

CYS25G0101DX-ATC Evaluation Board User's Guide

Cypress Semiconductor Corporation • 3901 North First Street • San Jose • CA 95134 • 408-943-2600

March 19, 2002

Table of Contents	
1. Introduction 4	1
2. Features 4	1
3. Kit Contents 4	4
4. Functional Description 4	1
5. Diagnostic Modes 12	2
5.1 Diagnostic Loopback Mode12	2
5.2 Line Loopback	3
5.3 Analog Line Loopback14	4
5.4 "Parallel Line Loopback" (TEST0) Mode15	5
5.4.1 Test the Internal RX CDR PLL Only 15	5
5.4.2 Test the Internal RX CDR PLL and TX PLL 15	5
6. Testing Hookup 16	3
6.1 Set-up for BERT Test	3
6.2 Set-up for Eye Diagram Test17	7
6.3 SONET Jitter Transfer and Jitter Tolerance Test18	3
6.4 Set-up for Testing the TX PLL in Parallel Line Loopback Mode)
7. Eye Diagram Testing Result 20)
8. Jitter Transfer Testing Result 21	۱
9. Jitter Tolerance Testing Result 22	2
10. Schematic Diagram, PCB Layout and BOM (Bill of Material) 23	3
Appendix A: Schematic Diagrams of the CYS25G0101DX Evaluation Board 24	4
Appendix B: PCB Layout Diagrams of the CYS25G0101DX Evaluation Board 32	2
Appendix C: CYS25G0101DX Evaluation Board LVPECL BOM (Bill of Material) 42	2
Appendix D: CYS25G0101DX Evaluation Board HSTL BOM (Bill of Material) 47	7
List of Figures	

Figure 1. The Block Diagram of the CYS25G0101DX	5
Figure 2. The CYS25G0101DX Evaluation Board	6
Figure 3. The Jumper Orientations of the CYS25G0101DX	11
Figure 4. Diagnostic Loopback Mode Data Path	12
Figure 5. Line Loopback Mode Data Path	13
Figure 6. Analog Line Loopback Mode Data Path	14
Figure 7. Parallel Loopback (TEST0) Mode Data Path	15
Figure 8. Equipment Set-up for BERT Test	16
Figure 9. Equipment Set-up For Eye Diagram Test	17
Figure 10. Equipment Set-up For Jitter Test	18
Figure 11. Equipment Set-up For Testing the TX PLL in Parallel Line Loopback Mode	19
Figure 12. CYS25G0101DX Evaluation Board Eye Diagram	20
Figure 13. CYS25G0101DX Evaluation Board GR-253 Jitter Transfer Testing Result	21
Figure 14. CYS25G0101DX Evaluation Board G958 Jitter Transfer Testing Result	21
Figure 15. CYS25G0101DX Evaluation Board GR-253 JitterTolerance Testing Result	22
Figure 16. CYS25G0101DX Evaluation Board G825 Jitter Tolerance Testing Result	22
Figure 17. Top Level of CYS25G0101DX Evaluation Board Schematic Diagram	25
Figure 18. Parallel Output Block Schematic Diagram	26
Figure 19. Parallel Input Block Schematic Diagram	27
Figure 20. Signals Block Schematic Diagram	28
Figure 21. Power Supply Block Schematic Diagram	29
Figure 22. Control Block Schematic Diagram	30

2

List of Figures (continued)

Figure 23. Reference Clock Block Schematic Diagram	31
Figure 24. CYS25G0101DX Evaluation Board PCB Mechanical Drawing	33
Figure 25. CYS25G0101DX Evaluation Board PCB Top Layer Silk Screen	34
Figure 26. CYS25G0101DX Evaluation Board PCB Top Layer Layout	35
Figure 27. CYS25G0101DX Evaluation Board PCB Top Layer Solder Mask	36
Figure 28. CYS25G0101DX Evaluation Board PCB Power Plane Layout	37
Figure 29. CYS25G0101DX Evaluation Board PCB Ground Plane Layout	38
Figure 30. CYS25G0101DX Evaluation Board PCB Bottom Silk Screen	39
Figure 31. CYS25G0101DX Evaluation Board PCB Bottom Layer Layout	40
Figure 32. CYS25G0101DX Evaluation Board PCB Bottom Solder Mask	41

