

User Manual High Performance/Flexible Options/ Micro Type AC Motor Drives

Power Range :

 1-phase 115V series:0.2~0.75kW (0.25~1HP)

 1-phase 230V series:0.2~2.2kW (0.25~3HP)

 3-phase 230V series:0.2~7.5kW (0.25~10HP)

 3-phase 460V series:0.4~11kW (0.50~15HP)

www.delta.com.tw/industrialautomation

ASIA

Delta Electronics, Inc.

Taoyuan1

31-1, Xingbang Road, Guishan Industrial Zone, Taoyuan County 33370, Taiwan, R.O.C. TEL: 886-3-362-6301 / FAX: 886-3-362-7267

Delta Electronics (Jiang Su) Ltd.

Wujiang Plant3

1688 Jiangxing East Road, Wujiang Economy Development Zone, Wujiang City, Jiang Su Province, People's Republic of China (Post code: 215200) TEL: 86-512-6340-3008 / FAX: 86-512-6340-7290

Delta Electronics (Japan), Inc. Tokyo Office

Delta Shibadaimon Building, 2-1-14 Shibadaimon, Minato-Ku, Tokyo, 105-0012, Japan TEL: 81-3-5733-1111 / FAX: 81-3-5733-1211

Delta Electronics (Korea), Inc.

234-9, Duck Soo BD 7F, Nonhyun-dong, Kangnam-ku, Seoul, Korea Post code : 135-010 TEL: 82-2-515-5303/5 / FAX: 82-2-515-5302

Delta Electronics (Singapore) Pte. Ltd.

8 Kaki Bukit Road 2, #04-18 Ruby Warehouse Complex, Singapore 417841 TEL: 65-6747-5155 / FAX: 65-6744-9228

Delta Energy Systems (India) Pvt. Ltd. Plot No. 27 & 31, Sector-34, EHTP,

Plot No. 27 & 31, Sector-34, EHTP, Gurgaon-122001 Haryana, India TEL: 91-124-4169040 / FAX: 91-124-4036045

AMERICA

Delta Products Corporation (USA)

Raleigh Office P.O. Box 12173,5101 Davis Drive, Research Triangle Park, NC 27709, U.S.A. TEL: 1-919-767-3813 / FAX: 1-919-767-3969

EUROPE

Deltronics (Netherlands) B.V. Eindhoven Office De Witbogt 15, 5652 AG Eindhoven, The Netherlands TEL: 31-40-259-28-50/ FAX: 31-40-259-28-51

*We reserve the right to change the information in this manual without prior notice

User Manual	
High Performance/Flexible Options/ Micro Type AC Motor Drives	

Thank you for choosing DELTA's high-performance VFD-E Series. The VFD-E Series is manufactured with high-quality components and materials and incorporate the latest microprocessor technology available.

This manual is to be used for the installation, parameter setting, troubleshooting, and daily maintenance of the AC motor drive. To guarantee safe operation of the equipment, read the following safety guidelines before connecting power to the AC motor drive. Keep this operating manual at hand and distribute to all users for reference.

To ensure the safety of operators and equipment, only qualified personnel familiar with AC motor drive are to do installation, start-up and maintenance. Always read this manual thoroughly before using VFD-E series AC Motor Drive, especially the WARNING, DANGER and CAUTION notes. Failure to comply may result in personal injury and equipment damage. If you have any questions, please contact your dealer.

PLEASE READ PRIOR TO INSTALLATION FOR SAFETY.

- 1. AC input power must be disconnected before any wiring to the AC motor drive is made.
- A charge may still remain in the DC-link capacitors with hazardous voltages, even if the power has been turned off. To prevent personal injury, please ensure that power has turned off before opening the AC motor drive and wait ten minutes for the capacitors to discharge to safe voltage levels.
- 3. Never reassemble internal components or wiring.
- 4. The AC motor drive may be destroyed beyond repair if incorrect cables are connected to the input/output terminals. Never connect the AC motor drive output terminals U/T1, V/T2, and W/T3 directly to the AC mains circuit power supply.
- Ground the VFD-E using the ground terminal. The grounding method must comply with the laws of the country where the AC motor drive is to be installed. Refer to the Basic Wiring Diagram.
- VFD-E series is used only to control variable speed of 3-phase induction motors, NOT for 1phase motors or other purpose.
- 7. VFD-E series shall NOT be used for life support equipment or any life safety situation.

- DO NOT use Hi-pot test for internal components. The semi-conductor used in AC motor drive easily damage by high-voltage.
- There are highly sensitive MOS components on the printed circuit boards. These components are especially sensitive to static electricity. To prevent damage to these components, do not touch these components or the circuit boards with metal objects or your bare hands.
- 3. Only qualified persons are allowed to install, wire and maintain AC motor drives.

- 1. Some parameters settings can cause the motor to run immediately after applying power.
- DO NOT install the AC motor drive in a place subjected to high temperature, direct sunlight, high humidity, excessive vibration, corrosive gases or liquids, or airborne dust or metallic particles.
- Only use AC motor drives within specification. Failure to comply may result in fire, explosion or electric shock.
- To prevent personal injury, please keep children and unqualified people away from the equipment.
- 5. When the motor cable between AC motor drive and motor is too long, the layer insulation of the motor may be damaged. Please use a frequency inverter duty motor or add an AC output reactor to prevent damage to the motor. Refer to appendix B Reactor for details.
- The rated voltage for AC motor drive must be ≤ 240V (≤ 480V for 460V models) and the short circuit must be ≤ 5000A RMS (≤10000A RMS for the ≥ 40hp (30kW) models).

DeviceNet is a registered trademark of the Open DeviceNet Vendor Association, Inc. Lonwork is a registered trademark of Echelon Corporation. Profibus is a registered trademark of Profibus International. CANopen is a registered trademark of CAN in Automation (CiA). Other trademarks belong to their respective owners.

Prefacei
Table of Contentsiii
Chapter 1 Introduction1-1
1.1 Receiving and Inspection1-2
1.1.1 Nameplate Information 1-2
1.1.2 Model Explanation 1-2
1.1.3 Series Number Explanation1-3
1.1.4 Drive Frames and Appearances 1-3
1.1.5 Remove Instructions 1-6
1.2 Preparation for Installation and Wiring1-8
1.2.1 Ambient Conditions 1-8
1.2.2 DC-bus Sharing: Connecting the DC-bus of the AC Motor Drives in Parallel
1.3 Dimensions1-12
Chapter 2 Installation and Wiring2-1
2.1 Wiring
2.2 External Wiring2-12
2.3 Main Circuit2-13
2.3.1 Main Circuit Connection
2.3.2 Main Circuit Terminals
2.4 Control Terminals2-17

Chapter 3 Keypad and Start Up	3-1
3.1 Keypad	3-1
3.2 Operation Method	3-2
3.3 Trial Run	3-3
Chapter 4 Parameters	4-1
4.1 Summary of Parameter Settings	4-2
4.2 Parameter Settings for Applications	4-32
4.3 Description of Parameter Settings	4-37
4.4 Different Parameters for VFD*E*C Models	4-152
Chapter 5 Troubleshooting	5-1
5.1 Over Current (OC)	5-1
5.2 Ground Fault	5-2
5.3 Over Voltage (OV)	5-2
5.4 Low Voltage (Lv)	5-3
5.5 Over Heat (OH)	5-4
5.6 Overload	5-4
5.7 Keypad Display is Abnormal	5-5
5.8 Phase Loss (PHL)	5-5
5.9 Motor cannot Run	5-6
5.10 Motor Speed cannot be Changed	5-7
5.11 Motor Stalls during Acceleration	5-8
5.12 The Motor does not Run as Expected	5-8
5.13 Electromagnetic/Induction Noise	5-9
5.14 Environmental Condition	5-9
5.15 Affecting Other Machines	5-10

Chapter 6 Fault Code Information and Maintenance	6-1
6.1 Fault Code Information	6-1
6.1.1 Common Problems and Solutions	6-1
6.1.2 Reset	6-6
6.2 Maintenance and Inspections	6-6
Appendix A Specifications	A-1
Appendix B Accessories	B-1
B.1 All Brake Resistors & Brake Units Used in AC Motor Drives	B-1
B.1.1 Dimensions and Weights for Brake Resistors	B-4
B.2 No-fuse Circuit Breaker Chart	B-8
B.3 Fuse Specification Chart	B-9
B.4 AC Reactor	B-10
B.4.1 AC Input Reactor Recommended Value	B-10
B.4.2 AC Output Reactor Recommended Value	B-11
B.4.3 Applications	B-12
B.5 Zero Phase Reactor (RF220X00A)	B-14
B.6 Remote Controller RC-01	B-15
B.7 PU06	B-16
B.7.1 Description of the Digital Keypad VFD-PU06	B-16
B.7.2 Explanation of Display Message	B-16
B.7.3 Operation Flow Chart	B-17
B.8 KPE-LE02	B-18
B.8.1 Description of the Digital Keypad KPE-LE02	B-18
B.8.2 How to Operate the Digital Keypad	B-20

B.8.3 Reference Table for the 7-segment LED Display of the Keypad	•
B.9 Extension Card	B-22
B.9.1 Relay Card	B-22
B.9.2 Digital I/O Card	B-23
B.9.3 Analog I/O Card	B-23
B.9.4 Communication Card	B-23
B.9.5 Speed Feedback Card	B-24
B.10 Fieldbus Modules	B-24
B.10.1 DeviceNet Communication Module (CME-DN01)	B-24
B.10.1.1 Panel Appearance and Dimensions	B-24
B.10.1.2 Wiring and Settings	B-25
B.10.1.3 Mounting Method	B-25
B.10.1.4 Power Supply	B-26
B.10.1.5 LEDs Display	B-26
B.10.2 LonWorks Communication Module (CME-LW01)	B-26
B.10.2.1 Introduction	B-27
B.10.2.2 Dimensions	B-27
B.10.2.3 Specifications	B-27
B.10.2.4 Wiring	B-28
B.10.2.5 LED Indications	B-28
B.10.3 Profibus Communication Module (CME-PD01)	B-28
B.10.3.1 Panel Appearance	B-29
B.10.3.2 Dimensions	B-30
B.10.3.3 Parameters Settings in VFD-E	B-30

B.10.3.4 Power Supply	B-30
B.10.3.5 PROFIBUS Address	B-30
B.10.4 CME-COP01 (CANopen)	B-31
B.10.4.1 Product Profile	B-31
B.10.4.2 Specifications	B-31
B.10.4.3 Components	B-32
B.10.4.4 LED Indicator Explanation & Troubleshooting .	B-33
B.11 DIN Rail	B-35
B.11.1 MKE-DRA	B-35
B.11.2 MKE-DRB	B-36
B.11.3 MKE-EP	B-36
Appendix C How to Select the Right AC Motor Drive	C-1
C.1 Capacity Formulas	C-2
C.2 General Precaution	C-4
C.3 How to Choose a Suitable Motor	C-5
Appendix D How to Use PLC Function	D-1
D.1 PLC Overview	D-1
D.1.1 Introduction	D-1
D.1.2 Ladder Diagram Editor – WPLSoft	D-1
D.2 Start-up	D-2
D.2.1 The Steps for PLC Execution	D-2
D.2.2 Device Reference Table	D-3
D.2.3 WPLSoft Installation	D-4
D.2.4 Program Input	D-5

D.2.5 Program Download	D-5
D.2.6 Program Monitor	D-6
D.2.7 The Limit of PLC	D-6
D.3 Ladder Diagram	D-8
D.3.1 Program Scan Chart of the PLC Ladder Diagram	D-8
D.3.2 Introduction	D-8
D.3.3 The Edition of PLC Ladder Diagram	D-11
D.3.4 The Example for Designing Basic Program	D-14
D.4 PLC Devices	D-19
D.4.1 Summary of DVP-PLC Device Number	D-19
D.4.2 Devices Functions	D-20
D.4.3 Value, Constant [K] / [H]	D-21
D.4.4 The Function of Auxiliary Relay	D-22
D.4.5 The Function of Timer	D-22
D.4.6 The Features and Functions of Counter	D-23
D.4.7 Register Types	D-24
D.4.8 Special Auxiliary Relays	D-25
D.4.9 Special Registers	D-26
D.4.10 Communication Addresses for Devices (only for PLC 27	2 mode) D-
D.4.11 Function Code (only for PLC2 mode)	D-28
D.5 Commands	D-28
D.5.1 Basic Commands	D-28
D.5.2 Output Commands	D-29
D.5.3 Timer and Counters	D-29

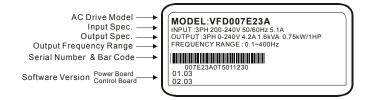
D.5.4 Main Control Commands	D-29
D.5.5 Rising-edge/falling-edge Detection Commands of Contact	D-29
D.5.6 Rising-edge/falling-edge Output Commands	D-30
D.5.7 End Command	D-30
D.5.8 Explanation for the Commands	D-30
D.5.9 Description of the Application Commands	D-45
D.5.10 Explanation for the Application Commands	D-46
D.5.11 Special Application Commands for the AC Motor Drive	D-58
D.6 Error Code	D-65
Appendix E CANopen Function	E-1
E.1 Overview	E-2
E.1 Overview E.1.1 CANopen Protocol	
	E-2
E.1.1 CANopen Protocol	E-2 E-3
E.1.1 CANopen Protocol E.1.2 RJ-45 Pin Definition	E-2 E-3 E-3
E.1.1 CANopen Protocol E.1.2 RJ-45 Pin Definition E.1.3 Pre-Defined Connection Set	E-2 E-3 E-3 E-4
E.1.1 CANopen Protocol E.1.2 RJ-45 Pin Definition E.1.3 Pre-Defined Connection Set E.1.4 CANopen Communication Protocol	E-2 E-3 E-3 E-4 E-4
 E.1.1 CANopen Protocol E.1.2 RJ-45 Pin Definition E.1.3 Pre-Defined Connection Set E.1.4 CANopen Communication Protocol E.1.4.1 NMT (Network Management Object) 	E-2 E-3 E-3 E-4 E-4 E-6
 E.1.1 CANopen Protocol E.1.2 RJ-45 Pin Definition E.1.3 Pre-Defined Connection Set E.1.4 CANopen Communication Protocol E.1.4.1 NMT (Network Management Object) E.1.4.2 SDO (Service Data Object) 	E-2 E-3 E-3 E-4 E-4 E-6 E-7

This page intentionally left blank

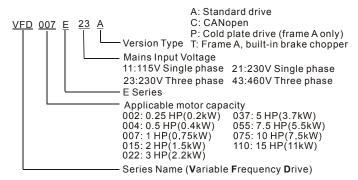
Chapter 1 Introduction

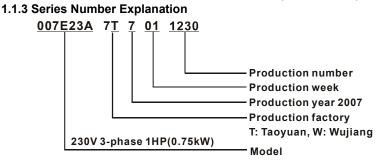
The AC motor drive should be kept in the shipping carton or crate before installation. In order to retain the warranty coverage, the AC motor drive should be stored properly when it is not to be used for an extended period of time. Storage conditions are:

- 1. Store in a clean and dry location free from direct sunlight or corrosive fumes.
- 2. Store within an ambient temperature range of -20 °C to +60 °C.
- 3. Store within a relative humidity range of 0% to 90% and non-condensing environment.
- 4. Store within an air pressure range of 86 kPA to 106kPA.
- DO NOT place on the ground directly. It should be stored properly. Moreover, if the surrounding environment is humid, you should put exsiccator in the package.
- DO NOT store in an area with rapid changes in temperature. It may cause condensation and frost.
- If the AC motor drive is stored for more than 3 months, the temperature should not be higher than 30 °C. Storage longer than one year is not recommended, it could result in the degradation of the electrolytic capacitors.
- When the AC motor drive is not used for longer time after installation on building sites or places with humidity and dust, it's best to move the AC motor drive to an environment as stated above.


1.1 Receiving and Inspection

This VFD-E AC motor drive has gone through rigorous quality control tests at the factory before shipment. After receiving the AC motor drive, please check for the following:


- Check to make sure that the package includes an AC motor drive, the User Manual/Quick Start and CD.
- Inspect the unit to assure it was not damaged during shipment.
- Make sure that the part number indicated on the nameplate corresponds with the part number of your order.


1.1.1 Nameplate Information

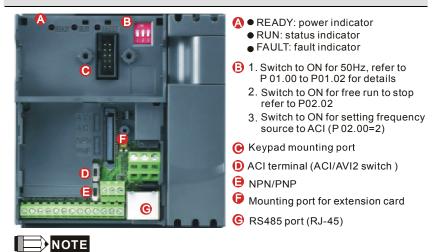
Example for 1HP/0.75kW 3-phase 230V AC motor drive

1.1.2 Model Explanation



If the nameplate information does not correspond to your purchase order or if there are any problems, please contact your distributor.

1.1.4 Drive Frames and Appearances


0.25-2HP/0.2-1.5kW (Frame A)

1-15HP/0.75-11kW (Frame B&C)

Internal Structure

The LED "READY" will light up after applying power. The light won't be off until the capacitors are discharged to safe voltage levels after power off.

RFI Jumper Location

Frame A: near the output terminals (U/T1, V/T2, W/T3)

Frame B: above the nameplate

Frame C: above the warning label

Frame	Power range	Models
А	0.25-2hp (0.2-1.5kW)	VFD002E11A/21A/23A, VFD004E11A/21A/23A/43A,
~	0.20 2110 (0.2 1.0000)	VFD007E21A/23A/43A, VFD015E23A/43A
		VFD002E11C/21C/23C, VFD004E11C/21C/23C/43C,
		VFD007E21C/23C/43C, VFD015E23C/43C
		VFD002E11T/21T/23T, VFD004E11T/21T/23T/43T,
		VFD007E21T/23T/43T, VFD015E23T/43T

Chapter 1 Introduction |

Frame	Power range	Models
		VFD002E11P/21P/23P, VFD004E11P/21P/23P/43P,
		VFD007E21P/23P/43P, VFD015E23P
		VFD007E11A, VFD015E21A, VFD022E21A/23A/43A,
В	1-5hp (0.75-3.7kW)	VFD037E23A/43A, VFD007E11C, VFD015E21C,
		VFD022E21C/23C/43C, VFD037E23C/43C
с	7.5-15hp (5.5-11kW)	VFD055E23A/43A, VFD075E23A/43A, VFD110E43A,
C	7.5-15hp (5.5-11kw)	VFD055E23C/43C, VFD075E23C/43C, VFD110E43C

RFI Jumper

RFI Jumper: The AC motor drive may emit the electrical noise. The RFI jumper is used to suppress the interference (Radio Frequency Interference) on the power line.

Main power isolated from earth:

If the AC motor drive is supplied from an isolated power (IT power), the RFI jumper must be cut off. Then the RFI capacities (filter capacitors) will be disconnected from ground to prevent circuit damage (according to IEC 61800-3) and reduce earth leakage current.

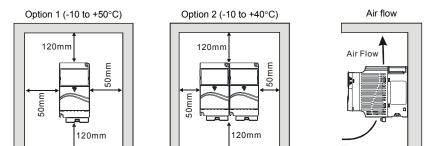
- After applying power to the AC motor drive, do not cut off the RFI jumper. Therefore, please make sure that main power has been switched off before cutting the RFI jumper.
- The gap discharge may occur when the transient voltage is higher than 1,000V. Besides, electro-magnetic compatibility of the AC motor drives will be lower after cutting the RFI jumper.
- 3. Do NOT cut the RFI jumper when main power is connected to earth.
- The RFI jumper cannot be cut when Hi-pot tests are performed. The mains power and motor must be separated if high voltage test is performed and the leakage currents are too high.
- To prevent drive damage, the RFI jumper connected to ground shall be cut off if the AC motor drive is installed on an ungrounded power system or a high resistance-grounded (over 30 ohms) power system or a corner grounded TN system.

1.1.5 Remove Instructions

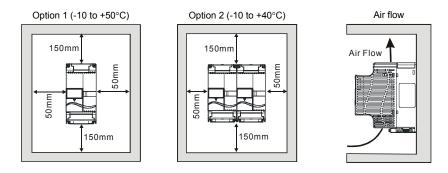
1.2 Preparation for Installation and Wiring

1.2.1 Ambient Conditions

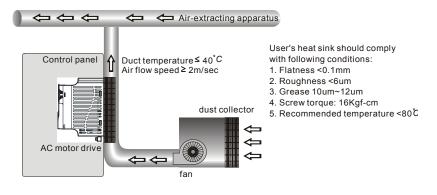
Install the AC motor drive in an environment with the following conditions:


	Air Temperature:	-10 ~ +50°C (14 ~ 122°F) for UL & cUL -10 ~ +40°C (14 ~ 104°F) for side-by-side mounting
	Relative Humidity:	<90%, no condensation allowed
Operation	Atmosphere pressure:	86 ~ 106 kPa
	Installation Site Altitude:	<1000m
	Vibration:	<20Hz: 9.80 m/s² (1G) max 20 ~ 50Hz: 5.88 m/s² (0.6G) max

Storage Transportation	Temperature:	-20°C ~ +60°C (-4°F ~ 140°F)
	Relative Humidity:	<90%, no condensation allowed
	Atmosphere pressure:	86 ~ 106 kPa
	Vibration:	<20Hz: 9.80 m/s ² (1G) max 20 ~ 50Hz: 5.88 m/s ² (0.6G) max
Pollution Degree	2: good for a factory type environment.	

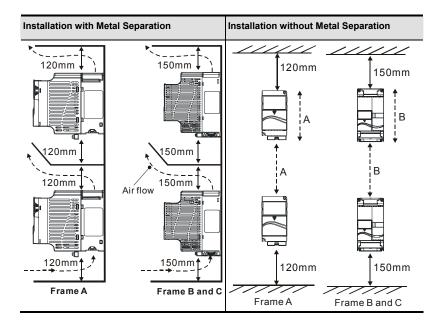

Minimum Mounting Clearances

Frame A Mounting Clearances


1-8

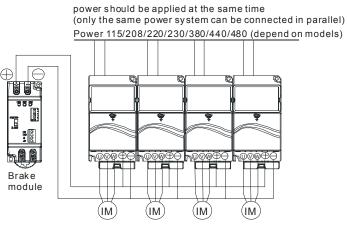
Frame B and C Mounting Clearances

For VFD-E-P series: heat sink system example



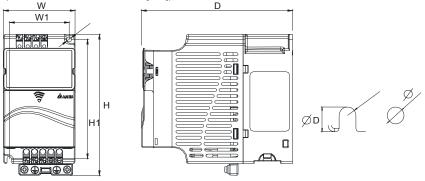
- Operating, storing or transporting the AC motor drive outside these conditions may cause damage to the AC motor drive.
- 2. Failure to observe these precautions may void the warranty!
- Mount the AC motor drive vertically on a flat vertical surface object by screws. Other directions are not allowed.
- The AC motor drive will generate heat during operation. Allow sufficient space around the unit for heat dissipation.

Chapter 1 Introduction |


- 5. The heat sink temperature may rise to 90°C when running. The material on which the AC motor drive is mounted must be noncombustible and be able to withstand this high temperature.
- When AC motor drive is installed in a confined space (e.g. cabinet), the surrounding temperature must be within 10 ~ 40°C with good ventilation. DO NOT install the AC motor drive in a space with bad ventilation.
- Prevent fiber particles, scraps of paper, saw dust, metal particles, etc. from adhering to the heatsink.
- 8. When installing multiple AC more drives in the same cabinet, they should be adjacent in a row with enough space in-between. When installing one AC motor drive below another one, use a metal separation between the AC motor drives to prevent mutual heating.

Chapter 1 Introduction |

1.2.2 DC-bus Sharing: Connecting the DC-bus of the AC Motor Drives in Parallel

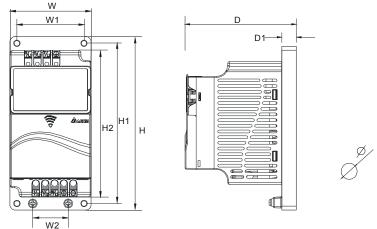

- 1. This function is not for VFD-E-T series.
- The AC motor drives can absorb mutual voltage that generated to DC bus when deceleration.
- 3. Enhance brake function and stabilize the voltage of the DC bus.
- 4. The brake module can be added to enhance brake function after connecting in parallel.
- 5. Only the same power system can be connected in parallel.
- 6. It is recommended to connect 5 AC motor drives in parallel (no limit in horsepower).

For frame A, terminal + (-) is connected to the terminal + (-) of the brake module. For frame B and C, terminal +/B1 (-) is connected to the terminal + (-) of the brake module.

1.3 Dimensions

(Dimensions are in millimeter and [inch])

Frame	w	W1	н	H1	D	Ø	ØD
Α	72.0[2.83]	60.0[2.36]	142.0[5.59]	120.0[4.72]	152.0[5.98]	5.2[0.04]	7.6[0.06]
В	100.0[3.94]	89.0[3.50]	174.0[6.86]	162.0[6.38]	152.0[5.98]	5.5[0.22]	9.3[0.36]
С	130.0[5.12]	116.0[4.57]	260.0[10.24]	246.5[9.70]	169.2[6.66]	5.5[0.22]	9.8[0.38]


Frame A: VFD002E11A/21A/23A, VFD004E11A/21A/23A/43A, VFD007E21A/23A/43A, VFD015E23A/43A, VFD002E11C/21C/23C, VFD004E11C/21C/23C/43C, VFD007E21C/23C/43C, VFD015E23C/43C, VFD002E11T/21T/23T, VFD004E11T/21T/23T/43T, VFD007E21T/23T/43T, VFD015E23T/43T

Frame B: VFD007E11A, VFD015E21A, VFD022E21A/23A/43A, VFD037E23A/43A, VFD007E11C, VFD015E21C, VFD022E21C/23C/43C, VFD037E23C/43C

Frame C: VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD055E23C/43C,

VFD075E23C/43C, VFD110E43C

Dimensions for VFD-E-P series

Unit: mm [inch]

w	W1	W2	Н	H1	H2	D	D1	ø
72.0	56.0	30.0	155.0	143.0	130.0	111.5	9.5	5.3
[2.83]	[2.20]	[1.18]	[6.10]	[5.63]	[5.12]	[4.39]	[0.37]	[0.21]

Frame A: VFD002E11P/21P/23P, VFD004E11P/21P/23P/43P, VFD007E11P/21P/23P/43P,

VFD015E23P/43P

This page intentionally left blank

Chapter 2 Installation and Wiring

After removing the front cover, check if the power and control terminals are clear. Be sure to observe the following precautions when wiring.

General Wiring Information
 Applicable Codes
 All VFD-E series are Underwriters Laboratories, Inc. (UL) and Canadian Underwriters
 Laboratories (cUL) listed, and therefore comply with the requirements of the National
 Electrical Code (NEC) and the Canadian Electrical Code (CEC).

Installation intended to meet the UL and cUL requirements must follow the instructions provided in "Wiring Notes" as a minimum standard. Follow all local codes that exceed UL and cUL requirements. Refer to the technical data label affixed to the AC motor drive and the motor nameplate for electrical data.

The "Line Fuse Specification" in Appendix B, lists the recommended fuse part number for each VFD-E Series part number. These fuses (or equivalent) must be used on all installations where compliance with U.L. standards is a required.

- Make sure that power is only applied to the R/L1, S/L2, T/L3 terminals. Failure to comply may result in damage to the equipment. The voltage and current should lie within the range as indicated on the nameplate.
- All the units must be grounded directly to a common ground terminal to prevent lightning strike or electric shock.
- Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.
- 4. Check following items after finishing the wiring:
 - A. Are all connections correct?
 - B. No loose wires?
 - C. No short-circuits between terminals or to ground?

- A charge may still remain in the DC bus capacitors with hazardous voltages even if the power has been turned off. To prevent personal injury, please ensure that the power is turned off and wait ten minutes for the capacitors to discharge to safe voltage levels before opening the AC motor drive.
- Only qualified personnel familiar with AC motor drives is allowed to perform installation, wiring and commissioning.
- 3. Make sure that the power is off before doing any wiring to prevent electric shock.

2.1 Wiring

Users must connect wires according to the circuit diagrams on the following pages. Do not plug a modem or telephone line to the RS-485 communication port or permanent damage may result. The pins 1 & 2 are the power supply for the optional copy keypad only and should not be used for RS-485 communication.

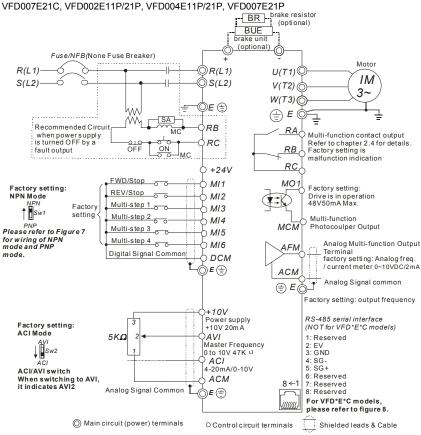
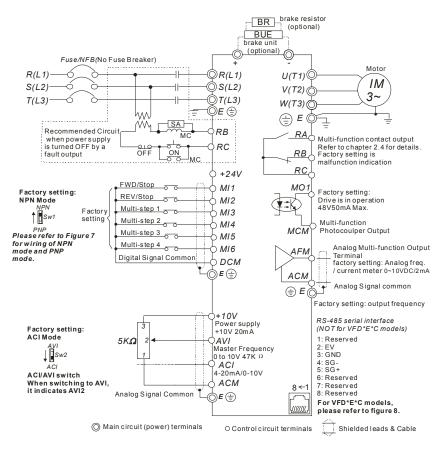
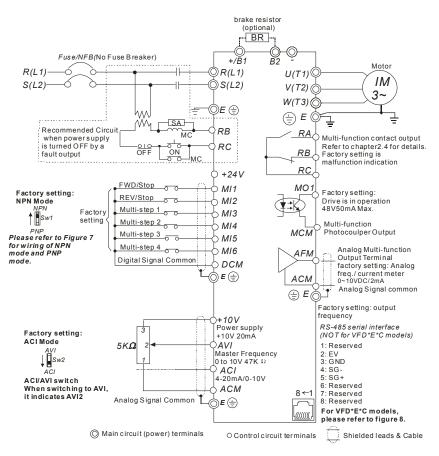



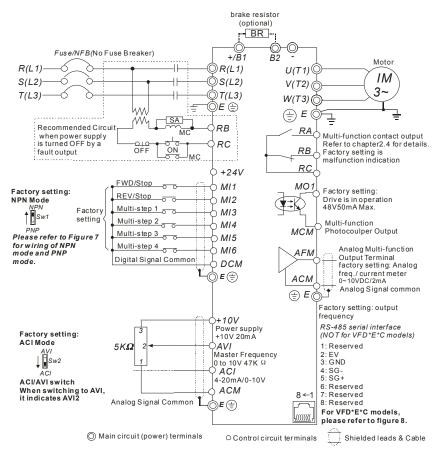
Figure 1 for models of VFD-E Series VFD002E11A/21A, VFD004E11A/21A, VFD007E21A, VFD002E11C/21C, VFD004E11C/21C, VFD007E21C, VFD002E11P/21P, VFD007E21P, VFD007E2P, VFD007E2P, VFD007E2P, VFD007E2P, VFD007E2P, VFD007E2P, VFD0

Chapter 2 Installation and Wiring |


Figure 2 for models of VFD-E Series

VFD002E23A, VFD004E23A/43A, VFD007E23A/43A, VFD015E23A/43A, VFD002E23C, VFD004E23C/43C, VFD007E23C/43C, VFD015E23C/43C, VFD002E23P, VFD004E23P/43P, VFD007E23P/43P, VFD015E23P

Figure 3 for models of VFD-E Series


VFD007E11A, VFD015E21A, VFD022E21A, VFD007E11C, VFD015E21C, VFD022E21C

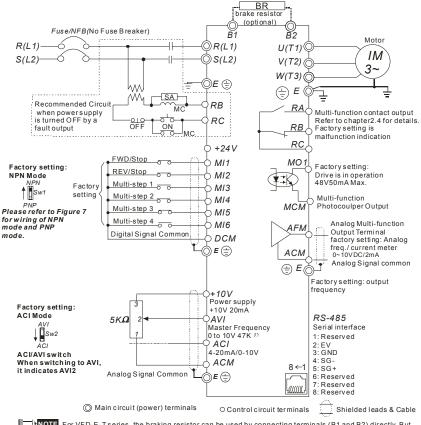
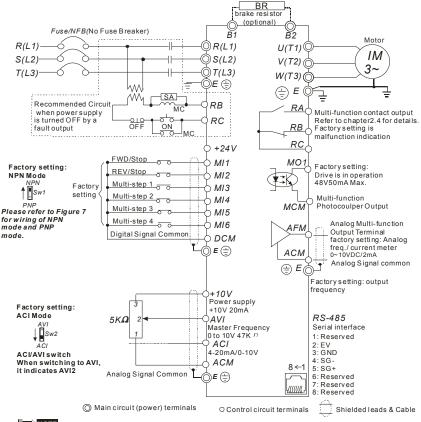

Chapter 2 Installation and Wiring |

Figure 4 for models of VFD-E Series

VFD022E23A/43A, VFD037E23A/43A, VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD022E23C/43C, VFD037E23C/43C, VFD055E23C/43C, VFD075E23C/43C, VFD110E43C

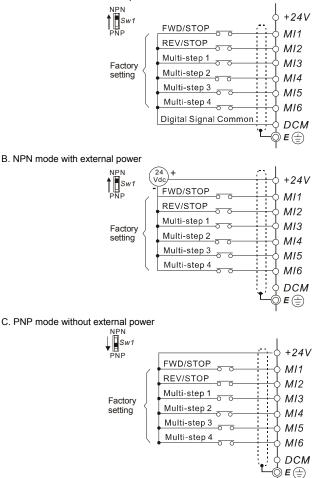
Figure 5 for models of VFD-E Series VFD002E11T/21T, VFD004E11A/21T, VFD007E21T



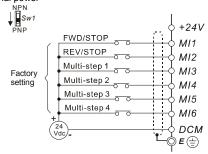
NOTE For VFD-E-T series, the braking resistor can be used by connecting terminals (B1 and B2) directly. But it can't connect DC-BUS in parallel.

