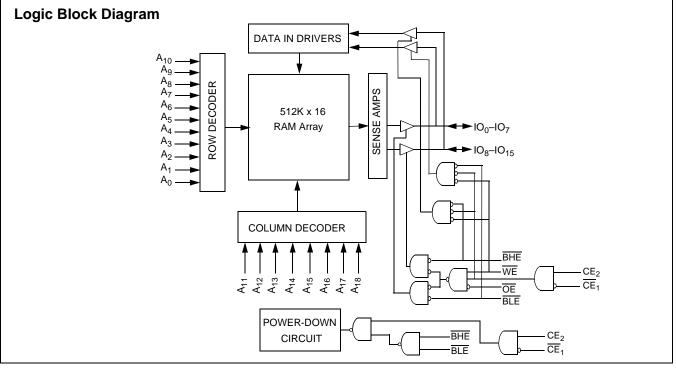


CY62157E MoBL[®]

8-Mbit (512K x 16) Static RAM

Features

- · Very high speed: 45 ns
- Wide voltage range: 4.5V-5.5V
- Ultra-low standby power
- -Typical Standby current: 2 μA
- ---Maximum Standby current: 8 μA (Industrial)
- Ultra-low active power
 - Typical active current: 1.8 mA @ f = 1 MHz
- Ultra-low standby power
- Easy memory expansion with \overline{CE}_1 , CE_2 and \overline{OE} features
- Automatic power-down when deselected
- CMOS for optimum speed/power
- Available in Pb-free 44-pin TSOP II and 48-ball VFBGA
 package


Functional Description^[1]

The CY62157E is a high-performance CMOS static RAM organized as 512K words by 16 bits. This device features advanced circuit design to provide ultra-low active current. This is ideal for providing More Battery Life[™] (MoBL[®]) in portable applications such as cellular telephones. The device

also has an automatic power-down feature that significantly reduces power consumption when addresses are not toggling. The device can also be put into standby mode when deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW or both BHE and BLE are HIGH). The input/output pins (IO₀ through IO₁₅) are placed in a high-impedance state when: deselected (\overline{CE}_1 HIGH or \overline{CE}_2 LOW), outputs are disabled (\overline{OE} HIGH), both Byte High Enable and Byte Low Enable are disabled (BHE, BLE HIGH), or during a write operation (\overline{CE}_1 LOW, \overline{CE}_2 HIGH and WE LOW).

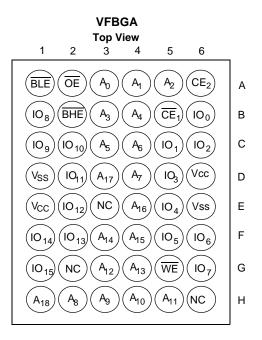
<u>Writing</u> to the device is accomplished by taking Chip Enable ($\overline{CE}_1 LOW$ and $\overline{CE}_2 \underline{HIGH}$) and Write Enable (WE) input LOW. If Byte Low Enable (BLE) is LOW, then data from IO pins (IO₀ through IO₇), is written into the location specified <u>on</u> the address pins (A₀ through A₁₈). If Byte High Enable (BHE) is LOW, then data from IO pins (IO₈ through IO₁₅) is written into the location specified on the address pins (A₀ through A₁₈).

Reading from the device is accomplished by taking Chip Enable (CE₁ LOW and CE₂ HIGH) and Output Enable (OE) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by the address pins will appear on IO₀ to IO₇. If Byte High Enable (BHE) is LOW, then data from memory will appear on IO₈ to IO₁₅. See the truth table at the back of this data sheet for a complete description of read and write modes.

Note:

1. For best practice recommendations, please refer to the Cypress application note "System Design Guidelines" on http://www.cypress.com.

