs wait time after V<sub>CC</sub> stabilization.
 Only chip enable (CE) and byte enables (BHE and BLE) need to be tide to CMOS levels to meet the I<sub>SB2</sub> / I<sub>CCDR</sub> spec. Other inputs can be left floating.


9. Tested initially and after any design or process changes that may affect these parameters.



#### Thermal Resistance<sup>[9]</sup>

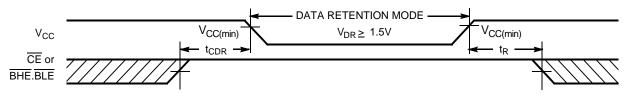
| Parameter       | Description                                 | Test Conditions                                                        | VFBGA<br>Package | TSOP II<br>Package | Unit |
|-----------------|---------------------------------------------|------------------------------------------------------------------------|------------------|--------------------|------|
| $\Theta_{JA}$   | Thermal Resistance<br>(Junction to Ambient) | Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board | 75               | 77                 | °C/W |
| Θ <sub>JC</sub> | Thermal Resistance<br>(Junction to Case)    |                                                                        | 10               | 13                 | °C/W |

#### Figure 4. AC Test Load and Waveforms



Equivalent to: THEVENIN EQUIVALENT

R<sub>TH</sub> OUTPUT • ٥V


| Parameters      | 2.50V | 3.0V | Unit |
|-----------------|-------|------|------|
| R1              | 16667 | 1103 | Ω    |
| R2              | 15385 | 1554 | Ω    |
| R <sub>TH</sub> | 8000  | 645  | Ω    |
| V <sub>TH</sub> | 1.20  | 1.75 | V    |

### **Data Retention Characteristics**

Over the Operating Range

| Parameter                        | Description                          | Conditions                                             |              |                 | <b>Typ</b> <sup>[2]</sup> | Max | Unit |
|----------------------------------|--------------------------------------|--------------------------------------------------------|--------------|-----------------|---------------------------|-----|------|
| V <sub>DR</sub>                  | V <sub>CC</sub> for Data Retention   |                                                        |              | 1.5             |                           |     | V    |
| I <sub>CCDR</sub> <sup>[8]</sup> | Data Retention Current               | $V_{CC}$ = 1.5V, $\overline{CE} \ge V_{CC} - 0.2V$ ,   | Ind'l/Auto-A |                 | 0.8                       | 7   | μΑ   |
|                                  |                                      | $V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$ | Auto-E       |                 |                           | 12  |      |
| t <sub>CDR</sub> <sup>[9]</sup>  | Chip Deselect to Data Retention Time |                                                        |              | 0               |                           |     | ns   |
| t <sub>R</sub> <sup>[10]</sup>   | Operation Recovery Time              |                                                        |              | t <sub>RC</sub> |                           |     | ns   |





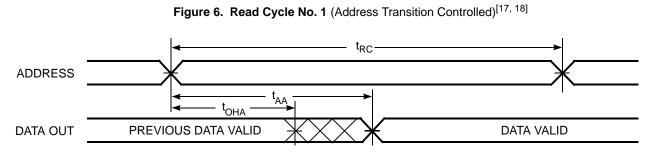
#### Notes

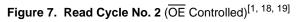
<u>Full device</u> operation requires linear V<sub>CC</sub> ramp from V<sub>DR</sub> to V<sub>CC(min)</sub> ≥ 100 μs or stable at V<sub>CC(min)</sub> ≥ 100 μs.
 <u>BHE</u>.BLE is the AND of both <u>BHE</u> and <u>BLE</u>. Deselect the chip by either disabling the chip enable signals or by disabling both <u>BHE</u> and <u>BLE</u>.