List of Tables

Table 1. Functional Description of the Connectors	6
Table 2. Pin Assignment of J1 Header and Description of J10 Header	7
Table 3. Pin Assignment of J2 Header and Description of J9 Header	
Table 4. Functional Description of DIP Switch 1 (SW1)	9
Table 5. Functional Description of J4 Connector	10
Table 6. Description of LED Indicators	10
Table 7. Operation Specification of CYS25G0101DX Evaluation Board	23
Table 8. CYS25G0101DX Evaluation Board LVPECL BOM - Page 1 of 4	43
Table 9. CYS25G0101DX Evaluation Board LVPECL BOM - Page 2 of 4	44
Table 10. CYS25G0101DX Evaluation Board LVPECL BOM - Page 3 of 4	45
Table 11. CYS25G0101DX Evaluation Board LVPECL BOM - Page 4 of 4	46
Table 12. CYS25G0101DX Evaluation Board HSTL BOM - Page 1 of 4	48
Table 13. CYS25G0101DX Evaluation Board HSTL BOM - Page 2 of 4	49
Table 14. CYS25G0101DX Evaluation Board HSTL BOM - Page 3 of 4	50
Table 15. CYS25G0101DX Evaluation Board HSTL BOM - Page 4 of 4	51

3

1. Introduction

Cypress's CYS25G0101DX SONET OC-48 Transceiver is a communications building block for high-speed SONET data communications. It provides complete parallel-to-serial and serial-to-parallel conversions, clock generation, and clock and data recovery operations in a single chip, optimized for full SONET/SDH compliance. The CYS25G0101DX Evaluation Board is designed for evaluating as well as understanding the characteristics of the CYS25G0101DX SONET/SDH Transceiver. The CYS25G0101DX SONET/SDH Transceiver Evaluation Board provides the following advantages.

2. Features

- Flexible and easy to operate
- On-board Cypress 120-pin TQFP CYS25G0101DX SONET/SDH Transceiver
- Supports LVPECL and HSTL interfaces
- Dip switch for selecting different diagnostic modes
- Four diagnostic modes Diagnostic Loopback mode, Line Loopback mode, Analog Line Loopback mode, and factory TEST0 (Parallel Line Loopback) mode
- LFI and FIFO_ERR LEDs
- Onboard oscillator for the REFCLK
- Supports external clock source for the REFCLK
- 16-bit RxD, 16-bit TxD bus, RXCLK, TXCLKI, TXCLKO interface
- SMA connectors for CML input and output buffers
- Separate Banana Jacks for all voltage sources for measuring current individually

3. Kit Contents

- CYS25G0101DX Evaluation Board
- Certificate of Compliance
- CYS25G0101DX Evaluation Kit CD
 - Users Guide
 - Application Notes
 - Data Sheet

4. Functional Description

This board can be used to test the CYS25G0101DX in various modes, such as TEST0 (parallel line loopback mode), LINELOOP, LOOPA and LOOPTIME. The REFCLK of the CYS25G0101DX is connected to the onboard 155.52-MHz oscillator. The on-board REFCLK can be replaced by connecting the external reference clock source to J17 and J18. To use the external reference clock source, the C400 and C401 (0.01- μ F cap) have to be removed and placed on C402 and C403 positions. Also, the P2, CLKVCC, has to be disconnected from the power supply (or power down). The CYS25G0101DX Evaluation Board provides an optional optical module interface for connecting to an optical module daughter card.

The block diagram of the CYS25G0101DX is shown in *Figure 1*. The detailed functional description can be found in the CYS25G0101DX data sheet. *Figure 2* shows the picture of the CYS25G0101DX Evaluation Board and the location of the jumpers. *Table 1* is the description of all jumpers and connectors. The bus connectors, J1 and J2, are used to connect to the 16-bit RxD and TxD buses for transferring and receiving the parallel data. *Table 2* and *Table 3* are the pin definitions of J1 and J2. Amulti-function eight-position Dip switch provides the selection of the different diagnostic modes as well as the control functions. *Table 4* is the functional description of the Dip switch SW1. The TEST0 jumper, J6, when closed, is used to enable the factory TEST0 (Parallel Line Loop Back) mode. In the "Parallel Line Loop Back" mode, parallel output buffers are internally jumped to the parallel input buffers. There is no need to use external jumpers for the headers. J13, J14, J15, J16 and J4 are Differential CML input and output and power supply for the option-al optical module daughter card. *Table 5* idescribes the optical module interface and *Table 6* idescribes the LED. *Figure 3* shows the jumper orientations of the CYS25G0101DX Evaluation Board.

