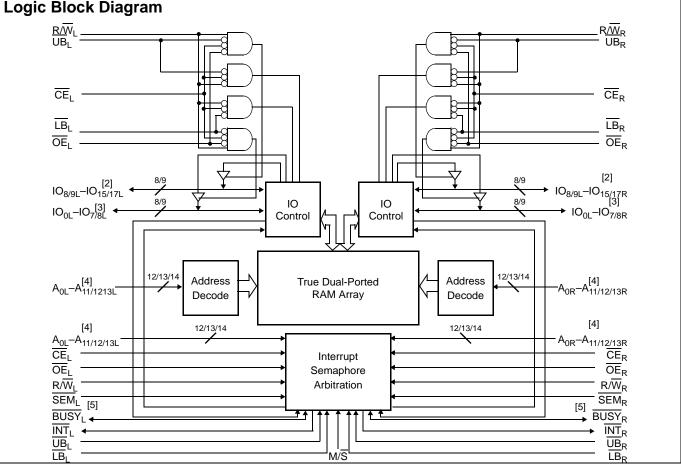


## CY7C024AV/024BV/025AV/026AV CY7C0241AV/0251AV/036AV


# 3.3V 4K/8K/16K x 16/18 Dual-Port Static RAM

## **Features**

- True dual-ported memory cells which enable simultaneous access of the same memory location
- 4, 8 or 16K × 16 organization
- (CY7C024AV/024BV [1]/ 025AV/026AV)
- 4 or 8K × 18 organization (CY7C0241AV/0251AV)
- 16K × 18 organization (CY7C036AV)
- 0.35 micron CMOS for optimum speed and power
- High speed access: 20 and 25 ns
- Low operating power

□ Active: I<sub>CC</sub> = 115 mA (typical) □ Standby: I<sub>SB3</sub> = 10 μA (typical)

- Fully asynchronous operation
- Automatic power down
- Expandable data bus to 32 bits, 36 bits or more using Master and Slave chip select when using more than one device
- On chip arbitration logic
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Separate upper byte and lower byte control
- Pin select for Master or Slave (M/S)
- Commercial and industrial temperature ranges
- Available in 100-pin Pb-free TQFP and 100-pin TQFP



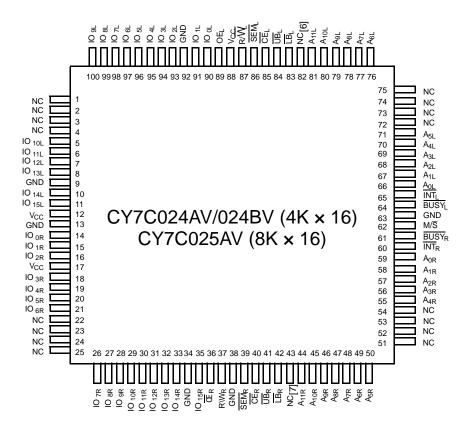
#### Notes

- 1. CY7C024AV and CY7C024BV are functionally identical.
- 2. IO<sub>8</sub>–IO<sub>15</sub> for x16 devices; IO<sub>9</sub>–IO<sub>17</sub> for x18 devices.
- 3.
- $IO_0 IO_7$  for x16 devices;  $IO_0 IO_8$  for x18 devices. <u>A\_0 A\_{11}</u> for 4K devices; A\_0 A\_{12} for 8K devices; A\_0 A\_{13} for 16K devices. 4.
- 5. BUSY is an output in master mode and an input in slave mode.

**Cypress Semiconductor Corporation** Document #: 38-06052 Rev. \*J

**198 Champion Court** 

٠


San Jose, CA 95134-1709

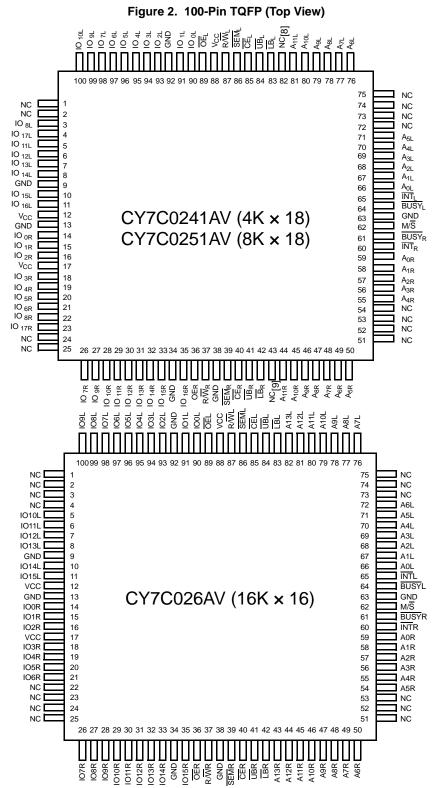
408-943-2600 ٠ Revised December 10, 2008



## **Pin Configurations**

Figure 1. 100-Pin TQFP (Top View)




Notes

6.  $A_{12L}$  on the CY7C025AV. 7.  $A_{12R}$  on the CY7C025AV.

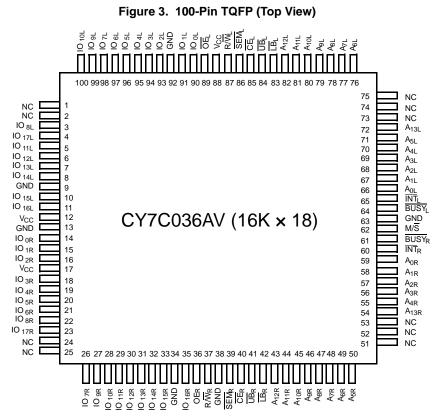
Document #: 38-06052 Rev. \*J



#### Pin Configurations (continued)



Notes


8.  $A_{12L}$  on the CY7C0251AV. 9.  $A_{12R}$  on the CY7C0251AVC.

Document #: 38-06052 Rev. \*J

Page 3 of 19



#### Pin Configurations (continued)



#### **Selection Guide**

| Parameter                                                               | CY7C024AV/024BV/025AV/026AV<br>CY7C0241AV/0251AV/036AV<br>-20 | CY7C024AV/024BV/025AV/026AV<br>CY7C0241AV/0251AV/036AV<br>-25 | Unit |
|-------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------|------|
| Maximum Access Time                                                     | 20                                                            | 25                                                            | ns   |
| Typical Operating Current                                               | 120                                                           | 115                                                           | mA   |
| Typical Standby Current for I <sub>SB1</sub><br>(Both ports TTL Level)  | 35                                                            | 30                                                            | mA   |
| Typical Standby Current for I <sub>SB3</sub><br>(Both ports CMOS Level) | 10                                                            | 10                                                            | μA   |