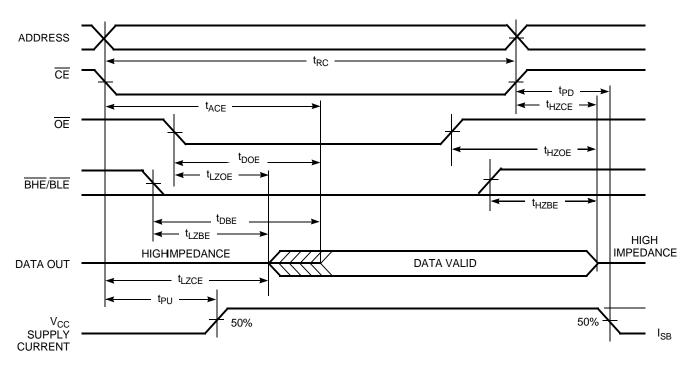


### **Switching Characteristics**

Over the Operating Range [12, 13]


| Demonstern                  | Description                                | 45 ns (Inc | d'l/Auto-A) | 55 ns ( | Auto-E) | 1114 |
|-----------------------------|--------------------------------------------|------------|-------------|---------|---------|------|
| Parameter                   | Description                                | Min        | Max         | Min     | Max     | Unit |
| Read Cycle                  |                                            |            |             |         |         |      |
| t <sub>RC</sub>             | Read Cycle Time                            | 45         |             | 55      |         | ns   |
| t <sub>AA</sub>             | Address to Data Valid                      |            | 45          |         | 55      | ns   |
| t <sub>OHA</sub>            | Data Hold from Address Change              | 10         |             | 10      |         | ns   |
| t <sub>ACE</sub>            | CE LOW to Data Valid                       |            | 45          |         | 55      | ns   |
| t <sub>DOE</sub>            | OE LOW to Data Valid                       |            | 22          |         | 25      | ns   |
| t <sub>LZOE</sub>           | OE LOW to LOW Z <sup>[14]</sup>            | 5          |             | 5       |         | ns   |
| t <sub>HZOE</sub>           | OE HIGH to High Z <sup>[14, 15]</sup>      |            | 18          |         | 20      | ns   |
| t <sub>LZCE</sub>           | CE LOW to Low Z <sup>[14]</sup>            | 10         |             | 10      |         | ns   |
| t <sub>HZCE</sub>           | CE HIGH to High Z <sup>[14, 15]</sup>      |            | 18          |         | 20      | ns   |
| t <sub>PU</sub>             | CE LOW to Power Up                         | 0          |             | 0       |         | ns   |
| t <sub>PD</sub>             | CE HIGH to Power Down                      |            | 45          |         | 55      | ns   |
| t <sub>DBE</sub>            | BLE/BHE LOW to Data Valid                  |            | 45          |         | 55      | ns   |
| t <sub>LZBE</sub>           | BLE/BHE LOW to Low Z <sup>[14]</sup>       | 10         |             | 10      |         | ns   |
| t <sub>HZBE</sub>           | BLE/BHE HIGH to HIGH Z <sup>[14, 15]</sup> |            | 18          |         | 20      | ns   |
| Write Cycle <sup>[16]</sup> |                                            |            |             |         |         |      |
| t <sub>WC</sub>             | Write Cycle Time                           | 45         |             | 55      |         | ns   |
| t <sub>SCE</sub>            | CE LOW to Write End                        | 35         |             | 40      |         | ns   |
| t <sub>AW</sub>             | Address Setup to Write End                 | 35         |             | 40      |         | ns   |
| t <sub>HA</sub>             | Address Hold from Write End                | 0          |             | 0       |         | ns   |
| t <sub>SA</sub>             | Address Setup to Write Start               | 0          |             | 0       |         | ns   |
| t <sub>PWE</sub>            | WE Pulse Width                             | 35         |             | 40      |         | ns   |
| t <sub>BW</sub>             | BLE/BHE LOW to Write End                   | 35         |             | 40      |         | ns   |
| t <sub>SD</sub>             | Data Setup to Write End                    | 25         |             | 25      |         | ns   |
| t <sub>HD</sub>             | Data Hold from Write End                   | 0          |             | 0       |         | ns   |
| t <sub>HZWE</sub>           | WE LOW to High-Z <sup>[14, 15]</sup>       |            | 18          |         | 20      | ns   |
| t <sub>LZWE</sub>           | WE HIGH to Low-Z <sup>[14]</sup>           | 10         |             | 10      |         | ns   |