Cypress Semiconductor Corporation Document #: 38-05695 Rev. *C 198 Champion Court • San Jo


San Jose, CA 95134-1709 • 408-943-2600 Revised November 21, 2006

CY62157E MoBL[®]

Pin Configuration^[2, 3]

TSOP II									
Top View									
44 42 41 40 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24	A ₅ A ₆ A ₇ O B B B B D D D D D D D D D D D D D D D								
	v 44 43 42 41 40 38 37 36 33 33 31 30 29 28 27 26 25								

Product Portfolio

						Power Dissipation					
					Speed	Operating I _{CC} , (mA)		Standb	V. lepa		
		Vc	_C Range ((V)	(ns)			= 1MHz f = f _{max}		(μ A)	
Product	Range	Min	Typ ^[4]	Мах		Typ ^[4]	Max	Typ ^[4]	Max	Typ ^[4]	Max
CY62157E-45	Ind'l	4.5	5.0	5.5	45	1.8	3	18	25	2	8
CY62157E-55 ^[5]	Auto	4.5	5.0	5.5	55	1.8	4	18	35	2	30

Notes:
2. NC pins are not connected on the die.
3. The 44-pin TSOP II package has only one chip enable (CE) pin.
4. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25°C.
5. Automotive product information is Preliminary.

CY62157E MoBL[®]

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature	–65°C to + 150°C
Ambient Temperature with Power Applied	–55°C to + 125°C
Supply Voltage to Ground Potential	–0.5V to 6.0V
DC Voltage Applied to Outputs in High Z State ^[6, 7]	0.5V to 6.0V

DC Input Voltage ^[6, 7]	–0.5V to 6.0V
Output Current into Outputs (LOW)	
Static Discharge Voltage (per MIL-STD-883, Method 3015)	> 2001V
Latch-Up Current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[8]
CY62157E	Industrial	-40°C to +85°C	4.5V to 5.5V
	Automotive	–40°C to +125°C	

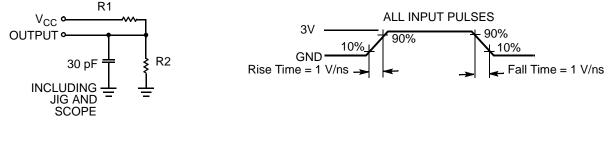
Electrical Characteristics (Over the Operating Range)

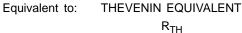
			45	ns (Indu	ustrial)	55 n	s (Auto	motive)		
Parameter	Description	Test Conditions			Typ ^[4]	Max	Min	Typ ^[4]	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -1 mA	V _{CC} = 4.5V	2.4			2.4			V
V _{OL}	Output LOW Voltage	I _{OL} = 2.1 mA	V _{CC} = 4.5V			0.4			0.4	V
V _{IH}	Input HIGH Voltage	V _{CC} = 4.5V to \$	2.2		V _{CC} + 0.5	2.2		V _{CC} + 0.5	V	
V _{IL}	Input LOW Voltage	V _{CC} = 4.5V to \$	-0.5		0.8	-0.5		0.8	V	
I _{IX}	Input Leakage Current	$GND \le V_I \le V_C$	-1		+1	-1		+1	μΑ	
I _{OZ}	Output Leakage Current	$GND \le V_O \le V_C$	-1		+1	-1		+1	μΑ	
I _{CC}	V _{CC} Operating	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$		18	25		18	35	
	Supply Current	f = 1 MHz	I _{OUT} = 0 mA CMOS levels		1.8	3		1.8	4	mA
I _{SB1}	Automatic CE Power-Down Current — CMOS Inputs	$\label{eq:constraint} \begin{split} \overline{CE}_1 &\geq V_{CC} - 0.2V, \ CE_2 &\leq 0.2V, \\ V_{IN} &\geq V_{CC} - 0.2V, \ V_{IN} &\leq 0.2V, \\ f &= f_{max} (Address and Data Only), \\ f &= 0 (OE, BHE, BLE and WE), \\ V_{CC} &= 3.60V \end{split}$			2	8		2	30	μΑ
I _{SB2}	Automatic CE Power-Down Current — CMOS Inputs	$\frac{\overline{CE}_{1} \ge V_{CC} - 0.2}{V_{IN} \ge V_{CC} - 0.2}$ f = 0, V _{CC} = 3.6		2	8		2	30	μΑ	