Chapter 2 Installation and Wiring |

Figure 6 for models of VFD-E Series


VFD002E23T, VFD004E23T/43T, VFD007E23T/43T, VFD015E23T/43T

For VFD-E-T series, the braking resistor can be used by connecting terminals (B1 and B2) directly. But it can't connect DC-BUS in parallel.

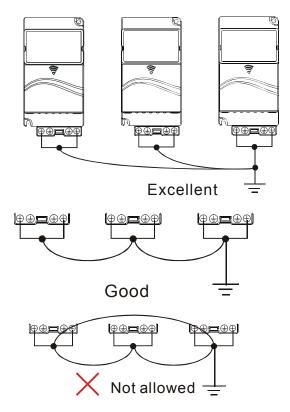

Figure 7 Wiring for NPN mode and PNP mode

A. NPN mode without external power

Chapter 2 Installation and Wiring |

D. PNP mode with external power

Figure 8 RJ-45 pin definition for VFD*E*C models


PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground / 0V /V-
4	SG+	485 communication
5	SG-	485 communication
7	CAN_GND	Ground / 0V /V-

- 1. The wiring of main circuit and control circuit should be separated to prevent erroneous actions.
- Please use shield wire for the control wiring and not to expose the peeled-off net in front of the terminal.
- Please use the shield wire or tube for the power wiring and ground the two ends of the shield wire or tube.
- Damaged insulation of wiring may cause personal injury or damage to circuits/equipment if it comes in contact with high voltage.
- The AC motor drive, motor and wiring may cause interference. To prevent the equipment damage, please take care of the erroneous actions of the surrounding sensors and the equipment.
- When the AC drive output terminals U/T1, V/T2, and W/T3 are connected to the motor terminals U/T1, V/T2, and W/T3, respectively. To permanently reverse the direction of motor rotation, switch over any of the two motor leads.

Chapter 2 Installation and Wiring

- 7. With long motor cables, high capacitive switching current peaks can cause over-current, high leakage current or lower current readout accuracy. To prevent this, the motor cable should be less than 20m for 3.7kW models and below. And the cable should be less than 50m for 5.5kW models and above. For longer motor cables use an AC output reactor.
- The AC motor drive, electric welding machine and the greater horsepower motor should be grounded separately.
- 9. Use ground leads that comply with local regulations and keep them as short as possible.
- 10. No brake resistor is built in the VFD-E series, it can install brake resistor for those occasions that use higher load inertia or frequent start/stop. Refer to Appendix B for details.
- Multiple VFD-E units can be installed in one location. All the units should be grounded directly to a common ground terminal, as shown in the figure below. Ensure there are no ground loops.

2.2 External Wiring

	Items	Explanations
Power Supply	Power supply	Please follow the specific power supply requirements shown in Appendix A.
O O O O O O O O O O O FUSE/NFB	Fuse/NFB (Optional)	There may be an inrush current during power up. Please check the chart of Appendix B and select the correct fuse with rated current. Use of an NFB is optional.
Magnetic contactor	Magnetic contactor (Optional)	Please do not use a Magnetic contactor as the I/O switch of the AC motor drive, as it will reduce the operating life cycle of the AC drive.
B B C C C C C C C C C C C C C C C C C C	Incut AC	Used to improve the input power factor, to reduce harmonics and provide protection from AC line disturbances ₇ (surges, switching spikes, short interruptions, etc.). AC
Zero-phase Reactor	Input AC Line Reactor (Optional)	line reactor should be installed when the power supply capacity is 500kVA or more or advanced capacity is activated .The wiring distance should $be \leq 10m$. Refer to appendix B for details.
R/L1 S/L2 T/L3 H/B1 U/T1 V/T2 W/T3 U/T1 V/T2 W/T3 C	Zero-phase Reactor (Ferrite Core Common Choke) (Optional)	Zero phase reactors are used to reduce radio noise especially when audio equipment is installed near the inverter. Effective for noise reduction on both the input and output sides. Attenuation quality is good for a wide range from AM band to 10MHz. Appendix B specifies the zero phase reactor. (RF220X00A)
Zero-phase Reactor	EMI filter	To reduce electromagnetic interference.
Output AC Line Reactor	Brake resistor and Brake unit (Optional)	Used to reduce the deceleration time of the motor. Please refer to the chart in Appendix B for specific Brake resistors.
Motor	Output AC Line Reactor (Optional)	Motor surge voltage amplitude depends on motor cable length. For applications with long motor cable (>20m), it is necessary to install a

2.3 Main Circuit

2.3.1 Main Circuit Connection

Figure 1

For frame A: VFD002E11A/21A/23A, VFD004E11A/21A/23A/43A, VFD007E21A/23A/43A, VFD015E23A/43A, VFD002E11C/21C/23C, VFD004E11C/21C/23C/43C, VFD007E21C/23C/43C, VFD002E11P/21P/23P, VFD004E11P/21P/23P/43P, VFD007E11P/21P/23P/43P, VFD015E23P

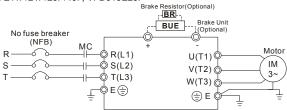


Figure 2

For frame B: VFD007E11A, VFD015E21A, VFD022E21A/23A/43A, VFD037E23A/43A, VFD007E11C, VFD015E21C, VFD022E21C/23C/43C, VFD037E23C/43C

For frame C: VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD055E23C/43C, VFD075E23C/43C, VFD110E43C

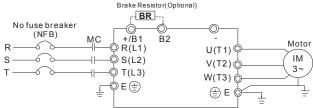
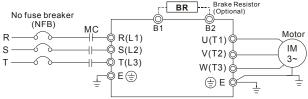
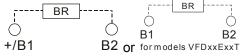



Figure 3

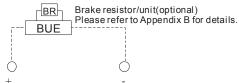
For **Frame A:** VFD002E11T/21T/23T, VFD004E11T/21T/23T/43T, VFD007E21T/23T/43T, VFD015E23T/43T

Chapter 2 Installation and Wiring |

	Terminal Symbol	Explanation of Terminal Function
	R/L1, S/L2, T/L3	AC line input terminals (1-phase/3-phase)
_	U/T1, V/T2, W/T3	AC drive output terminals for connecting 3-phase induction motor
-	+/B1~ B2	Connections for Brake resistor (optional)
-	+/B1, -	Connections for External Brake unit (BUE series)
_	÷	Earth connection, please comply with local regulations.


Mains power terminals (R/L1, S/L2, T/L3)

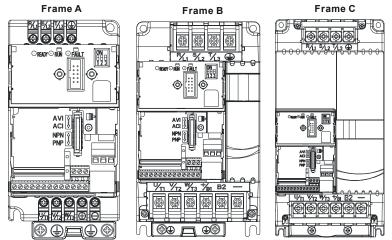
- Connect these terminals (R/L1, S/L2, T/L3) via a no-fuse breaker or earth leakage breaker to 3-phase AC power (some models to 1-phase AC power) for circuit protection. It is unnecessary to consider phase-sequence.
- It is recommended to add a magnetic contactor (MC) in the power input wiring to cut off power quickly and reduce malfunction when activating the protection function of AC motor drives. Both ends of the MC should have an R-C surge absorber.
- Please make sure to fasten the screw of the main circuit terminals to prevent sparks which is made by the loose screws due to vibration.
- Please use voltage and current within the regulation shown in Appendix A.
- When using a general GFCI (Ground Fault Circuit Interrupter), select a current sensor with sensitivity of 200mA or above, and not less than 0.1-second operation time to avoid nuisance tripping. For the specific GFCI of the AC motor drive, please select a current sensor with sensitivity of 30mA or above.
- Do NOT run/stop AC motor drives by turning the power ON/OFF. Run/stop AC motor drives by RUN/STOP command via control terminals or keypad. If you still need to run/stop AC drives by turning power ON/OFF, it is recommended to do so only ONCE per hour.
- Do NOT connect 3-phase models to a 1-phase power source.


Output terminals for main circuit (U, V, W)

- The factory setting of the operation direction is forward running. The methods to control the operation direction are: method 1, set by the communication parameters. Please refer to the group 9 for details. Method2, control by the optional keypad KPE-LE02. Refer to Appendix B for details.
- When it needs to install the filter at the output side of terminals U/T1, V/T2, W/T3 on the AC motor drive. Please use inductance filter. Do not use phase-compensation capacitors or L-C (Inductance-Capacitance) or R-C (Resistance-Capacitance), unless approved by Delta.
- DO NOT connect phase-compensation capacitors or surge absorbers at the output terminals of AC motor drives.
- Use well-insulated motor, suitable for inverter operation.

Terminals [+/B1, B2] for connecting brake resistor

- Connect a brake resistor or brake unit in applications with frequent deceleration ramps, short deceleration time, too low brake torque or requiring increased brake torque.
- If the AC motor drive has a built-in brake chopper (frame B, frame C and VFDxxxExxT models), connect the external brake resistor to the terminals [+/B1, B2].
- Models of frame A don't have a built-in brake chopper. Please connect an external optional brake unit (BUE-series) and brake resistor. Refer to BUE series user manual for details.



- Connect the terminals [+(P), -(N)] of the brake unit to the AC motor drive terminals [+/B1, -]. The length of wiring should be less than 5m with cable.
- When not used, please leave the terminals [+/B1, -] open.

Short-circuiting [B2] or [-] to [+/B1] can damage the AC motor drive.

2.3.2 Main Circuit Terminals

Frame	Power Terminals	Torque	Wire	Wire type	
	R/L1, S/L2, T/L3	14kgf-cm	12-14 AWG.	Copper only, 75°C	
A	U/T1, V/T2, W/T3, 🖶	(12in-lbf)	(3.3-2.1mm ²)		
	R/L1, S/L2, T/L3				
В	U/T1, V/T2, W/T3	18kgf-cm	8-18 AWG. (8.4-0.8mm ²)	Copper only, 75°C	
	+/B1, B2, -, 🗐	(15.6in-lbf)			
С	R/L1, S/L2, T/L3				
	U/T1, V/T2, W/T3	30kgf-cm	8-16 AWG. (8.4-1.3mm ²)	Copper only, 75°C	
	+/B1, B2, -	(26in-lbf)	(0.+ 1.0000)		

2-16 Download from Www.Somanuals.com. All Manuals Search And Download.

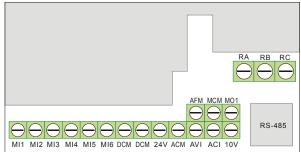
Frame A: VFD002E11A/21A/23A, VFD004E11A/21A/23A/43A, VFD007E21A/23A/43A, VFD015E23A/43A, VFD002E11C/21C/23C, VFD004E11C/21C/23C/43C, VFD007E21C/23C/43C, VFD015E23C/43C, VFD002E11T/21T/23T, VFD004E11T/21T/23T/43T, VFD007E21T/23T/43T, VFD015E23T/43T, VFD002E11P/21P/23P, VFD004E11P/21P/23P/43P, VFD007E21P/23P/43P, VFD015E23P

Frame B: VFD007E11A, VFD015E21A, VFD022E21A/23A/43A, VFD037E23A/43A, VFD007E11C, VFD015E21C, VFD022E21C/23C/43C, VFD037E23C/43C

Frame C: VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD055E23C/43C,

VFD075E23C/43C, VFD110E43C

For frame C: To connect 6 AWG (13.3 mm²) wires, use Recognized Ring Terminals

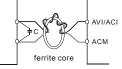

2.4 Control Terminals

Circuit diagram for digital inputs (NPN current 16mA.)

Chapter 2 Installation and Wiring |

The position of the control terminals

Terminal symbols and functions


Terminal	Terminal Function	Factory Settings (NPN mode)			
Symbol		ON: Connect to DCM			
MI1	Forward-Stop command	ON: Run in MI1 direction			
	r orward-Stop command	OFF: Stop acc. to Stop Method			
MI2	Reverse-Stop command	ON: Run in MI2 direction			
IVIIZ	Reverse-otop command	OFF: Stop acc. to Stop Method			
MI3	Multi-function Input 3				
MI4	Multi-function Input 4	Refer to Pr.04.05 to Pr.04.08 for programming the Multi-function Inputs.			
MI5	Multi-function Input 5	ON: the activation current is 5.5mA. OFF: leakage current tolerance is 10 μ A.			
MI6	Multi-function Input 6				
+24V	DC Voltage Source	+24VDC, 20mA used for PNP mode.			
DCM	Digital Signal Common	Common for digital inputs and used for NPN mode.			
	Multi-function Relay output	Resistive Load:			
RA	(N.O.) a	5A(N.O.)/3A(N.C.) 240VAC			
	Multi function Delau autout	5A(N.O.)/3A(N.C.) 24VDC			
RB	Multi-function Relay output (N.C.) b				
		1.5A(N.O.)/0.5A(N.C.) 240VAC 1.5A(N.O.)/0.5A(N.C.) 24VDC			
RC	Multi-function Relay common	Refer to Pr.03.00 for programming			

		Chapter 2 Installation and Wiring	1.10 .00		
Terminal	Terminal Function	Factory Settings (NPN mode)			
Symbol		ON: Connect to DCM			
MO1	Multi-function Output 1 (Photocoupler)	Maximum 48VDC, 50mA Refer to Pr.03.01 for programming Mo1-DCM Mo1 Mo1 Mo1 Mo1 Mo1			
MCM	Multi-function output common	Common for Multi-function Outputs			
+10V	Potentiometer power supply	+10VDC 3mA			
AVI	Analog voltage Input	Impedance: 47kΩ Resolution: 10 bits Range: 0 ~ 10VDC = 0 ~ Max. Output Frequency (Pr.01.00) Selection: Pr.02.00, Pr.02.09, Pr.10.00 Set-up: Pr.04.11 ~ Pr.04.14, 04.19~4			
ACM	Analog control signal (common)	Common for AVI, ACI, AFM			
ACI	Analog current Input	Impedance: 250Ω Resolution: 10 bits Range: 4 ~ 20mA = 0 ~ Max. Output Frequency (Pr.01.00) Selection: Pr.02.00, Pr.02.09, Pr.10.00 Set-up: Pr.04.15 ~ Pr.04.18			
AFM	Analog output meter ACM circuit ACM circuit ACM circuit AFM 0-10V potentiometer Max. 2mA	0 to 10V, 2mA Impedance: 100kΩ Output current 2mA max Resolution: 8 bits Range: 0 ~ 10VDC Function: Pr.03.03 to Pr.03.04			

NOTE: Control signal wiring size: 18 AWG (0.75 mm²) with shielded wire.

Analog inputs (AVI, ACI, ACM)

- Analog input signals are easily affected by external noise. Use shielded wiring and keep it as short as possible (<20m) with proper grounding. If the noise is inductive, connecting the shield to terminal ACM can bring improvement.
- If the analog input signals are affected by noise from the AC motor drive, please connect a capacitor (0.1 µ F and above) and ferrite core as indicated in the following diagrams:

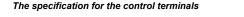
wind each wires 3 times or more around the core

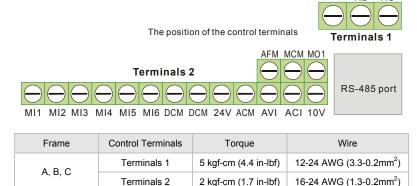
Digital inputs (MI1~MI6, DCM)

When using contacts or switches to control the digital inputs, please use high quality components to avoid contact bounce.

Digital outputs (MO1, MCM)

- Make sure to connect the digital outputs to the right polarity, see wiring diagrams.
- When connecting a relay to the digital outputs, connect a surge absorber or fly-back diode across the coil and check the polarity.


General


- Keep control wiring as far away as possible from the power wiring and in separate conduits to avoid interference. If necessary let them cross only at 90° angle.
- The AC motor drive control wiring should be properly installed and not touch any live power wiring or terminals.

Damaged insulation of wiring may cause personal injury or damage to circuits/equipment if it comes in contact with high voltage.

RB RC

Frame A: VFD002E11A/21A/23A, VFD004E11A/21A/23A/43A, VFD007E21A/23A/43A, VFD015E23A/43A, VFD002E11C/21C/23C, VFD004E11C/21C/23C/43C, VFD007E21C/23C/43C, VFD015E23C/43C. VFD002E11T/21T/23T. VFD004E11T/21T/23T/43T. VFD007E21T/23T/43T. VFD015E23T/43T, VFD002E11P/21P/23P, VFD004E11P/21P/23P/43P, VFD007E21P/23P/43P, VFD015E23P

Frame B: VFD007E11A, VFD015E21A, VFD022E21A/23A/43A, VFD037E23A/43A, VFD007E11C, VFD015E21C, VFD022E21C/23C/43C, VFD037E23C/43C

Frame C: VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD055E23C/43C,

VFD075E23C/43C, VFD110E43C

This page intentionally left blank

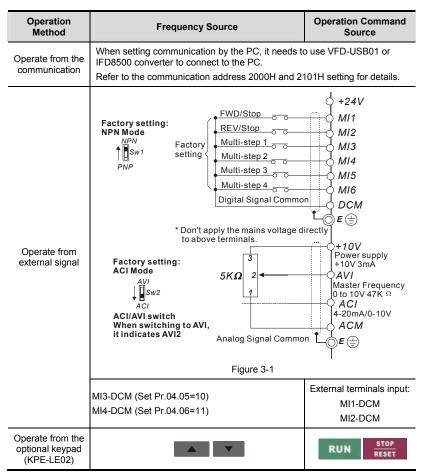
CAUTION	 Make sure that the wiring is correct. In particular, check that the output terminals U/T1, V/T2, W/T3. are NOT connected to power and that the drive is well grounded. Verify that no other equipment is connected to the AC motor drive Do NOT operate the AC motor drive with humid hands. Please check if READY LED is ON when power is applied. Check if
	the connection is well when option from the digital keypad KPE- LE02.
WARNING	It should be stopped when fault occurs during running and refer to "Fault Code Information and Maintenance" for solution. Please do NOT touch output terminals U, V, W when power is still applied to L1/R, L2/S, L3/T even when the AC motor drive has stopped. The DC-link capacitors may still be charged to hazardous voltage levels, even if the power has been turned off.

3.1 Keypad

There are three LEDs on the keypad:

LED READY: It will light up after applying power. The light won't be off until the capacitors are discharged to safe voltage levels after power off.

LED RUN: It will light up when the motor is running.


LED FAULT: It will light up when fault occurs.

3.2 Operation Method

The operation method can be set via communication, control terminals and optional keypad KPE-LE02.

- RS485 port (RJ-45) It needs to use VFD-USB01 or IFD8500 converter to connect to the PC.
- Control terminals (MI1 to MI6)
- Keypad mounting port

3.3 Trial Run

The factory setting of the operation source is from the external terminal (Pr.02.01=2).

- Both MI1-DCM and MI2-DCM need to connect a switch for switching FWD/STOP and REV/STOP.
- Please connect a potentiometer among AVI, 10V and DCM or apply power 0-10Vdc to AVI-DCM (as shown in figure 3-1)

Chapter 3 Keypad and Start Up | 💴 💷

- 3. Setting the potentiometer or AVI-DCM 0-10Vdc power to less than 1V.
- Setting MI1=On for forward running. And if you want to change to reverse running, you should set MI2=On. And if you want to decelerate to stop, please set MI1/MI2=Off.
- 5. Check following items:
- Check if the motor direction of rotation is correct.
- Check if the motor runs steadily without abnormal noise and vibration.
- Check if acceleration and deceleration are smooth.

If you want to perform a trial run by using optional digital keypad, please operate by the following steps.

- Connect digital keypad to AC motor drive correctly.
- After applying the power, verify that LED display shows F 0.0Hz.
- Set Pr.02.00=0 and Pr.02.01=0. (Refer to Appendix B operation flow for detail)
- 4. Press key to set frequency to around 5Hz.
- 5. Press RUN key for forward running. And if you want to change to reverse

running, you should press

page. And if you want to

in

decelerate to stop, please press **RESET** key.

6. Check following items:

3-4

- Check if the motor direction of rotation is correct.
- Check if the motor runs steadily without abnormal noise and vibration.
- Check if acceleration and deceleration are smooth.

ENTER

ENTER

RUN

If the results of trial run are normal, please start the formal run.

Chapter 4 Parameters

The VFD-E parameters are divided into 14 groups by property for easy setting. In most applications, the user can finish all parameter settings before start-up without the need for re-adjustment during operation.

The 14 groups are as follows:

- Group 0: User Parameters
- Group 1: Basic Parameters
- Group 2: Operation Method Parameters
- Group 3: Output Function Parameters
- Group 4: Input Function Parameters
- Group 5: Multi-Step Speed Parameters
- Group 6: Protection Parameters
- Group 7: Motor Parameters
- Group 8: Special Parameters
- Group 9: Communication Parameters
- Group 10: PID Control Parameters
- Group 11: Multi-function Input/Output Parameters for Extension Card
- Group 12: Analog Input/Output Parameters for Extension Card
- Group 13: PG function Parameters for Extension Card

4.1 Summary of Parameter Settings

 \mathcal{M} : The parameter can be set during operation.

Group 0 User Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
00.00	Identity Code of the AC motor drive	Read-only	##	
00.01	Rated Current Display of the AC motor drive	Read-only	#.#	
		0: Parameter can be read/written		
		1: All parameters are read only		
00.02	Parameter Reset	6: Clear PLC program (NOT for VFD*E*C models)	0	
00.02	Farameter Reset	9: All parameters are reset to factory settings (50Hz, 230V/400V or 220V/380V depends on Pr.00.12)	0	
		10: All parameters are reset to factory settings (60Hz, 220V/440V)		
		0: Display the frequency command value (Fxxx)		
		1: Display the actual output frequency (Hxxx)		
₩00.03	Start-up Display	2: Display the content of user-defined unit (Uxxx)	0	
	Selection	3: Multifunction display, see Pr.00.04		
		4: FWD/REV command		
		5: PLCx (PLC selections: PLC0/PLC1/PLC2) (NOT for VFD*E*C models)		
₩ 00.04	Content of Multi- function Display	0: Display the content of user-defined unit (Uxxx)	0	
		1: Display the counter value (c)		
		2: Display PLC D1043 value (C) (NOT for VFD*E*C models)		
		3: Display DC-BUS voltage (u)		
		4: Display output voltage (E)		

Chapter 4 Parameters

1.271 =			
1220 -			

	Chapter 4 Parameters		7 2 2 4	
Parameter	Explanation	Settings	Factory Setting	Customer
		5: Display PID analog feedback signal value (b) (%)		
		6: Output power factor angle (n)		
		7: Display output power (P)		
		8: Display the estimated value of torque as it relates to current (t)		
		9: Display AVI (I) (V)		
		10: Display ACI / AVI2 (i) (mA/V)		
		11: Display the temperature of IGBT (h) (°C)		
		12: Display AVI3/ACI2 level (I.)		
		13: Display AVI4/ACI3 level (i.)		
		14: Display PG speed in RPM (G)		
		15: Display motor number (M)		
⊮ 00.05	User-Defined Coefficient K	0. 1 to 160.0	1.0	
00.06	Power Board Software Version	Read-only	#.##	
00.07	Control Board Software Version	Read-only	#.##	
00.08	Password Input	0 to 9999	0	
00.09	Password Set	0 to 9999	0	
00.10	Control Method	0: V/f Control	0	
00.10		1: Vector Control	Ū	
00.11	Reserved			
00.12	50Hz Base Voltage Selection	0: 230V/400V 1: 220V/380V	0	

Group 1 Basic Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
01.00	Maximum Output Frequency (Fmax)	50.00 to 600.0 Hz	60.00	

4-4

Parameter	Explanation	Settings	Factory Setting	Customer
01.01	Maximum Voltage Frequency (Fbase) (Motor 0)	0.10 to 600.0 Hz	60.00	
01.02	Maximum Output	115V/230V series: 0.1V to 255.0V	220.0	
01.02	Voltage (Vmax) (Motor 0)	460V series: 0.1V to 510.0V	440.0	
01.03	Mid-Point Frequency (Fmid) (Motor 0)	0.10 to 600.0 Hz	1.50	
01.04	Mid-Point Voltage	115V/230V series: 0.1V to 255.0V	10.0	
01.04	(Vmid) (Motor 0)	460V series: 0.1V to 510.0V	20.0	
01.05	Minimum Output Frequency (Fmin) (Motor 0)	0.10 to 600.0 Hz	1.50	
01.06	Minimum Output	115V/230V series: 0.1V to 255.0V	10.0	
01.06	Voltage (Vmin) (Motor 0)	460V series: 0.1V to 510.0V	20.0	
01.07	Output Frequency Upper Limit	0.1 to 120.0%	110.0	
01.08	Output Frequency Lower Limit	0.0 to100.0 %	0.0	
₩01.09	Accel Time 1	0.1 to 600.0 / 0.01 to 600.0 sec	10.0	
⊮ 01.10	Decel Time 1	0.1 to 600.0 / 0.01 to 600.0 sec	10.0	
₩01.11	Accel Time 2	0.1 to 600.0 / 0.01 to 600.0 sec	10.0	
⊮ 01.12	Decel Time 2	0.1 to 600.0 / 0.01 to 600.0 sec	10.0	
₩01.13	Jog Acceleration Time	0.1 to 600.0 / 0.01 to 600.0 sec	1.0	
₩01.14	Jog Deceleration Time	0.1 to 600.0 / 0.01 to 600.0 sec	1.0	
⊮ 01.15	Jog Frequency	0.10 Hz to Fmax (Pr.01.00) Hz	6.00	
	Auto acceleration / deceleration (refer to Accel/Decel time setting)	0: Linear Accel/Decel		
01.16		1: Auto Accel, Linear Decel		
		2: Linear Accel, Auto Decel	0	
		3: Auto Accel/Decel (Set by load)		
		4: Auto Accel/Decel (set by Accel/Decel Time setting)		

Chapter 4 Parameters |

		Chapter 4 Pa	raineters	VIE
Parameter	Explanation	Settings	Factory Setting	
01.17	Acceleration S- Curve	0.0 to 10.0 / 0.00 to 10.00 sec	0.0	
01.18	Deceleration S- Curve	0.0 to 10.0 / 0.00 to 10.00 sec	0.0	
01.19	Accel/Decel Time	0: Unit: 0.1 sec	0	
••	Unit	1: Unit: 0.01 sec	-	
01.20	Delay Time at 0Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.21	Delay Time at 10Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.22	Delay Time at 20Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.23	Delay Time at 30Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.24	Delay Time at 40Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.25	Delay Time at 50Hz for Simple Position	0.00 to 600.00 sec	0.00	
01.26	Maximum Voltage Frequency (Fbase) (Motor 1)	0.10 to 600.0 Hz	60.00	
04.07	Maximum Output	115V/230V series: 0.1V to 255.0V	220.0	
01.27	Voltage (Vmax) (Motor 1)	460V series: 0.1V to 510.0V	440.0	
01.28	Mid-Point Frequency (Fmid) (Motor 1)	0.10 to 600.0 Hz	1.50	
01.29	Mid-Point Voltage	115V/230V series: 0.1V to 255.0V	10.0	
01.29	(Vmid) (Motor 1)	460V series: 0.1V to 510.0V	20.0	
01.30	Minimum Output Frequency (Fmin) (Motor 1)	0.10 to 600.0 Hz	1.50	
04.04	Minimum Output	115V/230V series: 0.1V to 255.0V	10.0	
01.31	Voltage (Vmin) (Motor 1)	460V series: 0.1V to 510.0V	20.0	
01.32	Maximum Voltage Frequency (Fbase) (Motor 2)	0.10 to 600.0 Hz	60.00	

Parameter	Explanation	Settings	Factory Setting	Customer
01.33	Maximum Output Voltage (Vmax)	115V/230V series: 0.1V to 255.0V	220.0	
01.55	(Motor 2)	460V series: 0.1V to 510.0V	440.0	
01.34	Mid-Point Frequency (Fmid) (Motor 2)	0.10 to 600.0 Hz	1.50	
01.35	Mid-Point Voltage	115V/230V series: 0.1V to 255.0V	10.0	
01.55	(Vmid) (Motor 2)	460V series: 0.1V to 510.0V	20.0	
01.36	Minimum Output Frequency (Fmin) (Motor 2)	0.10 to 600.0 Hz	1.50	
01.37	Minimum Output	115V/230V series: 0.1V to 255.0V	10.0	
01.57	Voltage (Vmin) (Motor 2)	460V series: 0.1V to 510.0V	20.0	
01.38	Maximum Voltage Frequency (Fbase) (Motor 3)	0.10 to 600.0 Hz	60.00	
01.00	Maximum Output	115V/230V series: 0.1V to 255.0V	220.0	
01.39	Voltage (Vmax) (Motor 3)	460V series: 0.1V to 510.0V	440.0	
01.40	Mid-Point Frequency (Fmid) (Motor 3)	0.10 to 600.0 Hz	1.50	
01.41	Mid-Point Voltage	115V/230V series: 0.1V to 255.0V	10.0	
01.41	(Vmid) (Motor 3)	460V series: 0.1V to 510.0V	20.0	
01.42	Minimum Output Frequency (Fmin) (Motor 3)	0.10 to 600.0 Hz	1.50	
01.43	Minimum Output	115V/230V series: 0.1V to 255.0V	10.0	
01.43	Voltage (Vmin) (Motor 3)	460V series: 0.1V to 510.0V	20.0	

Group 2 Operation Method Parameters

5	5				Factory Setting	Customer
	/N ke I. Las		or Mu sed	ılti-		
) to) to +	+10\	V from	n	1	
omr	ommi	unic	cation			
net	neter	er				
on	on					
pad	pad S	STO)P/RE	SET		
pad	pad S	STO)P/RE	SET		
	ommu abled		ation.		1	
	ommi ableo		cation.			
on.	on. K	Кеур	bad			
F.:	F.: cc	oast	t to sto	ор		
F.:	F.: co	oast	t to sto	ор		
F.: I	F.: ra	amp	to sto	p	0	
			o to sto			
					8	
ор	oper	ratio	on			
on	on				0	
tion	tion					
					1	
02.04 Control 1. Disable reverse operation 2: Disable forward operation 2: Disable forward operation 02.05 Line Start Lockout 0: Disable. Operation status is not changed even if operation command source Pr.02.01 is changed. 1: Enable. Operation status is not changed even if operation command source Pr.02.01 is changed.		1				