#### Notes

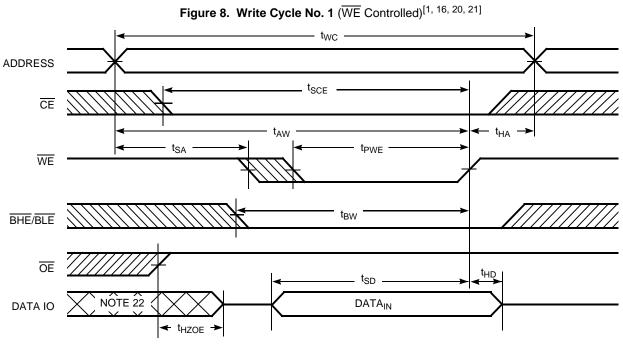

<sup>Notes
12. Test conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns (1V/ns) or less, timing reference levels of V<sub>CC(typ)</sub>/2, input pulse levels of 0 to V<sub>CC(typ)</sub>, and output loading of the specified loi /lo<sub>H</sub> as shown in the AC Test Load and Waveforms on page 4.
13. AC timing parameters are subject to byte enable signals (BHE or BLE) not switching when chip is disabled. See application note AN13842 for further clarification.
14. At any temperature and voltage condition, t<sub>HZCE</sub> is less than t<sub>LZCE</sub>, t<sub>HZBE</sub> is less than t<sub>LZDE</sub>, t<sub>HZCE</sub>, and t<sub>HZWE</sub> is less than t<sub>LZWE</sub> for any device.
15. t<sub>HZOE</sub>, t<sub>HZCE</sub>, t<sub>HZZE</sub>, t<sub>HZZE</sub>, t<sub>HZBE</sub>, and t<sub>HZWE</sub> transitions are measured when the outputs enter a high impedance state.
16. The internal write time of the memory is defined by the overlap of WE, CE = V<sub>IL</sub>, BHE, DLE, or both = V<sub>IL</sub>. All signals must be active to initiate a write and any of these signals can terminate a write by going inactive. The data input setup and hold timing must be referenced to the edge of the signal that terminates the write.</sup> 



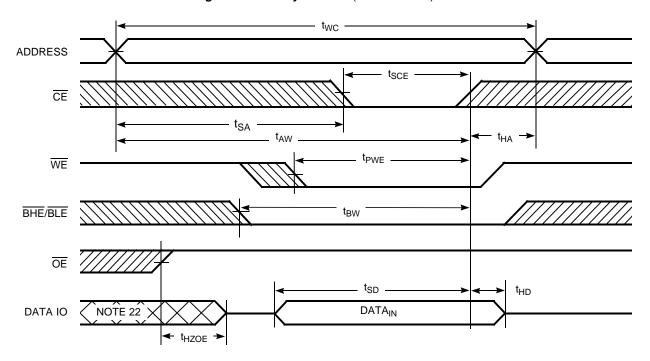
#### **Switching Waveforms**








#### Notes


**Notes** 17. <u>The</u> device is continuously selected.  $\overline{OE}$ ,  $\overline{CE} = V_{IL}$ ,  $\overline{BHE}$ ,  $\overline{BLE}$ , or both =  $V_{IL}$ . 18. WE is HIGH for read cycle. 19. Address valid before or similar to  $\overline{CE}$  and  $\overline{BHE}$ ,  $\overline{BLE}$  transition LOW.