Capacitance^[9]

Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	pF
C _{OUT}	Output Capacitance		10	pF

Notes:

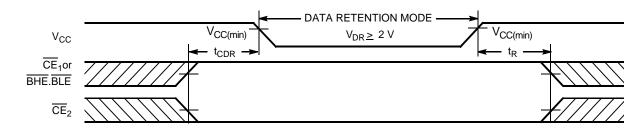

V_{IL(min)} = -2.0V for pulse durations less than 20 ns for I < 30 mA.
 V_{IH(max)} = V_{CC} + 0.75V for pulse durations less than 20 ns.
 Full device AC operation assumes a 100 μs ramp time from 0 to V_{CC}(min) and 200 μs wait time after V_{CC} stabilization.
 Tested initially and after any design or process changes that may affect these parameters.



Thermal Resistance^[9]

Parameter	Description	Test Conditions	TSOP II	VFBGA	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	77	72	°C/W
Θ _{JC}	Thermal Resistance (Junction to Case)		13	8.86	°C/W

AC Test Loads and Waveforms



Parameters	Values	Unit
R1	1800	Ω
R2	990	Ω
R _{TH}	639	Ω
V _{TH}	1.77	V

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions			Typ ^[4]	Max	Unit
V _{DR}	V _{CC} for Data Retention			2			V
I _{CCDR}	Data Retention Current	$V_{CC}=2V, \overline{CE}_{1} \ge V_{CC} - 0.2V,$ $CE_2 \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	Industrial			8	μΑ
		$CE_2 \le 0.2V, V_{IN} \ge V_{CC} - 0.2V \text{ or } V_{IN} \le 0.2V$	Automotive			30	
t _{CDR} ^[9]	Chip Deselect to Data Retention Time			0			ns
t _R ^[10]	Operation Recovery Time			t _{RC}			ns

Data Retention Waveform^[11]

Notes:

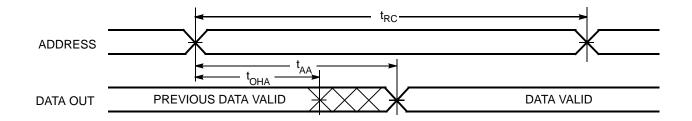
10. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \ \mu s$ or stable at $V_{CC(min)} \ge 100 \ \mu s$. 11. BHE BLE is the AND of both BHE and BLE. Chip can be deselected by either disabling the chip enable signals or by disabling both BHE and BLE.

Switching Characteristics Over the Operating Range ^[12]