## **Pin Definitions**

| Left Port                           | Right Port                          | Description                                                                                 |
|-------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------|
| CEL                                 | CER                                 | Chip Enable                                                                                 |
| R/WL                                | R/WR                                | Read and Write Enable                                                                       |
| OEL                                 | OE <sub>R</sub>                     | Output Enable                                                                               |
| A <sub>0L</sub> -A <sub>13L</sub>   | A <sub>0R</sub> –A <sub>13R</sub>   | Address ( $A_0-A_{11}$ for 4K devices; $A_0-A_{12}$ for 8K devices; $A_0-A_{13}$ for 16K)   |
| IO <sub>0L</sub> –IO <sub>17L</sub> | IO <sub>0R</sub> –IO <sub>17R</sub> | Data Bus Input and Output                                                                   |
| SEML                                | SEMR                                | Semaphore Enable                                                                            |
| UBL                                 | UB <sub>R</sub>                     | Upper Byte Select ( $IO_8$ – $IO_{15}$ for x16 devices; $IO_9$ – $IO_{17}$ for x18 devices) |
| LBL                                 | LB <sub>R</sub>                     | Lower Byte Select ( $IO_0 - IO_7$ for x16 devices; $IO_0 - IO_8$ for x18 devices)           |
| INTL                                | INT <sub>R</sub>                    | Interrupt Flag                                                                              |
| BUSYL                               | BUSYR                               | Busy Flag                                                                                   |
| M/S                                 |                                     | Master or Slave Select                                                                      |
| V <sub>CC</sub>                     |                                     | Power                                                                                       |
| GND                                 |                                     | Ground                                                                                      |
| NC                                  |                                     | No Connect                                                                                  |

## Architecture

CY7C024AV/024BV/025AV/026AV The and CY7C0241AV/0251AV/036AV consist of an array of 4K, 8K, and 16K words of 16 and 18 bits each of dual-port RAM cells, IO and address lines, and control signals (CE, OE, RW). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes and reads to the same location, a BUSY pin is provided on each port. Two Interrupt (INT) pins can be used for port to port communication. Two Semaphore (SEM)\_control pins are used for allocating shared resources. With the M/S pin, the devices can function as a master (BUSY pins are outputs) or as a slave (BUSY pins are inputs). They also have an automatic power down feature controlled by CE. Each port has its own output enable control (OE), which enables data to be read from the device.

#### **Functional Description**

CY7C024AV/024BV/025AV/026AV The and CY7C0241AV/0251AV/036AV are low power CMOS 4K, 8K, and 16K ×16/18 dual port static RAMs. Various arbitration schemes are included on the devices to handle situations when multiple processors access the same piece of data. There are two ports permitting independent, asynchronous access for reads and writes to any location in memory. The devices can be used as standalone 16 or18-bit dual port static RAMs or multiple devices can be combined to function as a 32 or 36-bit or wider master and slave dual port static RAM. An  $M/\overline{S}$  pin is provided for implementing 32 or 36-bit or wider memory applications. It does not need separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual port video and graphics memory.

Each port has independent control pins: Chip Enable ( $\overline{CE}$ ), Read or Write Enable (R/W), and Output Enable ( $\overline{OE}$ ). Two flags are provided on each port (BUSY and INT). BUSY signals that the port is trying to access the same location currently being

accessed by the other port. The Interrupt flag ( $\overline{\text{INT}}$ ) permits communication between ports or systems by means of a mail box. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic has eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power down feat<u>ure</u> is controlled independently on each port by a Chip Select ( $\overline{\text{CE}}$ ) pin.

TheCY7C024AV/024BV/025AV/026AVandCY7C0241AV0251AV/036AV are available in 100-pin Pb-free ThinQuad Flat Pack (TQFP) and 100-pin TQFP.

#### Write Operation

Data must be set up for a duration of  $t_{SD}$  before the rising edge of RW to guarantee a valid write. A write operation is controlled by either the RW pin (see Figure 8 on page 12) or the CE pin (see Figure 9 on page 12). Required inputs for non-contention operations are summarized in Table 1 on page 7.

If a location is being written to by one port and the opposite port tries to read that location, there must be a port to port flowthrough delay before the data is read on the output; otherwise the data read is not deterministic. Data is valid on the port  $t_{DDD}$  after the data is presented on the other port.

#### **Read Operation**

<u>When reading the device, the user must assert both the  $\overline{OE}$  and CE pins. Data is available  $t_{ACE}$  after CE or  $t_{DOE}$  after OE is asserted. If the user wants to access a semaphore flag, then the SEM pin and OE must be asserted.</u>

#### Interrupts

The upper two memory locations are for message passing. The highest memory location (FFF for the CY7C024AV/024BV/41AV/1FFF for the CY7C025AV/51AV,



3FFF for the CY7C026AV/36AV) is the mailbox for the right port and the second highest memory location (FFE for the CY7C024AV/024BV/41AV/1FFE for the CY7C025AV/51AV, 3FFE for the CY7C026AV/36AV) is the mailbox for the left port. When one port writes to the other port's mailbox, an interrupt is generated to the owner. The interrupt is reset when the owner reads the contents of the mailbox. The message is user defined.

Each port can read the other port's mailbox without resetting the interrupt. The active state of the busy signal (to a port) prevents the port from setting the interrupt to the winning port. Also, an active busy to a port prevents that port from reading its own mailbox and, thus, resetting the interrupt to it.

If an application does not require message passing, do not connect the interrupt pin to the processor's interrupt request input pin.

The operation of the interrupts and their interaction with Busy are summarized in Table 2 on page 7.

#### Busy

The CY7C024AV/024BV/025AV/026AV and CY7C0241AV/0251AV/036AV provide on-chip arbitration to resolve simultaneous memory location access (contention). If both ports' CEs are asserted and an address match occurs within  $t_{PS}$  of each other, the busy logic determines which port has access. If  $t_{PS}$  is violated, one port definitely gains permission to the location, but it is not predictable which port gets that permission. BUSY is asserted  $t_{BLA}$  after an address match or  $t_{BLC}$  after CE is taken LOW.

#### Master/Slave

A M/ $\overline{S}$  pin helps to expand the word width by configuring the device as a master or a slave. The BUSY output of the master is connected to the BUSY input of the slave. This enables the device to interface to a master device with no external components. Writing to slave devices must be delayed until after the BUSY input has settled (t<sub>BLC</sub> or t<sub>BLA</sub>). Otherwise, the slave chip may begin a write cycle during a contention situation. When tied HIGH, the M/ $\overline{S}$  pin enables the device to be used as a master and, therefore, the BUSY line is an output. BUSY can then be used to send the arbitration outcome to a slave.

#### Semaphore Operation

The CY7C024AV/024BV/025AV/026AV and CY7C0241AV/0251AV/036AV provide eight semaphore latches, which are separate from the dual port memory locations. Semaphores are used to reserve resources that are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, SEM or OE must be deasserted for t<sub>SOP</sub> before attempting to read the semaphore. The semaphore value is available  $t_{SWRD} + t_{DOE}$  after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control of the shared resource. Otherwise (reads a one), it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side succeeds in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.

Semaphores are accessed by asserting  $\overline{SEM}$  LOW. The  $\overline{SEM}$  pin functions as a chip select for the semaphore latches ( $\overline{CE}$  must remain HIGH <u>during</u>  $\overline{SEM}$  LOW). A<sub>0-2</sub> represents the semaphore address.  $\overline{OE}$  and RW are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.

When writing to the semaphore, only  $IO_0$  is used. If a zero is written to the left port of an available semaphore, a one appears at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore is set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. *Table 3* on page 7 shows sample semaphore operations.

When reading a semaphore, all 16 and 18 data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within  $t_{SPS}$  of each other, the semaphore is definitely obtained by one of them. But there is no guarantee which side controls the semaphore.