#### Switching Waveforms (continued)



## Figure 9. Write Cycle No. 2 $(\overline{CE} \text{ Controlled})^{[1, 16, 20, 21]}$





#### Switching Waveforms (continued)

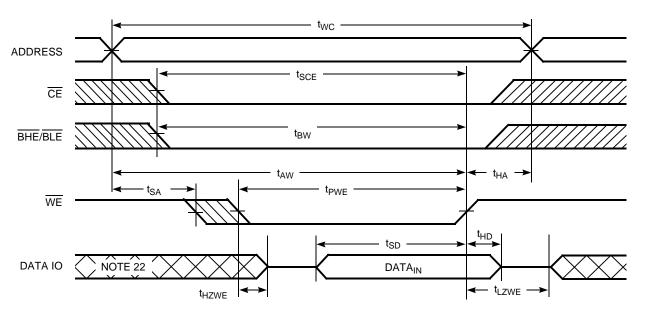
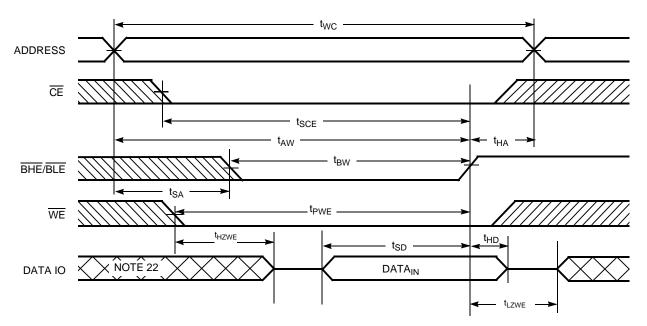




Figure 10. Write Cycle No. 3 (WE Controlled, OE LOW)<sup>[1, 21]</sup>





Notes

20. Data I/O is high impedance if  $\overline{OE} = V_{IH.}$ 21. If  $\overline{CE}$  goes HIGH simultaneously with WE =  $V_{IH}$ , the output remains in a high impedance state. 22. During this period, the IOs are in output state. Do not apply input signals.





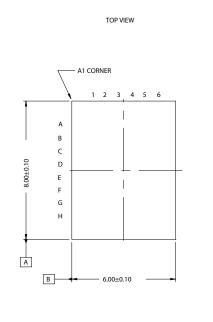
### **Truth Table**

| <b>CE</b> <sup>[1]</sup> | WE | OE | BHE | BLE | IOs                                                                                          | Mode                | Power                      |
|--------------------------|----|----|-----|-----|----------------------------------------------------------------------------------------------|---------------------|----------------------------|
| н                        | Х  | Х  | Х   | Х   | High Z                                                                                       | Deselect/Power Down | Standby (I <sub>SB</sub> ) |
| L                        | Х  | Х  | Н   | Н   | High Z                                                                                       | Deselect/Power Down | Standby (I <sub>SB</sub> ) |
| L                        | Н  | L  | L   | L   | Data Out (IO <sub>0</sub> –IO <sub>15</sub> )                                                | Read                | Active (I <sub>CC</sub> )  |
| L                        | Н  | L  | Н   | L   | Data Out (IO <sub>0</sub> –IO <sub>7</sub> );<br>IO <sub>8</sub> –IO <sub>15</sub> in High Z | Read                | Active (I <sub>CC</sub> )  |
| L                        | Н  | L  | L   | Н   | Data Out (IO <sub>8</sub> –IO <sub>15</sub> );<br>IO <sub>0</sub> –IO <sub>7</sub> in High Z | Read                | Active (I <sub>CC</sub> )  |
| L                        | Н  | Н  | L   | L   | High Z                                                                                       | Output Disabled     | Active (I <sub>CC</sub> )  |
| L                        | Н  | Н  | Н   | L   | High Z                                                                                       | Output Disabled     | Active (I <sub>CC</sub> )  |
| L                        | Н  | Н  | L   | Н   | High Z                                                                                       | Output Disabled     | Active (I <sub>CC</sub> )  |
| L                        | L  | Х  | L   | L   | Data In (IO <sub>0</sub> –IO <sub>15</sub> )                                                 | Write               | Active (I <sub>CC</sub> )  |
| L                        | L  | Х  | Н   | L   | Data In (IO <sub>0</sub> –IO <sub>7</sub> );<br>IO <sub>8</sub> –IO <sub>15</sub> in High Z  | Write               | Active (I <sub>CC</sub> )  |
| L                        | L  | Х  | L   | Н   | Data In (IO <sub>8</sub> –IO <sub>15</sub> );<br>IO <sub>0</sub> –IO <sub>7</sub> in High Z  | Write               | Active (I <sub>CC</sub> )  |