4-8

Parameter	Explanation	Settings	Factory Setting	Customer
		2: Disable. Operation status will change if operation command source Pr.02.01 is changed.		
		 Enable. Operation status will change if operation command source Pr.02.01 is changed. 		
		0: Decelerate to 0 Hz		
02.06	Loss of ACI Signal (4-20mA)	1: Coast to stop and display "AErr"	1	
	(4-2011A)	2: Continue operation by last frequency command		
		0: by UP/DOWN Key		
02.07	Up/Down Mode	1: Based on accel/decel time	0	
02.07	Op/Down Mode	2: Constant speed (Pr.02.08)	0	
		3: Pulse input unit (Pr.02.08)		
02.08	Accel/Decel Rate of Change of UP/DOWN Operation with Constant Speed	0.01~10.00 Hz	0.01	
≁ 02.09	Source of Second Frequency Command	0: Digital keypad UP/DOWN keys or Multi- function Inputs UP/DOWN. Last used frequency saved. 1: 0 to +10V from AVI 2: 4 to 20mA from ACI or 0 to +10V from AVI2 3: RS-485 (RJ-45)/USB communication 4: Digital keypad potentiometer 5: CANopen communication	0	
₩ 02.10	Combination of the First and Second Master Frequency Command	0: First Master Frequency Command 1: First Master Frequency Command+ Second Master Frequency Command 2: First Master Frequency Command - Second Master Frequency Command	0	
⊮ 02.11	Keypad Frequency Command	0.00 to 600.0Hz	60.00	
₩02.12	Communication Frequency Command	0.00 to 600.0Hz	60.00	

Chapter 4 Parameters

1		Chapter 4 Para	Eastory	
Parameter	Explanation	Settings	Setting	Customer
	The Selections for Saving Keypad or	0: Save Keypad & Communication Frequency		
02.13	Communication Frequency Command	1: Save Keypad Frequency only	0	
		2: Save Communication Frequency only		
	Initial Frequency	0: by Current Freq Command		
02.14	Selection (for keypad &	1: by Zero Freq Command	0	
	R\$485/USB)	2: by Frequency Display at Stop		
02.15	Initial Frequency Setpoint (for keypad & RS485/USB)	0.00 ~ 600.0Hz	60.00	
		Read Only		
	Disala dia Masta	Bit0=1: by First Freq Source (Pr.02.00)		
02.16	Display the Master Freg Command	Bit1=1: by Second Freq Source (Pr.02.09)	##	
02.10	Source	Bit2=1: by Multi-input function	mm	
		Bit3=1: by PLC Freq command (NOT for VFD*E*C models)		
		Read Only		
		Bit0=1: by Digital Keypad		
	Display the	Bit1=1: by RS485 communication		
02.17	Operation	Bit2=1: by External Terminal 2/3 wire mode	##	
	Command Source	Bit3=1: by Multi-input function		
		Bit4=1: by PLC Operation Command (NOT for VFD*E*C models)		

Group 3 Output Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		0: No function	8	
03.00	Multi-function Output Relay (RA1,	1: AC drive operational		
03.00	RB1, RC1)	2: Master frequency attained		
		3: Zero speed		
		4: Over torque detection	1	
03.01	Multi-function Output Terminal	5: Base-Block (B.B.) indication		
03.01	MO1	6: Low-voltage indication		
		7: Operation mode indication		

Parameter	Explanation	Settings	Factory Setting	Customer
		8: Fault indication		
		9: Desired frequency 1 attained		
		10: Terminal count value attained		
		11: Preliminary count value attained		
		12: Over Voltage Stall supervision		
		13: Over Current Stall supervision		
		14: Heat sink overheat warning		
		15: Over Voltage supervision		
		16: PID supervision		
		17: Forward command		
		18: Reverse command		
		19: Zero speed output signal		
		20: Warning(FbE,Cexx, AoL2, AUE, SAvE)		
		21: Brake control (Desired frequency attained)		
		22: Drive ready		
		23: Desired frequency 2 attained		
03.02	Desired Frequency 1 Attained	0.00 to 600.0Hz	0.00	
(00.00	Analog Output	0: Analog frequency meter		
₩03.03	Signal Selection (AFM)	1: Analog current meter	0	
★ 03.04	Analog Output Gain	1 to 200%	100	
03.05	Terminal Count Value	0 to 9999	0	
03.06	Preliminary Count Value	0 to 9999	0	
03.07	EF Active When Terminal Count	0: Terminal count value attained, no EF display	0	
	Value Attained	1: Terminal count value attained, EF active		
03.08	Fan Control	0: Fan always ON	0	
		1: 1 minute after AC motor drive stops, fan will be OFF		
		2: Fan ON when AC motor drive runs, fan OFF when AC motor drive stops		

Chapter 4 Parameters |

	Chapter 4 Parameters				
Parameter	Explanation	Settings	Factory Setting	Customer	
		3: Fan ON when preliminary heatsink temperature attained			
		Read only			
		Bit0=1:RLY used by PLC			
		Bit1=1:MO1 used by PLC			
	The Digital Output	Bit2=1:MO2/RA2 used by PLC			
03.09	Used by PLC (NOT for VFD*E*C	Bit3=1:MO3/RA3 used by PLC	##		
	models)	Bit4=1:MO4/RA4 used by PLC			
		Bit5=1:MO5/RA5 used by PLC			
		Bit6=1:MO6/RA6 used by PLC			
		Bit7=1:MO7/RA7 used by PLC			
		Read only			
03.10	The Analog Output Used by PLC	Bit0=1:AFM used by PLC	##		
03.10	(NOT for VFD*E*C models)	Bit1=1: AO1 used by PLC	##		
	modeley	Bit2=1: AO2 used by PLC			
03.11	Brake Release Frequency	0.00 to 20.00Hz	0.00		
03.12	Brake Engage Frequency	0.00 to 20.00Hz	0.00		
03.13	Display the Status of Multi-function Output Terminals	Read only Bit0: RLY Status Bit1: MO1 Status Bit2: MO2/RA2 Status Bit3: MO3/RA3 Status Bit4: MO4/RA4 Status Bit5: MO5/RA5 Status Bit6: MO6/RA6 Status Bit7: MO7/RA7 Status	##		
03.14	Desired Frequency 2 Attained	0.00 to 600.0Hz	0.00		

Group 4 Input Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
⊮ 04.00	Keypad Potentiometer Bias	0.0 to 100.0 %	0.0	
₩ 04.01	Keypad Potentiometer Bias Polarity	0: Positive bias 1: Negative bias	00	
₩ 04.02	Keypad Potentiometer Gain	0.1 to 200.0 %	100.0	
04.03	Keypad Potentiometer Negative Bias,	0: No negative bias command	0	
	Reverse Motion Enable/Disable	1: Negative bias: REV motion enabled		
04.04	2-wire/3-wire	0: 2-wire: FWD/STOP, REV/STOP		
	Operation Control Modes	1: 2-wire: FWD/REV, RUN/STOP	0	
		2: 3-wire operation		
04.05	Multi-function Input Terminal (MI3)	0: No function	1	
	reminai (Mis)	1: Multi-Step speed command 1		
		2: Multi-Step speed command 2		
04.06	Multi-function Input Terminal (MI4)	3: Multi-Step speed command 3	2	
		4: Multi-Step speed command 4		
		5: External reset		
04.07	Multi-function Input Terminal (MI5)	6: Accel/Decel inhibit	3	
	reminai (Mis)	7: Accel/Decel time selection command		
		8: Jog Operation		
04.08	Multi-function Input	9: External base block	4	
	Terminal (MI6)	10: Up: Increment master frequency		
		11: Down: Decrement master frequency		
		12: Counter Trigger Signal		
		13: Counter reset		
		14: E.F. External Fault Input		
		15: PID function disabled		
		16: Output shutoff stop		

1.--

Chapter 4 Parameters

		Chapter 4 Parameters		
Parameter	Explanation	Settings	Factory Setting	Customer
		17: Parameter lock enable		
		18: Operation command selection (external terminals)		
		19: Operation command selection(keypad)		
		20: Operation command selection (communication)		
		21: FWD/REV command		
		22: Source of second frequency command		
		23: Run/Stop PLC Program (PLC1) (NOT for VFD*E*C models)		
		23: Quick Stop (Only for VFD*E*C models)		
		24: Download/execute/monitor PLC Program (PLC2) (NOT for VFD*E*C models)		
		25: Simple position function		
		26: OOB (Out of Balance Detection)		
		27: Motor selection (bit 0)		
		28: Motor selection (bit 1)		
04.09	Multi-function Input Contact Selection	Bit0:MI1 Bit1:MI2 Bit2:MI3 Bit3:MI4 Bit4:MI5 Bit5:MI6 Bit6:MI7 Bit6:MI7 Bit7:MI8 Bit8:MI9 Bit9:MI10 Bit10:MI11 Bit11:MI12 0:N.O., 1:N.C. P.S.:MI1 to MI3 will be invalid when it is 3- wire control.	0	
04.10	Digital Terminal Input Debouncing Time	1 to 20 (*2ms)	1	
04.11	Min AVI Voltage	0.0 to 10.0V	0.0	
04.12	Min AVI Frequency	0.0 to 100.0%	0.0	
	L		L	

Parameter	Explanation	Settings	Factory Setting	Customer
04.13	Max AVI Voltage	0.0 to 10.0V	10.0	
04.14	Max AVI Frequency	0.0 to 100.0%	100.0	
04.15	Min ACI Current	0.0 to 20.0mA	4.0	
04.16	Min ACI Frequency	0.0 to 100.0%	0.0	
04.17	Max ACI Current	0.0 to 20.0mA	20.0	
04.18	Max ACI Frequency	0.0 to 100.0%	100.0	
04.19	ACI/AVI2 Selection	0: ACI 1: AVI2	0	
04.20	Min AVI2 Voltage	0.0 to 10.0V	0.0	
04.21	Min AVI2 Frequency	0.0 to 100.0%	0.0	
04.22	Max AVI2 Voltage	0.0 to 10.0V	10.0	
04.23	Max AVI2 Frequency	0.0 to 100.0%	100.0	
04.24	The Digital Input Used by PLC (NOT for VFD*E*C models)	Read only Bit0=1:MI1 used by PLC Bit1=1:MI2 used by PLC Bit2=1:MI3 used by PLC Bit3=1:MI4 used by PLC Bit4=1:MI5 used by PLC Bit5=1:MI6 used by PLC Bit6=1: MI7 used by PLC Bit7=1: MI8 used by PLC Bit8=1: MI9 used by PLC Bit9=1: MI10 used by PLC Bit10=1: MI11 used by PLC Bit11=1: MI12 used by PLC	##	

Chapter 4 Parameters | 1/22/413

4-15

Parameter	Explanation	Settings	Factory Setting	Customer
		Read only		
	The Analog Input	Bit0=1:AVI used by PLC		
04.25	Used by PLC (NOT for VFD*E*C	Bit1=1:ACI/AVI2 used by PLC	##	
	models)	Bit2=1: Al1 used by PLC		
		Bit3=1: Al2 used by PLC		
		Read only		
		Bit0: MI1 Status		
		Bit1: MI2 Status		
		Bit2: MI3 Status		
	Bit3: MI4 Status			
	Display the Status	Bit4: MI5 Status		
04.26	of Multi-function	Bit5: MI6 Status	##	
	input reminal	Bit6: MI7 Status		
		Bit7: MI8 Status		
		Bit8: MI9 Status		
		Bit9: MI10 Status		
		Bit10: MI11 Status		
		Bit11: MI12 Status		
⊮ 04.27	Internal/External Multi-function Input Terminals Selection	0~4095	0	
₩04.28	Internal Terminal Status	0~4095	0	

Group 5 Multi-Step Speeds Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
₩05.00	1st Step Speed Frequency	0.00 to 600.0 Hz	0.00	
₩05.01	2nd Step Speed Frequency	0.00 to 600.0 Hz	0.00	

Parameter	Explanation	Settings	Factory Setting
₩05.02	3rd Step Speed Frequency	0.00 to 600.0 Hz	0.00
⊮ 05.03	4th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.04	5th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.05	6th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.06	7th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.07	8th Step Speed Frequency	0.00 to 600.0 Hz	0.00
⊮ 05.08	9th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.09	10th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.10	11th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.11	12th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.12	13th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.13	14th Step Speed Frequency	0.00 to 600.0 Hz	0.00
₩05.14	15th Step Speed Frequency	0.00 to 600.0 Hz	0.00

Group 6 Protection Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		115/230V series: 330.0V to 410.0V	390.0V	
06.00	Over-Voltage Stall Prevention	460V series: 660.0V to 820.0V	780.0V	
	0.0: Disable over-voltage stall prevention			
06.01	Over-Current Stall Prevention during Accel	0:Disable 20 to 250%	170	

Chapter 4 Parameters

		Chapter 4 Para	neters	7.86
Parameter	Explanation	Settings	Factory Setting	Customer
06.02	Over-Current Stall Prevention during Operation	0:Disable 20 to 250%	170	
		0: Disabled		
		1: Enabled during constant speed operation. After the over-torque is detected, keep running until OL1 or OL occurs.	0	
06.03	Over-Torque Detection Mode (OL2)	2: Enabled during constant speed operation. After the over-torque is detected, stop running.		
		3: Enabled during accel. After the over-torque is detected, keep running until OL1 or OL occurs.		
		4: Enabled during accel. After the over-torque is detected, stop running.		
₩06.04	Over-Torque Detection Level	10 to 200%	150	
06.05	Over-Torque Detection Time	0.1 to 60.0 sec	0.1	
	Electronic Thermal	0: Standard motor (self cooled by fan)		
06.06	Overload Relay Selection	1: Special motor (forced external cooling)	2	
		2: Disabled		
06.07	Electronic Thermal Characteristic	30 to 600 sec	60	
		0: No fault	0	
		1: Over current (oc)		
06.08	Present Fault Record	2: Over voltage (ov)		
		3: IGBT Overheat (oH1)		
		4: Power Board Overheat (oH2)		
		5: Overload (oL)		
		6: Overload1 (oL1)		
		7: Motor over load (oL2)		
06.09	Second Most Recent Fault Record	8: External fault (EF)		
	Recent Fault Record	9: Current exceeds 2 times rated current during accel.(ocA)		

1/22/2 =			
リッフシロヨ			
1.7 and Calud. 119			

Parameter	Explanation	Settings	Factory Setting	Customer
		10: Current exceeds 2 times rated current during decel.(ocd)		
		11: Current exceeds 2 times rated current during steady state operation (ocn)		
		12: Ground fault (GFF)		
		13: Reserved		
		14: Phase-Loss (PHL)		
		15: Reserved		
		16: Auto Acel/Decel failure (CFA)		
06.10	Third Most Recent	17: SW/Password protection (codE)		
	Fault Record	18: Power Board CPU WRITE failure (cF1.0)		
		19: Power Board CPU READ failure (cF2.0)		
		20: CC, OC Hardware protection failure (HPF1)		
06.11	Fourth Most Recent	21: OV Hardware protection failure (HPF2)		
	Fault Record	22: GFF Hardware protection failure (HPF3)		
		23: OC Hardware protection failure (HPF4)		
		24: U-phase error (cF3.0)		
06.12	Fifth Most Recent	25: V-phase error (cF3.1)		
00.12	Fault Record	26: W-phase error (cF3.2)		
		27: DCBUS error (cF3.3)		
		28: IGBT Overheat (cF3.4)		
		29: Power Board Overheat (cF3.5)		
		30: Control Board CPU WRITE failure (cF1.1)		
		31: Control Board CPU WRITE failure (cF2.1)		
		32: ACI signal error (AErr)		
		33: Reserved		
		34: Motor PTC overheat protection (PtC1) 35-39: Reserved		
		40: Communication time-out error of control board and power board (CP10)		

Group 7 Motor Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
07.00	Motor Rated Current (Motor 0)	30 %FLA to 120% FLA	FLA	
07.01	Motor No-Load Current (Motor 0)	0%FLA to 99% FLA	0.4*FLA	
⊮ 07.02	Torque Compensation (Motor 0)	0.0 to 10.0	0.0	
₩ 07.03	Slip Compensation (Used without PG) (Motor 0)	0.00 to 10.00	0.00	
07.04	Motor Parameters Auto Tuning	0: Disable 1: Auto tuning R1 2: Auto tuning R1 + no-load test	0	
07.05	Motor Line-to-line Resistance R1 (Motor 0)	0~65535 mΩ	0	
07.06	Motor Rated Slip (Motor 0)	0.00 to 20.00 Hz	3.00	
07.07	Slip Compensation Limit	0 to 250%	200	
07.08	Torque Compensation Time Constant	0.01 ~10.00 Sec	0.10	
07.09	Slip Compensation Time Constant	0.05 ~10.00 sec	0.20	
07.10	Accumulative Motor Operation Time (Min.)	0 to 1439 Min.	0	
07.11	Accumulative Motor Operation Time (Day)	0 to 65535 Day	0	
07.12	Motor PTC Overheat Protection	0: Disable 1: Enable	0	
07.13	Input Debouncing Time of the PTC Protection	0~9999(*2ms)	100	

Chapter 4 Pa	VFD-E	

Parameter	Explanation	Settings	Factory Setting
07.14	Motor PTC Overheat Protection Level	0.1~10.0V	2.4
07.15	Motor PTC Overheat Warning Level	0.1~10.0V	1.2
07.16	Motor PTC Overheat Reset Delta Level	0.1~5.0V	0.6
07.17	Treatment of the Motor PTC Overheat	0: Warn and RAMP to stop 1: Warn and COAST to stop 2: Warn and keep running	0
07.18	Motor Rated Current (Motor 1)	30 %FLA to 120% FLA	FLA
07.19	Motor No-Load Current (Motor 1)	0%FLA to 99% FLA	0.4*FLA
₩07.20	Torque Compensation (Motor 1)	0.0 to 10.0	0.0
₩07.21	Slip Compensation (Used without PG) (Motor 1)	0.00 to 10.00	0.00
07.22	Motor Line-to-line Resistance R1 (Motor 1)	0~65535 mΩ	0
07.23	Motor Rated Slip (Motor 1)	0.00 to 20.00 Hz	3.00
07.24	Motor Pole Number (Motor 1)	2 to 10	4
07.25	Motor Rated Current (Motor 2)	30 %FLA to 120% FLA	FLA
07.26	Motor No-Load Current (Motor 2)	0%FLA to 99% FLA	0.4*FLA
₩07.27	Torque Compensation (Motor 2)	0.0 to 10.0	0.0
₩07.28	Slip Compensation (Used without PG) (Motor 2)	0.00 to 10.00	0.00

Chapter 4 Parameters

1201 =			
リコンロコ			

Chapter 4 Parameters			1.00	
Parameter	Explanation	Settings	Factory Setting	Customer
07.29	Motor Line-to-line Resistance R1 (Motor 2)	0~65535 mΩ	0	
07.30	Motor Rated Slip (Motor 2)	0.00 to 20.00 Hz	3.00	
07.31	Motor Pole Number (Motor 3)	2 to 10	4	
07.32	Motor Rated Current (Motor 3)	30 %FLA to 120% FLA	FLA	
07.33	Motor No-Load Current (Motor 3)	0%FLA to 99% FLA	0.4*FLA	
⊮ 07.34	Torque Compensation (Motor 3)	0.0 to 10.0	0.0	
₩ 07.35	Slip Compensation (Used without PG) (Motor 3)	0.00 to 10.00	0.00	
07.36	Motor Line-to-line Resistance R1 (Motor 3)	0~65535 mΩ	0	
07.37	Motor Rated Slip (Motor 3)	0.00 to 20.00 Hz	3.00	
07.38	Motor Pole Number (Motor 3)	2 to 10	4	

Group 8 Special Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
08.00	DC Brake Current Level	0 to 100%	0	
08.01	DC Brake Time during Start-Up	0.0 to 60.0 sec	0.0	
08.02	DC Brake Time during Stopping	0.0 to 60.0 sec	0.0	
08.03	Start-Point for DC Brake	0.00 to 600.0Hz	0.00	

08.15

08.16

08.17

Auto Restart After

Auto Reset Time at

Auto Energy Saving

Restart after Fault

Fault

Chapter 4 Parameters V							
Parameter	Explanation	Settings	Factory Setting	Customer			
		0: Operation stops after momentary power loss					
08.04	Momentary Power Loss Operation Selection	1: Operation continues after momentary power loss, speed search starts with the Master Frequency reference value	0				
		2: Operation continues after momentary power loss, speed search starts with the minimum frequency					
08.05	Maximum Allowable Power Loss Time	0.1 to 5.0 sec	2.0				
08.06	Base-block Speed Search	0: Disable speed search1: Speed search starts with last frequency command2: Starts with minimum output frequency	1				
08.07	B.B. Time for Speed Search	0.1 to 5.0 sec	0.5				
08.08	Current Limit for Speed Search	30 to 200%	150				
08.09	Skip Frequency 1 Upper Limit	0.00 to 600.0 Hz	0.00				
08.10	Skip Frequency 1 Lower Limit	0.00 to 600.0 Hz	0.00				
08.11	Skip Frequency 2 Upper Limit	0.00 to 600.0 Hz	0.00				
08.12	Skip Frequency 2 Lower Limit	0.00 to 600.0 Hz	0.00				
08.13	Skip Frequency 3 Upper Limit	0.00 to 600.0 Hz	0.00				
08.14	Skip Frequency 3 Lower Limit	0.00 to 600.0 Hz	0.00				

0 to 10 (0=disable)

0.1 to 6000 sec

0: Disable

1: Enable

0

60.0

0

Chapter 4 Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		0: AVR function enable		
08.18	AVR Function	1: AVR function disable	0	
00.10	AVIAT directori	2: AVR function disable for decel.	0	
		3: AVR function disable for stop		
08.19	Software Brake	115V / 230V series: 370.0to 430.0V	380.0	
00.19	Level	460V series: 740.0 to 860.0V	760.0	
₩08.20	Compensation Coefficient for Motor Instability	0.0~5.0	0.0	
08.21	OOB Sampling Time	0.1 to 120.0 sec	1.0	
08.22	Number of OOB Sampling Times	00 to 32	20	
08.23	OOB Average Sampling Angle	Read only	#.#	
08.24	DEB Function	0: Disable 1: Enable	0	
08.25	DEB Return Time	0 to 250 sec	0	

Group 9 Communication Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
₩09.00	Communication Address	1 to 254	1	
		0: Baud rate 4800bps		
★ 09.01	Transmission Speed	1: Baud rate 9600bps	1	
A 09.01		2: Baud rate 19200bps		
		3: Baud rate 38400bps		
	Transmission Fault	0: Warn and keep operating		
₩09.02		1: Warn and ramp to stop	3	
A 09.02	Treatment	2: Warn and coast to stop		
		3: No warning and keep operating		

Chapter 4 Pa Parameter	Explanation	Settings	Factory Setting	Customer
₩09.03	Time-out Detection	0.1 ~ 120.0 seconds 0.0: Disable	0.0	
		0: 7,N,2 (Modbus, ASCII)		
		1: 7,E,1 (Modbus, ASCII)		
₩09.04	Communication	2: 7,0,1 (Modbus, ASCII)	0	
× 03.04	Protocol	3: 8,N,2 (Modbus, RTU)	0	
		4: 8,E,1 (Modbus, RTU)		
		5: 8,O,1 (Modbus, RTU)		
		6: 8,N,1 (Modbus, RTU)		
		7: 8,E,2 (Modbus, RTU)		
		8: 8,0,2 (Modbus, RTU)		
		9: 7,N,1 (Modbus, ASCII)		
		10: 7,E,2 (Modbus, ASCII)		
		11: 7,0,2 (Modbus, ASCII)		
09.05	Reserved			
09.06	Reserved			
₩09.07	Response Delay Time	0 ~ 200 (unit: 2ms)	1	
≁ 09.08	Transmission Speed for USB Card	0: Baud rate 4800 bps 1: Baud rate 9600 bps 2: Baud rate 19200 bps 3: Baud rate 38400 bps 4: Baud rate 57600 bps	2	
≁ 09.09	Communication Protocol for USB Card	0: 7,N,2 for ASCII 1: 7,E,1 for ASCII 2: 7,O,1 for ASCII 3: 8,N,2 for RTU 4: 8,E,1 for RTU 5: 8,O,1 for RTU	1	

Chapter 4 Parameters |

Parameter	Explanation	Settings	Factory Setting	Customer
≁ 09.09	Communication Protocol for USB Card	6: 8,N,1 (Modbus, RTU) 7: 8,E,2 (Modbus, RTU) 8: 8,O,2 (Modbus, RTU) 9: 7,N,1 (Modbus, ASCII) 10: 7,E,2 (Modbus, ASCII) 11: 7,O,2 (Modbus, ASCII)		
≁ 09.10	Transmission Fault Treatment for USB Card	0: Warn and keep operating1: Warn and ramp to stop2: Warn and coast to stop3: No warning and keep operating	0	
₩09.11	Time-out Detection for USB Card	0.1 ~ 120.0 seconds 0.0: Disable	0.0	
09.12	COM port for PLC Communication (NOT for VFD*E*C models)	0: RS485 1: USB card	0	

Group 10 PID Control Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		0: Disable PID operation		
		1: Keypad (based on Pr.02.00)		
10.00	PID Set Point	2: 0 to +10V from AVI	0	
Selection	Selection	3: 4 to 20mA from ACI or 0 to +10V from AVI2		
		4: PID set point (Pr.10.11)		
		0: Positive PID feedback from external terminal AVI (0 ~ +10VDC)		
		1: Negative PID feedback from external terminal AVI (0 ~ +10VDC)		
10.01	Input Terminal for PID Feedback	2: Positive PID feedback from external terminal ACI (4 ~ 20mA)/ AVI2 (0 ~ +10VDC).	0	
		3: Negative PID feedback from external terminal ACI (4 ~ 20mA)/ AVI2 (0 ~ +10VDC).		

Parameter	Explanation	Settings	Factory Setting	Customer	
⊮ 10.02	Proportional Gain (P)	0.0 to 10.0	1.0		
№ 10.03	Integral Time (I)	0.00 to 100.0 sec (0.00=disable)	1.00		
₩10.04	Derivative Control (D)	0.00 to 1.00 sec	0.00		
10.05	Upper Bound for Integral Control	0 to 100%	100		
10.06	Primary Delay Filter Time	0.0 to 2.5 sec	0.0		
10.07	PID Output Freq Limit	0 to 110%	100		
10.08	PID Feedback Signal Detection Time	0.0 to 3600 sec (0.0 disable)	60.0		
10.09	Treatment of the Erroneous PID Feedback Signals	0: Warn and RAMP to stop1: Warn and COAST to stop2: Warn and keep operation	0		
10.10	Gain Over the PID Detection Value	0.0 to 10.0	1.0		
⊮ 10.11	Source of PID Set point	0.00 to 600.0Hz	0.00		
10.12	PID Offset Level	1.0 to 50.0%	10.0		
10.13	Detection Time of PID Offset	0.1 to 300.0 sec	5.0		
10.14	Sleep/Wake Up Detection Time	0.0 to 6550 sec	0.0		
10.15	Sleep Frequency	0.00 to 600.0 Hz	0.00		
10.16	Wakeup Frequency	0.00 to 600.0 Hz	0.00		
10.17	Minimum PID Output Frequency Selection	0: By PID control 1: By minimum output frequency (Pr.01.05)	0		

Group 11 Parameters for Extension Card

Chapter 4 Parameters |

	· · · · · · · · · · · · · · · · · · ·	Chapter 4 Parameters			
Parameter	Explanation	Settings	Factory Setting	Customer	
		0: No function			
11.00	Multi-function Output Terminal	1: AC drive operational	0		
11.00	MO2/RA2	2: Master frequency attained	U		
		3: Zero speed			
		4: Over torque detection			
11.01	Multi-function	5: Base-Block (B.B.) indication	0		
11.01	Output Terminal MO3/RA3	6: Low-voltage indication	0		
		7: Operation mode indication			
		8: Fault indication			
11.00	Multi-function	9: Desired frequency 1 attained			
11.02	Output Terminal MO4/RA4	10: Terminal count value attained	0		
		11: Preliminary count value attained			
		12: Over Voltage Stall supervision			
11.00	11.03 Multi-function Output Terminal MO5/RA5	13: Over Current Stall supervision			
11.03		14: Heat sink overheat warning	0		
		15: Over Voltage supervision			
		16: PID supervision			
11.04	Multi-function Output Terminal	17: Forward command	0		
	MO6/RA6	18: Reverse command	Ŭ		
		19: Zero speed output signal			
		20: Warning(FbE,Cexx, AoL2, AUE, SAvE)	0		
11.05	Multi-function Output Terminal	21: Brake control (Desired frequency attained)	Ū		
	MO7/RA7	22: Drive ready			
		23: Desired frequency 2 attained			
		0: No function	0		
11.06	Multi-function Input Terminal (MI7)	1: Multi-Step speed command 1			
	· · ·	2: Multi-Step speed command 2			
11.07	Multi-function Input	3: Multi-Step speed command 3	0		
	Terminal (MI8)	4: Multi-Step speed command 4			
		•			

Parameter	Explanation	Settings	Factory Setting	Customer
		5: External reset		
		6: Accel/Decel inhibit	0	
11.08	Multi-function Input Terminal (MI9)	7: Accel/Decel time selection command		
		8: Jog Operation		
		9: External base block	0	
11.09	Multi-function Input Terminal (MI10)	10: Up: Increment master frequency		
		11: Down: Decrement master frequency		
		12: Counter Trigger Signal	0	
11.10	Multi-function Input	13: Counter reset		
11.10	Terminal (MI11)	14: E.F. External Fault Input		
		15: PID function disabled		
11.11	Multi-function Input	16: Output shutoff stop	0	
	Terminal (MI12)	17: Parameter lock enable		
		18: Operation command selection (external terminals)		
		19: Operation command selection (keypad)		
		20: Operation command selection (communication)		
		21: FWD/REV command		
		22: Source of second frequency command		
		23: Run/Stop PLC Program (PLC1) (NOT for VFD*E*C models)		
		23: Quick Stop (Only for VFD*E*C models)		
		24: Download/execute/monitor PLC Program (PLC2) (NOT for VFD*E*C models)		
		25: Simple position function		
		26: OOB (Out of Balance Detection)		
		27: Motor selection (bit 0)		
		28: Motor selection (bit 1)		

Parameter	Explanation	Settings	Factory Setting	Customer
		0: Disabled		
		1: Source of the 1st frequency		
12.00	AI1 Function	2: Source of the 2nd frequency	0	
12.00	Selection	3: PID Set Point (PID enable)	U	
		4: Positive PID feedback		
		5: Negative PID feedback		
12.01	Al1 Analog Signal	0: ACl2 analog current (0.0 ~ 20.0mA)	1	
12.01	Mode	1: AVI3 analog voltage (0.0 ~ 10.0V)	'	
12.02	Min. AVI3 Input Voltage	0.0 to 10.0V	0.0	
12.03	Min. AVI3 Scale Percentage	0.0 to 100.0%	0.0	
12.04	Max. AVI3 Input Voltage	0.0 to 10.0V	10.0	
12.05	Max. AVI3 Scale Percentage	0.0 to 100.0%	100.0	
12.06	Min. ACI2 Input Current	0.0 to 20.0mA	4.0	
12.07	Min. ACI2 Scale Percentage	0.0 to 100.0%	0.0	
12.08	Max. ACI2 Input Current	0.0 to 20.0mA	20.0	
12.09	Max. ACI2 Scale Percentage	0.0 to 100.0%	100.0	
12.10	Al2 Function Selection	0: Disabled 1: Source of the 1st frequency 2: Source of the 2nd frequency 3: PID Set Point (PID enable) 4: Positive PID feedback 5: Negative PID feedback	0	
12.11	Al2 Analog Signal Mode	0: ACl3 analog current (0.0 ~ 20.0mA) 1: AVl4 analog voltage (0.0 ~ 10.0V)	1	

Group 12: Analog Input/Output Parameters for Extension Card

Parameter	Explanation	Settings	Factory Setting	Customer
12.12	Min. AVI4 Input Voltage	0.0 to 10.0V	0.0	
12.13	Min. AVI4 Scale Percentage	0.0 to 100.0%	0.0	
12.14	Max. AVI4 Input Voltage	0.0 to 10.0V	10.0	
12.15	Max. AVI4 Scale Percentage	0.0 to 100.0%	100.0	
12.16	Min. ACI3 Input Current	0.0 to 20.0mA	4.0	
12.17	Min. ACI3 Scale Percentage	0.0 to 100.0%	0.0	
12.18	Max. ACI3 Input Current	0.0 to 20.0mA	20.0	
12.19	Max. ACI3 Scale Percentage	0.0 to 100.0%	100.0	
		0: AVO1		
12.20	AO1 Terminal Analog Signal Mode	1: ACO1 (analog current 0.0 to 20.0mA)	0	
		2: ACO1 (analog current 4.0 to 20.0mA)		
12.21	AO1 Analog Output	0: Analog Frequency	0	
12.21	Signal	1: Analog Current (0 to 250% rated current)	0	
12.22	AO1 Analog Output Gain	1 to 200%	100	
		0: AVO2		
12.23	AO2 Terminal Analog Signal Mode	1: ACO2 (analog current 0.0 to 20.0mA)	0	
		2: ACO2 (analog current 4.0 to 20.0mA)		
40.04	AO2 Analog Output	0: Analog Frequency		
12.24	Signal	1: Analog Current (0 to 250% rated current)	0	
12.25	AO2 Analog Output Gain	1 to 200%	100	