Figure 1. The Block Diagram of the CYS25G0101DX

Figure 2. The CYS25G0101DX Evaluation Board

Table 1.	Functional	Descripti	ion of the	Connectors
	i unctional	Descript	ion or the	CONTECTORS

Jumpers and Connectors	Name	Description
J1	RxDBUS	16-bit RxD Data Bus interface header (see <i>Table 2</i> for details). <i>Figure 3</i> shows the orienta- tion of this header
J2	TxDBUS	16-bit TxD Data Bus interface header (see <i>Table 3</i> for details). <i>Figure 3</i> shows the orienta- tion of this header
J3	TxCLKO_H	Header for CYS25G0101DX's TXCLKO (pin 79) and GND. <i>Figure 3</i> shows the orientation of this jumper
J4	OPTIC POWER	Power supply for external optical module (see <i>Table 5</i> for details)

Table 1.	Functional	Description	of the	Connectors	(continued)
----------	------------	-------------	--------	------------	-------------

Jumpers and Connectors	Name	Description			
J5	SD	This jumper is used to set the SD signal. When open (default), SD signal will be driven by the optical module. When 1-2 are shorted, SD is forced to HIGH. When 2-3 are shorted, SD is forced to LOW. <i>Figure 3</i> shows the orientation of this jumper			
J6	TEST0	This jumper, when shorted, is to enable the Parallel Line Loopback mode.			
J7	LFI	Test Tap for CYS25G0101DX's LFI (pin 1). Figure 3 shows the orientation of this jumper			
J8	FIFO_ERR	Test Tap for CYS25G0101DX's LIFO (pin 51). Figure 3 shows the orientation of this jumper			
SMA10	TXCLKI	Optional SMA connector for CYS25G0101DX's TXCLKI (pin 57). R37 need to be popu- lated, if this connector is used			
SMA11	RXCLK	Optional SMA connector for CYS25G0101DX's RXCLK (pin 24). C118, R118, R138 and R158 need to be populated and C116, R116, and R136 need to be unpopulated, if this connector is used			
SMA12	TXCLKO	Optional SMA connector for CYS25G0101DX's TXCLKO (pin 79). C119, R119, R139 and R159 need to be populated and C117, R117, and R137 need to be unpopulated, if this connector is used			
SMA13	IN+	SMA connector for CYS25G0101DX's IN+ (pin 109). This connector is also for the optional optical module interface			
SMA14	IN-	SMA connector for CYS25G0101DX's IN-(pin 108). This connector is also for the optional optical module interface			
SMA15	OUT-	SMA connector for CYS25G0101DX's OUT-(pin 104). This connector is also for the option- al optical module interface			
SMA16	OUT+	SMA connector for CYS25G0101DX's OUT+(pin 103). This connector is also for the option- al optical module interface			
SMA17	REFCLKP	Optional SMA connector for CYS25G0101DX's REFCLK+ (pin 87). This connector is for using the external reference clock instead of using the "on-board" oscillator (155.52 MHz). To use the external reference clock, C400 and C401 (0.01- μ F cap) have to be removed and placed on C402 and C403 positions. Also, The CLKVCC, P2, has to be disconnected from the power supply			
SMA18	REFCLKN	Optional SMA connector for CYS25G0101DX's REFCLK+ (pin 87). This connector is for using the external reference clock instead of using the "on-board" oscillator (155.52 MHz). To use the external reference clock, C400 and C401 (0.01- μ F cap) have to be removed and placed on C402 and C403 positions. Also, The CLKVCC, P2, has to be disconnected from the power supply			
P1	GND	Power Ground. For external power supply			
P2	CLKVCC	Power supply - +3.3V for the clock oscillator			
P3	VDDQ	Power supply - +3.3V for LVPECL output. +1.5V for HSTL outputs			
P4	VCC_OPTIC	Power supply - +3.3V for the optional optical module			
P5	VCC	Power supply - +3.3V for digital and low-speed I/O function			
P6	V_Par	Power supply - +3.3V for LVPECL output. +1.5V for HSTL outputs			

Table 2. Pin Assignment of J1 Header and Description of J10 Header

Pin Number	Name	I/O Characteristics	Description
1	RXD15	HSTLoutput	Parallel receive data output RXD15. The outputs change following RXCLK \downarrow
3	RXD14	HSTLoutput	Parallel receive data output RXD14. The outputs change following RXCLK \downarrow

Pin Number	Name	I/O Characteristics	Description
5	RXD13	HSTLoutput	Parallel receive data output RXD13. The outputs change following RXCLK \downarrow
7	RXD12	HSTLoutput	Parallel receive data output RXD12. The outputs change following RXCLK \downarrow
9	RXD11	HSTLoutput	Parallel receive data output RXD11. The outputs change following RXCLK \downarrow
11	RXD10	HSTLoutput	Parallel receive data output RXD10. The outputs change following RXCLK \downarrow
13	RXD9	HSTLoutput	Parallel receive data output RXD9. The outputs change following RX-CLK \downarrow
15	RXD8	HSTLoutput	Parallel receive data output RXD8. The outputs change following RX-CLK \downarrow
17	RXD7	HSTLoutput	Parallel receive data output RXD7. The outputs change following RX-CLK \downarrow
19	RXD6	HSTLoutput	Parallel receive data output RXD6. The outputs change following RX-CLK \downarrow
21	RXD5	HSTLoutput	Parallel receive data output RXD5. The outputs change following RX-CLK \downarrow
23	RXD4	HSTLoutput	Parallel receive data output RXD4. The outputs change following RX-CLK \downarrow
25	RXD3	HSTLoutput	Parallel receive data output RXD3. The outputs change following RX-CLK \downarrow
27	RXD2	HSTLoutput	Parallel receive data output RXD2. The outputs change following RX-CLK \downarrow
29	RXD1	HSTLoutput	Parallel receive data output RXD1. The outputs change following RX-CLK \downarrow
31	RXD0	HSTLoutput	Parallel receive data output RXD0. The outputs change following RX-CLK \downarrow
2,4,6,8,10, 12,14,16,18, 20,22,24,26, 28,30,32	GND	Ground	Ground
J10	RXCLK	HSTLoutput	Receive clock output. This clock is divided by 16 of the bit-rate clock extracted from the received serial stream