#### Table 1. Non-Contending Read/Write

|    | Inputs |    |    |    |     | Outputs                           |                                  | Orantian                                   |
|----|--------|----|----|----|-----|-----------------------------------|----------------------------------|--------------------------------------------|
| CE | R/W    | OE | UB | LB | SEM | 10 <sub>9</sub> –10 <sub>17</sub> | IO <sub>0</sub> –IO <sub>8</sub> | Operation                                  |
| Н  | Х      | Х  | Х  | Х  | Н   | High Z                            | High Z                           | Deselected: Power Down                     |
| Х  | Х      | Х  | н  | Н  | Н   | High Z                            | High Z                           | Deselected: Power Down                     |
| L  | L      | Х  | L  | Н  | Н   | Data In                           | High Z                           | Write to Upper Byte Only                   |
| L  | L      | Х  | н  | L  | Н   | High Z                            | Data In                          | Write to Lower Byte Only                   |
| L  | L      | Х  | L  | L  | Н   | Data In                           | Data In                          | Write to Both Bytes                        |
| L  | Н      | L  | L  | Н  | Н   | Data Out                          | High Z                           | Read Upper Byte Only                       |
| L  | Н      | L  | Н  | L  | Н   | High Z                            | Data Out                         | Read Lower Byte Only                       |
| L  | Н      | L  | L  | L  | Н   | Data Out                          | Data Out                         | Read Both Bytes                            |
| Х  | Х      | Н  | Х  | Х  | Х   | High Z                            | High Z                           | Outputs Disabled                           |
| Н  | Н      | L  | Х  | Х  | L   | Data Out                          | Data Out                         | Read Data in Semaphore Flag                |
| Х  | Н      | L  | Н  | Н  | L   | Data Out                          | Data Out                         | Read Data in Semaphore Flag                |
| Н  | 2      | Х  | Х  | Х  | L   | Data In                           | Data In                          | Write D <sub>IN0</sub> into Semaphore Flag |
| Х  |        | Х  | Н  | Н  | L   | Data In                           | Data In                          | Write D <sub>IN0</sub> into Semaphore Flag |
| L  | Х      | Х  | L  | Х  | L   |                                   |                                  | Not Allowed                                |
| L  | Х      | Х  | Х  | L  | L   |                                   |                                  | Not Allowed                                |

## Table 2. Interrupt Operation Example (assumes $\overline{\text{BUSY}}_{\text{L}} = \overline{\text{BUSY}}_{\text{R}} = \text{HIGH})^{[10]}$

|                                   |                  | Left Port                                                           |   |                      |                   |     | Right Port          |                  |                  |                   |  |  |
|-----------------------------------|------------------|---------------------------------------------------------------------|---|----------------------|-------------------|-----|---------------------|------------------|------------------|-------------------|--|--|
| Function                          | R/₩ <sub>L</sub> | $R/W_L \overline{CE}_L \overline{OE}_L A_{0L-13L} \overline{INT}_L$ |   | R/W <sub>R</sub>     | CER               | OER | A <sub>0R-13R</sub> | INT <sub>R</sub> |                  |                   |  |  |
| Set Right INT <sub>R</sub> Flag   | L                | L                                                                   | Х | FFF <sup>[13]</sup>  | Х                 | Х   | Х                   | Х                | Х                | L <sup>[12]</sup> |  |  |
| Reset Right INT <sub>R</sub> Flag | Х                | Х                                                                   | Х | Х                    | Х                 | Х   | L                   | L                | FFF (or 1/3FFF)  | H <sup>[11]</sup> |  |  |
| Set Left INT <sub>L</sub> Flag    | Х                | Х                                                                   | Х | Х                    | L <sup>[11]</sup> | L   | L                   | Х                | 1FFE (or 1/3FFE) | Х                 |  |  |
| Reset Left INT <sub>L</sub> Flag  | Х                | L                                                                   | L | 1FFE <sup>[13]</sup> | H <sup>[12]</sup> | Х   | Х                   | Х                | Х                | Х                 |  |  |

#### Table 3. Semaphore Operation Example

| Function                         | IO <sub>0</sub> -IO <sub>17</sub> Left | IO <sub>0</sub> -IO <sub>17</sub> Right | Status                                                 |
|----------------------------------|----------------------------------------|-----------------------------------------|--------------------------------------------------------|
| No action                        | 1                                      | 1                                       | Semaphore-free                                         |
| Left port writes 0 to semaphore  | 0                                      | 1                                       | Left Port has semaphore token                          |
| Right port writes 0 to semaphore | 0                                      | 1                                       | No change. Right side has no write access to semaphore |
| Left port writes 1 to semaphore  | 1                                      | 0                                       | Right port obtains semaphore token                     |
| Left port writes 0 to semaphore  | 1                                      | 0                                       | No change. Left port has no write access to semaphore  |
| Right port writes 1 to semaphore | 0                                      | 1                                       | Left port obtains semaphore token                      |
| Left port writes 1 to semaphore  | 1                                      | 1                                       | Semaphore-free                                         |
| Right port writes 0 to semaphore | 1                                      | 0                                       | Right port has semaphore token                         |
| Right port writes 1 to semaphore | 1                                      | 1                                       | Semaphore free                                         |
| Left port writes 0 to semaphore  | 0                                      | 1                                       | Left port has semaphore token                          |
| Left port writes 1 to semaphore  | 1                                      | 1                                       | Semaphore-free                                         |

#### Notes

10. See Functional Description on page 5 for specific highest memory locations by device. 11. If <u>BUSY</u><sub>R</sub>=L, then no change.

If BUSY<sub>L</sub>=L, then no change.
 See Functional Description on page 5 for specific addresses by device.



## **Maximum Ratings**

Exceeding maximum ratings<sup>[14]</sup> may shorten the useful life of the device. User guidelines are not tested.

| Storage Temperature65°C to +150°C                                           |
|-----------------------------------------------------------------------------|
| Ambient Temperature with<br>Power Applied55°C to +125°C                     |
| Supply Voltage to Ground Potential0.5V to +4.6V                             |
| DC Voltage Applied to Outputs in High-Z State0.5V to V <sub>CC</sub> + 0.5V |

## **Electrical Characteristics**

Over the Operating Range

| DC Input Voltage <sup>[15]</sup>  | –0.5V to V <sub>CC</sub> + 0.5V |
|-----------------------------------|---------------------------------|
| Output Current into Outputs (LOW) | 20 mA                           |
| Static Discharge Voltage          | > 2001V                         |
| Latch-up Current                  | > 200 mA                        |

## **Operating Range**

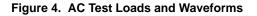
| Range                      | Ambient Temperature | V <sub>CC</sub> |
|----------------------------|---------------------|-----------------|
| Commercial                 | 0°C to +70°C        | $3.3V\pm300~mV$ |
| Industrial <sup>[16]</sup> | –40°C to +85°C      | $3.3V\pm300~mV$ |