Parameter	Explanation	Settings	Factory Setting	Customer
13.00	PG Input	0: Disabled 1: Single phase 2: Forward/Counterclockwise rotation 3: Reverse/Clockwise rotation	0	
13.01	PG Pulse Range	1 to 20000	600	
13.02	Motor Pole Number (Motor 0)	2 to 10	4	
∦ 13.03	Proportional Gain (P)	0.0 to 10.0	1.0	
★13.04	Integral Gain (I)	0.00 to 100.00 sec	1.00	
№ 13.05	Speed Control Output Frequency Limit	0.00 to 100.00Hz	10.00	
⊮ 13.06	Speed Feedback Display Filter	0 to 9999 (*2ms)	500	
№ 13.07	Detection Time for Feedback Signal Fault	0.0: disabled 0.1 to 10.0 sec	1	
⊮ 13.08	Treatment of the Feedback Signal Fault	0: Warn and RAMP to stop 1: Warn and COAST to stop 2: Warn and keep operation	1	
★ 13.09	Speed Feedback Filter	0 to 9999 (*2ms)	16	
13.10	Source of the High- speed Counter	0: PG card 1: PLC (NOT for VFD*E*C models)	Read Only	

Group 13: PG function Parameters for Extension Card

4.2 Parameter Settings for Applications

Speed Search

Applications	Purpose	Functions	Related Parameters
Windmill, winding machine, fan and all inertia loads	Restart free- running motor	Before the free-running motor is completely stopped, it can be restarted without detection of motor speed. The AC motor drive will auto search motor speed and will accelerate when its speed is the same as the motor speed.	08.04~08.08

DC Brake before Running

Applications	Purpose	Functions	Related Parameters
When e.g. windmills, fans and pumps rotate freely by wind or flow without applying power	standstill.	If the running direction of the free- running motor is not steady, please execute DC brake before start-up.	08.00 08.01

Energy Saving

Applications	Purpose	Functions	Related Parameters
Punching machines fans, pumps and precision machinery	Energy saving and less vibrations	Energy saving when the AC motor drive runs at constant speed, yet full power acceleration and deceleration For precision machinery it also helps to lower vibrations.	08.17

Multi-step Operation

Applications	Purpose	Functions	Related Parameters
Conveying machinery		To control 15-step speeds and duration by simple contact signals.	04.05~04.08 05.00~05.14

Switching acceleration and deceleration times

Applications	Purpose	Functions	Related Parameters
Auto turntable for conveying machinery	Switching acceleration and deceleration times by external signal	When an AC motor drive drives two or more motors, it can reach high-speed but still start and stop smoothly.	01.09~01.12 04.05~04.08

Overheat Warning

Applications	Purpose	Functions	Related Parameters
Air conditioner	Safety measure	When AC motor drive overheats, it uses a thermal sensor to have overheat warning.	03.00~03.01 04.05~04.08

Two-wire/three-wire

Applications	Purpose	Functions	Related Parameters
General application	To run, stop, forward and reverse by external terminals	FWD/STOP 55 MI1:("OPEN":STOP) ("CLOSE":FWD) REV/STOP 55 MI2:("OPEN":STOP) ("CLOSE":REV) DCM VFD-E RUN/STOP 55 MI1:("OPEN":STOP) ("CLOSE":REV) DCM VFD-E RUN/STOP 55 MI1:("OPEN":STOP) ("CLOSE":REV) DCM VFD-E STOP MI1:("CLOSE":RUN) MI3:("OPEN":STOP) MI1:("CLOSE":RUN) MI3:("OPEN":STOP) MI3:("OPEN":STOP) MI3:("OPEN":FWD) CCDOPEN":FWD MI2:("OPEN":FWD) CCDSE": REV) DCM	02.00 02.01 02.09 04.04

Operation Command

Applications	Purpose	Functions	Related Parameters
General application	Selecting the source of control signal	Selection of AC motor drive control by external terminals, digital keypad or RS485.	02.01 04.05~04.08

Frequency Hold

Applications	Purpose	Functions	Related Parameters
General application	Acceleration/ deceleration pause	Hold output frequency during Acceleration/deceleration	04.05~04.08

Auto Restart after Fault

Applications	Purpose	Functions	Related Parameters
Air conditioners, remote pumps	For continuous and reliable operation without operator intervention	The AC motor drive can be restarted/reset automatically up to 10 times after a fault occurs.	08.15~08.16

Emergency Stop by DC Brake

Applications	Purpose	Functions	Related Parameters
High-speed rotors	Emergency stop without brake resistor	AC motor drive can use DC brake for emergency stop when quick stop is needed without brake resistor. When used often, take motor cooling into consideration.	08.00 08.02 08.03

Over-torque Setting

Applications	Purpose	Functions	Related Parameters
Pumps, fans and extruders	To protect machines and to have continuous/ reliable operation	The over-torque detection level can be set. Once OC stall, OV stall and over- torque occurs, the output frequency will be adjusted automatically. It is suitable for machines like fans and pumps that require continuous operation.	06.00~06.05

Upper/Lower Limit Frequency

Applications	Purpose	Functions	Related Parameters
Pump and fan	Control the motor speed within upper/lower limit	When user cannot provide upper/lower limit, gain or bias from external signal, it can be set individually in AC motor drive.	01.07 01.08

Skip Frequency Setting

Applications	Purpose	Functions	Related Parameters
Pumps and fans	To prevent machine vibrations	The AC motor drive cannot run at constant speed in the skip frequency range. Three skip frequency ranges can be set.	08.09~08.14

Carrier Frequency Setting

Applications	Purpose	Functions	Related Parameters
General application	Low noise	The carrier frequency can be increased when required to reduce motor noise.	02.03

Keep Running when Frequency Command is Lost

Applications	Purpose	Functions	Related Parameters
Air conditioners	For continuous operation	When the frequency command is lost by system malfunction, the AC motor drive can still run. Suitable for intelligent air conditioners.	02.06

Output Signal during Running

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	Signal available to stop braking (brake release) when the AC motor drive is running. (This signal will disappear when the AC motor drive is free- running.)	03.00~03.01

Output Signal in Zero Speed

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the output frequency is lower than the min. output frequency, a signal is given for external system or control wiring.	03.00~03.01

Output Signal at Desired Frequency

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When the output frequency is at the desired frequency (by frequency command), a signal is given for external system or control wiring (frequency attained).	03.00~03.01

Output Signal for Base Block

Applications	Purpose	Functions	Related Parameters
General application	Provide a signal for running status	When executing Base Block, a signal is given for external system or control wiring.	03.00~03.01

Overheat Warning for Heat Sink

Applications	Purpose	Functions	Related Parameters
General application	For safety	When heat sink is overheated, it will send a signal for external system or control wiring.	03.00~03.01

Multi-function Analog Output

Applications	Purpose	Functions	Related Parameters
General application	Display running status	The value of frequency, output current/voltage can be read by connecting a frequency meter or voltage/current meter.	03.06

This parameter can be set during operation

4.3 Description of Parameter Settings

Group 0: User Parameters

Group u	. 03011 010		
00.00	Identity Co	ode of the AC Motor Drive	
	Settings	Read Only	Factory setting: ##
00.01	Rated Cur	rrent Display of the AC Motor	Drive
	Settings	Read Only	Factory setting: #.#

Pr. 00.00 displays the identity code of the AC motor drive. The capacity, rated current, rated voltage and the max. carrier frequency relate to the identity code. Users can use the following table to check how the rated current, rated voltage and max. carrier frequency of the AC motor drive correspond to the identity code.

Pr.00.01 displays the rated current of the AC motor drive. By reading this parameter the user can check if the AC motor drive is correct.

	115V/230V Series							
kW	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5
HP	0.25	0.5	1.0	2.0	3.0	5.0	7.5	10
Pr.00-00	0	2	4	6	8	10	12	14
Rated Output Current (A)	1.6	2.5	4.2	7.5	11.0	17	25	33
Max. Carrier Frequency				15	кНz			

	460V Series							
kW	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11
HP	0.5	1.0	2.0	3.0	5.0	7.5	10	15
Pr.00-00	3	5	7	9	11	13	15	17
Rated Output Current (A)	1.5	2.5	4.2	5.5	8.5	13	18	24
Max. Carrier 15kHz Frequency								

00.02 Parameter Reset

Factory Setting: 0

- Settings 0 Parameter can be read/written
 - 1 All parameters are read-only
 - 6 Clear PLC program (NOT for VFD*E*C models)
 - 9 All parameters are reset to factory settings (50Hz, 230V/400V or 220V/380V depends on Pr.00.12)
 - 10 All parameters are reset to factory settings (60Hz, 115V/220V/440V)

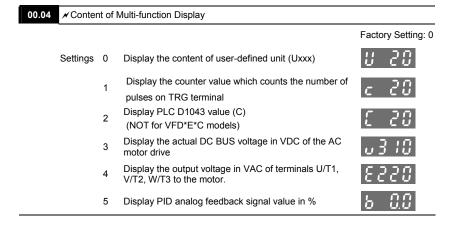
Chapter 4 Parameters | 1022213

This parameter allows the user to reset all parameters to the factory settings except the fault records (Pr.06.08 ~ Pr.06.12).

50Hz: Pr.01.00 and Pr.01.01 are set to 50Hz and Pr.01.02 will be set by Pr.00.12.

60Hz: Pr.01.00 and Pr.01.01 are set to 60Hz and Pr.01.02 is set to 115V, 230V or 460V.

When Pr.00.02=1, all parameters are read-only. To write all parameters, set Pr.00.02=0.



setting: 0
8
8
8
8
6
8
8

Easton (Sotting: 0

This parameter determines the start-up display page after power is applied to the drive.

For setting 5, PLC0: disable, PLC1: run PLC, PLC2: read/write PLC programs into AC motor drive.

00.04 Content of	Multi-function Display	
6	Display the power factor angle in ° of terminals U/T1, V/T2, W/T3 to the motor	n 90.0
7	Display the output power in kW of terminals U, V and W to the motor.	<i>P0.00</i>
8	Display the estimated value of torque in Nm as it relates to current.	£0.00
9	Display the signal of AVI analog input terminal (V).	1 0.0
10	Display the signal of ACI analog input terminal (mA)or display the signal of AVI2 analog input terminal-(V).	J 0.0
11	Display the temperature of IGBT (h) in $^\circ \! C$	h30.0
12	Display AVI3/ACI2 level (I.)	1 0.0
13	Display AVI4/ACI3 level (i.)	<i>C. 0.0</i>
14	Display PG speed in RPM (G)	05 0
15	Display motor number (M)	8 82

When Pr00.03 is set to 03, the display is according to the setting of Pr00.04.

00.05	✓User Defin	ned Coefficient K	Unit: 0. 1
	Settings	0. 1 to d 160.0	Factory Setting: 1.0

Decomposition of the the multiplying factor for the user-defined unit.

The display value is calculated as follows:

U (User-defined unit) = Actual output frequency * K (Pr.00.05)

Example:

A conveyor belt runs at 13.6m/s at motor speed 60Hz.

K = 13.6/60 = 0.22 (0.226667 rounded to 1 decimal), therefore Pr.00.05=0.2

With Frequency command 35Hz, display shows U and 35*0.2=7.0m/s.

(To increase accuracy, use K=2.2 or K=22.7 and disregard decimal point.)

00.06	Power Boar	Power Board Software Version		
	Settings	Read Only		
	Display	#.##		

Chapter 4	Chapter 4 Parameters				
00.07	Control Boa	Control Board Software Version			
	Settings	Read Only			
	Display	#.##			
00.08	Password I	Input	Unit: 1		
	Settings	0 to 9999	Factory Setting: 0		
	Display	0~2 (times of wrong password)			

The function of this parameter is to input the password that is set in Pr.00.09. Input the correct password here to enable changing parameters. You are limited to a maximum of 3 attempts. After 3 consecutive failed attempts, a blinking "codE" will show up to force the user to restart the AC motor drive in order to try again to input the correct password.

00.09	Password Set Unit: 1			
	Settings	0 to 9999	Fa	actory Setting: 0
	Display 0		No password set or successful input in Pr. 00.08	
	1 Password		Password has been set	

To set a password to protect your parameter settings.

If the display shows 0, no password is set or password has been correctly entered in Pr.00.08.

All parameters can then be changed, including Pr.00.09.

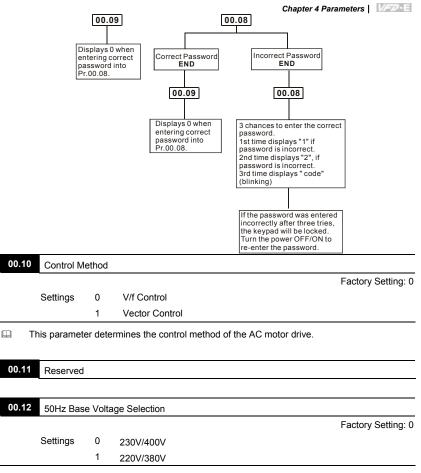
The first time you can set a password directly. After successful setting of password the display will show 1.

Be sure to record the password for later use.

To cancel the parameter lock, set the parameter to 0 after inputting correct password into Pr.

00.08.

The password consists of min. 1 digits and max. 4 digits.


How to make the password valid again after decoding by Pr.00.08:

Method 1: Re-input original password into Pr.00.09 (Or you can enter a new password if you

want to use a changed or new one).

Method 2: After rebooting, password function will be recovered.

Password Decode Flow Chart

This parameter determines the base voltage for 50Hz.

Group 1: Basic Parameters

01.00	Maximum O	utput Frequency (Fmax)	Unit: 0.01
	Settings	50.00 to 600.0 Hz	Factory Setting: 60.00

This parameter determines the AC motor drive's Maximum Output Frequency. All the AC motor drive frequency command sources (analog inputs 0 to +10V and 4 to 20mA) are scaled to correspond to the output frequency range.

01.01	Maximum V	oltage Frequency (Fbase) (Motor 0)	Unit: 0.01
	Settings	0.10 to 600.0Hz	Factory Setting: 60.00

This value should be set according to the rated frequency of the motor as indicated on the motor nameplate. Maximum Voltage Frequency determines the v/f curve ratio. For example, if the drive is rated for 460 VAC output and the Maximum Voltage Frequency is set to 60Hz, the drive will maintain a constant ratio of 7.66 V/Hz (460V/60Hz=7.66V/Hz). This parameter value must be equal to or greater than the Mid-Point Frequency (Pr.01.03).

01.02	Maximun	n Output Voltage (V	max) (Motor 0)	Unit: 0.1
	Settings	115V/230V series	0.1 to 255.0V	Factory Setting: 220.0
		460V series	0.1 to 510.0V	Factory Setting: 440.0

This parameter determines the Maximum Output Voltage of the AC motor drive. The Maximum Output Voltage setting must be smaller than or equal to the rated voltage of the motor as indicated on the motor nameplate. This parameter value must be equal to or greater than the Mid-Point Voltage (Pr.01.04).

01.03	Mid-Point Frequency (Fmid) (Motor 0)	Unit: 0.01
	Settings 0.10 to 600.0Hz	Factory Setting: 1.50

This parameter sets the Mid-Point Frequency of the V/f curve. With this setting, the V/f ratio between Minimum Frequency and Mid-Point frequency can be determined. This parameter must be equal to or greater than Minimum Output Frequency (Pr.01.05) and equal to or less than Maximum Voltage Frequency (Pr.01.01).

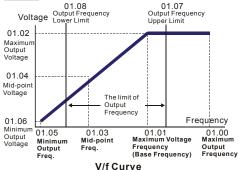
This setting must be greater than Pr.01.05.

	Chapter 4 Parameters
01.04 Mid-Point Voltage (Vmid) (Motor 0)	Unit: 0.1
Settings 115V/230V series 0.1 to 255.0V	Factory Setting: 10.0
460V series 0.1 to 510.0V	Factory Setting: 20.0

- This parameter sets the Mid-Point Voltage of any V/f curve. With this setting, the V/f ratio between Minimum Frequency and Mid-Point Frequency can be determined. This parameter must be equal to or greater than Minimum Output Voltage (Pr.01.06) and equal to or less than Maximum Output Voltage (Pr.01.02).
- This setting should be greater than Pr.01.06.

01.05	Minimum	Output Frequency (Fmin) (Motor 0)	Unit: 0.01
	Settings	0.10 to 600.0Hz	Factory Setting: 1.50

- This parameter sets the Minimum Output Frequency of the AC motor drive. This parameter must be equal to or less than Mid-Point Frequency (Pr.01.03).
- The settings of 01.03, 01.04, and 01.06 are invalid in Vector Control mode.


01.06	Minimum	Output Voltage (Vm	in) (Motor 0)	Unit: 0.1
	Settings	115V/230V series	0.1 to 255.0V	Factory Setting: 10.0
		460V series	0.1 to 510.0V	Factory Setting: 20.0

- This parameter sets the Minimum Output Voltage of the AC motor drive. This parameter must be equal to or less than Mid-Point Voltage (Pr.01.04).
- $\label{eq:product} \square \qquad \mbox{The settings of } Pr.01.01 \mbox{ to } Pr.01.06 \mbox{ have to meet the condition of } Pr.01.02 \geq Pr.01.04 \geq \\ Pr.01.06 \mbox{ and } Pr.01.01 \geq Pr.01.03 \geq Pr.01.05. \end{aligned}$
- In vector control mode (Pr.00.10 is set to 1), Pr.01.03, Pr.01.04 and Pr.01.06 are disabled.

01.07 Ou	utput Frequency Upper Limit	Unit: 0.1
Se	ottings 0.1 to 120.0%	Factory Setting: 110.0

- This parameter must be equal to or greater than the Output Frequency Lower Limit (Pr.01.08). The Maximum Output Frequency (Pr.01.00) is regarded as 100%.
- Output Frequency Upper Limit value = (Pr.01.00 * Pr.01.07)/100.

Chapter 4 Parameters | 1722213

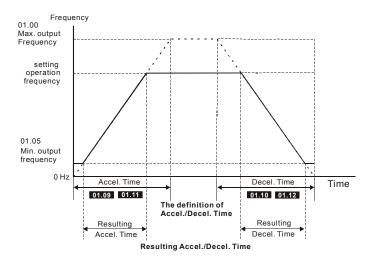
01.08	Output Fre	quency Lower Limit	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 0.0

The Upper/Lower Limits are to prevent operation errors and machine damage.

If the Output Frequency Upper Limit is 50Hz and the Maximum Output Frequency is 60Hz, the Output Frequency will be limited to 50Hz.

If the Output Frequency Lower Limit is 10Hz, and the Minimum Output Frequency (Pr.01.05) is set to 1.0Hz, then any Command Frequency between 1.0-10Hz will generate a 10Hz output from the drive.

This parameter must be equal to or less than the Output Frequency Upper Limit (Pr.01.07).

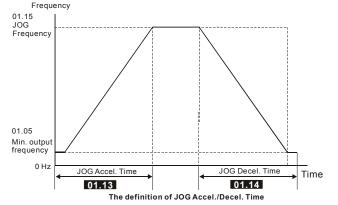

The Output Frequency Lower Limit value = (Pr.01.00 * Pr.01.08) /100.

01.09	✓ Acceleration Time 1 (Taccel 1)	Unit: 0.1/0.01
01.10	✓ Deceleration Time 1 (Tdecel 1)	Unit: 0.1/0.01
01.11	✓ Acceleration Time 2 (Taccel 2)	Unit: 0.1/0.01
01.12	✓ Deceleration Time 2 (Tdecel 2)	Unit: 0.1/0.01
	Settings 0.1 to 600.0 sec / 0.01 to 600.0 sec	Factory Setting: 10.0

Acceleration/deceleration time 1 or 2 can be switched by setting the external terminals MI3~ MI12 to 7 (set Pr.04.05~Pr.04.08 to 7 or Pr.11.06~Pr.11.11 to 7).

01.19	Accel/Dec	el Time	Unit	
				Factory Setting: 0
	Settings	0	Unit: 0.1 sec	
		1	Unit: 0.01 sec	

- The Acceleration Time is used to determine the time required for the AC motor drive to ramp from 0 Hz to Maximum Output Frequency (Pr.01.00). The rate is linear unless S-Curve is "Enabled"; see Pr.01.17.
- The Deceleration Time is used to determine the time required for the AC motor drive to decelerate from the Maximum Output Frequency (Pr.01.00) down to 0 Hz. The rate is linear unless S-Curve is "Enabled.", see Pr.01.18.
- The Acceleration/Deceleration Time 1, 2, 3, 4 are selected according to the Multi-function Input Terminals Settings. See Pr.04.05 to Pr.04.08 for more details.
- In the diagram shown below, the Acceleration/Deceleration Time of the AC motor drive is the time between 0 Hz to Maximum Output Frequency (Pr.01.00). Suppose the Maximum Output Frequency is 60 Hz, Minimum Output Frequency (Pr.01.05) is 1.0 Hz, and Acceleration/Deceleration Time is 10 seconds. The actual time for the AC motor drive to accelerate from start-up to 60 Hz and to decelerate from 60Hz to 1.0Hz is in this case 9.83 seconds. ((60-1) * 10/60=9.83secs).


01.13	✓ Jog Acce	leration Time	Unit: 0.1/0.01
	Settings	0.1 to 600.0/0.01 to 600.0 sec	Factory Setting: 1.0
01.14	✓ Jog Dece	eleration Time	Unit: 0.1/0.01
	Settings	0.1 to 600.0/0.01 to 600.0 sec	Factory Setting: 1.0

Revision June 2008, 04EE, SW-PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4	Parameters	VFD-E	
01.15	✓ Jog Fre	quency	Unit: 0.01
	Settings	0 10 to Emax (Pr 01 00)Hz	Eactory Setting: 6.00

- Only external terminal JOG (MI3 to MI12) can be used. When the Jog command is "ON", the AC motor drive will accelerate from Minimum Output Frequency (Pr.01.05) to Jog Frequency (Pr.01.15). When the Jog command is "OFF", the AC motor drive will decelerate from Jog Frequency to zero. The used Accel/Decel time is set by the Jog Accel/Decel time (Pr.01.13, Pr.01.14).
- Before using the JOG command, the drive must be stopped first. And during Jog operation, other operation commands are not accepted, except commands via the FORWARD,

REVERSE and STOP keys on the digital keypad.

01.16 / Auto-Acceleration / Deceleration

Factory Setting: 0

Settings 0 Linear acceleration / deceleration

1 Auto acceleration, linear Deceleration.

- 2 Linear acceleration, auto Deceleration.
- 3 Auto acceleration / deceleration (set by load)

4 Auto acceleration / deceleration (set by Accel/Decel Time setting)

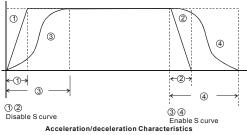
With Auto acceleration / deceleration it is possible to reduce vibration and shocks during starting/stopping the load.

During Auto acceleration the torque is automatically measured and the drive will accelerate to the set frequency with the fastest acceleration time and the smoothest starting current.

Chapter 4 Parameters

During Auto deceleration, regenerative energy is measured and the motor is smoothly stopped with the fastest deceleration time.

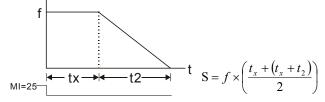
But when this parameter is set to 04, the actual accel/decel time will be equal to or more than parameter Pr.01.09 ~Pr.01.12.


- Auto acceleration/deceleration makes the complicated processes of tuning unnecessary. It makes operation efficient and saves energy by acceleration without stall and deceleration without brake resistor.
- In applications with brake resistor or brake unit, Auto deceleration shall not be used.

01.17	Acceleratio	on S-Curve	Unit: 0.1/0.01
01.18	Deceleration	on S-Curve	Unit: 0.1/0.01
			Factory Setting: 0
	Settings	0.0	S-curve disabled
		0.1 to 10.0/0.01 to 10.00	S-curve enabled (10.0/10.00 is the smoothest)

- This parameter is used to ensure smooth acceleration and deceleration via S-curve. The S-curve is disabled when set to 0.0 and enabled when set to 0.1 to 10.0/0.01 to 10.00. Setting 0.1/0.01 gives the quickest and setting 10.0/10.00 the longest and smoothest S-curve. The AC motor drive will not follow the Accel/Decel Times in Pr.01.09 to Pr.01.12.
- The diagram below shows that the original setting of the Accel/Decel Time is only for reference when the S-curve is enabled. The actual Accel/Decel Time depends on the selected S-curve (0.1 to 10.0).

The total Accel. Time=Pr.01.09 + Pr.01.17 or Pr.01.11 + Pr.01.17

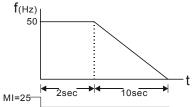

The total Decel. Time=Pr.01.10 + Pr.01.18 or Pr.01.12 + Pr.01.18

Chapter 4	Parameters Vz243	
01.20	Delay Time at 0Hz for Simple Position	Unit: 0.01
01.21	Delay Time at 10Hz for Simple Position	Unit: 0.01
01.22	Delay Time at 20Hz for Simple Position	Unit: 0.01
01.23	Delay Time at 30Hz for Simple Position	Unit: 0.01
01.24	Delay Time at 40Hz for Simple Position	Unit: 0.01
01.25	Delay Time at 50Hz for Simple Position	Unit: 0.01
	Settings 0.00 to 600.00 sec	Factory Setting: 0.00

This simple position function is calculated by the measure of operation area. When the multifunction input terminal is set to 25 and it is ON, it will start to decelerate after getting the delay time from Pr.01.20 to Pr.01.25 and get the final position.

This is simple position function NOT the precision position function.

Assume that the radius of the 4-pole motor is r and rotation speed is n (rpm).


Example 1:

Assume that motor speed is 50Hz, the delay time at 50Hz is 2 sec (Pr.01.25=2) and the

deceleration time from 50Hz to 0Hz is 10 seconds.

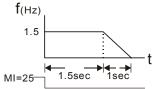
The rotation speed n = 120 X 50 /4 (rpm/min) = 25 rpm/sec

The revolution numbers = $(25 \times (2+12))/2 = 175$ (revolutions)

4-49

Therefore, the distance = revolution numbers X circumference = 175 X 2π r

It also means that the motor will stop to the original position after 175 circles.


Example 2:

Assume that motor speed is 1.5Hz, the delay time at 10Hz is 10 sec (Pr.01.21=10) and the deceleration time from 60Hz to 0Hz is 40 seconds.

The delay time at 1.5Hz is 1.5 sec and the deceleration from 1.5Hz to 0Hz is 1 sec.

The rotation speed n = 120 X 1.5 /4 (rpm/min) = 1.5/2 rpm/sec = 0.75 rpm/sec

The revolution numbers = (1.5/2X (1.5+2.5))/2 = 1.5 (revolutions)

Therefore, the distance = revolution numbers X circumference = $1.5 \times 2\pi r$ It also means that the motor will stop after running 1.5 circles.

01.26 Maximun	n Voltage Frequency (Fbase) (Motor 1)	Unit: 0.01
Settings	0.10 to 600.0Hz	Factory Setting: 60.00
01.27 Maximum	n Output Voltage (Vmax) (Motor 1)	Unit: 0.1
Settings	115V/230V series 0.1 to 255.0V	Factory Setting: 220.0
	460V series 0.1 to 510.0V	Factory Setting: 440.0
01.28 Mid-Point	t Frequency (Fmid) (Motor 1)	Unit: 0.01
Settings	0.10 to 600.0Hz	Factory Setting: 1.50
01.29 Mid-Point	t Voltage (Vmid) (Motor 1)	Unit: 0.1
Settings	115V/230V series 0.1 to 255.0V	Factory Setting: 10.0
	460V series 0.1 to 510.0V	Factory Setting: 20.0
01.30 Minimum	Output Frequency (Fmin) (Motor 1)	Unit: 0.01
Settings	0.10 to 600.0Hz	Factory Setting: 1.50
01.31 Minimum	Output Voltage (Vmin) (Motor 1)	Unit: 0.1
Settings	115V/230V series 0.1 to 255.0V	Factory Setting: 10.0
	460V series 0.1 to 510.0V	Factory Setting: 20.0
01.32 Maximun	n Voltage Frequency (Fbase) (Motor 2)	Unit: 0.01
Settings	0.10 to 600.0Hz	Factory Setting: 60.00
01.33 Maximum	n Output Voltage (Vmax) (Motor 2)	Unit: 0.1
Settings	115V/230V series 0.1 to 255.0V	Factory Setting: 220.0

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Chapter 4 Parameters	
460V series 0.1 to 510.	0V Factory Setting: 440.0
01.34 Mid-Point Frequency (Fmid) (Motor 2)	Unit: 0.01
Settings 0.10 to 600.0Hz	Factory Setting: 1.50
01.35 Mid-Point Voltage (Vmid) (Motor 2)	Unit: 0.1
Settings 115V/230V series 0.1 to 255	.0V Factory Setting: 10.0
460V series 0.1 to 510.	.0V Factory Setting: 20.0
01.36 Minimum Output Frequency (Fmin) (Mot	tor 2) Unit: 0.01
Settings 0.10 to 600.0Hz	Factory Setting: 1.50
01.37 Minimum Output Voltage (Vmin) (Motor	2) Unit: 0.1
Settings 115V/230V series 0.1 to 25	55.0V Factory Setting: 10.0
460V series 0.1 to 57	10.0V Factory Setting: 20.0
01.38 Maximum Voltage Frequency (Fbase) (Motor 3) Unit: 0.01
Settings 0.10 to 600.0Hz	Factory Setting: 60.00
01.39 Maximum Output Voltage (Vmax) (Moto	r 3) Unit: 0.1
Settings 115V/230V series 0.1 to 255.	0V Factory Setting: 220.0
460V series 0.1 to 510.	0V Factory Setting: 440.0
01.40 Mid-Point Frequency (Fmid) (Motor 3)	Unit: 0.01
Settings 0.10 to 600.0Hz	Factory Setting: 1.50
01.41 Mid-Point Voltage (Vmid) (Motor 3)	Unit: 0.1
Settings 115V/230V series 0.1 to 255	.0V Factory Setting: 10.0
460V series 0.1 to 510.	0V Factory Setting: 20.0
01.42 Minimum Output Frequency (Fmin) (Mot	tor 3) Unit: 0.01
Settings 0.10 to 600.0Hz	Factory Setting: 1.50
01.43 Minimum Output Voltage (Vmin) (Motor	3) Unit: 0.1
Settings 115V/230V series 0.1 to 25	55.0V Factory Setting: 10.0
460V series 0.1 to 57	10.0V Factory Setting: 20.0

The V/f curve of motor 0 to motor 3 can be selected by setting the multi-function input terminals MI3~MI6 (Pr.04.05 to Pr.04.08) to 27 and 28.

Group 2: Operation Method Parameters

02.00	✓ Source of	f First M	laster Frequency Command
			Factory Setting:
02.09	✓ Source of	f Secon	d Master Frequency Command
			Factory Setting:
	Settings	0	Digital keypad UP/DOWN keys or Multi-function Inputs UP/DOWN. Last used frequency saved. (Digital keypad is optional)

- 1 0 to +10V from AVI
- 2 4 to 20mA from ACI or 0 to +10V from AVI2
- 3 RS-485 (RJ-45)/USB communication
- 4 Digital keypad potentiometer
- 5 CANopen communication
- These parameters set the Master Frequency Command Source of the AC motor drive.
- The factory setting for master frequency command is 1. (digital keypad is optional.)
- Setting 2: use the ACI/AVI switch on the AC motor drive to select ACI or AVI2. When setting to AVI, AVI2 is indicated.
- When the 3rd switch on the upper-right corner is set to be ON as shown in the following diagram, the source of first master frequency command (Pr.02.00) will force setting to 2. This setting(Pr.02.00) can't be changed till the 3rd switch is set to be OFF.

- When the AC motor drive is controlled by external terminal, please refer to Pr.02.05 for details.
- The first /second frequency/operation command is enabled/disabled by Multi Function Input Terminals. Please refer to Pr.04.05 ~ 04.08.