Table 2. Pin Assignment of J1 Header and Description of J10 Header (continued)

Table 3.	Pin	Assignment	of J2	Header	and	Description	of J9	Header
----------	-----	------------	-------	--------	-----	-------------	-------	--------

Pin Number	Name	I/O Characteristics	Description
1,3,5,7,9,11, 13,15,17,19, 21,23,25,27, 29,31	GND	Ground	Ground
2	TXD15	HSTLoutput	Parallel transmit data input TXD15. The input data is sampled by TX-CLKI \uparrow
4	TXD14	HSTLinput	Parallel transmit data input TXD14. The input data is sampled by TX-CLKI \uparrow
6	TXD13	HSTLinput	Parallel transmit data input TXD13. The input data is sampled by TX-CLKI \uparrow

Pin Number	Name	I/O Characteristics	Description
8	TXD12	HSTLinput	Parallel transmit data input TXD12. The input data is sampled by TX-CLKI \uparrow
10	TXD11	HSTLinput	Parallel transmit data input TXD10. The input data is sampled by TX-CLKI \uparrow
12	TXD10	HSTLinput	Parallel transmit data input TXD9. The input data is sampled by TX-CLKI \uparrow
14	TXD9	HSTLinput	Parallel transmit data input TXD8. The input data is sampled by TX-CLKI \uparrow
16	TXD8	HSTLinput	Parallel transmit data input TXD8. The input data is sampled by TX-CLKI \uparrow
18	TXD7	HSTLinput	Parallel transmit data input TXD7. The input data is sampled by TX-CLKI \uparrow
20	TXD6	HSTLinput	Parallel transmit data input TXD6. The input data is sampled by TX-CLKI \uparrow
22	TXD5	HSTLinput	Parallel transmit data 'input TXD5. The input data is sampled by TX-CLKI \uparrow
24	TXD4	HSTLinput	Parallel transmit data input TXD4. The input data is sampled by TX-CLKI \uparrow
26	TXD3	HSTLinput	Parallel transmit data input TXD3. The input data is sampled by TX-CLKI \uparrow
28	TXD2	HSTLinput	Parallel transmit data input TXD2. The input data is sampled by TX-CLKI \uparrow
30	TXD1	HSTLinput	Parallel transmit data input TXD1. The input data is sampled by TX-CLKI \uparrow
32	TXD0	HSTLinput	Parallel transmit data input TXD0. The input data is sampled by TX-CLKI \uparrow
J9	TXCLKI	HSTLinput	Parallel transmit data input clock

Table 3. Pin Assignment of J2 Header and Description of J9 Header (continued)

Table 4. Functional Description of DIP Switch 1 (SW1)

Position	Name	Sta	ite	Description
1	RESET	O	۷*	Disable Reset - Normal operation
		OF	F	Reset for all logic functions except the transmit FIFO
2	DIAGLOOP	OI	N	Transmit data (from TXD[15:0]) is routed through the receive clock and data recovery and presented at RXD[15:0] output
		OF	F*	Received serial data (from IN \pm) is routed through the receive clock and data recovery and presented at RXD[15:0] output
3,4	LINELOOP,	ON	ON	Invalid setting
	LOOPA	ON	OFF	Received serial data is looped back from receive input (IN \pm) to transmit output (OUT \pm) after being reclocked by the recovered clock
		OFF	ON	Received serial data is looped back from receive input (IN \pm) to transmit output (OUT \pm), but is not routed through the clock and data recovery PLL
		OFF*	OFF*	Disable serial data loop back.