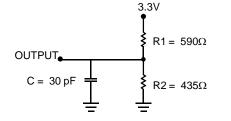
|                  | Description                                                                                |                      |     | CY7C024AV/024BV/025AV/026AV<br>CY7C0241AV/0251AV/036AV |     |     |      |     |    |  |
|------------------|--------------------------------------------------------------------------------------------|----------------------|-----|--------------------------------------------------------|-----|-----|------|-----|----|--|
| Parameter        |                                                                                            |                      |     | -20                                                    |     |     | Unit |     |    |  |
|                  |                                                                                            |                      |     | Тур                                                    | Max | Min | Тур  | Max |    |  |
| V <sub>OH</sub>  | Output HIGH Voltage (V <sub>CC</sub> =3.3V)                                                |                      |     |                                                        |     | 2.4 |      |     | V  |  |
| V <sub>OL</sub>  | Output LOW Voltage                                                                         |                      |     |                                                        | 0.4 |     |      | 0.4 | V  |  |
| V <sub>IH</sub>  | Input HIGH Voltage                                                                         |                      | 2.0 |                                                        |     | 2.0 |      |     | V  |  |
| V <sub>IL</sub>  | Input LOW Voltage                                                                          | Input LOW Voltage    |     |                                                        | 0.8 |     |      | 0.8 | V  |  |
| I <sub>OZ</sub>  | Output Leakage Current                                                                     |                      |     |                                                        | 10  | -10 |      | 10  | μΑ |  |
| I <sub>IX</sub>  | Input Leakage Current                                                                      |                      | -10 |                                                        | 10  | -10 |      | 10  | μΑ |  |
| I <sub>CC</sub>  | Operating Current (V <sub>CC</sub> = Max.,                                                 | Com'l.               |     | 120                                                    | 175 |     | 115  | 165 | mA |  |
|                  | I <sub>OUT</sub> = 0 mA) Outputs Disabled                                                  | Ind. <sup>[16]</sup> |     |                                                        | •   |     | 135  | 185 | mA |  |
| I <sub>SB1</sub> | Standby Current (Both Ports TTL Level)                                                     | Com'l.               |     | 35                                                     | 45  |     | 30   | 40  | mA |  |
|                  | $CE_L \& CE_R \ge V_{IH}, f = f_{MAX}$                                                     | Ind. <sup>[16]</sup> |     |                                                        |     |     | 40   | 50  | mA |  |
| I <sub>SB2</sub> | Standby Current (One Port TTL Level)                                                       | Com'l.               |     | 75                                                     | 110 |     | 65   | 95  | mA |  |
|                  | $CE_L \mid CE_R \ge V_{IH}, f = f_{MAX}$                                                   | Ind. <sup>[16]</sup> |     |                                                        |     |     | 75   | 105 | mA |  |
| I <sub>SB3</sub> | Standby Current (Both Ports CMOS Level)                                                    | Com'l.               |     | 10                                                     | 500 |     | 10   | 500 | μΑ |  |
|                  | $CE_L \& CE_R \ge V_{CC} - 0.2V, f = 0$                                                    | Ind. <sup>[16]</sup> |     |                                                        |     |     | 10   | 500 | μΑ |  |
| I <sub>SB4</sub> | $\frac{Standby Current (One Port CMOS Level)}{CE_L   CE_R \ge V_{IH}, f = f_{MAX}^{[18]}}$ | Com'l.               | 1   | 70                                                     | 95  |     | 60   | 80  | mA |  |
|                  | $CE_L \mid CE_R \ge V_{IH}, f = f_{MAX}^{l \mid o_J}$                                      | Ind. <sup>[16]</sup> | 1   |                                                        |     |     | 70   | 90  | mA |  |

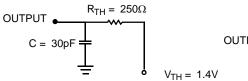
#### Capacitance

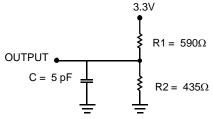
| Parameter <sup>[19]</sup> | Description        | Test Conditions                         | Max | Unit |
|---------------------------|--------------------|-----------------------------------------|-----|------|
| C <sub>IN</sub>           | Input Capacitance  | $T_A = 25^{\circ}C, f = 1 \text{ MHz},$ | 10  | pF   |
| C <sub>OUT</sub>          | Output Capacitance | $V_{CC} = 3.3V$                         | 10  | pF   |

#### Notes


- 14. The voltage on any input or IO pin cannot exceed the power pin during power up.
- 15. Pulse width < 20 ns.
- 16. Industrial parts are available in CY7C026AV and CY7C036AV only.


<sup>17.</sup> VIL  $\geq -1.5$ V for pulse width less than 10ns. 18. f<sub>MAX</sub> = 1/t<sub>RC</sub> = All inputs cycling at f = 1/t<sub>RC</sub> (except output enable). f = 0 means no address or control lines change. This applies only to inputs at CMOS level standby I<sub>SB3</sub>.


<sup>19.</sup> Tested initially and after any design or process changes that may affect these parameters.

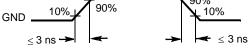



## CY7C024AV/024BV/025AV/026AV CY7C0241AV/0251AV/036AV










(c) Three-State Delay (Load 2) (Used for  $t_{LZ}$ ,  $t_{HZ}$ ,  $t_{HZWE}$ , and  $t_{LZWE}$ including scope and jig)

(a) Normal Load (Load 1)



(b) Thévenin Equivalent (Load 1)



## **Switching Characteristics**

Over the Operating Range [20]

|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CY7C024AV/024BV/025AV/026AV<br>CY7C0241AV/0251AV/036AV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Description                     | -                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -:                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                 | Min                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
|                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Read Cycle Time                 | 20                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Address to Data Valid           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Output Hold From Address Change | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE LOW to Data Valid            |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| OE LOW to Data Valid            |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| OE Low to Low Z                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| OE HIGH to High Z               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE LOW to Low Z                 | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE HIGH to High Z               |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE LOW to Power Up              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE HIGH to Power Down           |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Byte Enable Access Time         |                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 | L. L                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |
| Write Cycle Time                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| CE LOW to Write End             | 15                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Address Valid to Write End      | 15                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Address Hold From Write End     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
| Address Setup to Write Start    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ns                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |
|                                 | Address to Data Valid         Output Hold From Address Change         CE LOW to Data Valid         OE LOW to Data Valid         OE LOW to Low Z         OE HIGH to High Z         CE LOW to Low Z         CE HIGH to High Z         CE LOW to Power Up         CE HIGH to Power Down         Byte Enable Access Time         Write Cycle Time         CE LOW to Write End         Address Valid to Write End         Address Hold From Write End | Description       CY         Min       Min         Read Cycle Time       20         Address to Data Valid       20         Output Hold From Address Change       3         CE LOW to Data Valid       3         OE LOW to Data Valid       3         OE LOW to Data Valid       3         OE Low to Low Z       3         CE LOW to Low Z       3         CE LOW to Date Valid       0         OE HIGH to High Z       3         CE LOW to Low Z       3         CE LOW to Power Up       0         CE LOW to Power Up       0         CE HIGH to Power Down       9         Byte Enable Access Time       20         Vrite Cycle Time       20         CE LOW to Write End       15         Address Valid to Write End       15         Address Hold From Write End       0 | CYTC0241 AV/<br>-20DescriptionCYTC0241 AV/Read Cycle TimeMaxRead Cycle Time20Address to Data Valid20Output Hold From Address Change3CE LOW to Data Valid20OE LOW to Data Valid12OE LOW to Data Valid12OE LOW to Data Valid12OE LOW to Low Z3CE LOW to Low Z3CE HIGH to High Z12CE LOW to Power Up0CE HIGH to Power Up0CE HIGH to Power Down20Byte Enable Access Time20Write Cycle Time20CE LOW to Write End15Address Valid to Write End15Address Hold From Write End0 | CYTC0241AV/0251AV/030DescriptionRead Cycle Time2025Address to Data Valid2025Address to Data Valid2020Output Hold From Address Change33CE LOW to Data Valid2020OE LOW to Data Valid2020OE LOW to Data Valid12OE Low to Low Z33CE LOW to Low Z33CE HIGH to High Z12CE LOW to Power Up00CE HIGH to Power Down20Byte Enable Access Time20Write Cycle Time20Write Cycle Time20CE LOW to Write End15Address Valid to Write End000Address Hold From Write End000Address Hold From Write End00000 | DescriptionCY7C0241AV/0251AV/036AVImage: Partial colspan="2">-20-25MinMaxMinMaxRead Cycle Time202525Address to Data Valid202525Output Hold From Address Change333CE LOW to Data Valid202525OE LOW to Data Valid12133OE Low to Low Z333OE HIGH to High Z121515CE LOW to Dower Up000CE HIGH to High Z121525DE Low to Power Up0025Byte Enable Access Time2025Write Cycle Time2025CE LOW to Write End1520Address Valid to Write End1520Address Hold From Write End00 |  |  |

Notes

20. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified  $I_{O/}I_{OH}$ and 30 pF load capacitance. 21. To access RAM,  $\overrightarrow{CE} = L$ ,  $\overrightarrow{UB} = L$ ,  $\overrightarrow{SEM} = H$ . To access semaphore,  $\overrightarrow{CE} = H$  and  $\overrightarrow{SEM} = L$ . Either condition must be valid for the entire  $t_{SCE}$  time.