02.01	✓ Source of	f First O	peration Command
			Factory Setting: 1
	Settings	0	Digital keypad (Digital keypad is optional)
		1	External terminals. Keypad STOP/RESET enabled.
		2	External terminals. Keypad STOP/RESET disabled.
		3	RS-485 (RJ-45)/USB communication. Keypad STOP/RESET enabled.
		4	RS-485 (RJ-45)/USB communication. Keypad STOP/RESET disabled.
		5	CANopen communication. Keypad STOP/RESET disabled.

- The factory setting for source of first operation command is 1. (digital keypad is optional.)
- When the AC motor drive is controlled by external terminal, please refer to Pr.02.05/Pr.04.04 for details.

|--|

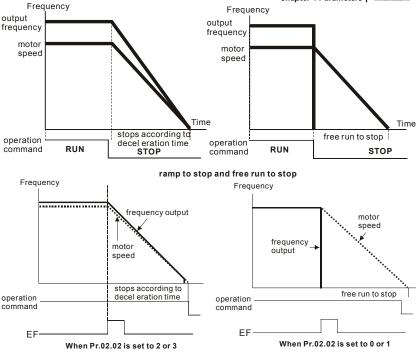
Factory Setting: 0

Chapter 4 Parameters | Varaal Settings 0

- 0 First Master Frequency Command Only
- 1 First Master Frequency + Second Master Frequency
- 2 First Master Frequency Second Master Frequency

02.02	Stop Method						
				Factory Setting: 0			
	Settings	0	STOP: ramp to stop	E.F.: coast to stop			
		1	STOP: coast to stop	E.F.: coast to stop			
		2	STOP: ramp to stop	E.F.: ramp to stop			
_		3	STOP: coast to stop	E.F.: ramp to stop			

When the 2nd switch on the upper-right corner is set to be ON as shown in the following diagram, the motor stop method (Pr.02.02) will force setting to 1. This setting (Pr.02.02) can't be changed till the 2nd switch is set to be OFF.


The parameter determines how the motor is stopped when the AC motor drive receives a valid stop command or detects External Fault.

Ramp: the AC motor drive decelerates to Minimum Output Frequency (Pr.01.05) according to the deceleration time and then stops.

Coast: the AC motor drive stops the output instantly upon command, and the motor free runs until it comes to a complete standstill.

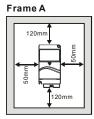
The motor stop method is usually determined by the characteristics of the motor load and how frequently it is stopped.

- (1) It is recommended to use "ramp to stop" for safety of personnel or to prevent material from being wasted in applications where the motor has to stop after the drive is stopped. The deceleration time has to be set accordingly.
- (2) If motor free running is allowed or the load inertia is large, it is recommended to select "coast to stop". For example: blowers, punching machines, centrifuges and pumps.

02.03 PWM Carrier Frequency Selections

Unit: 1

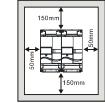
115V/230V/460V Series			
Power	0.25 to 15hp (0.2kW to 11kW)		
Setting Range	1 to 15 kHz		
Factory Setting	8 kHz		


This parameter determines the PWM carrier frequency of the AC motor drive.

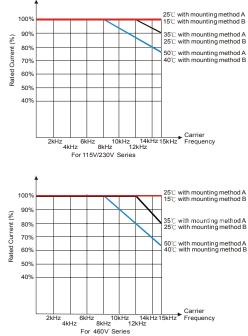
Chapter 4 Parameters VIIII							
	Carrier Frequency	Acoustic Noise	Electromagnetic Noise or leakage current	Heat Dissipation	Current Wave		
	1kHz	Significant f	Minimal	Minimal ∱	- ∕√∕√√ Minimal		
	8kHz						
	15kHz	↓ Minimal	↓ Significant	↓ Significant			

- From the table, we see that the PWM carrier frequency has a significant influence on the electromagnetic noise, AC motor drive heat dissipation, and motor acoustic noise.
- The PWM carrier frequency will be decreased automatically by heat sink temperature and output current of the AC motor drive. It is used as a necessary precaution to prevent the AC motor drive from overheating and thus extends IGBT's life. Example for 460V models: Assume the carrier frequency to be 15kHz, the ambient temperature is 50 degrees C with a single AC motor drive(mounting method A). If the output current exceeds 80% * rated current, the AC motor drive will decrease the carrier frequency automatically according to the following chart. If output current is 100% * rated current, the carrier frequency will decrease from 15kHz to 12kHz.

Mounting method


120mm


50mm


50mm

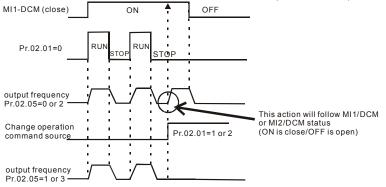
-120mm

02.04 Motor Direction Control

Settings	0	Forward/Reverse operation enabled
	1	Reverse operation disabled
	2	Forward operation disabled

This parameter is used to disable one direction of rotation of the AC motor drive direction of rotation.

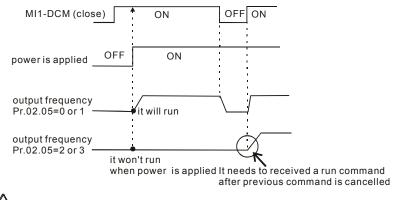
Factory Setting: 0


02.05	Line Start Lockout		
			Factory Setting: 1
	Settings	0	Disable. Operation status is not changed even if operation command source Pr.02.01 is changed.
		1	Enable. Operation status is not changed even if operation command source Pr.02.01 is changed.
		2	Disable. Operation status will change if operation command source Pr.02.01 is changed.
		3	Enable. Operation status will change if operation command source Pr.02.01 is changed.

This parameter determines the response of the drive upon power on and operation command source is changed.

Pr.02.05	Start lockout (Run when power is ON)	Operation status when operation command source is changed
0	Disable (AC motor drive will run)	Keep previous status
1	Enable (AC motor drive doesn't run)	Keep previous status
2	Disable (AC motor drive will run)	Change according to the new operation command source
3	Enable (AC motor drive doesn't run)	Change according to the new operation command source

When the operation command source is from external terminal and operation command is ON (MI1/MI2-DCM=closed), the AC motor drive will operate according to Pr.02.05 after power is applied. <For terminals MI1 and MI2 only>


- 1. When Pr.02.05 is set to 0 or 2, AC motor drive will run immediately.
- When Pr.02.05 is set to 1 or 3, AC motor drive will remain stopped until operation command is received after previous operation command is cancelled.

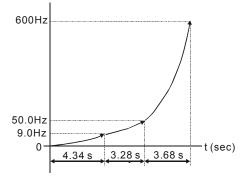
- When the operation command source isn't from the external terminals, independently from whether the AC motor drive runs or stops, the AC motor drive will operate according to Pr.02.05 if the two conditions below are both met.
 - 1. When operation command source is changed to external terminal (Pr.02.01=1 or 2)
 - 2. The status of terminal and AC motor drive is different.

And the operation of the AC motor drive will be:

- 1. When setting 0 or 1, the status of AC motor drive is not changed by the terminal status.
- 2. When setting 2 or 3, the status of AC motor drive is changed by the terminal status.

The Line Start Lockout feature does not guarantee that the motor will never start under this condition. It is possible the motor may be set in motion by a malfunctioning switch.

02.06	Loss of ACI	Loss of ACI Signal (4-20mA)				
	Factory Se					
	Settings	0	Decelerate to 0Hz			
	1 Coast to stop and display "AErr"		Coast to stop and display "AErr"			
	2 Continue operation by the last frequency command					


This parameter determines the behavior when ACI is lost.

When set to 1, it will display warning message "AErr" on the keypad in case of loss of ACI signal and execute the setting. When ACI signal is recovered, the warning message will stop blinking. Please press "RESET" key to clear it.

02.07	Up/Down Mode			
				Factory Setting: 0
	Settings	0	By digital keypad up/down keys mode	
		1	Based on Accel/Decel Time acc. to Pr.01.0	09 to 01.12
		2	Constant speed (acc. to Pr. 02.08)	
		3	Pulse input unit (acc. to Pr. 02.08)	
02.08	Accel/Dece Constant S		of Change of UP/DOWN Operation with	Unit: 0.01
	Settings	0.01	~10.00 Hz/2ms	Factory Setting: 0.01

These parameters determine the increase/decrease of the master frequency when operated via the Multi-function Inputs when Pr.04.05~Pr.04.08 are set to 10 (Up command) or 11 (Down command).

When Pr.02.07 is set to 0: increase/decrease the frequency by using UP/DOWN key. It is valid only when the AC motor drive is running.

- When Pr.02.07 is set to 1: increase/decrease the frequency by acceleration/deceleration settings. It is valid only when the AC motor drive is running.
- When Pr.02.07 is set to 2: increase/decrease the frequency by Pr.02.08.
- When Pr.02.07 is set to 3: increase/decrease the frequency by Pr.02.08 (unit: pulse input).

02.	11	✓ Keypad Free	equer	icy Command	Unit: 0.01
		Settings	0.00	to 600.0Hz	Factory Setting: 60.00
	Thi	s parameter c	an be	used to set frequency command or read keypa	d frequency command.
02.	12	✓Communic	ation	Frequency Command	Unit: 0.01
		Settings	0.00	to 600.0Hz	Factory Setting: 60.00
£		s parameter c mmand.	an be	used to set frequency command or read comm	nunication frequency
02.	13	The Selection Command	ns for	Saving Keypad or Communication Frequency	
					Factory Setting: 0
		Settings	0	Save Keypad & Communication Frequency	
			1	Save Keypad Frequency only	
			2	Save Communication Frequency only	
	Th	s parameter is	s usec	t to save keypad or RS-485 frequency comman	d.
02.	14	Initial Freque	ncy S	election (for keypad & RS485/USB)	
					Factory Setting: 0
		Settings	0	By Current Freq Command	
			1	By Zero Freq Command	
			2	By Frequency Display at Stop	
02.	15	Initial Freque	ncy S	etpoint (for keypad & RS485/USB)	Unit: 0.01
		Settings	0.00	~ 600.0Hz	Factory Setting: 60.00
Ш	Th	ese parameter	rs are	used to determinate the frequency at stop:	
	Wł	en setting Pr.	02.14	to 0: the initial frequency will be current frequer	ıcy.
	Wh	en settina Pr.	02.14	to 1: the initial frequency will be 0.	
		0		to 2: the initial frequency will be Pr.02.15.	

02.16 Display the Master Freq Command Source

Settings Read Only

Factory setting: ##

Pou can read the master frequency command source by this parameter.

Display Value	Bit	Function
1	Bit0=1	Master Freq Command Source by First Freq Source (Pr.02.00).
2	Bit1=1	Master Freq Command Source by Second Freq Source (Pr.02.09).
4	Bit2=1	Master Freq Command Source by Multi-input function
8	Bit3=1	Master Freq Command Source by PLC Freq command (NOT for VFD*E*C models)

02.17	Display the Operation Command Source			
	Settings	Read Only	Factory setting:	##

You can read the operation source by this parameter.

Display Value	Bit	Function
1	Bit0=1	Operation Command Source by Digital Keypad
2	Bit1=1	Operation Command Source by RS485 communication
4	Bit2=1	Operation Command Source by External Terminal
8	Bit3=1	Operation Command Source by Multi-input function
16	Bit4=1	Operation Command Source by PLC Operation Command (NOT for VFD*E*C models)

Group 3: Output Function Parameters

03.00 Multi-function Output Relay (RA1, RB1, RC1)

Factory Setting: 8

03.01 Multi-function Output Terminal MO1

Factory Setting: 1

Settings	Function	Description
0	No Function	
1	AC Drive Operational	Active when the drive is ready or RUN command is "ON".
2	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.
3	Zero Speed	Active when Command Frequency is lower than the Minimum Output Frequency.
4	Over-Torque Detection	Active as long as over-torque is detected. (Refer to Pr.06.03 ~ Pr.06.05)
5	Baseblock (B.B.) Indication	Active when the output of the AC motor drive is shut off during baseblock. Base block can be forced by Multi-function input (setting 09).
6	Low-Voltage Indication	Active when low voltage(Lv) is detected.
7	Operation Mode Indication	Active when operation command is controlled by external terminal.
8	Fault Indication	Active when a fault occurs (oc, ov, oH, oL, oL1, EF, cF3, HPF, ocA, ocd, ocn, GFF).
9	Desired Frequency 1 Attained	Active when the desired frequency 1(Pr.03.02) is attained.
10	Terminal Count Value Attained	Active when the counter reaches Terminal Count Value.
11	Preliminary Count Value Attained	Active when the counter reaches Preliminary Count Value.
12	Over Voltage Stall supervision	Active when the Over Voltage Stall function operating

Settings	Function	Description
13	Over Current Stall supervision	Active when the Over Current Stall function operating
14	Heat Sink Overheat Warning	When heatsink overheats, it will signal to prevent OH turn off the drive. When it is higher than 85°C (185°F), it will be ON.
15	Over Voltage supervision	Active when the DC-BUS voltage exceeds level
16	PID supervision	Active when the PID feedback signal is abnormal (Refer to Pr.10.12 and Pr.13.)
17	Forward command	Active when the direction command is FWD
18	Reverse command	Active when the direction command is REV
19	Zero Speed Output Signal	Active when the drive is standby or stop
20	Communication Warning (FbE,Cexx, AoL2, AUE, SAvE)	Active when there is a Communication Warning
21	Brake Control (Desired Frequency Attained)	Active when output frequency \ge Pr.03.11. Deactivated when output frequency \le Pr.03.12 after STOP command.
22	Drive Ready	Active when the drive is on and no abnormality detected.
23	Desired Frequency 2 Attained	Active when the desired frequency 1(Pr.03.14) is attained.

03.02	Desired Fr	Desired Frequency 1 Attained				
03.14	Desired Fr	equency 2 Attained	Unit: 0.01			
	Settings	0.00 to 600.0 Hz	Factory Setting: 0.00			

If a multi-function output terminal is set to function as Desired Frequency Attained (Pr.03.00 to Pr.03.01=09), then the output will be activated when the programmed frequency is attained.

output timing chart of multiple function terminals when setting to frequency attained or zero speed indication

✓ Analog Output Signal (AFM)				
Factory Setting	g: 0			
ettings 0 Analog Frequency Meter (0 to Maximum Output Frequency)				
1 Analog Current Meter (0 to 250% of rated AC motor drive current)	t)			
	1 27			

This parameter sets the function of the AFM output 0~+10VDC (ACM is common).

03.04	✓Analog Output Gain	Unit: 1
	Settings 1 to 200%	Factory Setting: 100

This parameter sets the voltage range of the analog output signal AFM.

When Pr.03.03 is set to 0, the analog output voltage is directly proportional to the output frequency of the AC motor drive. With Pr.03.04 set to 100%, the Maximum Output Frequency (Pr.01.00) of the AC motor drive corresponds to +10VDC on the AFM output.

Similarly, if Pr.03.03 is set to 1, the analog output voltage is directly proportional to the output current of the AC drive. With Pr.03.04 set to 100%, then 2.5 times the rated current corresponds to +10VDC on the AFM output.

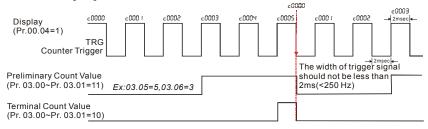
Any type of voltmeter can be used. If the meter reads full scale at a voltage less than 10V, Pr. 03.04 should be set using the following formula:

Pr. 03.04 = ((meter full scale voltage)/10) x 100%

Chapter 4 Parameters | 1022213

For Example: When using the meter with full scale of 5 volts, adjust Pr.03.04 to 50%. If

Pr.03.03 is set to 0, then 5VDC will correspond to Maximum Output Frequency.

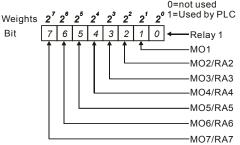

03	3.05	Terminal	Unit: 1		
		Settings	0 to 9999	Factory Setting: 0	
ш	Th	is parameter sets the count value of the internal counter. To increase the internal counter,			
	on	e of Pr.04.0	05 to 04.08 should be s	et to 12. Upon completion of counting, the specified output	
	ter	minal will b	e activated. (Pr.03.00	o Pr.03.01 set to 10).	

When the display shows c555, the drive has counted 555 times. If display shows c555•, it means that real counter value is between 5,550 and 5,559.

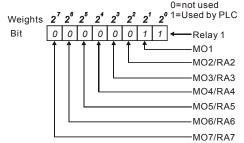
03.06	Preliminary	Count Value	Unit: 1
	Settings	0 to 9999	Factory Setting: 0

When the counter value reaches this value, the corresponding multi-function output terminal will be activated, provided one of Pr.03.00 to Pr.03.01 set to 11 (Preliminary Count Value Setting). This multi-function output terminal will be deactivated upon completion of Terminal Count Value Attained.

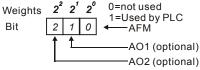
The timing diagram:


03.07	EF Active	EF Active when Terminal Count Value Attained				
				Factory Setting: 0		
	Settings	0	Terminal count value attained, no EF display			
		1	Terminal count value attained, EF active			

If this parameter is set to 1 and the desired value of counter is attained, the AC drive will treat it as a fault. The drive will stop and show the "EF" message on the display.


	_		Chapter 4	Parameters Van E
03.08	Fan Contro	bl		
				Factory Setting: 0
	Settings	0	Fan always ON	
		1	1 minute after AC motor drive stops, fan will b	e OFF
		2	Fan ON when AC motor drive runs, fan OFF v stops	when AC motor drive
		3	Fan ON when preliminary heatsink temperatu	ire attained
🕮 Th	is paramete	r determi	nes the operation mode of the cooling fan.	
03.09	The Digital	Output U	Ised by PLC (NOT for VFD*E*C models)	
	Settings	Read O	nly	Factory setting: ##
		Bit0=1: I	RLY used by PLC	
		Bit1=1: I	MO1 used by PLC	
		Bit2=1: MO2/RA2 used by PLC		
		Bit3=1: MO3/RA3 used by PLC		
		Bit4=1: MO4/RA4 used by PLC		
		Bit5=1: I	MO5/RA5 used by PLC	
		Bit6=1: I	MO6/RA6 used by PLC	
		Bit7=1: I	MO7/RA7 used by PLC	

- The equivalent 8-bit is used to display the status (used or not used) of each digital output. The value that Pr.03.09 displays is the result after converting 8-bit binary into decimal value.
- For standard AC motor drive, it only has 2-bit (bit0 and bit1). When extension card is installed, the number of the digital output terminals will increase according to the extension card. The maximum number of the digital output terminals is shown as follows.

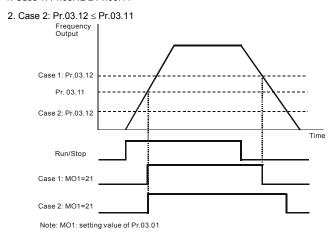

For example: when Pr.03.09 is set to 3 (decimal) = 00000011 (binary) that indicates Relay1 and MO1 are used by PLC. (Pr.03.09= 2⁰+2¹=3)

03.10	The Analo	The Analog Output Used by PLC (NOT for VFD*E*C models)						
	Settings	Read Only	Factory setting: ##					
		Bit0=1: AFM used by PLC						
		Bit1=1: AO1 used by PLC						
		Bit2=1: AO2 used by PLC						

The equivalent 1-bit is used to display the status (used or not used) of each analog output. The

value that Pr.03.10 displays is the result after converting 1-bit binary into decimal value.

Game For Example:


If Pr.03.10 displays 1, it means that AFM is used by PLC.

4-66 Download from Www.Somanuals.com. Aff Wahdals Search EAnd Download.

03.11	Brake Relea	ase Frequency	Unit: 0.01
	Settings	0.00 to 600.0Hz	Factory Setting: 0.00
03.12	Brake Enga	ge Frequency	Unit: 0.01
	Settings	0.00 to 600.0Hz	Factory Setting: 0.00

These two parameters are used to set control of mechanical brake via the output terminals (Relay or MO1) when Pr.03.00~03.01 is set to 21. Refer to the following example for details. Example:

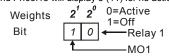
1. Case 1: Pr.03.12 ≥ Pr.03.11

03.13

Settings

Display the Status of Multi-function Output Terminals

Factory setting: ##

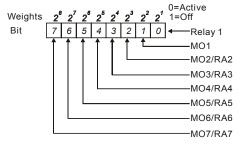

- Read Only Bit0: RLY Status
 - Bit1: MO1 Status
 - Bit2: MO2/RA2 Status
 - Bit3: MO3/RA3 Status
 - Bit4: MO4/RA4 Status
 - Bit5: MO5/RA5 Status

1/ and 2 and 10

Bit6: MO6/RA6 Status

Bit7: MO7/RA7 Status

For standard AC motor drive (without extension card), the multi-function output terminals are falling-edge triggered and Pr.03.13 will display 3 (11) for no action.

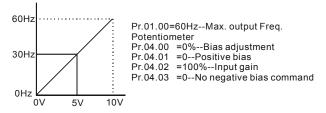


General For Example:

If Pr.03.13 displays 2, it means Relay 1 is active.

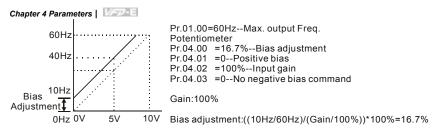
The display value 2 =bit 1 X 2¹

When extension card is installed, the number of the multi-function output terminals will increase according to the extension card. The maximum number of the multi-function output terminals is shown as follows.

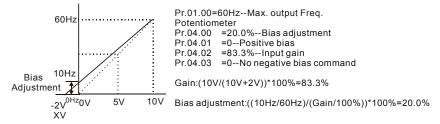


✓Keypad F	Potentio	Unit: 0. 1	
Settings	0.0 t	to 100.0%	Factory Setting: 0.0
✓Keypad F	Potentio	ometer Bias Polarity	
			Factory Setting: 0
Settings	0	Positive Bias	
	1	Negative Bias	
✓Keypad F	Potentio	ometer Gain	Unit: 0.1
Settings	0.1 t	to 200.0%	Factory Setting: 100.0
Keypad Potentiometer Negative Bias, Reverse Motion Enable/Disable			
			Factory Setting: 0
Settings	0	No Negative Bias Command	
	1	Negative Bias: REV Motion Enabled	
	Settings Keypad F Settings Keypad Po Enable/Disa	Settings 0.0 f Keypad Potentia Settings 0 1 Keypad Potention Settings 0.1 f Keypad Potention Enable/Disable Settings 0	Keypad Potentiometer Bias Polarity Settings 0 Positive Bias 1 Negative Bias Keypad Potentiometer Gain Settings 0.1 to 200.0% Keypad Potentiometer Negative Bias, Reverse Motion Enable/Disable Settings 0 No Negative Bias Command

Group 4: Input Function Parameters

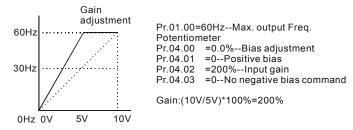

Example 1: Standard application

This is the most used setting. The user only needs to set Pr.02.00 to 04. The frequency command comes from keypad potentiometer.

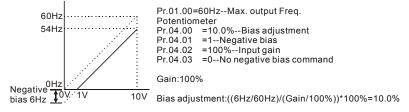

Example 2: Use of bias

This example shows the influence of changing the bias. When the input is 0V the output frequency is 10 Hz. At mid-point a potentiometer will give 40 Hz. Once the Maximum Output Frequency is reached, any further increase of the potentiometer or signal will not increase the output frequency. (To use the full potentiometer range, please refer to Example 3.) The value of external input voltage/current 0-8.33V corresponds to the setting frequency 10-60Hz.

Example 3: Use of bias and gain for use of full range

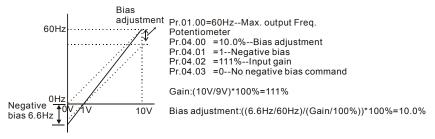

This example also shows a popular method. The whole scale of the potentiometer can be used as desired. In addition to signals of 0 to 10V, the popular voltage signals also include signals of 0 to 5V, or any value under 10V. Regarding the setting, please refer to the following examples.

Example 4: Use of 0-5V potentiometer range via gain adjustment

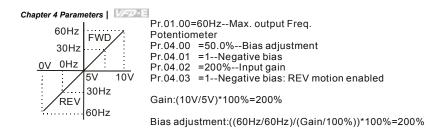

This example shows a potentiometer range of 0 to 5 Volts. Instead of adjusting gain as example

below, you can set Pr. 01.00 to 120Hz to achieve the same results.

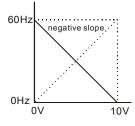
Example 5: Use of negative bias in noisy environment


In this example, a 1V negative bias is used. In noisy environments it is advantageous to use negative bias to provide a noise margin (1V in this example).

Example 6: Use of negative bias in noisy environment and gain adjustment to use full potentiometer range


In this example, a negative bias is used to provide a noise margin. Also a potentiometer frequency

gain is used to allow the Maximum Output Frequency to be reached.

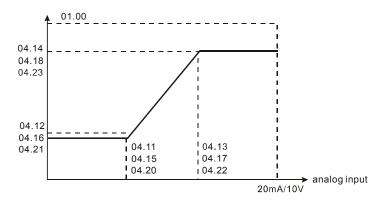

Example 7: Use of 0-10V potentiometer signal to run motor in FWD and REV direction

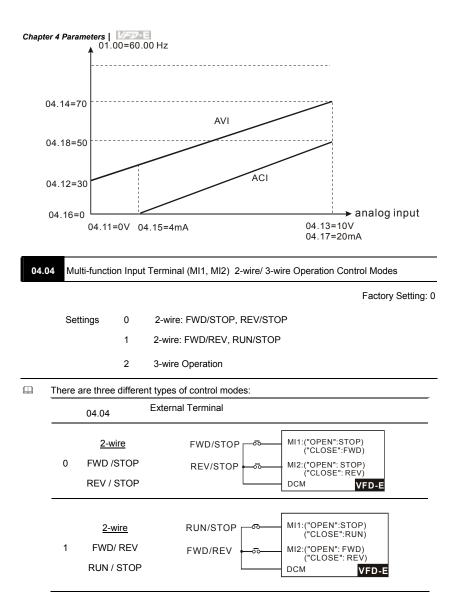
In this example, the input is programmed to run a motor in both forward and reverse direction. The motor will be idle when the potentiometer position is at mid-point of its scale. Using the settings in this example disables the external FWD and REV controls.

Example 8: Use negative slope

In this example, the use of negative slope is shown. Negative slopes are used in applications for control of pressure, temperature or flow. The sensor that is connected to the input generates a large signal (10V) at high pressure or flow. With negative slope settings, the AC motor drive will slow stop the motor. With these settings the AC motor drive will always run in only one direction (reverse). This can only be changed by exchanging 2 wires to the motor.

Pr.01.00=60Hz--Max. output Freq. Potentiometer Pr.04.00 =100%--Bias adjustment Pr.04.01 =0--Positive bias Pr.04.02 =100%--Input gain Pr.04.03 =1--Negative bias: REV motion enabled Gain:(10V/10V)*100%=100%


Bias adjustment:((60Hz/60Hz)/(Gain/100%))*100%=100%


04.11	Minimum AV	/I Voltage	Unit: 0.1
	Settings	0.0 to 10.0V	Factory Setting: 0.0
04.12	Minimum AV	I Frequency (percentage of Pr.01.00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 0.0
04.13	Maximum A	/I Voltage	Unit: 0.1
	Settings	0.0 to 10.0V	Factory Setting: 10.0
04.14	Maximum A	/I Frequency (percentage of Pr. 01.00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 100.0
04.15	Minimum AC	CI Current	Unit: 0.1
	Settings	0.0 to 20.0mA	Factory Setting: 4.0
04.16	Minimum AC	CI Frequency (percentage of Pr. 01.00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 0.0

			Chapter 4 Parameters
04.17	Maximum /	ACI Current	Unit: 0.01
	Settings	0.0 to 20.0mA	Factory Setting: 20.0
04.18	Maximum /	ACI Frequency (percentage of Pr. 01.00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 100.0
04.19	ACI Termir	nal Mode Selection	
			Factory Setting: 0
	Settings	0 ACI	
		1 AVI2	
04.20	Minimum A	VI2 Voltage	Unit: 0.1
	Settings	0.0 to 10.0V	Factory Setting: 0.0
04.21	Minimum A	VI2 Frequency (percentage of Pr.1-00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 0.0
04.22	Maximum /	AVI2 Voltage	Unit: 0.1
	Settings	0.0 to 10.0V	Factory Setting: 10.0
04.23	Maximum /	AVI2 Frequency (percentage of Pr.1-00)	Unit: 0.1
	Settings	0.0 to 100.0%	Factory Setting: 100.0

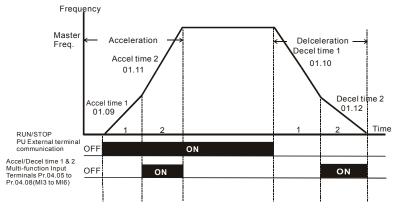
Please note the ACI/AVI switch on the AC motor drive. Switch to ACI for 4 to 20mA analog current signal (ACI) (Pr.04.19 should be set to 0) and AVI for analog voltage signal (AVI2) (Pr.04.19 should be set to 1).

The above parameters are used to set the analog input reference values. The min and max frequencies are based on Pr.01.00 (during open-loop control) as shown in the following.

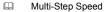
	04.04	External Terminal	
2	3-wire	STOP RUN MI1:("CLOSE":RUN MI3:("OPEN":STOF MI2:("OPEN": FWD REV/FWD CCLOSE": REV DCM)
4.05	Multi-function Ir	put Terminal (MI3)	
		Fa	actory Setting: 1
.06	Multi-function Ir	put Terminal (MI4)	
		Fa	actory Setting: 2
.07	Multi-function Ir	put Terminal (MI5)	
		Fa	actory Setting: 3
.08	Multi-function Ir	put Terminal (MI6)	

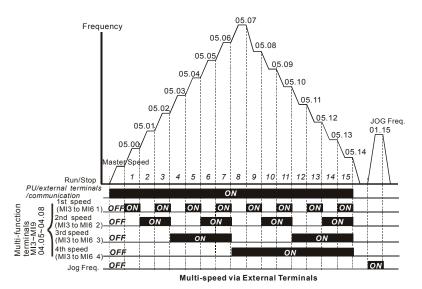
Factory Setting: 4

Settings	Function	Description
0	No Function	Any unused terminals should be programmed to 0 to insure they have no effect on operation.
1	Multi-Step Speed Command 1	These four inputs select the multi-speed defined by Pr.05.00 to
2	Multi-Step Speed Command 2	Pr.05.14 as shown in the diagram at the end of this table.
3	Multi-Step Speed Command 3	NOTE: Pr.05.00 to Pr.05.14 can also be used to control output speed by programming the AC motor drive's internal PLC function. There are 17 step speed frequencies (including
4	Multi-Step Speed Command 4	Master Frequency and Jog Frequency) to select for application.
5	External Reset	The External Reset has the same function as the Reset key on the Digital keypad. After faults such as O.H., O.C. and O.V. are cleared this input can be used to reset the drive.


Settings	Function	Description
6	Accel/Decel Inhibit	When the command is active, acceleration and deceleration is stopped and the AC motor drive maintains a constant speed.
7	Accel/Decel Time Selection Command	Used to select the one of 2 Accel/Decel Times (Pr.01.09 to Pr.01.12). See explanation at the end of this table.
8	Jog Operation Control	Parameter value 08 programs one of the Multi-function Input Terminals MI3 ~ MI6 (Pr.04.05~Pr.04.08) for Jog control. NOTE: Programming for Jog operation by 08 can only be done while the motor is stopped. (Refer to parameter Pr.01.13~Pr.01.15)
9	External Base Block (Refer to Pr. 08.06)	Parameter value 09 programs a Multi-function Input Terminals for external Base Block control. NOTE: When a Base-Block signal is received, the AC motor drive will block all output and the motor will free run. When base block control is deactivated, the AC drive will start its speed search function and synchronize with the motor speed, and then accelerate to Master Frequency.
10	UP: Increase Master Frequency	Increase/decrease the Master Frequency each time an input is received or continuously when the input stays active. When both
11 DOWN: Decrease Master Frequency		inputs are active at the same time, the Master Frequency increase/decrease is halted. Please refer to Pr.02.07, 02.08. This function is also called "motor potentiometer".
12	Counter Trigger	Parameter value 12 programs one of the Multi-function Input Terminals MI3~MI6 (Pr.04.05~Pr.04.08) to increment the AC drive's internal counter. When an input is received, the counter is incremented by 1.
13	Counter Reset	When active, the counter is reset and inhibited. To enable counting the input should be OFF. Refer to Pr.03.05 and 03.06.
14	External Fault	Parameter value 14 programs one of the Multi-function Input Terminals MI3~MI6 (Pr.04.05~Pr.04.08) to be External Fault

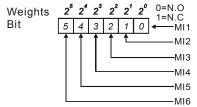
(E.F.) inputs.