Position	Name	State	Description
5	LOOPTIME	ON	The transmission will be using the extracted receive bit-clock for the transmitted bit clock
		OFF*	The transmission will be using the REFCLK input (155.52MHz), which is multiplied by 16, to generate the transmitted bit clock
6	LOCKREF	ON*	The receive PLL locks to serial data stream
		OFF	The receive PLL locks to the REFCLK
7	PWRDN	ON*	Disable Power Down - Normal Operation
		OFF	Enable Device Power Down mode. All the logic and drivers are dis- abled and placed into a standby condition where only minimal power is dissipated
8	FIFO_RST	ON*	Disable FIFO reset - Normal Operation
		OFF	Reset the transmit FIFO pointers. The in and out pointers of the trans- mit FIFO are reset to the maximum separation

Table 4. Functional Description of DIP Switch 1 (SW1) (continued)

Table 5. Functional Description of J4 Connector

Pin	Name	Description
1A, 1B, 3A, 3B	VCC_OPTIC	Power supply for optical module
2A, 2B, 4A, 4B	GND	Powerground
5A	NC	NoConnection
5B	SD	SD signal from optical module

Table 6. Description of LED Indicators

LED	Name	LED Status	Description
D1	FIFO_ERR	ON	The transmit FIFO has either under or overflowed. The FIFO must be reset to clear the error (by switching the DIP switch SW1-8 to OFF and then ON. See <i>Table 4</i> for details)
		OFF	Indicates the FIFO has neither under or overflowed
D2	LFI	ON	Indicates no Line Fault. It will appear to be ON even when LFI is toggling. In such a case observe LFI using a scope on J7
		OFF	Indicates the selected receive data stream has been detected an invalid either LOW input on SD or by the receive VCO being oper- ated outside its specified limits

Figure 3. The Jumper Orientations of the CYS25G0101DX

5. Diagnostic Modes

The CYS25G0101DX Evaluation Board provides four different diagnostic modes—Diagnostic Loopback mode, Line Loopback mode, Analog Loopback mode and "Parallel Line Loopback" mode. *Figure 4* to *Figure 7* illustrate these diagnostic modes and *Figure 8* to *Figure 10* illustrate the testing equipment set-up for testing the characteristics of the CYS25G0101DX.

5.1 Diagnostic Loopback Mode

In the Diagnostic Loopback mode, parallel data will loop through the input buffer, serializer, CDR block, deserializer and the output buffer. *Figure 4* shows the data path (bold line) of the Diagnostic Loopback mode. To select the Diagnostic Loopback mode:

- 1. SW1-2 (DIAGLOOP) must be in ON position, SW1-3 (LINELOOP)
- 2. All other dip switches must be in their default positions as stated in Table 4
- 3. TEST0, jumper J6 must be opened
- 4. Apply the Testing Hookup illustrated in Figure 8 to Figure 10

5.2 Line Loopback

In the Line Loopback mode, serial data (from IN±) will loop through the serial input buffer and CDR block to the serial output buffer (OUT±). *Figure* 5 shows the data path (bold line) of the Line Loopback mode. To select the Line Loopback mode:

- 1. SW1-3 (LINELOOP) must be in ON position
- 2. All other dip switch settings must be in their default positions as stated in Table 4
- 3. TEST0, jumper J6 must be opened
- 4. Apply the Testing Hookup illustrated in Figure 8 to Figure 10

Figure 5. Line Loopback Mode Data Path

5.3 Analog Line Loopback

In the Analog Line Loopback mode, serial data (from IN_{\pm}) will loop through directly from serial input buffer to the serial output buffer (OUT $_{\pm}$). *Figure 6* shows the data path (bold line) of the Analog Line Loopback mode. To select the Analog Line Loopback mode:

- $1. \hspace{0.1in} SW1-4 (LOOPA) \hspace{0.1in} must \hspace{0.1in} be in \hspace{0.1in} ON \hspace{0.1in} position \hspace{0.1in} and \hspace{0.1in} SW1-3 (LINELOOP) \hspace{0.1in} must \hspace{0.1in} be in \hspace{0.1in} OFF \hspace{0.1in} position.$
- 2. All other dip switches must be in their default positions as stated in Table 4
- 3. TEST0, jumper J6 must be opened
- 4. Apply the Testing Hookup illustrated in Figure 8 to Figure 10

Figure 6. Analog Line Loopback Mode Data Path

5.4 "Parallel Line Loopback" (TEST0) Mode

In Parallel Line Loopback mode, the parallel output buffers are internally linked to the parallel input buffers. *Figure* 7 shows the data path (bold line) of the Parallel Line Loopback mode. In this test mode, the internal RX CDR PLL and TX PLL can be tested by different configurations.