### **Ordering Information**

| Speed<br>(ns) | Ordering Code        | Package<br>Diagram | Package Type                                                      | Operating<br>Range |
|---------------|----------------------|--------------------|-------------------------------------------------------------------|--------------------|
| 45            | CY62147EV30LL-45BVI  | 51-85150           | 48-Ball Very Fine Pitch Ball Grid Array <sup>[23]</sup>           | Industrial         |
|               | CY62147EV30LL-45BVXI | 51-85150           | 48-Ball Very Fine Pitch Ball Grid Array (Pb-Free) <sup>[23]</sup> |                    |
|               | CY62147EV30LL-45B2XI | 51-85150           | 48-Ball Very Fine Pitch Ball Grid Array (Pb-Free) <sup>[24]</sup> |                    |
|               | CY62147EV30LL-45ZSXI | 51-85087           | 44-Pin Thin Small Outline Package II (Pb-Free)                    |                    |
|               | CY62147EV30LL-45BVXA | 51-85150           | 48-Ball Very Fine Pitch Ball Grid Array (Pb-Free) <sup>[23]</sup> | Automotive-A       |
|               | CY62147EV30LL-45ZSXA | 51-85087           | 44-Pin Thin Small Outline Package II (Pb-Free)                    |                    |
| 55            | CY62147EV30LL-55ZSXE | 51-85087           | 44-Pin Thin Small Outline Package II (Pb-Free)                    | Automotive-E       |

Contact your local Cypress sales representative for availability of these parts.


Notes

23. This BGA package is offered with single chip enable. 24. This BGA package is offered with dual chip enable.

Document #: 38-05440 Rev. \*G



### **Package Diagrams**



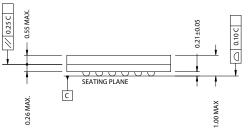
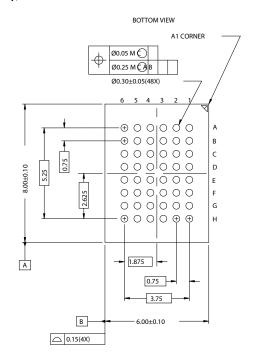
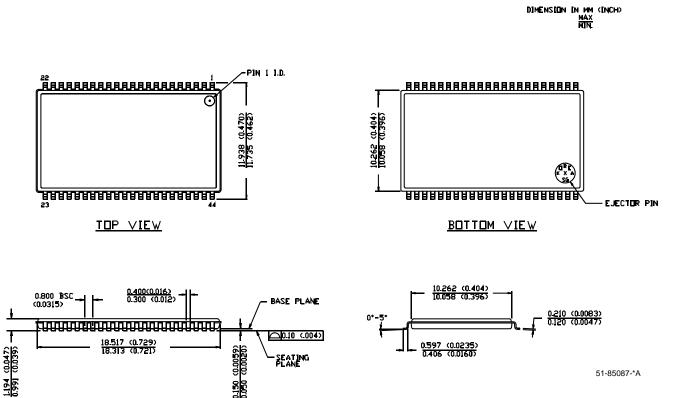