22. At any given temperature and voltage condition for any given device,  $t_{HZCE}$  is less than  $t_{LZCE}$  and  $t_{HZOE}$  is less than  $t_{LZOE}$ .

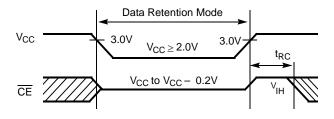
23. Test conditions used are Load 3.

24. This parameter is guaranteed but not tested. For information on port to port delay through RAM cells from writing port to reading port, refer to Figure 12.



## Switching Characteristics

Over the Operating Range (continued)<sup>[20]</sup>


| ParameterDescription $-20$ $-2$ MinMaxMin $t_{PWE}$ Write Pulse Width1520 $t_{SD}$ Data Setup to Write End1515 $t_{HD}$ Data Hold From Write End00 $t_{HZWE}^{[23, 24]}$ R/W LOW to High Z12 $t_{LZWE}^{[23, 24]}$ R/W HIGH to Low Z30 $t_{WDD}^{[25]}$ Write Pulse to Data Delay45 $t_{DDD}^{[25]}$ Write Data Valid to Read Data Valid30Busy Timing <sup>[26]</sup> $t_{BLA}$ BUSY LOW from Address Match20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CY7C024AV/024BV/025AV/026AV<br>CY7C0241AV/0251AV/036AV |          |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------|--|--|--|--|
| t <sub>PWE</sub> Write Pulse Width         15         20           t <sub>SD</sub> Data Setup to Write End         15         15           t <sub>HD</sub> Data Hold From Write End         0         0           t <sub>HZWE</sub> <sup>[23, 24]</sup> R/W LOW to High Z         12         12           t <sub>LZWE</sub> <sup>[23, 24]</sup> R/W HIGH to Low Z         3         0           t <sub>LZWE</sub> <sup>[23, 24]</sup> Write Pulse to Data Delay         45         12           t <sub>DDD</sub> <sup>[25]</sup> Write Data Valid to Read Data Valid         30         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -25                                                    |          |  |  |  |  |
| $\begin{tabular}{ c c c c c c } \hline FWL & & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Max                                                    |          |  |  |  |  |
| $\begin{array}{c c c c c c c c c } \hline t_{HD} & Data Hold From Write End & 0 & 0 \\ \hline t_{HZWE}^{[23,24]} & R/\overline{W} LOW to High Z & 12 \\ \hline t_{LZWE}^{[23,24]} & R/\overline{W} HIGH to Low Z & 3 & 0 \\ \hline t_{WDD}^{[25]} & Write Pulse to Data Delay & 45 \\ \hline t_{DDD}^{[25]} & Write Data Valid to Read Data Valid & 30 \\ \hline \textbf{Busy Timing}^{[26]} \end{array}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ns       |  |  |  |  |
| Ind         R/W LOW to High Z         12           t <sub>HZWE</sub> R/W LOW to High Z         12           t <sub>LZWE</sub> R/W HIGH to Low Z         3         0           t <sub>WDD</sub> R/W HIGH to Low Z         3         0           t <sub>WDD</sub> Write Pulse to Data Delay         45         12           t <sub>DDD</sub> Write Data Valid to Read Data Valid         30         30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                        | ns       |  |  |  |  |
| t_LZWE         [23, 24]         R/W HIGH to Low Z         3         0           t <sub>WDD</sub> Write Pulse to Data Delay         45         0           t <sub>DDD</sub> Write Data Valid to Read Data Valid         30         30           Busy Timing         26         0         0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        | ns       |  |  |  |  |
| t_LZWE         [23, 24]         R/W HIGH to Low Z         3         0           t <sub>WDD</sub> Write Pulse to Data Delay         45         0           t <sub>WDD</sub> Write Data Valid to Read Data Valid         30         30           Busy Timing         [26]         Image: Comparison of the pulse of t | 15                                                     | ns       |  |  |  |  |
| t <sub>WDD</sub> <sup>[25]</sup> Write Pulse to Data Delay     45       t <sub>DDD</sub> <sup>[25]</sup> Write Data Valid to Read Data Valid     30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                        | ns       |  |  |  |  |
| t <sub>DDD</sub> <sup>[25]</sup> Write Data Valid to Read Data Valid 30 Busy Timing <sup>[26]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50                                                     | ns       |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 35                                                     | ns       |  |  |  |  |
| t <sub>BLA</sub> BUSY LOW from Address Match 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | <u> </u> |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 20                                                     | ns       |  |  |  |  |
| t <sub>BHA</sub> BUSY HIGH from Address Mismatch 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20                                                     | ns       |  |  |  |  |
| t <sub>BLC</sub> BUSY LOW from CE LOW 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 20                                                     | ns       |  |  |  |  |
| t <sub>BHC</sub> BUSY HIGH from CE HIGH 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 17                                                     | ns       |  |  |  |  |
| t <sub>PS</sub> Port Setup for Priority 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                        | ns       |  |  |  |  |
| t <sub>WB</sub> R/W HIGH after BUSY (Slave) 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | ns       |  |  |  |  |
| t <sub>WH</sub> R/W HIGH after BUSY HIGH (Slave) 15 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        | ns       |  |  |  |  |
| t <sub>BDD</sub> <sup>[27]</sup> BUSY HIGH to Data Valid 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                     | ns       |  |  |  |  |
| Interrupt Timing <sup>[26]</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | <u> </u> |  |  |  |  |
| t <sub>INS</sub> INT Set Time 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20                                                     | ns       |  |  |  |  |
| t <sub>INR</sub> INT Reset Time 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20                                                     | ns       |  |  |  |  |
| Semaphore Timing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                        | -        |  |  |  |  |
| t <sub>SOP</sub> SEM Flag Update Pulse (OE or SEM) 10 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                        | ns       |  |  |  |  |
| t <sub>SWRD</sub> SEM Flag Write to Read Time 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                        | ns       |  |  |  |  |
| t <sub>SPS</sub> SEM Flag Contention Window 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                        | ns       |  |  |  |  |
| t <sub>SAA</sub> SEM Address Access Time 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 25                                                     | ns       |  |  |  |  |

#### **Data Retention Mode**

CY7C024AV/024BV/025AV/026AV The and CY7C0241AV/0251AV/036AV are designed for battery backup. Data retention voltage and supply current are guaranteed over temperature. The following rules ensure data retention:

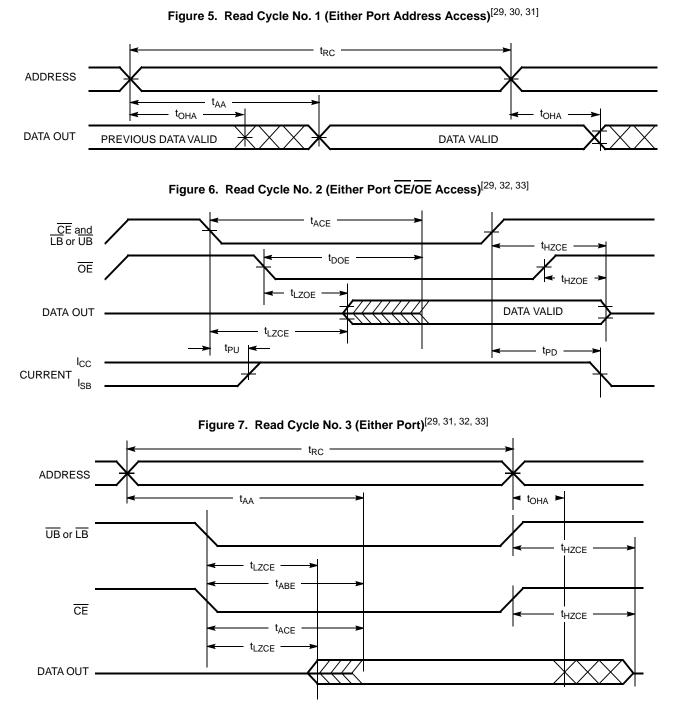
- 1. Chip Enable ( $\overline{CE}$ ) must be held HIGH during data retention, within  $V_{CC}$  to  $V_{CC} - 0.2V$ .
- 2.  $\overline{CE}$  must be kept between V<sub>CC</sub> 0.2V and 70 percent of V<sub>CC</sub> during the power up and power down transitions.
- 3. The RAM can begin operation  $> t_{RC}$  after  $V_{CC}$  reaches the minimum operating voltage (3.0V).

#### Timing



| Parameter          | Test Conditions <sup>[28]</sup> | Max | Unit |
|--------------------|---------------------------------|-----|------|
| ICC <sub>DR1</sub> | at VCC <sub>DR</sub> = 2V       | 50  | μA   |

#### Notes


25. For information on port to port delay through RAM cells from writing port to reading port, refer to Figure 12.

26. Test conditions used are Load 2.

27. <u>t<sub>RDD</sub></u> is a calculated parameter and is the greater of t<sub>WDD</sub> – t<sub>PWE</sub> (actual) or t<sub>DDD</sub> – t<sub>SD</sub> (actual). 28. CE = V<sub>CC</sub>, V<sub>in</sub> = GND to V<sub>CC</sub>, T<sub>A</sub> = 25°C. This parameter is guaranteed but not tested.



## **Switching Waveforms**



#### Notes

29. R/ $\overline{\rm W}$  is HIGH for read cycles.

30. Device is continuously selected  $\overline{CE} = V_{IL}$  and  $\overline{UB}$  or  $\overline{LB} = V_{IL}$ . This waveform cannot be used for semaphore reads. 31.  $\overline{CE} = V_{IL}$ .

32. Address valid prior to or coincident with  $\overline{CE}$  transition LOW. 33. To access RAM,  $\overline{CE} = V_{IL}$ ,  $\overline{UB}$  or  $\overline{LB} = V_{IL}$ ,  $\overline{SEM} = V_{IH}$ . To access semaphore,  $\overline{CE} = V_{IH}$ ,  $\overline{SEM} = V_{IL}$ .



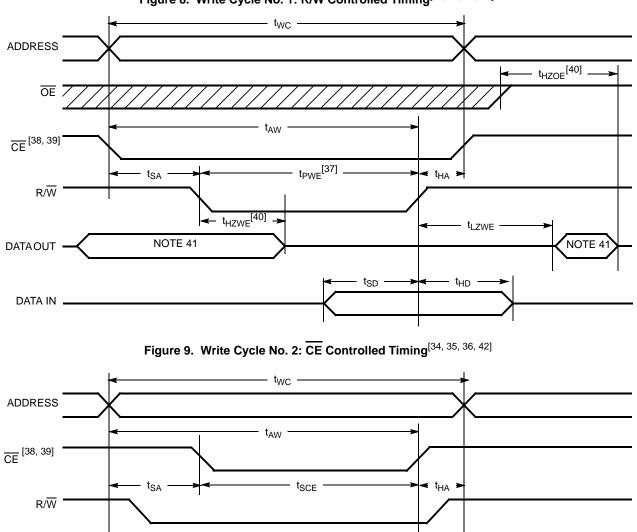



Figure 8. Write Cycle No. 1: R/W Controlled Timing<sup>[34, 35, 36, 37]</sup>

#### Notes

DATA IN

- 34. R/W or CE must be HIGH during all address transitions.
- A white occurs during the overlap (t<sub>SCE</sub> or t<sub>PWE</sub>) of a LOW CE or SEM and a LOW UB or LB.
   t<sub>Ha</sub> is measured from the <u>e</u>arlier of CE or RW or (SEM or R/W) going HIGH at the end of write cycle.
- 33. If OE is LOW during a R/W controlled write cycle, the write pulse width must be the larger of t<sub>PWE</sub> or (t<sub>HZWE</sub> + t<sub>SD</sub>) to enable the IO drivers to turn off and data to be placed on the bus for the required t<sub>SD</sub>. If OE is HIGH during an R/W controlled write cycle, this requirement does not apply and the write pulse can be as short as the specified t<u>pWE</u>.
  38. To access RAM, CE = V<sub>IL</sub>, SEM = V<sub>IH</sub>.
  39. To access lower byte, CE = V<sub>IL</sub>, JB = V<sub>IL</sub>, SEM = V<sub>IH</sub>.
  40. Transition is measured ±500 mV from steady state with a 5 pF load (including scope and jig). This parameter is sampled and not 100 percent tested.

tsp

t<sub>HD</sub>

- 41. During this period, the IO pins are in the output state, and input signals must not be applied.
- 42. If the CE or SEM LOW transition occurs simultaneously with or after the RIW LOW transition, the outputs remain in the high impedance state.



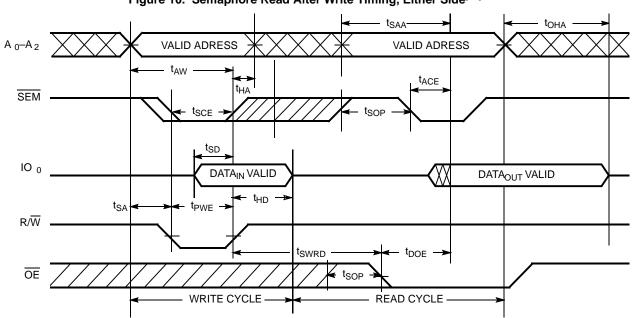
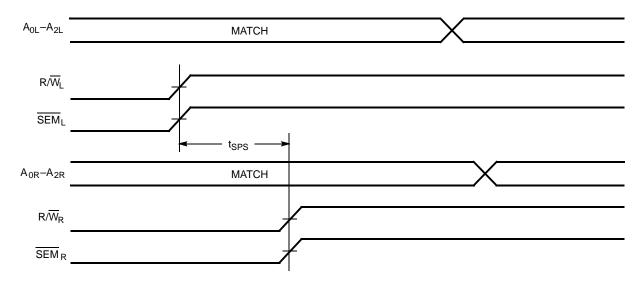




Figure 10. Semaphore Read After Write Timing, Either Side<sup>[43]</sup>

Figure 11. Timing Diagram of Semaphore Contention<sup>[44, 45, 46]</sup>



Notes 43.  $\overline{CE}$  = HIGH for the duration of the above timing (both write and read cycle). 44.  $IO_{0R}$  =  $IO_{0L}$  = LOW (request semaphore);  $\overline{CE}_R$  =  $\overline{CE}_L$  = HIGH. 45. Semaphores are reset (available to both ports) at cycle start. 46. If t<sub>SPS</sub> is violated, the semaphore is definitely obtained by one side or the other, but which side gets the semaphore is unpredictable.