5.4.1 Test the Internal RX CDR PLL Only

- 1. TEST0, jumper J6 must be shorted
- 2. SW1-5 (LOOPTIME) must be in ON position
- 3. All other dip switches must be in their default positions (see Table 4)
- 4. Apply the Testing Hookup illustrated in Figure 8 to Figure 10 for the measurement

5.4.2 Test the Internal RX CDR PLL and TX PLL

- 1. TEST0, jumper J6 must be shorted
- 2. All dip switches must be in their default positions (see Table 4)
- 3. Disconnect CLKVCC (P2), remove the 155.52-MHz oscillator, place C400 on C402 and C401 on C403 positions (see *Table 1*, jumpers J17 and J18 for details)
- 4. Apply the Testing Hookup illustrated in Figure 11 for the measurement

Figure 7. Parallel Loopback (TEST0) Mode Data Path

6. Testing Hookup

6.1 Set-up for BERT Test

Figure 8 illustrates the set-up for the BERT test. The equipment list:

- $1. \quad Evaluation \, Board-Cypress \, CYS25G0101 DX \, Evaluation \, Board$
- 2. Pattern Generator Tektronix D3186 Pattern Generator
- 3. Error Detector-Tektronix D3286 Error Detector
- 4. Power Supply-HPE3631ADC Power Supply

Figure 8. Equipment Set-up for BERT Test

6.2 Set-up for Eye Diagram Test

Figure 9 illustrates the set-up for testing the Eye Diagram. The equipment list :

- 1. Evaluation Board-Cypress CYS25G0101DX Evaluation Board
- 2. Pattern Generator Tektronix D3186 Pattern Generator
- 3. Oscilloscope Agilent Infiniium DCA 86100A with 83484A Dual-Channel 50GHz Module
- 4. Power Supply-HP E3631A DC Power Supply

Figure 9. Equipment Set-up For Eye Diagram Test

6.3 SONET Jitter Transfer and Jitter Tolerance Test

Figure 10 illustrates the set-up for testing the jitter. The equipment list:

- 1. Evaluation Board-Cypress CYS25G0101DX Evaluation Board
- 2. SONETTester-Agilent (HP) OmniBER 718 Communication Performance Analyzer
- 3. Optical Converters Agilent (HP) 83446A Receiver and 83430A Transmitter
- 4. Power Supply-HP E3631A DC Power Supply

Figure 10. Equipment Set-up For Jitter Test

6.4 Set-up for Testing the TX PLL in Parallel Line Loopback Mode

Figure 11 illustrates the set-up for testing the TX PLL in Parallel Line Loopback Mode. The equipment list :

- 1. Evaluation Board-Cypress CYS25G0101DX Evaluation Board
- 2. Pattern Generator Tektronix D3186 Pattern Generator
- 3. Error Detector-Tektronix D3286 Error Detector
- 4. Pulse Generator HP 8133A Pulse Generator
- 5. Power Supply-HP E3631A DC Power Supply

Figure 11. Equipment Set-up For Testing the TX PLL in Parallel Line Loopback Mode

7. Eye Diagram Testing Result

Figure 12 is the Eye Diagram measurement from CYS25G0101DX Evaluation Board by using the test set-up as in *Figure 9*. In this measurement, the evaluation board is configured to parallel loop back mode (*Figure 7*) and with no SONET filter at the oscilloscope.

Figure 12. CYS25G0101DX Evaluation Board Eye Diagram

8. Jitter Transfer Testing Result

Figure 13 and *Figure 14* show the Jitter Transfer measurement by using the test set-up as in *Figure 10*. *Figure 13* is the measurement result of the GR-253 (Bellcore) standard and *Figure 14* is the measurement result of the G958 (ITU) standard. In this measurement, the CYS25G0101DX evaluation board is configured to parallel loopback mode (*Figure 7*).

Figure 13. CYS25G0101DX Evaluation Board GR-253 Jitter Transfer Testing Result

Figure 14. CYS25G0101DX Evaluation Board G958 Jitter Transfer Testing Result

9. Jitter Tolerance Testing Result

Figure 15 and *Figure 16* show the Jitter Tolerance measurement by using the test set-up as in *Figure 10. Figure 15* is the measurement result of the GR-253 (Bellcore) standard and *Figure 16* is the measurement result of the G825 (ITU) standard. In this measurement, the CYS25G0101DX evaluation board is configured to parallel loopback mode (*Figure 7*).

Figure 15. CYS25G0101DX Evaluation Board GR-253 JitterTolerance Testing Result

Figure 16. CYS25G0101DX Evaluation Board G825 Jitter Tolerance Testing Result

10. Schematic Diagram, PCB Layout and BOM (Bill of Material)

Figure 17 to *Figure 23* in *Appendix A* shows the schematic diagram of the CYS25G0101DX evaluation board. *Figure 17* is the top level diagram for the schematic diagrams for *Figure 18* to *Figure 23*. *Figure 24* to *Figure 32* in *Appendix B* show the PCB layout of each layer of the CYS25G0101DX evaluation board. The Bill of Material (BOM) of the evaluation board is listed in *Appendix C* (for LVPECL *Table 8* to *Table 11*) and *Appendix D* (for HSTL *Table 12* to *Table 15*) respectively.