Figure 12. 48-Ball VFBGA (6 x 8 x 1 mm), 51-85150




51-85150-\*D



#### Package Diagrams (continued)

Figure 13. 44-Pin TSOP II, 51-85087



51-85087-\*A



### **Document History Page**

| Rev. | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|---------|--------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| **   | 201861  | AJU                | 01/13/04           | New Data Sheet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| *A   | 247009  | SYT                | See ECN            | Changed from Advanced Information to Preliminary<br>Moved Product Portfolio to Page 2<br>Changed Vcc stabilization time in footnote #8 from 100 $\mu$ s to 200 $\mu$ s<br>Removed Footnote #15(t <sub>LZBE</sub> ) from Previous Revision<br>Changed I <sub>CCDR</sub> from 2.0 $\mu$ A to 2.5 $\mu$ A<br>Changed typo in Data Retention Characteristics(t <sub>R</sub> ) from 100 $\mu$ s to t <sub>RC</sub> ns<br>Changed t <sub>OHA</sub> from 6 ns to 10 ns for both 35 ns and 45 ns Speed Bin<br>Changed t <sub>HZOE</sub> , t <sub>HZBE</sub> , t <sub>HZWE</sub> from 12 to 15 ns for 35 ns Speed Bin and 15 to<br>18 ns for 45 ns Speed Bin<br>Changed t <sub>BW</sub> from 25 to 30 ns for 35 ns Speed Bin and 40 to 35 ns<br>for 45 ns Speed Bin<br>Changed t <sub>HZCE</sub> from 12 to 18 ns for 35 ns Speed Bin and 15 to 22 ns for 45 ns<br>Speed Bin<br>Changed t <sub>BD</sub> from 15 to 18 ns for 35 ns Speed Bin and 20 to 22 ns for<br>45 ns Speed Bin<br>Changed t <sub>DOE</sub> from 15 to 18 ns for 35 ns Speed Bin<br>Changed t <sub>DOE</sub> from 15 to 18 ns for 35 ns Speed Bin<br>Changed t <sub>DOE</sub> from 15 to 18 ns for 35 ns Speed Bin                                                                                                |
| *B   | 414807  | ZSD                | See ECN            | Changed from Preliminary information to Final<br>Changed the address of Cypress Semiconductor Corporation on Page #1 from<br>"3901 North First Street" to "198 Champion Court"<br>Removed 35ns Speed Bin<br>Removed "L" version of CY62147EV30<br>Changed ball E3 from DNU to NC.<br>Removed redundant foot note on DNU.<br>Changed I <sub>CC</sub> (Max) value from 2 mA to 2.5 mA and I <sub>CC</sub> (Typ) value from<br>1.5 mA to 2 mA at f=1 MHz<br>Changed I <sub>CC</sub> (Typ) value from 12 mA to 15 mA at f = f <sub>max</sub><br>Changed I <sub>SB1</sub> and I <sub>SB2</sub> Typ values from 0.7 $\mu$ A to 1 $\mu$ A and Max values from<br>2.5 $\mu$ A to 7 $\mu$ A.<br>Changed I <sub>CCDR</sub> from 2.5 $\mu$ A to 7 $\mu$ A.<br>Added I <sub>CCDR</sub> typical value.<br>Changed AC test load capacitance from 50 pF to 30 pF on Page #4.<br>Changed t <sub>LZCE</sub> , t <sub>LZBE</sub> and t <sub>LZWE</sub> from 6 ns to 10 ns<br>Changed t <sub>HZCE</sub> from 32 ns to 35 ns.<br>Changed t <sub>PWE</sub> from 30 ns to 35 ns.<br>Changed t <sub>SD</sub> from 22 ns to 25 ns.<br>Updated the package diagram 48-pin VFBGA from *B to *D<br>Updated the ordering information table and replaced the Package Name column<br>with Package Diagram. |
| *C   | 464503  | NXR                | See ECN            | Included Automotive Range in product offering<br>Updated the Ordering Information                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| *D   | 925501  | VKN                | See ECN            | Added Preliminary Automotive-A information<br>Added footnote #9 related to I <sub>SB2</sub> and I <sub>CCDR</sub><br>Added footnote #14 related AC timing parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| *E   | 1045701 | VKN                | See ECN            | Converted Automotive-A and Automotive -E specs from preliminary to final                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *F   | 2577505 | VKN/PYRS           | 10/03/08           | Added -45B2XI part (Dual CE option)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| *G   | 2681901 | VKN/PYRS           | 04/01/09           | Added CY62147EV30LL-45ZSXA in the ordering information table                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |



#### Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

| Products         |                      | <b>PSoC Solutions</b> |                                   |
|------------------|----------------------|-----------------------|-----------------------------------|
| PSoC             | psoc.cypress.com     | General               | psoc.cypress.com/solutions        |
| Clocks & Buffers | clocks.cypress.com   | Low Power/Low Voltage | psoc.cypress.com/low-power        |
| Wireless         | wireless.cypress.com | Precision Analog      | psoc.cypress.com/precision-analog |
| Memories         | memory.cypress.com   | LCD Drive             | psoc.cypress.com/lcd-drive        |
| Image Sensors    | image.cypress.com    | CAN 2.0b              | psoc.cypress.com/can              |
|                  |                      | USB                   | psoc.cypress.com/usb              |

© Cypress Semiconductor Corporation, 2007-2009. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-05440 Rev. \*G

Revised March 31, 2009

Page 13 of 13

MoBL is a registered trademark, and More Battery Life is a trademark of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com