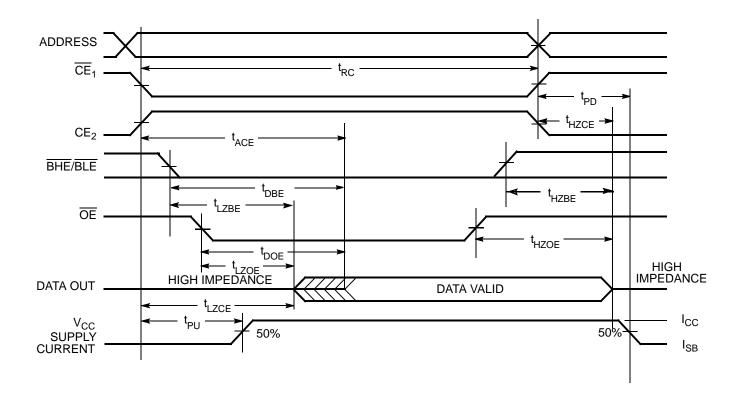
		45	ns	55	ns	
Parameter	Description	Min	Max	Min	Max	Unit
Read Cycle	-				ł	
t _{RC}	Read Cycle Time	45		55		ns
t _{AA}	Address to Data Valid		45		55	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	\overline{CE}_1 LOW and CE_2 HIGH to Data Valid		45		55	ns
t _{DOE}	OE LOW to Data Valid		22		25	ns
t _{LZOE}	OE LOW to LOW Z ^[13]	5		5		ns
t _{HZOE}	OE HIGH to High Z ^[13, 14]		18		20	ns
t _{LZCE}	\overline{CE}_1 LOW and CE_2 HIGH to Low Z ^[13]	10		10		ns
t _{HZCE}	\overline{CE}_1 HIGH and CE_2 LOW to High Z ^[13, 14]		18		20	ns
t _{PU}	\overline{CE}_1 LOW and CE_2 HIGH to Power-Up	0		0		ns
t _{PD}	\overline{CE}_1 HIGH and CE_2 LOW to Power-Down		45		55	ns
t _{DBE}	BLE/BHE LOW to Data Valid		45		55	ns
t _{LZBE}	BLE/BHE LOW to Low Z ^[13]	10		10		ns
t _{HZBE}	BLE/BHE HIGH to HIGH Z ^[13, 14]		18		20	ns
Write Cycle ^[15]			•			
t _{WC}	Write Cycle Time	45		55		ns
t _{SCE}	\overline{CE}_1 LOW and CE_2 HIGH to Write End	35		40		ns
t _{AW}	Address Set-Up to Write End	35		40		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	35		40		ns
t _{BW}	BLE/BHE LOW to Write End	35		40		ns
t _{SD}	Data Set-Up to Write End	25		25		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{HZWE}	WE LOW to High-Z ^[13, 14]		18		20	ns
t _{LZWE}	WE HIGH to Low-Z ^[13]	10		10		ns

Notes:

Test conditions for all parameters other than Tri-state parameters assume signal transition time of 3 ns or less, timing reference levels of V_{CC(typ)}/2, input pulse levels of 0 to V_{CC(typ)}, and output loading of the specified I_{OL}/I_{OH} as shown in the "AC Test Loads and Waveforms" section.
 At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any division.


given device.

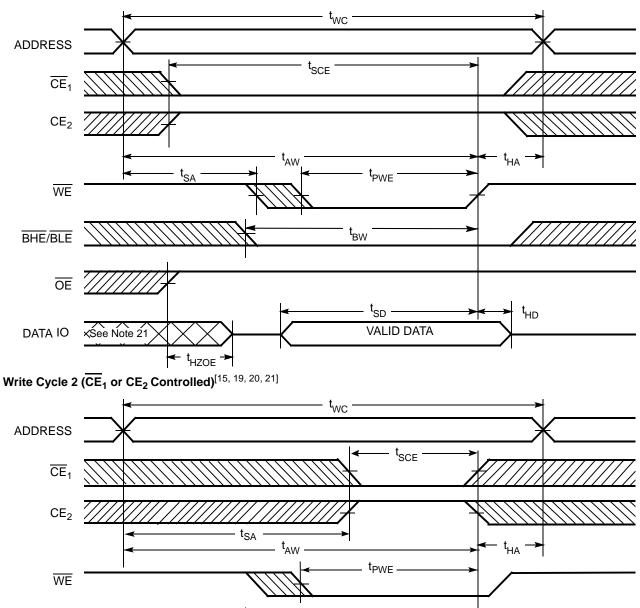
14. t_{HZOE}, t_{HZZE}, t_{HZE}, and t_{HZWE} transitions are measured when the <u>outputs</u> enter a high-impedance state.
 15. The internal Write time of the memory is defined by the overlap of WE, CE₁ = V_{IL}, BHE and/or BLE = V_{IL}, and CE₂ = V_{IH}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input set-up and hold timing should be referenced to the edge of the signal that terminates the Write.