Table 7.	Operation	Specification	of CYS25G0101DX	Evaluation Board
14010 11	operation	opeonioanon		Eraldation Board

Description	Min.	Max.	Unit	Notes
Power Supply VCC	3.135	3.465	V	1
Current I _{VCC}	280	320	mA	2
Clock Power Supply CLKVCC	3.135	3.465	V	
CurrentI _{CLKVCC}	75	90	mA	3

Notes:

1. The operation voltage VCC for the device at the power supply nodes.

2. The operation current drawn by supply VCC at room temperature.

3. Assumes onboard clock option. If external clock (SMA option) is used the current drawn will depend on the termination resistors required for the external clock.

Appendix A: Schematic Diagrams of the CYS25G0101DX Evaluation Board

Download from Www.Somanuals.com. All Manuals Search And Download.

Figure 17. Top Level of CYS25G0101DX Evaluation Board Schematic Diagram

Figure 18. Parallel Output Block Schematic Diagram

Figure 19. Parallel Input Block Schematic Diagram

Figure 20. Signals Block Schematic Diagram

Figure 21. Power Supply Block Schematic Diagram

Figure 22. Control Block Schematic Diagram

CLOCK OSCILLATOR CIRCUIT

Figure 23. Reference Clock Block Schematic Diagram

31

Appendix B: PCB Layout Diagrams of the CYS25G0101DX Evaluation Board

Download from Www.Somanuals.com. All Manuals Search And Download.

Figure 24. CYS25G0101DX Evaluation Board PCB Mechanical Drawing

Figure 25. CYS25G0101DX Evaluation Board PCB Top Layer Silk Screen

Figure 26. CYS25G0101DX Evaluation Board PCB Top Layer Layout

Figure 27. CYS25G0101DX Evaluation Board PCB Top Layer Solder Mask

Figure 28. CYS25G0101DX Evaluation Board PCB Power Plane Layout

Figure 29. CYS25G0101DX Evaluation Board PCB Ground Plane Layout

Figure 30. CYS25G0101DX Evaluation Board PCB Bottom Silk Screen

Figure 31. CYS25G0101DX Evaluation Board PCB Bottom Layer Layout

Figure 32. CYS25G0101DX Evaluation Board PCB Bottom Solder Mask

Appendix C: CYS25G0101DX Evaluation Board LVPECL BOM (Bill of Material)

		CYS25G0101DX Evaluat	tion	Board LVF	ECL BOM		
Item #	Reference	Description	QTY	Manufacturer	Manufacturer P/N	Disti	Disti P/N#
-	C50, C51, C52, C53, C54	47uF 1411 case 'B' Tantalum Electrolytic Chip	ъ		TMCMB0J476MTR		
0	000 004 000		ę				
V	1001, Ub1, Ub2,	U.TUP UDUG MUITIAYER CERAMIC CMIP CAPACITOR	2		עמעלצאוטואלגשטט		
	1.003, UD4, UZUU,						
	CZUT, CZUZ, CZUR, CZUZ,						
	C205, C206,						
	C320, C321,						
	C322, C323,						
	C324, C325,						
	C326, C327,						
	C328, C329,						
	C330, C331,						
	C332, C333,						
	C334, C335,						
	C336, C337,						
	C338, C339,						
0	C340		6				
'n	C/U, C/1, C/2,	100PF U603 Multilayer Ceramic Chip	77		GMC1UCG1U1J5UNI		
	C/3, C/4, C3UU,	Capacitor					
	1.301, C3U2,						
	C303, C304,						
	13306, C306,						
	103U/ 103UB,						
	C3U9, C31U,						
	C311, C312,						
	0313, 0314, 0344, 0345						
4	C400, C401	0.01 uF 0603 Multilayer Ceramic Chip	2		06032R103K500BA		
		Capacitor					
ç	C402, C403,	NP 0603 Multilayer Ceramic Chip Capacitor	4		DO NOT DODIII ATE		
	C404, C405						
ى	C100, C101,	NP 0603 Multilayer Ceramic Chip Capacitor	8				
	C102, C103,						
	C104, C105,						
	C106, C107,						
	C108, C109,				DO NOT DODILI ATE		
	C110, C111,						
	C112, C113,						
	C114, C115,						
	C116, C117,						
	C118, C119						

Table 8. CYS25G0101DX Evaluation Board LVPECL BOM - Page 1 of 4

CYS25G0101DX-ATC Evaluation Board User's Guide

43

Table 9. CYS25G0101DX Evaluation Board LVPECL BOM - Page 2 of 4

44

Download from Www.Somanuals.com. All Manuals Search And Download.