Settings	Function	Description	
15	PID function disabled	When an input ON with this setting is ON, the PID function will be disabled.	
16	Output Shutoff Stop	AC motor drive will stop output and the motor free run if one of these settings is enabled. If the status of terminal is changed, AC motor drive will restart from 0Hz.	
17	Parameter lock enable	ter lock When this setting is enabled, all parameters will be locked and write parameters is disabled.	
18	Operation Command Selection (Pr.02.01 setting/external terminals)	ON: Operation command via Ext. Terminals OFF: Operation command via Pr.02.01 setting When the settings 18, 19 and 20 are ON at the same time, the priority should be setting 18 > setting19 > setting20.	
19	Operation Command Selection (Pr 02.01 setting/Digital Keypad)	ON: Operation command via Digital Keypad OFF: Operation command via Pr.02.01 setting When the settings 18, 19 and 20 are ON at the same time, the priority should be setting 18 > setting19 > setting20.	
20	Operation Command Selection (Pr 02.01 setting/ Communication)	ON: Operation command via Communication OFF: Operation command via Pr.02.01 setting When the settings 18, 19 and 20 are ON at the same time, the priority should be setting 18 > setting19 > setting20.	
21	Forward/Reverse	e This function has top priority to set the direction for running (If "Pr.02.04=0")	
22	Source of second frequency command enabled	Used to select the first/second frequency command source. Refer to Pr.02.00 and 02.09. ON: 2 nd Frequency command source OFF: 1 st Frequency command source	

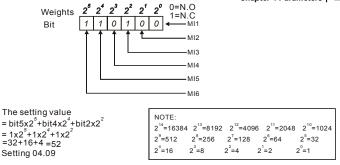

Settings	Function	Description
23	Run/Stop PLC Program (PLC1) (NOT for VFD*E*C models)	ON: Run PLC Program OFF: Stop PLC Program When AC motor drive is in STOP mode and this function is enabled, it will display PLC1 in the PLC page and execute PLC program. When this function is disabled, it will display PLC0 in the PLC page and stop executing PLC program. The motor will be stopped by Pr.02.02. When operation command source is external terminal, the keypad cannot be used to change PLC status. And this function will be invalid when the AC Motor drive is in PLC2 status.
23	Quick Stop (ONLY for VFD*E*C models)	It is only valid when Pr.02.01 is set to 5 in VFD*E*C models.
24	Download/Execute/ Monitor PLC Program (PLC2) (NOT for VFD*E*C models)	When AC motor drive is in STOP mode and this function is enabled, it will display PLC2 in the PLC page and you can download/execute/monitor PLC. When this function is disabled, it will display PLC0 in the PLC page and stop executing PLC program. The motor will be stopped by Pr.02.02. When operation command source is external terminal, the keypad cannot be used to change PLC status. And this function will be invalid when the AC Motor drive is in PLC1 status.
25	Simple position function	This function should be used with Pr.01.20~Pr.01.25 for simple position. Refer to Pr.01.25 for details.
26	OOB (Out of Balance Detection)	The OOB (Out Of Balance Detection) function can be used with PLC for washing machine. When this setting is enabled, it will get $\Delta\theta$ value from the settings of Pr.08.21 and Pr.08.22. PLC or host controller will decide the motor speed by this t $\Delta\theta$ value (Pr.08.23)
27	Motor selection (bit 0)	When this setting is enabled, it can be used for motor selection (Pr. 01.01~01.06, 01.26~01.43, 07.18~07.38, 07.00~07.06).
28	Motor selection (bit 1)	For example: MI1=27, MI2=28 When MI1 and MI2 are OFF, it selects motor 0. When MI1 is ON and MI2 is OFF, it selects motor 1. When MI1 is OFF and MI2 is ON, it selects motor 2. When MI1 and MI2 are ON, it selects motor 3.

Accel/Decel Time Selection

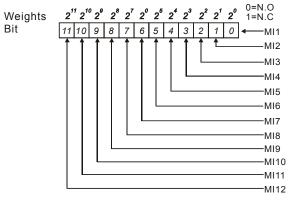
Accel/Decel Time and Multi-function Input Terminals



Chapter 4 Parameters | 1722213


	MI6=4	MI5=3	MI4=2	MI3=1
Master frequency	OFF	OFF	OFF	OFF
1 st speed	OFF	OFF	OFF	ON
2 nd speed	OFF	OFF	ON	OFF
3 rd speed	OFF	OFF	ON	ON
4 th speed	OFF	ON	OFF	OFF
5 th speed	OFF	ON	OFF	ON
6 th speed	OFF	ON	ON	OFF
7 th speed	OFF	ON	ON	ON
8 th speed	ON	OFF	OFF	OFF
9 th speed	ON	OFF	OFF	ON
10 th speed	ON	OFF	ON	OFF
11 th speed	ON	OFF	ON	ON
12 th speed	ON	ON	OFF	OFF
13 th speed	ON	ON	OFF	ON
14 th speed	ON	ON	ON	OFF
15 th speed	ON	ON	ON	ON

04.09	Multi-functio	n Input Contact Selection	Unit: 1
	Settings	0 to 4095	Factory Setting: 0


- This parameter can be used to set the status of multi-function terminals (MI1~MI6 (N.O./N.C.) for standard AC motor drive).
- The MI1~MI3 setting will be invalid when the operation command source is external terminal (2/3wire).

- The Setting method: It needs to convert binary number (6-bit) to decimal number for input.
- □ For example: if setting MI3, MI5, MI6 to be N.C. and MI1, MI2, MI4 to be N.O. The setting value Pr.04.09 should be bit5X2⁵+bit4X2⁴+bit2X2²= 1X2⁵+1X2⁴+1X2²= 32+16+4=52 as shown in the following.

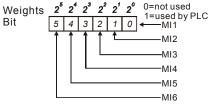
When extension card is installed, the number of the multi-function input terminals will increase according to the extension card. The maximum number of the multi-function input terminals is shown as follows.

04.10	Digital Termin	al Input Debouncing Time	Unit: 2ms
	Settings	1 to 20	Factory Setting: 1
0	This a second	sis to delay the simple on divital investigation	

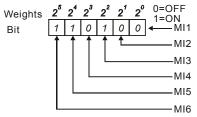
This parameter is to delay the signals on digital input terminals. 1 unit is 2 msec, 2 units are 4 msec, etc. The delay time is to debounce noisy signals that could cause the digital terminals to malfunction.

Chapter 4 Parameters	Chapter 4 Parameters	V/72-E
----------------------	----------------------	--------

Display

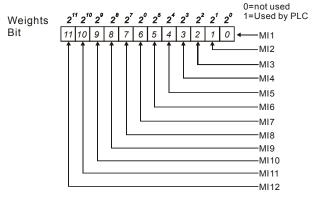

04.24	The Digital Inp	out Used by PLC (NOT for VFD*E*C models)	
	Settings	Read Only	Factory

setting: ##


Bit0=1: MI1 used by PLC
Bit1=1: MI2 used by PLC
Bit2=1: MI3 used by PLC
Bit3=1: MI4 used by PLC
Bit4=1: MI5 used by PLC
Bit5=1: MI6 used by PLC
Bit6=1: MI7 used by PLC
Bit7=1: MI8 used by PLC
Bit8=1: MI9 used by PLC
Bit9=1: MI10 used by PLC
Bit10=1: MI11 used by PLC
Bit11=1: MI12 used by PLC

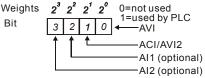
For standard AC motor drive (without extension card), the equivalent 6-bit is used to display the status (used or not used) of each digital input. The value for Pr.04.24 to display is the

result after converting 6-bit binary into decimal value.

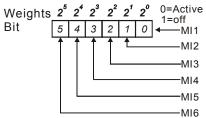


For example: when Pr.04.24 is set to 52 (decimal) = 110100 (binary) that indicates MI3, MI5 and MI6 are used by PLC.

Chapter 4 Parameters


When extension card is installed, the number of the digital input terminals will increase according to the extension card. The maximum number of the digital input terminals is shown as follows.

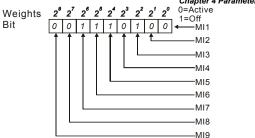
Settings	Read Only	Factory setting: #
Display	Bit0=1: AVI used by PLC	
	Bit1=1: ACI/AVI2 used by PLC	
	Bit2=1: Al1 used by PLC	
	Bit3=1: AI2 used by PLC	


The equivalent 2-bit is used to display the status(used or not used) of each analog input. The

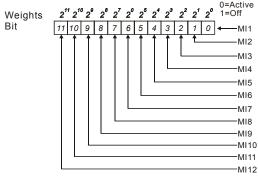
value for Pr.04.25 to display is the result after converting 2-bit binary into decimal value.

04.26	Display the	e Status of Multi-function Input Terminal	
	Settings	Read Only	Factory setting: ##
	Display	Bit0: MI1 Status	
		Bit1: MI2 Status	
		Bit2: MI3 Status	
		Bit3: MI4 Status	
		Bit4: MI5 Status	
		Bit5: MI6 Status	
		Bit6: MI7 Status	
		Bit7: MI8 Status	
		Bit8: MI9 Status	
		Bit9: MI10 Status	
		Bit10: MI11 Status	
		Bit11: MI12 Status	

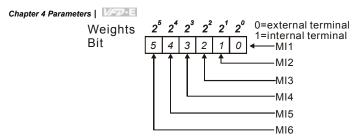
The multi-function input terminals are falling-edge triggered. For standard AC motor drive (without extension card), there are MI1 to MI6 and Pr.04.26 will display 63 (111111) for no action.



General For Example:

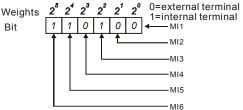

If Pr.04.26 displays 52, it means MI1, MI2 and MI4 are active.

The display value 52= 32+16+4 =1 X 2^{5} + 1X 2^{4} + 1X 2^{2} = bit 6 X 2^{5} + bit 5 X 2^{4} + bit 3 X 2^{2}



When extension card is installed, the number of the multi-function input terminals will increase according to the extension card. The maximum number of the multi-function input terminals is shown as follows.

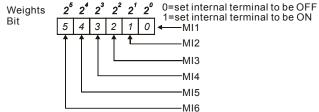
04.27	✓Internal/	External Multi-function Input Terminals Selection	Unit: 1
	Settings	0 to 4095	Factory Setting: 0


- This parameter is used to select the terminals to be internal terminal or external terminal. You can activate internal terminals by Pr.04.28. A terminal cannot be both internal terminal and external terminal at the same time.
- For standard AC motor drive (without extension card), the multi-function input terminals are MI1 to MI6 as shown in the following.

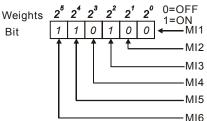
- The Setting method is convert binary number to decimal number for input.
- □ For example: if setting MI3, MI5, MI6 to be internal terminals and MI1, MI2, MI4 to be external terminals. The setting value should be bit5X2⁵+bit4X2⁴+bit2X2²= 1X2⁵+1X2⁴+1X2²=

32+16+4=52 as shown in the following.

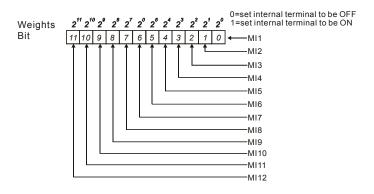
04.2


When extension card is installed, the number of the multi-function input terminals will increase according to the extension card. The maximum number of the multi-function input terminals is shown as follows.

	Weights	2 ¹¹ 2 ¹⁰	2°2°2	⁷ 2 ⁰ 2 ⁵	2 ⁴ 2 ³	2 ²	2 ¹ 2 ⁰	0=external termina 1=internal terminal	
	Bit	11 10	987	6 5	4 3	2	1 0	← MI1	
		11		11	11	Ť	1	MI2	
						L		MI3	
					╎└			MI4	
								MI5	
								MI6	
								——MI7	
								——MI8	
								——MI9	
			L					——MI10	
								——MI11	
								——MI12	
8	✓ Internal Termina	l Status							Unit: 1
	Settings 0 to	4095						F	actory Setting: 0

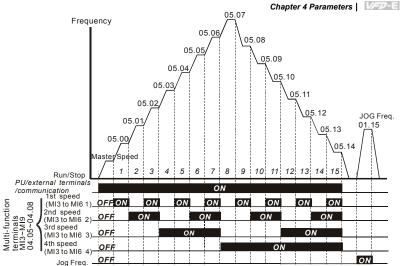

This parameter is used to set the internal terminal action via keypad, communication or PLC.

For standard AC motor drive (without extension card), the multi-function input terminals are


MI1 to MI6 as shown in the following.

For example, if setting MI3, MI5 and MI6 to be ON, Pr.04.28 should be set to bit5X2⁵+bit4X2⁴+bit2X2²= 1X2⁵+1X2⁴+1X2²= 32+16+4=52 as shown in the following.

When extension card is installed, the number of the multi-function input terminals will increase according to the extension card. The maximum number of the multi-function input terminals is shown as follows.



Chapter 4 Parameters |

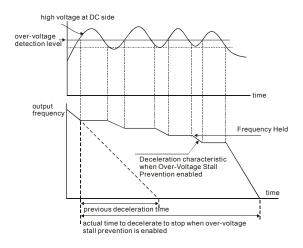
Group 5: Multi-step Speeds Parameters

	_	
05.00	✓ 1st Step Speed Frequency	Unit: 0.01
05.01	✓2nd Step Speed Frequency	Unit: 0.01
05.02	✓ 3rd Step Speed Frequency	Unit: 0.01
05.03		Unit: 0.01
05.04	✓ 5th Step Speed Frequency	Unit: 0.01
05.05	✓ 6th Step Speed Frequency	Unit: 0.01
05.06		Unit: 0.01
05.07		Unit: 0.01
05.08	✓ 9th Step Speed Frequency	Unit: 0.01
05.09	✓ 10th Step Speed Frequency	Unit: 0.01
05.10	✓11th Step Speed Frequency	Unit: 0.01
05.11	✓ 12th Step Speed Frequency	Unit: 0.01
05.12	✓ 13th Step Speed Frequency	Unit: 0.01
05.13	Unit: 0.01	
05.14	✓ 15th Step Speed Frequency	Unit: 0.01
	Settings 0.00 to 600.0Hz	Factory Setting: 0.00

The Multi-function Input Terminals (refer to Pr.04.05 to 04.08) are used to select one of the AC motor drive Multi-step speeds. The speeds (frequencies) are determined by Pr.05.00 to 05.14 as shown in the following.

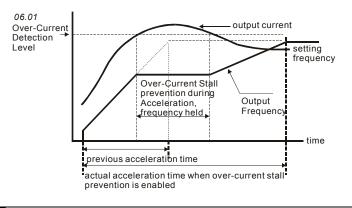
Multi-speed via External Terminals

	MI6=4	MI5=3	MI4=2	MI3=1
Master frequency	OFF	OFF	OFF	OFF
1 st speed	OFF	OFF	OFF	ON
2 nd speed	OFF	OFF	ON	OFF
3 rd speed	OFF	OFF	ON	ON
4 th speed	OFF	ON	OFF	OFF
5 th speed	OFF	ON	OFF	ON
6 th speed	OFF	ON	ON	OFF
7 th speed	OFF	ON	ON	ON
8 th speed	ON	OFF	OFF	OFF
9 th speed	ON	OFF	OFF	ON
10 th speed	ON	OFF	ON	OFF
11 th speed	ON	OFF	ON	ON
12 th speed	ON	ON	OFF	OFF
13 th speed	ON	ON	OFF	ON
14 th speed	ON	ON	ON	OFF
15 th speed	ON	ON	ON	ON

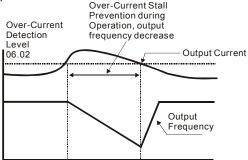

Group 6: Protection Parameters

06.00	Over-Vo	Itage Stall Prevention	Unit: 0.1		
	Settings	115V/230V series	330.0 to 410.0V	Factory Setting: 390.0	
	460V series		660.0 to 820.0V	Factory Setting: 780.0	
		0	Disable Over-voltage Stall Prevention (with brake unit or brake resistor)		

- During deceleration, the DC bus voltage may exceed its Maximum Allowable Value due to motor regeneration. When this function is enabled, the AC motor drive will not decelerate further and keep the output frequency constant until the voltage drops below the preset value again.
- Over-Voltage Stall Prevention must be disabled (Pr.06.00=0) when a brake unit or brake resistor is used.



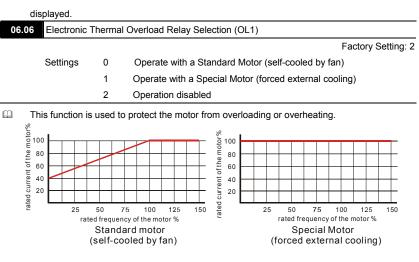
With moderate inertia load, over-voltage stall prevention will not occur and the real deceleration time will be equal to the setting of deceleration time. The AC drive will automatically extend the deceleration time with high inertia loads. If the deceleration time is critical for the application, a brake resistor or brake unit should be used.


06.01	Over-Curren	t Stall Prevention during Acceleration	Unit: 1
	Settings	20 to 250%	Factory Setting: 170
		0: disable	

- A setting of 100% is equal to the Rated Output Current of the drive.
- During acceleration, the AC drive output current may increase abruptly and exceed the value specified by Pr.06.01 due to rapid acceleration or excessive load on the motor. When this function is enabled, the AC drive will stop accelerating and keep the output frequency constant until the current drops below the maximum value.

06.02	Over-curre	nt Stall Prevention during Operation	Unit: 1
	Settings	20 to 250%	Factory Setting: 170
		0: disable	

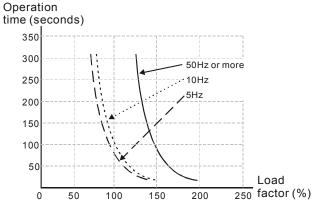
□ If the output current exceeds the setting specified in Pr.06.02 when the drive is operating, the drive will decrease its output frequency to prevent the motor stall. If the output current is lower than the setting specified in Pr.06.02, the drive will accelerate again to catch up with the set frequency command value.


over-current stall prevention during operation

06.	Over-Torque Detection Mode (OL2)			
				Factory Setting: 0
	Settings	0	Over-Torque detection disabled.	
		1	Over-Torque detection enabled during cons After over-torque is detected, keep running	
		2	Over-Torque detection enabled during cons After over-torque is detected, stop running.	stant speed operation.
		3	Over-Torque detection enabled during acce torque is detected, keep running until OL1 of	
		4	Over-Torque detection enabled during acce torque is detected, stop running.	eleration. After over-
	This paramete	r detern	nines the operation mode of the drive after the	over-torque (OL2) is
	detected via th	e follow	ing method: if the output current exceeds the	over-torque detection level
	(Pr.06.04) long	er than	the setting of Pr.06.05 Over-Torque Detection	Time, the warning
	message "OL2	" is disp	played. If a Multi-functional Output Terminal is	set to over-torque
	detection (Pr.0	3.00~0	3.01=04), the output is on. Please refer to Pr.0	3.00~03.01 for details.
06.	04 × Over-To	rque De	tection Level (OL2)	Unit: 1
	Settings	10 te	200%	Factory Setting: 150

This setting is proportional to the Rated Output Current of the drive.

06.05	Over-Torqu	e Detection Time (OL2)	Unit: 0.1
	Settings	0.1 to 60.0 sec	Factory Setting: 0.1


This parameter sets the time for how long over-torque must be detected before "OL2" is

The parameter determines the time required for activating the I²t electronic thermal protection

function. The graph below shows I²t curves for 150% output power for 1 minute.

4-94

06.08	Present Fault Record
06.09	Second Most Recent Fault Record
06.10	Third Most Recent Fault Record
06.11	Fourth Most Recent Fault Record
06.12	Fifth Most Recent Fault Record
	Factory Setting: 0

		Factory Setting. C
Readings	0	No fault
	1	Over-current (oc)
	2	Over-voltage (ov)
	3	IGBT Overheat (oH1)
	4	Power Board Overheat (oH2)
	5	Overload(oL)
	6	Overload (oL1)
	7	Motor Overload (oL2)
	8	External Fault (EF)
	9	Hardware protection failure (HPF)
	10	Current exceeds 2 times rated current during accel.(ocA)
	11	Current exceeds 2 times rated current during decel.(ocd)
	12	Current exceeds 2 times rated current during steady state operation (ocn)
	13	Reserved
	14	Phase-loss (PHL)
	15	Reserved
	16	Auto accel/decel failure (CFA)
	17	Software/password protection (codE)
	18	Power Board CPU WRITE Failure (cF1.0)
	19	Power Board CPU READ Failure (cF2.0)
	20	CC, OC Hardware protection failure (HPF1)
	21	OV Hardware protection failure (HPF2)
	22	GFF Hardware protection failure (HPF3)
	23	OC Hardware protection failure (HPF4)
	24	U-phase error (cF3.0)
	25	V-phase error (cF3.1)
	26	W-phase error (cF3.2)
	27	DCBUS error (cF3.3)
	28	IGBT Overheat (cF3.4)

29	Power Board Overheat (cF3.5)
30	Control Board CPU WRITE failure (cF1.1)
31	Contrsol Board CPU READ failure (cF2.1)
32	ACI signal error (AErr)
33	Reserved
34	Motor PTC overheat protection (PtC1)
35-39	Reserved
40	Communication time-out error of control board and power board (CP10)

In Pr.06.08 to Pr.06.12 the five most recent faults that occurred, are stored. After removing the cause of the fault, use the reset command to reset the drive.

Group 7: Motor Parameters

	.00 Motor Rate	ed Current (Motor 0)	Unit: 1
	Settings	30% FLA to 120% FLA	Factory Setting: FLA
Ш	Use the followi	ing formula to calculate the percentage value ent	ered in this parameter:
	(Motor Current	t / AC Drive Current) x 100%	
	with Motor Cur	rrent=Motor rated current in A on type shield	
	AC Drive Curre	ent=Rated current of AC drive in A (see Pr.00.01)
Ш	Pr.07.00 and F	Pr.07.01 must be set if the drive is programmed to	o operate in Vector Control
	mode (Pr.00.1	0 = 1). They also must be set if the "Electronic T	hermal Overload Relay"
	(Pr.06.06) or "S	Slip Compensation"(Pr.07-03) functions are sele	cted.
ш	Pr.07.00 must	be greater than Pr.07.01.	
07	.01 Motor No-l	oad Current (Motor 0)	Unit: 1
	Settings	0% FLA to 90% FLA	Factory Setting: 0.4*FLA
p	The rated curre	ent of the AC drive is regarded as 100%. The set	tting of the Motor no-load
	current will affe	ect the slip compensation.	
Ш	The setting val	lue must be less than Pr.07.00 (Motor Rated Cur	rent).
07	.02 / Torque (Compensation (Motor 0)	Unit: 0.1
			Fastan, Cattine, 0.0
	Settings	0.0 to 10.0	Factory Setting: 0.0
1		0.0 to 10.0 r may be set so that the AC drive will increase its	, ,
	This paramete		Factory Setting: 0.0 s voltage output to obtain a
	This paramete higher torque.	r may be set so that the AC drive will increase its	, ,
	This paramete higher torque. Too high torqu	r may be set so that the AC drive will increase its Only to be used for V/f control mode.	, ,
	This paramete higher torque. Too high torqu	r may be set so that the AC drive will increase its Only to be used for V/f control mode. le compensation can overheat the motor.	s voltage output to obtain a
	This paramete higher torque. Too high torqu .03	r may be set so that the AC drive will increase its Only to be used for V/f control mode. e compensation can overheat the motor.	s voltage output to obtain a Unit: 0.01 Factory Setting: 0.00
07	This paramete higher torque. Too high torqu 03	r may be set so that the AC drive will increase its Only to be used for V/f control mode. e compensation can overheat the motor. npensation (Used without PG) (Motor 0) 0.00 to 10.00	Unit: 0.01 Factory Setting: 0.00

the motor no-load current (Pr.07.01), the AC drive will adjust its output frequency according to this parameter.

07.04	Motor Para	Motor Parameters Auto Tuning		
-			actory Setting: 0	
	Settings	0	Disable	
		1	Auto Tuning R1 (motor doesn't run)	
	2 Auto Tuning R1 + No-load Test (with running motor)			

- Start Auto Tuning by pressing RUN key after this parameter is set to 1 or 2. When set to 1, it will only auto detect R1 value and Pr.07.01 must be input manually. When set to 2, the AC motor drive should be unloaded and the values of Pr.07.01 and Pr.07.05 will be set automatically.
- The steps for AUTO-Tuning are:
 - Make sure that all the parameters are set to factory settings and the motor wiring is correct.
 - Make sure the motor has no-load before executing auto-tuning and the shaft is not connected to any belt or gear motor.
 - 3. Fill in Pr.01.01, Pr.01.02, Pr.07.00, Pr.07.04 and Pr.07.06 with correct values.
 - After Pr.07.04 is set to 2, the AC motor drive will execute auto-tuning immediately after receiving a "RUN" command. (Note: The motor will run!). The total auto tune time will be 15 seconds + Pr.01.09 + Pr.01.10. Higher power drives need longer Accel/Decel time (factory setting is recommended). After executing Auto-tune, Pr.07.04 is set to 0.
 - After executing, please check if there are values filled in Pr.07.01 and Pr.07.05. If not, please press RUN key after setting Pr.07.04 again.
 - Then you can set Pr.00.10 to 1 and set other parameters according to your application requirement.

- 1. In vector control mode it is not recommended to have motors run in parallel.
- It is not recommended to use vector control mode if motor rated power exceeds the rated power of the AC motor drive.

07.05	Motor Line	-to-line Resistance R1 (Motor 0)	Unit: 1
	Settings	0 to 65535 mΩ	Factory Setting: 0

Chapter 4 Parameters | 1/22/21

The motor auto tune procedure will set this parameter. The user may also set this parameter without using Pr.07.04.

07.06	Motor Rated	Slip (Motor 0)	Unit: 0.01
	Settings	0.00 to 20.00Hz	Factory Setting: 3.00

Refer to the rated rpm and the number of poles on the nameplate of the motor and use the following equation to calculate the rated slip.

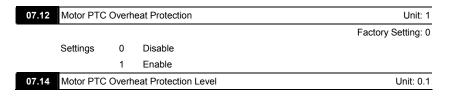
Rated Slip (Hz) = F_{base} (Pr.01.01 base frequency) – (rated rpm x motor pole 120)

07.07	Slip Comp	ensation Limit	Unit: 1
	Settings	0 to 250%	Factory Setting: 200

This parameter sets the upper limit of the compensation frequency (the percentage of Pr.07.06).

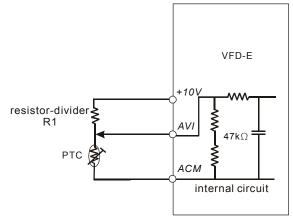
Example: when Pr.07.06=5Hz and Pr.07.07=150%, the upper limit of the compensation

frequency is 7.5Hz. Therefore, for a 50Hz motor, the max. output is 57.5Hz.


07.08	Torque Co	mpensation Time Constant	Unit: 0.01
	Settings	0.01 ~10.00 sec	Factory Setting: 0.10
07.09	Slip Compensation Time Constant		Unit: 0.01
	Settings	0.05~10.00 sec	Factory Setting: 0.20

Setting Pr.07.08 and Pr.07.09 changes the response time for the compensations.

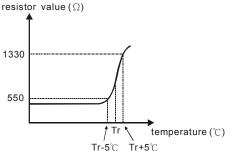
Too long time constants give slow response; too short values can give unstable operation.


07.10	Accumulativ	Accumulative Motor Operation Time (Min.) Unit: 1		
	Settings	0~1439	Factory Setting: 0	
07.11	Accumulativ	e Motor Operation Time (Day)	Unit: 1	
	Settings	0 ~65535	Factory Setting: 0	

Pr.07.10 and Pr.07.11 are used to record the motor operation time. They can be cleared by setting to 0 and time is less than 1 minute is not recorded.

4-98 Download from Www.Somanuals.com. Afrivian dats Search And Download.

- When the motor is running at low frequency for a long time, the cooling function of the motor fan will be lower. To prevent overheating, it needs to have a Positive Temperature Coefficient thermoistor on the motor and connect its output signal to the drive's corresponding control terminals.
- When the source of first/second frequency command is set to AVI (02.00=1/02.09=1), it will disable the function of motor PTC overheat protection (i.e. Pr.07.12 cannot be set to 1).
- If temperature exceeds the setting level, motor will be coast to stop and PEC is displayed. When the temperature decreases below the level of (Pr.07.15-Pr.07.16) and PEC i stops blinking, you can press RESET key to clear the fault.
- Pr.07.14 (overheat protection level) must exceed Pr.07.15 (overheat warning level).
- The PTC uses the AVI-input and is connected via resistor-divider as shown below.
 - 1. The voltage between +10V to ACM: lies within 10.4V~11.2V.
 - 2. The impedance for AVI is around $47k\Omega$.
 - 3. Recommended value for resistor-divider R1 is $1 \sim 20 k_{\Omega}$.
 - Please contact your motor dealer for the curve of temperature and resistance value for PTC.



- Refer to following calculation for protection level and warning level.
 - Protection level
 Pr.07.14= V₊₁₀* (R_{PTC1}//47K) / [R1+(R_{PTC1}//47K)]
 - Warning level Pr.07.16= V₊₁₀* (R_{PTC2}//47K) / [R1+(R_{PTC2}//47K)]
 - Definition: V+10: voltage between +10V-ACM, Range 10.4~11.2VDC RPTC1: motor PTC overheat protection level. Corresponding voltage level set in Pr.07.14, RPTC2: motor PTC overheat warning level. Corresponding voltage level set in Pr.07.15, 47kΩ: is AVI input impedance, R1: resistor-divider (recommended value: 1~20kΩ)
- Take the standard PTC thermistor as example: if protection level is 1330Ω, the voltage between +10V-ACM is 10.5V and resistor-divider R1 is 4.4kΩ. Refer to following calculation for Pr.07.14 setting.

1330//47000=(1330*47000)/(1330+47000)=1293.4

10.5*1293.4/(4400+1293.4)=2.38(V) = 2.4(V)

Therefore, Pr.07.14 should be set to 2.4.

	_			
07.15	Motor PTC 0	Overhe	eat Warning Level	Unit: 0.1
	Settings	0.1~	10.0V	Factory Setting: 1.2
07.16	Motor PTC 0	Overhe	eat Reset Delta Level	Unit: 0.1
	Settings	0.1~	5.0V	Factory Setting: 0.6
07.17	Treatment of the motor PTC Overheat			
				Factory Setting: 0
	Settings	0	Warn and RAMP to stop	
		1	Warn and COAST to stop	
		2	Warn and keep running	

If temperature exceeds the motor PTC overheat warning level (Pr.07.15), the drive will act according to Pr.07.17 and display
If the temperature decreases below the result (Pr.07.15 minus Pr.07.16), the warning display will disappear.