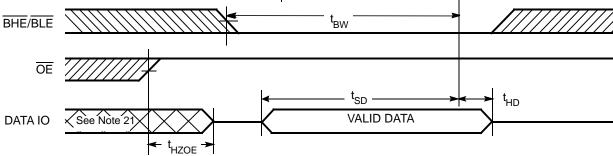


Switching Waveforms

Read Cycle 1 (Address Transition Controlled)^[16, 17]

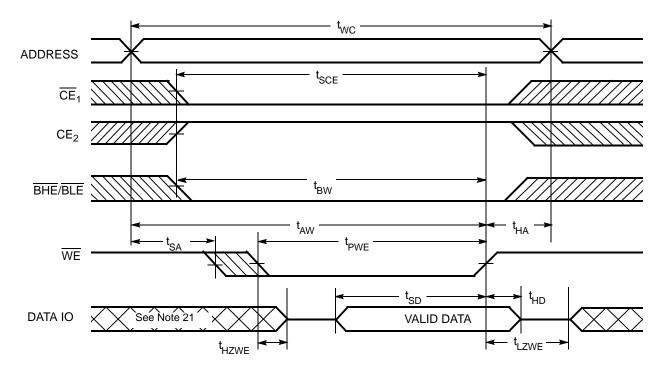
Read Cycle 2 (OE Controlled)^[17, 18]



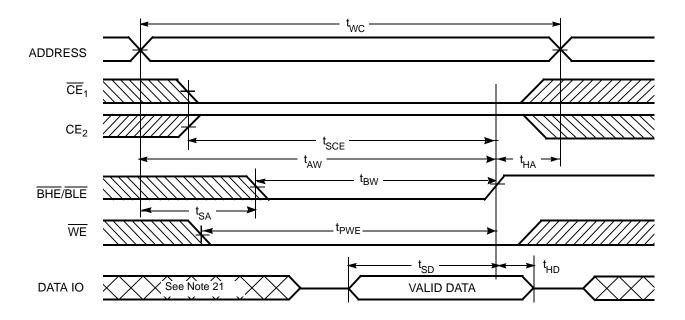

Notes: 16. <u>The</u> device is continuously selected. \overrightarrow{OE} , $\overrightarrow{CE}_1 = V_{IL}$, \overrightarrow{BHE} and/or $\overrightarrow{BLE} = V_{IL}$, and $\overrightarrow{CE}_2 = V_{IH}$. 17. \overrightarrow{WE} is HIGH for read cycle. 18. Address valid prior to or coincident with \overrightarrow{CE}_1 , \overrightarrow{BHE} , \overrightarrow{BLE} transition LOW and \overrightarrow{CE}_2 transition HIGH.

Switching Waveforms (continued)

Write Cycle 1 (WE Controlled)^[15, 19, 20, 21]


Notes:

19. Data IO is high impedance if $\overline{OE} = V_{IH}$. 20. If \overline{CE}_1 goes HIGH and CE_2 goes LOW simultaneously with $\overline{WE} = V_{IH}$, the output remains in a high-impedance state. 21. During this period, the IOs are in output state and input signals should not be applied.



Switching Waveforms (continued)

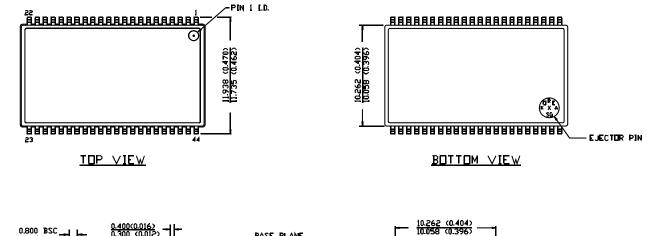
Write Cycle 3 (WE Controlled, OE LOW)^[20, 21]

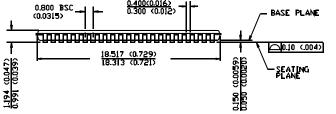
Write Cycle 4 (BHE/BLE Controlled, OE LOW)^[20, 21]