Table 10. CYS25G0101DX Evaluation Board LVPECL BOM - Page 3 of 4

45

		CYS25G0101DX Evalua	ation	Board LVF	ECL BOM		
ltern #	Reference	Description	QTY	Manufacturer	Manufacturer P/N	Disti	Disti P/N#
24	14	HDR2X5 with Ejector Clips and Keying: SAMTEC EHT-105-01-S-D	-		EHT-105-01-S-D		
25	J5	HDR1X3	-				
<u> 2</u> 9	P1, P2, P3, P4, P5, P6	BANANA	ى	Johnson	108-0740-001		
27	17	CYS25G0101DX: Cypress 120TQFP_14SQ SONET OC-48 Transceiver	-	Cypress	CYS25G0101DX-ATC		
8	J1, J2	HDR2X16	2				
53		155.5200MHz Clock Oscillator	-	SaRonixs	SEL3431AA-155.5200M		
R		4PIN_OSC_SKT DIP Osc	-			Digikey	A462-ND
ы Б	J10, J11, J12, J17, J18	SMA	ъ	Johnson	142-0701-201	Digikey	DN-609
32	J13, J14, J15, J16	SMA	ħ	Johnson	142-0701-801	Digikey	J502-ND
R	D1, D2	LED	2			Digikey	67-1225-ND
34	SW1	DIP Switch	+			Digikey	CKN3007-ND

Table 11. CYS25G0101DX Evaluation Board LVPECL BOM - Page 4 of 4

Appendix D: CYS25G0101DX Evaluation Board HSTL BOM (Bill of Material)

Table 12. CYS25G0101DX Evaluation Board HSTL BOM - Page 1 of 4

48

=		CYS25G0101DX EV	aluati	on Board			
Item #	Keterence	Description	۲N	Manutacturer	Manutacturer P/N	DISU	UISU P/N #
ى	C100, C101, C102, C103,	NP 0603 Multilayer Ceramic Chip Capacitor	8				
	C104, C105,						
	C106, C107, C108, C109,						
	C110, C111,				DO NOI POPULAIE		
	C112, C113,						
	C114, C115, 2415, 2413						
	C116, C117, C118, C119						
7	R0, R1, R2, R3,	100 ohm 0603 Resistor	2	Vishay	CRCW06031000F		
	R4, R5, R6, R7,						
	R8, R9, R10,						
	R11, R12, R13,						
	R14, R15, R16,						
	R20, R21, R22,						
	R23, R24, R25,						
	R26, R27, R28,						
	R29, R30, R31,						
	R32, R33, R34,						
	R35, R36, R100,						
	R101, R102,						
	R103, R104,						
	R105, R106,						
	R107, R108,						
	R109, R110,						
	R111, R112,						
	R113, R114,						
	R115, R116,						
	R117, R120,						
	R121, R122,						
	R123, R124,						
	R125, R126,						
	R127, R128,						
	R129, R130,						
	R131, R132,						
	R133, R134,						
	R135, R136,						
	R137						

Table 13. CYS25G0101DX Evaluation Board HSTL BOM - Page 2 of 4

Table 14. CYS25G0101DX Evaluation Board HSTL BOM - Page 3 of 4

æ CKN3007-ND 67-1225-ND Disti P/N A462-ND J502-ND J609-ND Digikey Digikey Digikey Digikey Digikey Disti SEL3431AA-155.5200M Manufacturer P/N CYS25G0101DX-ATC CYS25G0101DX Evaluation Board HSTL BOM EHT-105-01-S-D 108-0740-001 42-0701-201 42-0701-801 Manufacturer SaRonixs Johnson Cypress Johnson Johnson } C ى ហ ى ² 4 ς N HDR2X5 with Ejector Clips and Keying: 120TQFP_14SQ SONET OC-48 155.5200MHz Clock Oscillator Description SAMTEC EHT-105-01-S-D CYS25G0101DX: Cypress SO ЧЮ RT F osc Switch Transceiver HDR1X3 BANANA HDR2X16 HDR1X2 4PIN SMA SMA J13, J14, J15, J16 ŋ ą Reference J6, J7, J8, J10, J11, J12, Ē Ξ 2 8 8 9 SW1 17 5 . Ч ല് Ð δ 5 컥 Ь 5 ltem # ģ ഇ Ω ∞ <u>8</u> 7 2 8 24 名 7

© Cypress Semiconductor Corporation, 2002. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems where a malfunction erail risk of such use and in doing so indemnifies Cypress Semiconductor against all charges. Download from Www.Somanuals.com. All Manuals Search And Download.

Table 15. CYS25G0101DX Evaluation Board HSTL BOM - Page 4 of 4

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com