Unit: 2	uncing Time of the PTC Protection	7.13 Input Debo
Factory Setting: 100	0~9999 (is 0-19998ms)	Settings
inals. 1 unit is 2 msec, 2 units	r is to delay the signals on PTC analog input ter	This parameter
	C.	are 4 msec, etc
Unit: 1	ed Current (Motor 1)	7.18 Motor Rate
Factory Setting: FLA	30% FLA to 120% FLA	Settings
Unit: 1	oad Current (Motor 1)	7.19 Motor No-lo
Factory Setting: 0.4*FLA	0% FLA to 90% FLA	Settings
Unit: 0.1	Compensation (Motor 1)	7.20 🗡 Torque C
Factory Setting: 0.0	0.0 to 10.0	Settings
Unit: 0.01	npensation (Used without PG) (Motor 1)	7.21 × Slip Com
Factory Setting: 0.00	0.00 to 10.00	Settings
Unit: 1	-to-line Resistance R1 (Motor 1)	7.22 Motor Line-
Factory Setting: 0	0 to 65535 mΩ	Settings
Unit: 0.01	ed Slip (Motor 1)	7.23 Motor Rate
Factory Setting: 3.00	0.00 to 20.00Hz	Settings
Unit: 1	Number (Motor 1)	7.24 Motor Pole
Factory Setting: 4	2 to 10	Settings
Unit: 1	ed Current (Motor 2)	7.25 Motor Rate
Factory Setting: FLA	30% FLA to 120% FLA	Settings
Unit: 1	oad Current (Motor 2)	7.26 Motor No-lo
Factory Setting: 0.4*FLA	0% FLA to 90% FLA	Settings
Unit: 0.1	Compensation (Motor 2)	7.27 🗡 Torque C
Factory Setting: 0.0	0.0 to 10.0	Settings
Unit: 0.01	npensation (Used without PG) (Motor 2)	7.28 × Slip Com
Factory Setting: 0.00	0.00 to 10.00	Settings
Unit: 1	-to-line Resistance R1 (Motor 2)	7.29 Motor Line-
Factory Setting: 0	0 to 65535 mΩ	Settings
Unit: 0.01	ed Slip (Motor 2)	7.30 Motor Rate
Factory Setting: 3.00	0.00 to 20.00Hz	Settings

Chapter 4 Pa	ar unicicito	IFD-E	
07.31	Motor Pole N	umber (Motor 2)	Unit: 1
5	Settings	2 to 10	Factory Setting: 4
07.32	Motor Rated	Current (Motor 3)	Unit: 1
S	Settings	30% FLA to 120% FLA	Factory Setting: FLA
07.33	Motor No-loa	d Current (Motor 3)	Unit: 1
S	Settings	0% FLA to 90% FLA	Factory Setting: 0.4*FLA
07.34	✓ Torque Co	mpensation (Motor 3)	Unit: 0.1
S	Settings	0.0 to 10.0	Factory Setting: 0.0
07.35	Slip Comp	ensation (Used without PG) (Motor 3)	Unit: 0.01
S	Settings	0.00 to 10.00	Factory Setting: 0.00
07.36	Motor Line-to	line Resistance R1 (Motor 3)	Unit: 1
S	Settings	0 to 65535 mΩ	Factory Setting: 0
07.37	Motor Rated	Slip (Motor 3)	Unit: 0.01
S	Settings	0.00 to 20.00Hz	Factory Setting: 3.00
07.38	Motor Pole N	umber (Motor 3)	Unit: 1
S	Settings	2 to 10	Factory Setting: 4

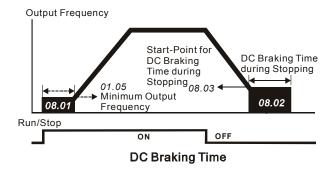
The motor 0 to motor 3 can be selected by setting the multi-function input terminals MI3~MI6 (Pr.04.05 to Pr.04.08) to 27 and 28.

Group 8: Special Parameters

08.00	DC Brake 0	Current Level	Unit: 1
	Settings	0 to 100%	Factory Setting: 0

This parameter sets the level of DC Brake Current output to the motor during start-up and stopping. When setting DC Brake Current, the Rated Current (Pr.00.01) is regarded as 100%. It is recommended to start with a low DC Brake Current Level and then increase until proper holding torgue has been achieved.

08	.01 DC Brake	Time during Start-up	Unit: 0.1
	Settings	0.0 to 60.0 sec	Factory Setting: 0.0
0	This second to		


This parameter determines the duration of the DC Brake current after a RUN command. When the time has elapsed, the AC motor drive will start accelerating from the Minimum Frequency (Pr.01.05).

08.02	DC Brake 1	ime during Stopping	Unit: 0.1
	Settings	0.0 to 60.0 sec	Factory Setting: 0.0

This parameter determines the duration of the DC Brake current during stopping. If stopping with DC Brake is desired, Pr.02.02 Stop Method must be set to 0 or 2 for Ramp to Stop.

08.03	Start-Point f	or DC Brake	Unit: 0.01
	Settings	0.00 to 600.0Hz	Factory Setting: 0.00

This parameter determines the frequency when DC Brake will begin during deceleration.

- DC Brake during Start-up is used for loads that may move before the AC drive starts, such as fans and pumps. Under such circumstances, DC Brake can be used to hold the load in position before setting it in motion.
- DC Brake during stopping is used to shorten the stopping time and also to hold a stopped load in position. For high inertia loads, a brake resistor for dynamic brake may also be needed for fast decelerations.

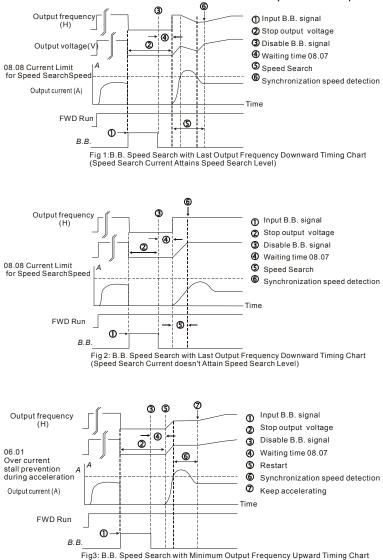
08.04	Momentar	Momentary Power Loss Operation Selection				
			Factory Setting: 0			
Settings 0 Operation stops (coast to stop) after momentary power loss						
		1	Operation continues after momentary power loss, speed search starts with the Master Frequency reference value.			
		2	Operation continues after momentary power loss, speed search starts with the minimum frequency.			

This parameter determines the operation mode when the AC motor drive restarts from a momentary power loss.

08.05	Maximum A	llowable Power Loss Time	Unit: 0.1
	Settings	0.1 to 5.0 sec	Factory Setting: 2.0

If the duration of a power loss is less than this parameter setting, the AC motor drive will resume operation. If it exceeds the Maximum Allowable Power Loss Time, the AC motor drive output is then turned off (coast stop).

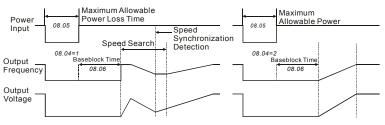
□ The selected operation after power loss in Pr.08.04 is only executed when the maximum allowable power loss time is ≤5 seconds and the AC motor drive displays "Lu". But if the AC motor drive is powered off due to overload, even if the maximum allowable power loss time is ≤5 seconds, the operation mode as set in Pr.08.04 is not executed. In that case it starts up normally.


08.06	Base Block	Base Block Speed Search					
			Factory Setting: 1				
	Settings	0	Disable				
		1	Speed search starts with last frequency command				
		2	Speed search starts with minimum output frequency (Pr.01.05)				

This parameter determines the AC motor drive restart method after External Base Block is enabled.

4-104 Download from Www.Somanuals.com. Aff Wahuas Search And Download.

4-105

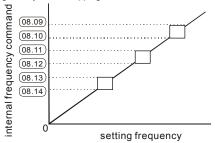


08.07	Baseblock	Time for Speed Search (BB)	Unit: 0.1
	Settings	0.1 to 5.0 sec	Factory Setting: 0.5

- When momentary power loss is detected, the AC motor drive will block its output and then wait for a specified period of time (determined by Pr.08.07, called Base-Block Time) before resuming operation. This parameter should be set at a value to ensure that any residual regeneration voltage from the motor on the output has disappeared before the drive is activated again.
- This parameter also determines the waiting time before resuming operation after External Baseblock and Auto Restart after Fault (Pr.08.15).
- When using a PG card with PG (encoder), speed search will begin at the actual PG (encoder) feedback speed.

08.08	Current Limi	t for Speed Search	Unit: 1
	Settings	30 to 200%	Factory Setting: 150

Following a momentary power loss, the AC motor drive will start its speed search operation only if the output current is greater than the value set by Pr.08.08. When the output current is less than the value of Pr.08.08, the AC motor drive output frequency is at "speed synchronization point". The drive will start to accelerate or decelerate back to the operating frequency at which it was running prior to the power loss.


Momentary Power Loss Operation

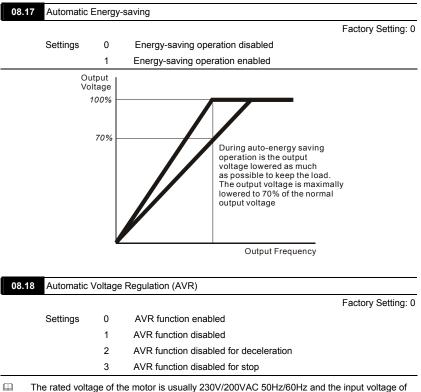
08.09	Skip Frequency 1 Upper Limit	Unit: 0.01
08.10	Skip Frequency 1 Lower Limit	Unit: 0.01
08.11	Skip Frequency 2 Upper Limit	Unit: 0.01

			Chapter 4 Parameters
08.12	Skip Freque	ncy 2 Lower Limit	Unit: 0.01
08.13 Skip Frequency 3 Upper Limit			Unit: 0.01
08.14	Skip Freque	ncy 3 Lower Limit	Unit: 0.01
	Settings	0.00 to 600.0Hz	Factory Setting: 0.00

ter / Devenue ferre | //-mile

- These six parameters should be set as follows $Pr.08.09 \ge Pr.08.10 \ge Pr.08.11 \ge Pr.08.12 \ge Pr.08.13 \ge Pr.08.14$.
- The frequency ranges may be overlapping.

08.15	Auto Resta	art After Fault	Unit: 1
	Settings	0 to 10	Factory Setting: 0
		0 Disable	


- Only after an over-current OC or over-voltage OV fault occurs, the AC motor drive can be reset/restarted automatically up to 10 times.
- Setting this parameter to 0 will disable automatic reset/restart operation after any fault has occurred.

When enabled, the AC motor drive will restart with speed search, which starts at the frequency before the fault. To set the waiting time before restart after a fault, please set Pr. 08.07 Base Block Time for Speed Search.

08.16	Auto Reset	Time at Restart after Fault	Unit: 0.1
	Settings	0.1 to 6000 sec	Factory Setting: 60.0

These parameters set the Skip Frequencies. It will cause the AC motor drive never to remain within these frequency ranges with continuous frequency output.

This parameter should be used in conjunction with Pr.08.15. For example: If Pr.08.15 is set to 10 and Pr.08.16 is set to 600s (10 min), and if there is no fault for over 600 seconds from the restart for the previous fault, the auto reset times for restart after fault will be reset to 10.

I he rated voltage of the motor is usually 230V/200VAC 50Hz/60Hz and the input voltage of the AC motor drive may vary between 180V to 264 VAC 50Hz/60Hz. Therefore, when the AC motor drive is used without AVR function, the output voltage will be the same as the input voltage. When the motor runs at voltages exceeding the rated voltage with 12% - 20%, its lifetime will be shorter and it can be damaged due to higher temperature, failing insulation and unstable torque output.

- AVR function automatically regulates the AC motor drive output voltage to the Maximum Output Voltage (Pr.01.02). For instance, if Pr.01.02 is set at 200 VAC and the input voltage is at 200V to 264VAC, then the Maximum Output Voltage will automatically be reduced to a maximum of 200VAC.
- When the motor ramps to stop, the deceleration time is longer. When setting this parameter to 2 with auto acceleration/deceleration, the deceleration will be quicker.

08.19	Software B (the Action	rake Level Level of the Brake resistor)	Unit: 0.1
	Settings	115/230V series: 370.0 to 430.0V	Factory Setting: 380.0
		460V series: 740.0 to 860.0V	Factory Setting: 760.0

- This parameter sets the DC-bus voltage at which the brake chopper is activated.
- This parameter will be invalid for Frame A models (VFD002E11A/21A/23A,

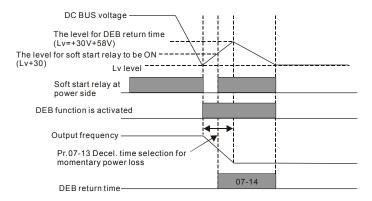
VFD004E11A/21A/23A/43A, VFD007E21A/23A/43A and VFD022E23A/43A) without brake chopper for which BUE brake unit must be used.

08.20	✓Compensa	ation Coefficient for Motor Instability	Unit: 0.1
	Settings	0.0~5.0	Factory Setting: 0.0

- The drift current will occur in a specific zone of the motor and it will make motor instable. By using this parameter, it will improve this situation greatly.
- The drift current zone of the high-power motors is usually in the low frequency area.
- It is recommended to set to more than 2.0.

08	.21 OOB Samp	bling Time	Unit: 0.1
	Settings	0.1 to 120.0 sec	Factory Setting: 1.0
08	.22 Number of	OOB Sampling Times	Unit: 1
	Settings	0.00 to 32	Factory Setting: 20
08	.23 OOB Avera	age Sampling Angle	
	Settings	Read-only	Factory Setting: #.#
	The OOB (Out	Of Balance Detection) function can b	e used with PLC for washing machine.
	When multi-fur	nction input terminal is enabled (MI=2	6), it will get $\Delta \theta$ value from the settings of
	Pr.08.21 and F	r.08.22. PLC or the host controller wi	Il decide the motor speed by this t $\Delta \theta$

value (Pr.08.23). When $\Delta\theta$ value is large, it means unbalanced load. At this moment, it needs


I

to lower the frequency command by PLC or the host controller. On the other hand, it can be

	high-speed ope	eration.						
08	.24 DEB Funct	ion						
							Facto	ory Setting: 0
	Settings	0	Disable					
		1	Enable					
08	.25 DEB Retur	n Time						Unit: 1
	Settings	0~25	i0 sec				Facto	ory Setting: 0
	The DEB (Dec	eleration	n Energy Ba	ckup) functic	on is the	AC moto	or drive decelerate	es to stop
	after momenta	ry powe	r loss. Wher	n the momen	tary pow	er loss o	occurs, this function	on can be
	used for the m	otor to d	lecelerate to	0 speed witl	h decele	ration st	op method. When	the power is
	on again, moto	r will ru	n again after	DEB return	time. (fo	r high-sp	beed axis applicat	ion)
ш	Status 1: Insuf	ficient p	ower supply	due to mom	entary p	ower-los	s/unstable power	(due to low
		BUSvo		time		/	it doesn't need	
	(Lv The level for so (Lv+30)	/=+30V+ ft start re	,	 			multi-function te	rminals -
		start rela r side	y at					
	DEB func	tion is ac	ctivated		- T - T			
	Outp	ut freque	ency					
			ecel. time sele power loss	ection for				
	DEB	return ti	me		0	7-14		
			14 is set to 0	the AC motor	r drive wi	ll he ston	ned and won't re-s	tart

When $\mbox{Pr.07-14}$ is set to 0, the AC motor drive will be stopped and won't re-start at the power-on again.

4-110 Download from Www.Somanuals.com. Aff Wiahdans Sona Chen Sworth And Download.

Group 9: Communication Parameters

There is a built-in RS-485 serial interface, marked RJ-45 near to the control terminals. The pins are defined below:

 RS-485 (NOT for VFD*E*C models)

 8+1
 Serial interface

 1: Reserved 2: EV
 3: GND

 4: SG 5: SG+
 6: Reserved

 7: Reserved 8: Reserved
 7: Reserved
 8: Reserved

The pins definition for VFD*E*C models, please refer to chapter E.1.2.

Each VFD-E AC motor drive has a pre-assigned communication address specified by Pr.09.00. The RS485 master then controls each AC motor drive according to its communication address.

09.00	≁ Commun	ication Address	
	Settings	1 to 254	Factory Setting: 1

If the AC motor drive is controlled by RS-485 serial communication, the communication address for this drive must be set via this parameter. And the communication address for each AC motor drive must be different and unique.

09.01		✓ Transmis			
					Factory Setting: 1
		Settings	0	Baud rate 4800 bps (bits / second)	
			1	Baud rate 9600 bps	
			2	Baud rate 19200 bps	
			3	Baud rate 38400 bps	

This parameter is used to set the transmission speed between the RS485 master (PLC, PC, etc.) and AC motor drive.

09.	.02 / Transmi	✓ Transmission Fault Treatment				
				Factory Setting: 3		
	Settings	0	Warn and keep operating			
		1	Warn and RAMP to stop			
		2	Warn and COAST to stop			
		3	No warning and keep operating			
m	This paramete	r is set	to how to react if transmission errors occur			

See list of error messages below (see section 3.6.)

09.03	✓Time-out	Detection	Unit: 0.1
	Settings	0.0 to 120.0 sec	Factory Setting: 0.0
		0.0 Disable	

If Pr.09.03 is not equal to 0.0, Pr.09.02=0~2, and there is no communication on the bus during the Time Out detection period (set by Pr.09.03), "cE10" will be shown on the keypad.

09.04 × Commu	nication	Protocol	
			Factory Setting: 0
Settings	0	Modbus ASCII mode, protocol <7,N,2>	
	1	Modbus ASCII mode, protocol <7,E,1>	
	2	Modbus ASCII mode, protocol <7,0,1>	
	3	Modbus RTU mode, protocol <8,N,2>	
	4	Modbus RTU mode, protocol <8,E,1>	
	5	Modbus RTU mode, protocol <8,0,1>	
	6	Modbus RTU mode, protocol <8,N,1>	
	7	Modbus RTU mode, protocol <8,E,2>	
	8	Modbus RTU mode, protocol <8,0,2>	
	9	Modbus ASCII mode, protocol <7,N,1>	
	10	Modbus ASCII mode, protocol <7,E,2>	
	11	Modbus ASCII mode, protocol <7,0,2>	

1. Control by PC or PLC

*A VFD-E can be set up to communicate in Modbus networks using one of the following modes: ASCII (American Standard Code for Information Interchange) or RTU (Remote Terminal Unit). Users can select the desired mode along with the serial port communication protocol in Pr.09.04.

★Code Description:

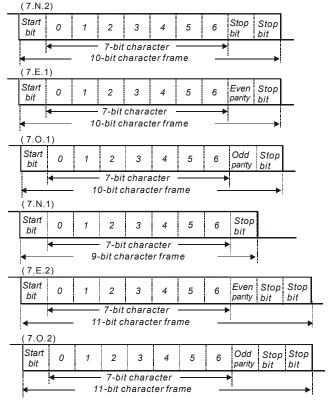
The CPU will be about 1 second delay when using communication reset. Therefore, there is at least 1 second delay time in master station.

ASCII mode:

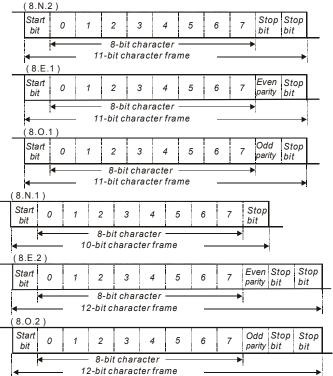
Each 8-bit data is the combination of two ASCII characters. For example, a 1-byte data:

64 Hex, shown as '64' in ASCII, consists of '6' (36Hex) and '4' (34Hex).

Char	acter	·0'	'1'	'2'	'3'	'4'	'5'	, 6'	'7'
ASCI	code	30H	31H	32H	33H	34H	35H	36H	37H


Character	'8'	'9'	'A'	'B'	ʻC'	'D'	'E'	'F'
ASCII code	38H	39H	41H	42H	43H	44H	45H	46H

RTU mode:


Each 8-bit data is the combination of two 4-bit hexadecimal characters. For example, 64 Hex.

2. Data Format

10-bit character frame (For ASCII):

11-bit character frame (For RTU):

- 3. Communication Protocol
 - 3.1 Communication Data Frame:

ASCII mode:

STX	Start character ':' (3AH)
Address Hi	Communication address:
Address Lo	8-bit address consists of 2 ASCII codes
Function Hi	Command code:
Function Lo	8-bit command consists of 2 ASCII codes
DATA (n-1)	Contents of data:
to	Nx8-bit data consist of 2n ASCII codes
DATA 0	n<=20, maximum of 40 ASCII codes

LRC CHK Hi	LRC check sum:
LRC CHK Lo	8-bit check sum consists of 2 ASCII codes
END Hi	End characters:
END Lo	END1= CR (0DH), END0= LF(0AH)

RTU mode:

START	A silent interval of more than 10 ms
Address	Communication address: 8-bit address
Function	Command code: 8-bit command
DATA (n-1) to DATA 0	Contents of data: n×8-bit data, n<=40 (20 x 16-bit data)
CRC CHK Low	CRC check sum:
CRC CHK High	16-bit check sum consists of 2 8-bit characters
END	A silent interval of more than 10 ms

3.2 Address (Communication Address)

Valid communication addresses are in the range of 0 to 254. A communication address equal

to 0, means broadcast to all AC drives (AMD). In this case, the AMD will not reply any

message to the master device.

00H: broadcast to all AC drives

01H: AC drive of address 01

0FH: AC drive of address 15

10H: AC drive of address 16

:

FEH: AC drive of address 254

For example, communication to AMD with address 16 decimal (10H):

ASCII mode: Address='1','0' => '1'=31H, '0'=30H

RTU mode: Address=10H

3.3 Function (Function code) and DATA (data characters)

The format of data characters depends on the function code.

03H: read data from register

06H: write single register

08H: loop detection

The available function codes and examples for VFD-E are described as follows:

(1) 03H: multi read, read data from registers.

Example: reading continuous 2 data from register address 2102H, AMD address is 01H. ASCII mode:

STX	:		
Address	'0'		
Address	'1'		
Function	ʻ0'		
Function	'3'		
	'2'		
Starting data	'1'		
address	'0'		
	'2'		
	ʻ0'		
Number of data	'0'		
(count by word)	'0'		
	'2'		
LRC Check	'D'		
LKC CHECK	'7'		
END	CR		
LIND	LF		

Command message:

Response message:

STX	: :
Address	'0'
Address	'1'
Function	'0'
runcion	'3'
Number of data	'0'
(Count by byte)	'4'
	'1'
Content of starting address 2102H	'7'
	'7'
	'0'
	'0'
Content of address	'0'
2103H	'0'
	'0'
LRC Check	'7'
ENO ONEOR	'1'
END	CR
LIND	LF

RTU mode:

Command message:

Address	01H
Function	03H
Starting data	21H
address	02H

Response message:

Address	01H
Function	03H
Number of data (count by byte)	04H

Number of data	00H
(count by word)	02H
CRC CHK Low	6FH
CRC CHK High	F7H

Content of address 2102H	17H
	70H
Content of address 2103H	00H
	00H
CRC CHK Low	FEH
CRC CHK High	5CH

(2) 06H: single write, write single data to register.

Example: writing data 6000(1770H) to register 0100H. AMD address is 01H.

ASCII mode:

Command	message:
---------	----------

Command message.		
STX	:.'	
Address	ʻ0'	
	'1'	
Function	ʻ0'	
	'6'	
	ʻ0'	
Data addraaa	'1'	
Data address	ʻ0'	
	ʻ0'	
	'1'	
Data content	'7'	
Data content	'7'	
	'0'	
LRC Check	'7'	
LRC Check	'1'	
END	CR	
END	LF	

Response message:

-
:'
'0'
'1'
'0'
'6'
'0'
'1'
'0'
'0'
'1'
'7'
'7'
'0'
'7'
'1'
CR
LF

RTU mode:

Command message:

Address 01H

Response message:

Address 01H

Download from Www.Somanuals.com. Aff Wiahdans Sona Cher And Download.

		Chapter 4 Parameters		15	
Function	08H		Function	08H	
Data address	00H		Data address	00H	
Data address	00H		Data address	00H	
Data content	17H		Data content	17H	
Data content	70H		Data content	70H	
CRC CHK Low	EEH		CRC CHK Low	EEH	
CRC CHK High	1FH		CRC CHK High	1FH	

(3) 08H: loop detection

This command is used to detect if the communication between master device (PC or PLC) and AC motor drive is normal. The AC motor drive will send the received message to the master device.

ASCII mode:

Command message:

command message.		
STX	:'	
Address	'0'	
	'1'	
Function	'0'	
	'8'	
Data address	'0'	
	ʻ0'	
	ʻ0'	
	ʻ0'	
	'1'	
Data content	'7'	
Data content	'7'	
	ʻ0'	
LRC Check	'7'	
LRC Check	'0'	
END	CR	
END	LF	

Response message:

-	-
STX	::'
Address	ʻ0'
Address	'1'
Function	ʻ0'
	'8'
Data address	'0'
	ʻ0'
	'0'
	ʻ0'
	'1'
Data content	'7'
Data content	'7'
	'0'
LRC Check	'7'
LKC CHECK	'0'
END	CR
LIND	LF

RTU mode:

Command message:

Address	01H
Function	08H
Data address	00H
Data address	00H
Data content	17H
Data content	70H
CRC CHK Low	EEH
CRC CHK High	1FH

Response	message:
----------	----------

Address	01H
Function	08H
Data address	00H
Data address	00H
Data content	17H
Data content	70H
CRC CHK Low	EEH
CRC CHK High	1FH

(4) 10H: write multiple registers (write multiple data to registers)

Example: Set the multi-step speed,

Pr.05.00=50.00 (1388H), Pr.05.01=40.00 (0FA0H). AC drive address is 01H.

ASCII Mode:

Command message:		
STX		
Address 1	ʻ0'	
Address 0	'1'	
Function 1	'1'	
Function 0	ʻ0'	
	'0'	
Starting data	'5'	
address	ʻ0'	
	ʻ0'	
	ʻ0'	
Number of data	ʻ0'	
(count by word)	ʻ0'	
	'2'	
Number of data	ʻ0'	
(count by byte)	'4'	
	'1'	
The first data	'3'	
content	'8'	
	'8'	
	ʻ0'	
The second data	'F'	
content	'A'	
	ʻ0'	
LRC Check	'9'	
LING GHECK	'A'	
END	CR	
LIND	LF	

Response message:

Response message.			
STX	·.,		
Address 1	ʻ0'		
Address 0	'1'		
Function 1	'1'		
Function 0	ʻ0'		
	ʻ0'		
Starting data	'5'		
address	ʻ0'		
	ʻ0'		
	ʻ0'		
Number of data	ʻ0'		
(count by word)	ʻ0'		
	'2'		
LRC Check	'E'		
LIKE CHECK	'8'		
	CR		
END	LF		

RTU mode:

Command message:			
Address	01H		
Function	10H		
Starting data	05H		
address	00H		
Number of data	00H'		
(count by word)	02H		
Number of data	04		
(count by byte)			
The first data	13H		
content	88H		
The second data	0FH		
content	A0H		
CRC Check Low	4DH		
CRC Check High	D9H		

Response message:

Address	01H
Function	10H
Starting data address	05H
	00H
Number of data	00H
(count by word)	02H
CRC Check Low	41H
CRC Check High	04H

3.4 Check sum

ASCII mode:

LRC (Longitudinal Redundancy Check) is calculated by summing up, module 256, the values of the bytes from ADR1 to last data character then calculating the hexadecimal representation of the 2's-complement negation of the sum.

representation of the 2 s-complement negation of the sum.

For example, reading 1 word from address 0401H of the AC drive with address 01H.

STX	·.'
Address 1	ʻ0'
Address 0	'1'
Function 1	ʻ0'
Function 0	'3'
	ʻ0'
Starting data address	'4'
	ʻ0'
	'1'
	ʻ0'
Number of data	ʻ0'
	ʻ0'
	'1'

LRC Check 1	'F'
LRC Check 0	'6'
END 1	CR
END 0	LF

01H+03H+04H+01H+00H+01H=0AH, the 2's-complement negation of 0AH is <u>F6</u>H.

RTU mode:

Address	01H
Function	03H
Starting data address	21H
	02H
Number of data	00H
(count by word)	02H
CRC CHK Low	6FH
CRC CHK High	F7H

CRC (Cyclical Redundancy Check) is calculated by the following steps:

Step 1: Load a 16-bit register (called CRC register) with FFFFH.

Step 2: Exclusive OR the first 8-bit byte of the command message with the low order byte of the 16-bit CRC register, putting the result in the CRC register.

Step 3: Examine the LSB of CRC register.

Step 4: If the LSB of CRC register is 0, shift the CRC register one bit to the right with MSB zero filling, then repeat step 3. If the LSB of CRC register is 1, shift the CRC register one bit to the right with MSB zero filling, Exclusive OR the CRC register with the polynomial value A001H, then repeat step 3.

Step 5: Repeat step 3 and 4 until eight shifts have been performed. When this is done, a complete 8-bit byte will have been processed.

Step 6: Repeat step 2 to 5 for the next 8-bit byte of the command message. Continue doing this until all bytes have been processed. The final contents of the CRC register are the CRC value. When transmitting the CRC value in the message, the upper and lower bytes of the CRC value must be swapped, i.e. the lower order byte will be transmitted first.

The following is an example of CRC generation using C language. The function takes two arguments:

Unsigned char* data ← a pointer to the message buffer

Unsigned char length ← the quantity of bytes in the message buffer

The function returns the CRC value as a type of unsigned integer.

```
Unsigned int crc_chk(unsigned char* data, unsigned char length){
    int j;
    unsigned int reg_crc=0xFFFF;
    while(length--){
        reg_crc ^= *data++;
        for(j=0;j<8;j++){
            if(reg_crc & 0x01){ /* LSB(b0)=1 */
            reg_crc=(reg_crc>>1) ^ 0xA001;
        }else{
            reg_crc=reg_crc >>1;
        }
    }
    return reg_crc;
}
```

3.5 Address list

The contents of available addresses are shown as below:

Content	Address		Function	
AC drive Parameters	GGnnH	GG means parameter group, nn means parameter number, for example, the address of Pr 04.01 is 0401H. Refer to chapter 5 for the function of each parameter. When reading parameter by command code 03H, only one parameter can be read at one time.		
Command Write only		Bit 0-1	00B: No function 01B: Stop 10B: Run 11B: Jog + Run	
		Bit 2-3	Reserved	
	2000H	Bit 4-5	00B: No function 01B: FWD 10B: REV 11B: Change direction	
		Bit 6-7	00B: Comm. forced 1st accel/decel 01B: Comm. forced 2nd accel/decel	
		Bit 8-15	Reserved	

Chapter 4 Parameters | Varal

Content	Address	Function		
	2001H	Frequency command		
		Bit 0	1: EF (external fault) on	
	2002H	Bit 1	1: Reset	
		Bit 2-15	Reserved	
Status		Error code:		
monitor	2100H	0: No error	occurred	
Read only		1: Over-cur	rent (oc)	
		2: Over-volt	age (ov)	
		3: IGBT Ov	erheat (oH1)	
		4: Power Bo	oard Overheat (oH2)	
		5: Overload	(oL)	
		6: Overload	1 (oL1)	
		7: Overload	2 (oL2)	
		8: External fault (EF)		
		9: Current e	exceeds 2 times rated current during accel (ocA)	
		10: Current exceeds 2 times rated current during decel (ocd) Current exceeds 2 times rated current during decel (ocd)		
		11: Current exceeds 2 times rated current during steady state operation (ocn)		
		12: Ground	l Fault (GFF)	
		13: Low vol	tage (Lv)	
		14: PHL (PI	nase-Loss)	
	2100H	15: Base Bl	ock	
		16: Auto ac	cel/decel failure (cFA)	
		17: Softwar	e protection enabled (codE)	
		18: Power Board CPU WRITE failure (CF1.0)		
		19: Power E	Board CPU READ failure (CF2.0)	
		20: CC, OC	Hardware protection failure (HPF1)	
		21: OV Har	dware protection failure (HPF2)	
		22: GFF Ha	rdware protection failure (HPF3)	
		23: OC Har	dware protection failure (HPF4)	

Content	Address	Function		
		24: U-phase error (cF3.0)		
			se error (cF3.1)	
			use error (cF3.2)	
			S error (cF3.3)	
	2100H		Overheat (cF3.4)	
			Board Overheat (cF3.5)	
			bl Board CPU WRITE failure (cF1.1)	
			bl Board CPU WRITE failure (cF2.1)	
			gnal error (AErr)	
		33: Reser		
		34: Motor	PTC overheat protection (PtC1)	
	2101H	Status of A	AC drive	
			00B: RUN LED is off, STOP LED is on (The AC motor Drive stops)	
		Bit 0-1	01B: RUN LED blinks, STOP LED is on (When AC motor drive decelerates to stop)	
		BIL U- I	10B: RUN LED is on, STOP LED blinks (When AC motor drive is standby)	
			11B: RUN LED is on, STOP LED is off (When AC motor drive runs)	
		Bit 2	1: JOG command	
		Bit 3-4	00B: FWD LED is on, REV LED is off (When AC motor drive runs forward)	
			01B: FWD LED is on, REV LED blinks (When AC motor drive runs from reverse to forward)	
			10B: FWD LED blinks, REV LED is on (When AC motor drive runs from forward to reverse)	
			11B: FWD LED is off, REV LED is on (When AC motor drive runs reverse)	
		Bit 5-7	Reserved	
		Bit 8	1: Master frequency Controlled by communication interface	
		Bit 9	1: Master frequency controlled by analog signal	

Content	Address		Function		
		Bit 10	1: Operation command controlled by communication interface		
		Bit 11-15	Reserved		
	2102H	Frequency	command (F)		
	2103H	Output free	quency (H)		
	2104H	Output cur	rent (AXXX.X)		
	2105H	Reserved			
	2106H	Reserved			
	2107H	Reserved			
	2108H	DC-BUS V	/oltage (UXXX.X)		
	2109H	Output voltage (EXXX.X)			
	210AH	Display temperature of IGBT (°C)			
	2116H	User defin	ed (Low word)		
	2117H	User defin	ed (High word)		

Note: 2116H is number display of Pr.00.04. High byte of 2117H is number of decimal places of 2116H. Low byte of 2117H is ASCII code of alphabet display of Pr.00.04.