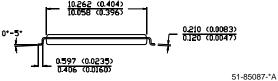
Truth Table

CE ₁	CE ₂	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	L	Х	Х	Х	Х	High Z	Deselect/Power-Down	Standby (I _{SB})
Х	Х	Х	Х	Н	Н	High Z	Deselect/Power-Down	Standby (I _{SB})
L	Н	Н	L	L	L	Data Out (IO ₀ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	Н	L	Data Out (IO ₀ –IO ₇); High Z (IO ₈ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	L	L	Н	High Z (IO ₀ –IO ₇); Data Out (IO ₈ –IO ₁₅)	Read	Active (I _{CC})
L	Н	Н	Н	L	Н	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	Н	L	High Z	Output Disabled	Active (I _{CC})
L	Н	Н	Н	L	L	High Z	Output Disabled	Active (I _{CC})
L	Н	L	Х	L	L	Data In (IO ₀ –IO ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	Н	L	Data In (IO ₀ –IO ₇); High Z (IO ₈ –IO ₁₅)	Write	Active (I _{CC})
L	Н	L	Х	L	Н	High Z (IO ₀ –IO ₇); Data In (IO ₈ –IO ₁₅)	Write	Active (I _{CC})

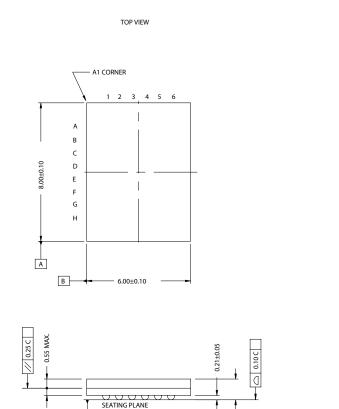
Ordering Information

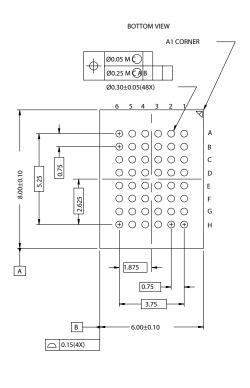

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
45	CY62157ELL-45ZSXI	51-85087	44-pin Thin Small Outline Package Type II (Pb-free)	Industrial
55	CY62157ELL-55ZSXE	51-85087	44-pin Thin Small Outline Package Type II (Pb-free)	Automotive
	CY62157ELL-55BVXE	51-85150	48-ball Very Fine Pitch Ball Grid Array (Pb-free)	




Package Diagrams

Dimension in MM (inch) Max Mini





Package Diagrams (continued)

48-ball VFBGA (6 x 8 x 1 mm) (51-85150)

1.00 MAX

51-85150-*D

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor Corporation. All product and company names mentioned in this document are the trademarks of their respective holders.

Document #: 38-05695 Rev. *C

C

0.26 MAX.

© Cypress Semiconductor Corporation, 2006. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application impl**Advirus Someanu als. comp**

Document History Page

Document Title: CY62157E MoBL [®] , 8-Mbit (512K x 16) Static RAM Document Number: 38-05695					
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change	
**	291273	See ECN	PCI	New data sheet	
*A	457689	See ECN	NXR	Added Automotive Product Removed Industrial Product Removed 35 ns and 45 ns speed bins Removed "L" bin Updated AC Test Loads table Corrected t _R in Data Retention Characteristics from 100 µs to t _{RC} ns Updated the Ordering Information and replaced the Package Name columr with Package Diagram	
*B	467033	See ECN	NXR	Added Industrial Product (Final Information) Removed 48 ball VFBGA package and its relevant information Changed the $I_{CC(typ)}$ value of Automotive from 2 mA to 1.8 mA for f = 1MH: Changed the $I_{SB2(typ)}$ value of Automotive from 5 μ A to 1.8 μ A Modified footnote #4 to include current limit Updated the Ordering Information table	
*C	569114	See ECN	VKN	Added 48 ball VFBGA package Updated Logic Block Diagram Added footnote #3 Updated the Ordering Information table	

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com