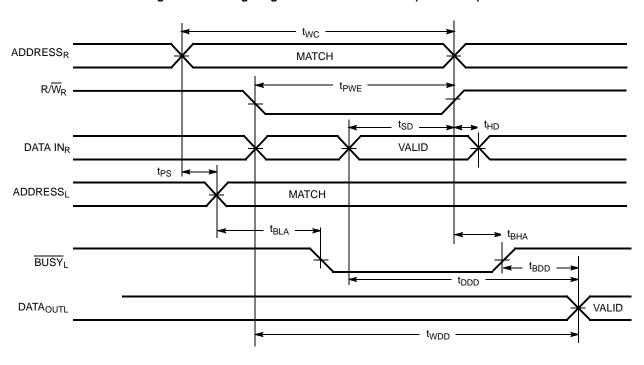
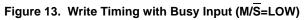
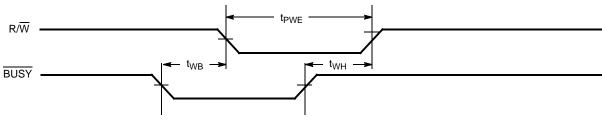
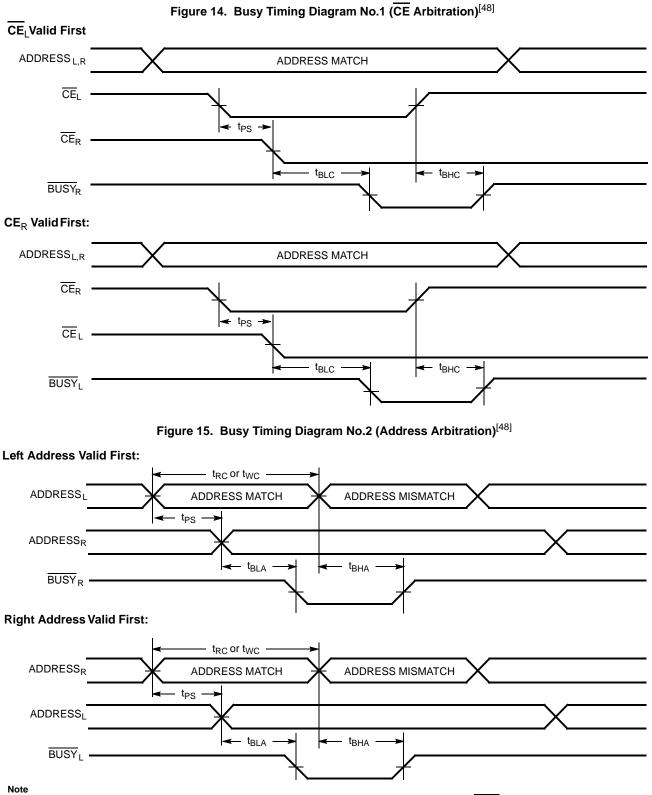
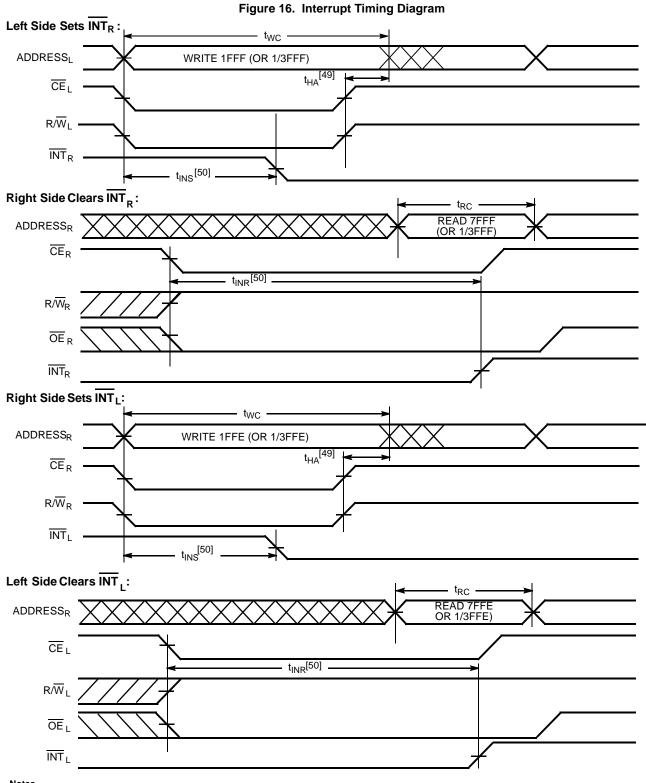





Figure 12. Timing Diagram of Read with  $\overline{\text{BUSY}}$  (M/S=HIGH)<sup>[47]</sup>






$$\frac{\text{Note}}{47. \text{ CE}_{\text{L}}} = \overline{\text{CE}}_{\text{R}} = \text{LOW}.$$


Document #: 38-06052 Rev. \*J





48. If t<sub>PS</sub> is violated, the busy signal is asserted on one side or the other, but there is no guarantee to which side BUSY is asserted.





#### Notes

49.  $t_{HA}$  depends on which enable pin ( $\overline{CE}_L$  or  $\underline{R}/\overline{W}_L$ ) is deasserted first. 50.  $t_{INS}$  or  $t_{INR}$  depends on which enable pin ( $\overline{CE}_L$  or  $\overline{R}/\overline{W}_L$ ) is asserted last.



## **Ordering Information**

#### 4K x16 3.3V Asynchronous Dual-Port SRAM

| Speed<br>(ns)                       | Ordering Code                                                | Package<br>Diagram                                | Package Type                        | Operating<br>Range |
|-------------------------------------|--------------------------------------------------------------|---------------------------------------------------|-------------------------------------|--------------------|
| 15                                  | CY7C024AV-15AI 51-85048 100-Pin Thin Quad Flat Pack          |                                                   | 100-Pin Thin Quad Flat Pack         | Industrial         |
|                                     | CY7C024BV-15AXI                                              | 51-85048                                          | 100-Pin Pb-Free Thin Quad Flat Pack |                    |
| 20                                  | CY7C024AV-20AC                                               | 51-85048                                          | 100-Pin Thin Quad Flat Pack         | Commercial         |
|                                     | CY7C024AV-20AXC 51-85048 100-Pin Pb-Free Thin Quad Flat Pack |                                                   |                                     |                    |
|                                     | CY7C024AV-20AI                                               | 7C024AV-20AI 51-85048 100-Pin Thin Quad Flat Pack |                                     | Industrial         |
|                                     | CY7C024AV-20AXI                                              | 51-85048                                          | 100-Pin Pb-Free Thin Quad Flat Pack |                    |
| 25                                  | 25 CY7C024AV-25AC 51-85048 100-Pin Thin Quad Flat Pack       |                                                   | 100-Pin Thin Quad Flat Pack         | Commercial         |
| CY7C024AV-25AXC 51-85048 100-Pin Pl |                                                              | 100-Pin Pb-Free Thin Quad Flat Pack               |                                     |                    |
|                                     | CY7C024AV-25AI                                               | 51-85048                                          | 100-Pin Thin Quad Flat Pack         | Industrial         |
|                                     | CY7C024AV-25AXI                                              | 51-85048                                          | 100-Pin Pb-Free Thin Quad Flat Pack |                    |

#### 8K x16 3.3V Asynchronous Dual-Port SRAM

| Speed<br>(ns) | Ordering Code                                      | Package<br>Name                      | Package Type                        | Operating<br>Range |
|---------------|----------------------------------------------------|--------------------------------------|-------------------------------------|--------------------|
| 20            | CY7C025AV-20AC                                     | 51-85048 100-Pin Thin Quad Flat Pack |                                     | Commercial         |
|               | CY7C025AV-20AXC                                    | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |
|               | CY7C025AV-20AXI                                    | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack | Industrial         |
| 25            | Y7C025AV-25AC 51-85048 100-Pin Thin Quad Flat Pack |                                      | Commercial                          |                    |
|               | CY7C025AV-25AXC                                    | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |
|               | CY7C025AV-25AI                                     | 51-85048                             | 100-Pin Thin Quad Flat Pack         | Industrial         |
|               | CY7C025AV-25AXI                                    | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |

#### 16K x16 3.3V Asynchronous Dual-Port SRAM

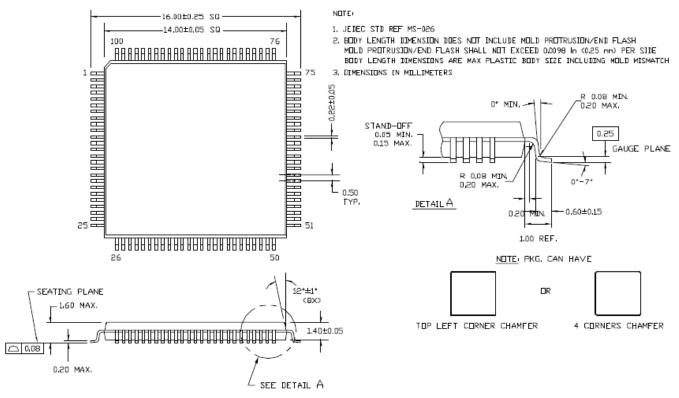
| Speed<br>(ns) | Ordering Code   | Package<br>Name                      | Package Type                        | Operating<br>Range |  |
|---------------|-----------------|--------------------------------------|-------------------------------------|--------------------|--|
| 20            | CY7C026AV-20AC  | 51-85048                             | 100-Pin Thin Quad Flat Pack         | Commercial         |  |
|               | CY7C026AV-20AXC | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |  |
|               | CY7C026AV-20AXI | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack | Industrial         |  |
| 25            | CY7C026AV-25AC  | 51-85048 100-Pin Thin Quad Flat Pack |                                     | Commercial         |  |
|               | CY7C026AV-25AXC | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |  |
|               | CY7C026AV-25AI  | 51-85048                             | 100-Pin Thin Quad Flat Pack         | Industrial         |  |
|               | CY7C026AV-25AXI | 51-85048                             | 100-Pin Pb-Free Thin Quad Flat Pack |                    |  |

#### 4K x18 3.3V Asynchronous Dual-Port SRAM

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                | Operating<br>Range |
|---------------|-----------------|-----------------|-----------------------------|--------------------|
| 20            | CY7C0241AV-20AC | 51-85048        | 100-Pin Thin Quad Flat Pack | Commercial         |
| 25            | CY7C0241AV-25AC | 51-85048        | 100-Pin Thin Quad Flat Pack | Commercial         |

#### 8K x18 3.3V Asynchronous Dual-Port SRAM

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                | Operating<br>Range |
|---------------|-----------------|-----------------|-----------------------------|--------------------|
| 20            | CY7C0251AV-20AC | 51-85048        | 100-Pin Thin Quad Flat Pack | Commercial         |
| 25            | CY7C0251AV-25AC | 51-85048        | 100-Pin Thin Quad Flat Pack | Commercial         |




#### 16K x18 3.3V Asynchronous Dual-Port SRAM

| Speed<br>(ns) | Ordering Code   | Package<br>Name | Package Type                        | Operating<br>Range |
|---------------|-----------------|-----------------|-------------------------------------|--------------------|
| 20            | CY7C036AV-20AC  | 51-85048        | 100-Pin Thin Quad Flat Pack         | Commercial         |
| 25            | CY7C036AV-25AC  | 51-85048        | 100-Pin Thin Quad Flat Pack         | Commercial         |
|               | CY7C036AV-25AXC | 51-85048        | 100-Pin Pb-free Thin Quad Flat Pack |                    |
|               | CY7C036AV-25AI  | 51-85048        | 100-Pin Thin Quad Flat Pack         | Industrial         |

## Package Diagram





51-85048 \*C



## **Document History Page**

| Rev. | ECN No. | Orig. of<br>Change | Submission<br>Date | Description of Change                                                                                                                             |
|------|---------|--------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| **   | 110204  | SZV                | 11/11/01           | Change from Spec number: 38-00838 to 38-06052                                                                                                     |
| *A   | 122302  | RBI                | 12/27/02           | Power up requirements added to Maximum Ratings Information                                                                                        |
| *В   | 128958  | JFU                | 9/03/03            | Added CY7C025AV-25AI to Ordering Information                                                                                                      |
| *C   | 237622  | YDT                | See ECN            | Removed cross information from features section                                                                                                   |
| *D   | 241968  | WWZ                | See ECN            | Added CY7C024AV-25AI to Ordering Information                                                                                                      |
| *E   | 276451  | SPN                | See ECN            | Corrected x18 for 026AV to x16                                                                                                                    |
| *F   | 279452  | RUY                | See ECN            | Added Pb-free packaging information<br>Corrected pin A113L to A13L on CY7C026AV pin list<br>Added minimum V <sub>IL</sub> of 0.3V and note 16     |
| *G   | 373580  | RUY                | See ECN            | Corrected CY7C024AC-25AXC to CY7C024AV-25AXC in Ordering Informatic                                                                               |
| *H   | 380476  | PCX                | See ECN            | Added to Part Ordering information:<br>CY7C024AV-15AI, CY7C024AV-15AXI, CY7C024AV-20AI,<br>CY7C024AV-20AXI, CY7C025AV-20AXI, CY7C026AV-20AXI      |
| *    | 2543577 | NXR/AESA           | 07/25/08           | Updated note number 33 on page 12 from "R/W must be HIGH during all address transitions" to "R/W or CE must be HIGH during all address transition |
| *J   | 2623540 | VKN/PYRS           | 12/17/08           | Added CY7C024BV part                                                                                                                              |

## Sales, Solutions, and Legal Information

#### Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at cypress.com/sales.

| Products         |                      | <b>PSoC Solutions</b> |                                   |
|------------------|----------------------|-----------------------|-----------------------------------|
| PSoC             | psoc.cypress.com     | General               | psoc.cypress.com/solutions        |
| Clocks & Buffers | clocks.cypress.com   | Low Power/Low Voltage | psoc.cypress.com/low-power        |
| Wireless         | wireless.cypress.com | Precision Analog      | psoc.cypress.com/precision-analog |
| Memories         | memory.cypress.com   | LCD Drive             | psoc.cypress.com/lcd-drive        |
| Image Sensors    | image.cvpress.com    | CAN 2.0b              | psoc.cypress.com/can              |
|                  | magotoyproco.com     | USB                   | psoc.cypress.com/usb              |

© Cypress Semiconductor Corporation, 2001-2008. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document #: 38-06052 Rev. \*J

Revised December 10, 2008

Page 19 of 19

All products and company names mentioned in this document may be the trademarks of their respective holders.

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com