3.6 Exception response:

The AC motor drive is expected to return a normal response after receiving command messages from the master device. The following depicts the conditions when no normal response is replied to the master device.

The AC motor drive does not receive the messages due to a communication error; thus, the AC motor drive has no response. The master device will eventually process a timeout condition.

The AC motor drive receives the messages without a communication error, but cannot handle them. An exception response will be returned to the master device and an error message "CExx" will be displayed on the keypad of AC motor drive. The xx of "CExx" is a decimal code equal to the exception code that is described below.

In the exception response, the most significant bit of the original command code is set to 1, and an exception code which explains the condition that caused the exception is returned.

Example of an exception response of command code 06H and exception code 02H:

ASCII mode:

RTU mode:

STX	·.,
317	•
Address Low	'0'
Address High	'1'
Function Low	' 8'
Function High	'6'
Exception code	ʻ0'
Exception code	'2'
LRC CHK Low	'7'
LRC CHK High	'7'
END 1	CR
END 0	LF

Chapter 4 Par	ameters 🛛 🖉	2
Address	01H	
Function	86H	
Exception code	02H	
CRC CHK Low	C3H	
CRC CHK High	A1H	

The explanation of exception codes:

Exception code	Explanation
	Illegal function code:
01	The function code received in the command message is not available for the AC motor drive.
	Illegal data address:
02	The data address received in the command message is not available for the AC motor drive.
	Illegal data value:
03	The data value received in the command message is not available for the AC drive.
04	Slave device failure:
04	The AC motor drive is unable to perform the requested action.
	Communication time-out:
10	If Pr.09.03 is not equal to 0.0, Pr.09.02=0~2, and there is no communication on the bus during the Time Out detection period (set by Pr.09.03), "cE10" will be shown on the keypad.

3.7 Communication program of PC:

The following is a simple example of how to write a communication program for Modbus

ASCII mode on a PC in C language.

#include<stdio.h>

#include<dos.h>

```
Chapter 4 Parameters | 1022213
       #include<conio h>
       #include<process.h>
       #define PORT 0x03F8 /* the address of COM1 */
       /* the address offset value relative to COM1 */
       #define THR 0x0000
       #define RDR 0x0000
       #define BRDI 0x0000
       #define IFR 0x0001
       #define BRDH 0x0001
       #define LCR_0x0003
       #define MCR 0x0004
       #define LSR_0x0005
       #define MSR_0x0006
       unsigned char rdat[60];
       /* read 2 data from address 2102H of AC drive with address 1 */
       unsigned char tdat[60]={':','0','1','0','3','2','1','0','2', '0','0','2','D','7','\r','\n'};
       void main(){
       int i:
       outportb(PORT+MCR.0x08):
                                       /* interrupt enable */
       outportb(PORT+IER.0x01):
                                      /* interrupt as data in */
       outportb(PORT+LCR.(inportb(PORT+LCR) | 0x80));
       /* the BRDL/BRDH can be access as LCR.b7==1 */
       outportb(PORT+BRDL.12):
                                      /* set baudrate=9600, 12=115200/9600*/
       outportb(PORT+BRDH.0x00):
       outportb(PORT+LCR,0x06); /* set protocol, <7,N,2>=06H, <7,E,1>=1AH,
       <7,O,1>=0AH, <8,N,2>=07H, <8,E,1>=1BH, <8,O,1>=0BH */
       for(i=0:i<=16:i++){
       while(!(inportb(PORT+LSR) & 0x20)); /* wait until THR empty */
       outportb(PORT+THR.tdat[i]): /* send data to THR */ }
       i=0:
       while(!kbhit()){
       if(inportb(PORT+LSR) & 0x01){ /* b0==1. read data ready */
       rdat[i++1=inportb(PORT+RDR): /* read data form RDR */
       } } }
```

09.05 Reserved			
----------------	--	--	--

				hapter 4 Parameters
09.06	Reserved			
	_			
09.07	✓ Response	Delay	Time	Unit: 2ms
	Settings	0~2	00 (400msec)	Factory Setting: 1
🕮 Th	nis parameter i	s the re	esponse delay time after AC drive recei	ves communication command
as	shown in the	followir	ng. 1 unit = 2 msec.	
RS485 E	sus —			
	PCo	or PLC co		Response Message of AC Drive
			Handling time of AC drive Pr.09.07 Max.: 6msec	
			Max.: omsec	
09.08	✓Transmis	sion Sp	eed for USB Card	
				Factory Setting: 2
	Settings	0	Baud rate 4800 bps	
	0	1	Baud rate 9600 bps	
		2	Baud rate 19200 bps	
		3	Baud rate 38400 bps	
		4	Baud rate 57600 bps	
L Th	nis narameter i	s used	to set the transmission speed for USB	card
		5 0500	to set the transmission speed for OOD	
09.09	✓ Communio	cation F	Protocol for USB Card	
	,			Factory Setting: 1
	Settings	0	Modbus ASCII mode, protocol <7,N,2	, ,
	Ū	1	Modbus ASCII mode, protocol <7,E,1	>
		2	Modbus ASCII mode, protocol <7,0,1	>
		3	Modbus RTU mode, protocol <8,N,2>	
		4	Modbus RTU mode, protocol <8,E,1>	
		5	Modbus RTU mode, protocol <8,0,1>	
		6	Modbus RTU mode, protocol <8,N,1>	
		7	Modbus RTU mode, protocol <8,E,2>	
		8	Modbus RTU mode, protocol <8,0,2>	•
		9	Modbus ASCII mode, protocol <7,N,1	
		10	Modbus ASCII mode, protocol <7,E,2	
		11	Modbus ASCII mode, protocol <7,0,2	2>

Chapter 4 Parameters | V220E

09.1	10 × Transmi	✓ Transmission Fault Treatment for USB Card						
	Settings	0	Warn and keep operating					
		1	Warn and RAMP to stop					
		2	Warn and COAST to stop					
		3	No warning and keep operating					
ш	This paramete	s parameter is set to how to react when transmission errors occurs.						

4-130 Download from Www.Somanuals.com. Afrivianuals Search And Download.

09.11	✓Time-out	Detecti	Unit: 0.1	
	Settings	0.0 t	o 120.0 sec	Factory Setting: 0.0
		0.0	Disable	
09.12	COM port f	or PLC	Communication (NOT for VFD*E*C models)	
				Factory Setting: 0
	Settings	0	RS485	
		1	USB card	

Group 10: PID Control

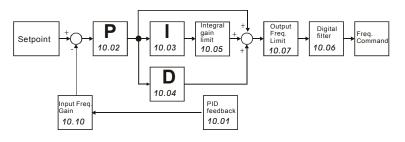
10.00	PID Set P	oint Sel	ection	
				Factory Setting: 0
	Settings	0	Disable	
		1	Digital keypad UP/DOWN keys	
		2	AVI 0 ~ +10VDC	
		3	ACI 4 ~ 20mA / AVI2 0 ~ +10VDC	
		4	PID set point (Pr.10.11)	

10	.01 Input Term	inal for	PID Feedback
			Factory Setting: 0
	Settings	0	Positive PID feedback from external terminal AVI (0 ~ +10VDC).
		1	Negative PID feedback from external terminal AVI (0 ~ +10VDC).
		2	Positive PID feedback from external terminal ACI (4 \sim 20mA)/ AVI2 (0 \sim +10VDC).
		3	Negative PID feedback from external terminal ACI (4 \sim 20mA)/ AVI2 (0 \sim +10VDC).
	Note that the n	neasure	ed variable (feedback) controls the output frequency (Hz). Select input
	terminal accore	dingly. I	Make sure this parameter setting does not conflict with the setting for
	Pr.10.00 (Mast	ter Freq	uency).
Ш	When Pr.10.00) is set	to 2 or 3, the set point (Master Frequency) for PID control is obtained
	from the AVI o	r ACI/A	VI2 external terminal (0 to +10V or 4-20mA) or from multi-step speed.
	When Pr.10.00) is set	to 1, the set point is obtained from the keypad.
Ш	Negative feed	back me	eans: +target value – feedback
	Positive feedba	ack mea	ans: -target value + feedback.

10	.02 / Proportio	onal Gain (P)	Unit: 0. 1
	Settings	0.0 to 10.0	Factory Setting: 1.0
	This parameter	r specifies proportional c	ontrol and associated gain (P). If the other two gains (I
	and D) are set	to zero, proportional cor	trol is the only one effective. With 10% deviation (error)

and P=1, the output will be P x10% x Master Frequency.

The parameter can be set during operation for easy tuning.


_				
10.0	3 ✓ Integral Ti	ime(I)		Unit: 0.01
	Settings	0.00 t	o 100.0 sec	Factory Setting: 1.00
		0.00	Disable	
	This parameter	specifie	s integral control (continual su	im of the deviation) and associated gain
	(I). When the inf	tegral ga	in is set to 1 and the deviation	n is fixed, the output is equal to the input
	(deviation) once	the inte	gral time setting is attained.	
	NOTE			
The pa	arameter can be	set duri	ng operation for easy tuning.	
10.0	4 × Derivative	e Contro	(D)	Unit: 0.01
	Settings	0.00 t	o 1.00 sec	Factory Setting: 0.00
ш	This parameter	specifie	s derivative control (rate of ch	ange of the input) and associated gain
	(D). With this pa	aramete	set to 1, the PID output is eq	ual to differential time x (present
	deviation - prev	ious de	viation). It increases the respo	nse speed but it may cause over-
	compensation.			
-				
	NOTE			
The pa	arameter can be	set duri	ng operation for easy tuning.	
10.0	5 Upper Bour	nd for In	egral Control	Unit: 1
	Settings	0 to 1	00 %	Factory Setting: 100
ш	This parameter	defines	an upper bound or limit for the	e integral gain (I) and therefore limits the
	Master Frequen	CV.		

The formula is: Integral upper bound = Maximum Output Frequency (Pr.01.00) x (Pr.10.05).
This parameter can limit the Maximum Output Frequency.

Cha	apter 4	Parameters	1/22-E	
1	0.06	Primary D	elay Filter Time	Unit: 0.1
		Settings	0.0 to 2.5 sec	Factory Setting: 0.0

To avoid amplification of measurement noise in the controller output, a derivative digital filter is inserted. This filter helps to dampen oscillations.

The complete PID diagram is in the following:

10.07	PID Output	Frequency Limit	Unit: 1
	Settings	0 to 110 %	Factory Setting: 100

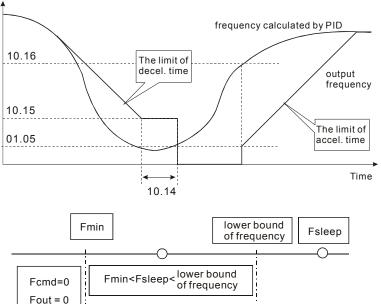
This parameter defines the percentage of output frequency limit during the PID control. The formula is Output Frequency Limit = Maximum Output Frequency (Pr.01.00) X Pr.10.07 %. This parameter will limit the Maximum Output Frequency. An overall limit for the output frequency can be set in Pr.01.07.

10	.08 PID Feedb	Unit: 0.1					
	Settings	0.0 to d 3600 sec	Factory Setting: 60.0				
	This parameter defines the time during which the PID feedback must be abnormal before a						
	warning (see Pr.10.09) is given. It also can be modified according to the system feedback						
	signal time.						
m	If this naromat	ar is set to 0.0, the system would not do	to at any abnormality aignal				

If this parameter is set to 0.0, the system would not detect any abnormality signal.

10.09	Treatment of the Erroneous Feedback Signals (for PID feedback error)					
				Factory Setting: 0		
	Settings	0	Warning and RAMP to stop			
		1	Warning and COAST to stop			
		2	Warning and keep operating			

4-135


- This function is only for ACI signal.
- AC motor drive action when the feedback signals (analog PID feedback) are abnormal according to Pr.10.16.

10	.10 Gain Over	the PID Detection Value	Unit: 0.1
	Settings	0.0 to 10.0	Factory Setting: 1.0
Ш	This function is	only for ACI signal.	
	This is the gain	adjustment over the feedback detection	value. Refer to PID control block
	diagram in Pr.1	0.06 for detail.	
10	.11 × Source o	f PID Set point	Unit: 0.01
	Settings	0.00 to 600.0Hz	Factory Setting: 0.00
	This parameter	is used in conjunction with Pr.10.00 set 4	to input a set point in Hz.
10	.12 PID Offset	Level	Unit: 0.1
	Settings	1.0 to 50.0%	Factory Setting: 10.0
10	.13 Detection T	ime of PID Offset	Unit: 0.1
	Settings	0.1 to 300.0 sec	Factory Setting: 5.0
Ш	This parameter	is used to set detection of the offset betw	veen set point and feedback.
Ш	When the offse	t is higher than the setting of Pr.10.12 for	a time exceeding the setting of
	Pr.10.13, the A	C motor drive will output a signal when Pr	r.03.00 ~ Pr.03.01 is set to 16.
10	.14 Sleep/Wak	e Up Detection Time	Unit: 0.1
	Settings	0.0 to 6550 sec	Factory Setting: 0.0
10	.15 Sleep Freq	uency	Unit: 0.01
-	Settings	0.00 to 600.0 Hz	Factory Setting: 0.00
10	.16 Wakeup Fr	equency	Unit: 0.01
	Settings	0.00 to 600.0 Hz	Factory Setting: 0.00

- $\label{eq:when the actual output frequency} \ensuremath{\sqsubseteq}\xspace \mathsf{Pr.10.15}\xspace$ and the time exceeds the setting of Pr.10.14, the AC motor drive will be in sleep mode.
- When the actual frequency command > Pr.10.16 and the time exceeds the setting of Pr.10.14, the AC motor drive will restart.

Chapter 4 Parameters | 1722213

- When the AC motor drive is in sleep mode, frequency command is still calculated by PID. When frequency reaches wake up frequency, AC motor drive will accelerate from Pr.01.05 minimum frequency following the V/f curve.
- The wake up frequency must be higher than sleep frequency.
 - Frequency

- When output frequency ≤ sleep frequency and time > detection time, it will go in sleep mode.
 When min. output frequency ≤ PID frequency ≤ lower bound of frequency and sleep function is enabled (output frequency ≤ sleep frequency and time > detection time), frequency will be 0 (in sleep mode). If sleep function is disabled, frequency command = lower bound frequency.
- When PID frequency < min. output frequency and sleep function is enabled (output frequency ≤ sleep frequency and time > detection time), output frequency =0 (in sleep mode).
 If output frequency ≤ sleep frequency but time < detection time, frequency command = lower frequency. If sleep function is disabled, output frequency =0.

Chapter 4 Parameters

			Onuplei 41	arameters	and the second se
10	.17 Minimum F	Minimum PID Output Frequency Selection			
	Factory Setting			y Setting: 0	
	Settings	0	By PID control		
		1	By Minimum output frequency (Pr.01.05)		
	This is the source selection of minimum output frequency when control is by PID.				

Group 11: Multi-function Input/Output Parameters for Extension Card

Make sure that the extension card is installed on the AC motor drive correctly before using group 11 parameters. See Appendix B for details.

11.00	Multi-function Output Terminal MO2/RA2		
11.01	Multi-function Output Terminal MO3/RA3		
11.02	Multi-function Output Terminal MO4/RA4		
11.03	Multi-function Output Terminal MO5/RA5		
11.04	Multi-function Output Terminal MO6/RA6		
11.05	Multi-function Output Terminal MO7/RA7		
	Settings 0 to 21	Factory Setting: 0	

Settings	Function	Description
0	No Function	
1	AC Drive Operational	Active when the drive is ready or RUN command is "ON".
2	Master Frequency Attained	Active when the AC motor drive reaches the output frequency setting.
3	Zero Speed	Active when Command Frequency is lower than the Minimum Output Frequency.
4	Over-Torque Detection	Active as long as over-torque is detected. (Refer to Pr.06.03 ~ Pr.06.05)
5	Baseblock (B.B.) Indication	Active when the output of the AC motor drive is shut off during baseblock. Base block can be forced by Multi- function input (setting 09).
6	Low-Voltage Indication	Active when low voltage (Lv) is detected.
7	Operation Mode Indication	Active when operation command is controlled by external terminal.
8	Fault Indication	Active when a fault occurs (oc, ov, oH, oL, oL1, EF, cF3, HPF, ocA, ocd, ocn, GFF).

4-139

Settings	Function	Description
9	Desired Frequency Attained	Active when the desired frequency (Pr.03.02) is attained.
10	Terminal Count Value Attained	Active when the counter reaches Terminal Count Value.
11	Preliminary Count Value Attained	Active when the counter reaches Preliminary Count Value.
12	Over Voltage Stall supervision	Active when the Over Voltage Stall function operating
13	Over Current Stall supervision	Active when the Over Current Stall function operating
14	Heat Sink Overheat Warning	When heatsink overheats, it will signal to prevent OH turn off the drive. When it is higher than 85oC (185oF), it will be ON.
15	Over Voltage supervision	Active when the DC-BUS voltage exceeds level
16	PID supervision	Active when the PID function is operating
17	Forward command	Active when the direction command is FWD
18	Reverse command	Active when the direction command is REV
19	Zero Speed Output Signal	Active unless there is an output frequency present at terminals U/T1, V/T2, and W/T3.
20	Communication Warning (FbE,Cexx, AoL2, AUE, SAvE)	Active when there is a Communication Warning
21	Brake Control (Desired Frequency Attained)	Active when output frequency \ge Pr.03.14. Deactivated when output frequency \le Pr.03.15 after STOP command.

11.06	Multi-function Input Terminal (MI7)	
11.07	Multi-function Input Terminal (MI8)	
11.08	Multi-function Input Terminal (MI9)	
11.09	Multi-function Input Terminal (MI10)	

Chapter 4 Parameters | Vanal

11.10	Multi-function Input Terminal (MI11)		
11.11	Multi-function Input Terminal (MI12)		
	Settings	0 to 23	Factory Setting: 0

Settings	Function	Description
0	No Function	Any unused terminals should be programmed to 0 to insure they have no effect on operation.
1	Multi-Step Speed Command 1	These four inputs select the multi-speed defined by Pr.05.00 to
2	Multi-Step Speed Command 2	Pr.05.14 as shown in the diagram at the end of the table in Pr.04.08. NOTE: Pr.05.00 to Pr.05.14 can also be used to control output
3	Multi-Step Speed Command 3	speed by programming the AC motor drive's internal PLC function. There are 17 step speed frequencies (including Master Frequency and Jog Frequency) to select for application.
4	Multi-Step Speed Command 4	
5	External Reset	The External Reset has the same function as the Reset key on the Digital keypad. After faults such as O.H., O.C. and O.V. are cleared this input can be used to reset the drive.
6	Accel/Decel Inhibit	When the command is active, acceleration and deceleration is stopped and the AC motor drive maintains a constant speed.
7	Accel/Decel Time Selection Command	Used to select the one of 2 Accel/Decel Times (Pr.01.09 to Pr.01.12). See explanation at the end of this table.
8	Jog Operation Control	Parameter value 08 programs one of the Multi-function Input Terminals MI7 ~ MI12 (Pr.11.06~Pr.11.11) for Jog control. NOTE: Programming for Jog operation by 08 can only be done while the motor is stopped. (Refer to parameter Pr.01.13~Pr.01.15)

Settings	Function	Description
		Parameter value 09 programs a Multi-function Input Terminals for external Base Block control.
9	External Base Block (Refer to Pr.08.06)	NOTE: When a Base-Block signal is received, the AC motor drive will block all output and the motor will free run. When base block control is deactivated, the AC drive will start its speed search function and synchronize with the motor speed, and then accelerate to Master Frequency.
10	UP: Increase Master Frequency	Increase/decrease the Master Frequency each time an input is received or continuously when the input stays active. When both
11	DOWN: Decrease Master Frequency	inputs are active at the same time, the Master Frequency increase/decrease is halted. Please refer to Pr.02.07, 02.08. This function is also called "motor potentiometer".
12	Counter Trigger	Parameter value 12 programs one of the Multi-function Input Terminals MI7 ~ MI12 (Pr.11.06~Pr.11.11) to increment the AC drive's internal counter. When an input is received, the counter is incremented by 1.
13	Counter Reset	When active, the counter is reset and inhibited. To enable counting the input should be OFF. Refer to Pr.03.05 and 03.06.
14	External Fault	Parameter value 14 programs one of the Multi-function Input Terminals MI7 ~ MI12 (Pr.11.06~Pr.11.11) to be External Fault (E.F.) inputs.
15	PID function disabled	When an input ON with this setting is ON, the PID function will be disabled.
16	Output Shutoff Stop	AC motor drive will stop output and the motor free run if one of these settings is enabled. If the status of terminal is changed, AC motor drive will restart from 0Hz.
17	Parameter lock enable	When this setting is enabled, all parameters will be locked and write parameters is disabled.

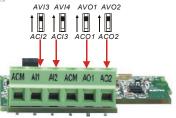
Settings	Function	Description
18	Operation Command Selection (Pr.02.01 setting/external terminals)	ON: Operation command via Ext. Terminals OFF: Operation command via Pr.02.01 setting Pr.02.01 is disabled if this parameter value 18 is set. See the explanation below this table.
19	Operation Command Selection (Pr 02.01 setting/Digital Keypad)	ON: Operation command via Digital Keypad OFF: Operation command via Pr.02.01 setting Pr.02.01 is disabled if this parameter value 19 is set. See the explanation below this table.
20	Operation Command Selection (Pr 02.01 setting/ Communication)	ON: Operation command via Communication OFF: Operation command via Pr.02.01 setting Pr.02.01 is disabled if this parameter value 20 is set. See the explanation below this table.
21	Forward/Reverse	This function has top priority to set the direction for running (If "Pr.02.04=0")
22	Source of second frequency command enabled	Used to select the first/second frequency command source. Refer to Pr.02.00 and 02.09. ON: 2nd Frequency command source OFF: 1st Frequency command source
23	Run/Stop PLC Program	ON: Run PLC Program OFF: Stop PLC Program When AC motor drive is in STOP mode and this function is enabled, it will display PLC1 in the PLC page and execute PLC program. When this function is disabled, it will display PLC0 in the PLC page and stop executing PLC program. The motor will be stopped by Pr.02.02. When operation command source is external terminal, the keypad cannot be used to change PLC status. And this function will be invalid when AC Motor drive is in PLC2 status.

Settings	Function	Description
24	Download/Execute/ Monitor PLC Program (PLC2)	When AC motor drive is in STOP mode and this function is enabled, it will display PLC2 in the PLC page and you can download/execute/monitor PLC. When this function is disabled, it will display PLC0 in the PLC page and stop executing PLC program. The motor will be stopped by Pr.02.02. When operation command source is external terminal, the keypad cannot be used to change PLC status. And this function will be invalid when the AC Motor drive is in PLC1 status.

Chapter 4 Parameters |

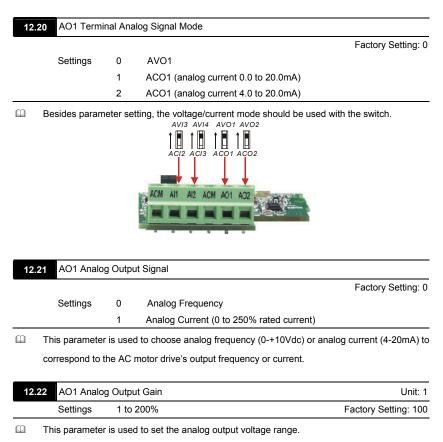
Group 12: Analog Input/Output Parameters for Extension Card

Make sure that the extension card is installed on the AC motor drive correctly before using group 12 parameters. See Appendix B for details.


	_			
12.00	Al1 Function	on Sele	ction	
1				Factory Setting: 0
	Settings	0	Disabled	
		1	Source of the 1st frequency	
		2	Source of the 2nd frequency	
		3	PID Set Point (PID enable)	
		4	Positive PID feedback	
		5	Negative PID feedback	
12.01	AI1 Analog	signal	Mode	
1				Factory Setting: 1
	Settings	0	ACI2 analog current (0.0 ~ 20.0mA)	
		1	AVI3 analog voltage (0.0 ~ 10.0V)	
			ACI2 ACI3 ACO1 ACO2	
12.02	Min. AVI3	Input V	oltage	Unit: 0.1
	Settings	0.0	to 10.0V	Factory Setting: 0.0
12.03	Min. AVI3	Scale F	Percentage	Unit: 0.1
	Settings	0.0	to 100.0%	Factory Setting: 0.0
12.04	Max. AVI3	Input V	/oltage	Unit: 0.1
	Settings	0.0	to 10.0V	Factory Setting: 10.0

4-145

Unit: 0.1	Percentage	Max. AVI3
Factory Setting: 100.0	to 100.0%	Settings
Unit: 0.1	urrent	Min. ACI2 li
Factory Setting: 4.0	to 20.0mA	Settings
Unit: 0.1	Percentage	Min. ACI2 S
Factory Setting: 0.0	to 100.0%	Settings
Unit: 0.1	Current	Max. ACI2
Factory Setting: 20.0	to 20.0mA	Settings
Unit: 0.1	Percentage	Max. ACI2
Factory Setting: 100.0	to 100.0%	Settings
	ction	AI2 Functio
Factory Setting: 0		
	Disabled	Settings
	Source of the 1st frequency	
	Source of the 2nd frequency	
	PID Set Point (PID enable)	
	Positive PID feedback	
	Negative PID feedback	•
	I Mode	Al2 Analog
Factory Setting: 1		
	ACI3 analog current (0.0 ~ 20.0mA)	Settings
	ACIS analog current (0.0 ~ 20.0mA)	J.

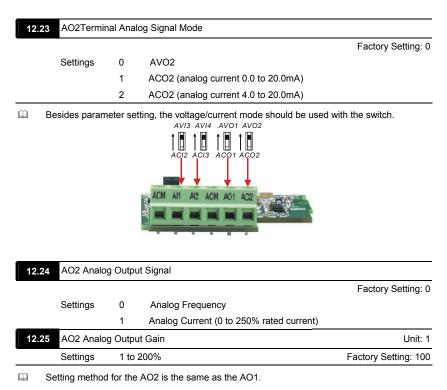

Settings

0.0 to 100.0%

Unit: 0.1	nput Voltage	12.12 Min. AVI4 I
Factory Setting: 0.0	0.0 to 10.0V	Settings
Unit: 0.1	Scale Percentage	12.13 Min. AVI4 S
Factory Setting: 0.0	0.0 to 100.0%	Settings
Unit: 0.1	Input Voltage	12.14 Max. AVI4
Factory Setting: 10.0	0.0 to 10.0V	Settings
Unit: 0.1	Scale Percentage	12.15 Max. AVI4
Factory Setting: 100.0	0.0 to 100.0%	Settings
Unit: 0.1	Input Current	12.16 Min. ACI3 I
Factory Setting: 4.0	0.0 to 20.0mA	Settings
Unit: 0.1	Scale Percentage	12.17 Min. ACI3 S
Factory Setting: 0.0	0.0 to 100.0%	Settings
Unit: 0.1	Input Current	12.18 Max. ACI3
Factory Setting: 20.0	0.0 to 20.0mA	Settings
Unit: 0.1	Scale Percentage	12.19 Max. ACI3

Factory Setting: 100.0

- When Pr.12.21 is set to 0, analog output voltage corresponds to the AC motor drive's output frequency. When Pr.12.22 is set to 100, the max. output frequency (Pr.01.00) setting corresponds to the AFM output (+10VDC or 20mA)
- When Pr.12.21 is set to 1, analog output voltage corresponds to the AC motor drive's output current. When Pr.12.22 is set to 100, the 2.5 X rated current corresponds to the AFM output (+10VDC or 20mA)



If the scale of the voltmeter is less than 10V, refer to following formula to set Pr.12.22:

Pr.12.22 = [(full scale voltage)/10]*100%.

Example: When using voltmeter with full scale (5V), Pr.12.22 should be set to 5/10*100%=50%. If

Pr.12.21 is set to 0, the output voltage will correspond to the max. output frequency.

Group 13: PG function Parameters for Extension Card

Make sure that the extension card is installed on the AC motor drive correctly before using group 12 parameters. See Appendix B for details.

13.00	PG Input					
					Fa	ctory Setting: 0
	Settings	0	Disable PG			
		1	Single phase			
		2	Forward/Counterc	lockwise	e rotation	
		3	Reverse/Clockwis	e rotatio	n	
Ω	The relationsh	ip betwee	n the motor rotation	n and PC	G input is illustrated below:	
	FWD			CCW	A phase leads B phase A phase B phase 13.00=2	
	REV			CW	B phase leads A phase A phase B phase 13.00=3	
	PULSI GENE	E RATOR		CW	A phase	
13.01	PG Pulse I	Range				Unit: 1
	Settings	1 to 2	0000		Facto	ory Setting: 600
	A Pulse Gener	ator (PG)	is used as a senso	or that pr	ovides a feedback signal o	f the motor
\$	speed. This pa	irameter o	defines the number	of pulse	s for each cycle of the PG	control.
13.02	2 Motor Pole	Number	(Motor 0)			Unit: 1
	Settings	2 to 1	0		Fa	ctory Setting: 4
Ω.	The pole numb	per should	d be even (can't be	odd).		
13.03	Proportio	onal Gain	(P)			Unit: 0.01
	Settings	0.0 to	10.0		Fact	ory Setting: 1.0

This parameter specifies proportional control and associated gain (P), and is used for speed control with PG feedback.

Chap	pter 4 Parameters VIII E	
13	3.04 ✓ Integral Gain (I)	Unit: 0.01
	Settings 0.00 to 100.00 sec	Factory Setting: 1.00
	0.00 Disable	
ш	This parameter specifies integral control and associated	gain (I), and is used for speed control
	with PG feedback.	
13	3.05	Unit: 0.01
	Settings 0.00 to 100.00Hz	Factory Setting: 10.00
Ω	This parameter limits the amount of correction by the PI	control on the output frequency when
	controlling speed via PG feedback. It can limit the maxim	
	Frequency	output frequency
	command	Output +
	Speed \rightarrow $P_{13.03}$	
		13.05
	L I L	
	13.04	
13	3.06	Unit: 1
	Settings 0 to 9999 (*2ms)	Factory Setting: 500
ш	When Pr.0.04 is set to 14, its display will be updated reg	ularly. This update time is set by
	Pr.13.06.	
13	3.09 / Speed Feedback Filter	Unit: 1
	Settings 0 to 9999 (*2ms)	Factory Setting: 16
ш	This parameter is the filter time from the speed feedback	to the PG card.
13	3.07 Time for Feedback Signal Fault	Unit: 0.1
	Settings 0.1 to 10.0 sec	Factory Setting: 1.0
	0.0 Disabled	
Ω	This parameter defines the time during which the PID fee	edback must be abnormal before a
	warning (see Pr.13.08) is given. It also can be modified a	according to the system feedback
	signal time.	
ш	If this parameter is set to 0.0, the system would not deter	ct any abnormality signal.

13.0	8 X Treatme	nt of the	e Feedback Signal Fault	
				Factory Setting: 1
	Settings	0	Warn and RAMP to stop	
		1	Warn and COAST to stop	
		2	Warn and keep operating	
	AC motor drive feedback) are		when the feedback signals (analog F al.	PID feedback or PG (encoder)
13.1	,		-speed Counter (NOT for VFD*E*C	models)
				Factory Setting: Read only
	Settings	0	PG card	
		1	PLC	

4.4 Different Parameters for VFD*E*C Models

Software version for VFD*E*C is V1.00 for power board and V2.00 for control board.

 \mathcal{M} : The parameter can be set during operation.

Group 0 User Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		0: Parameter can be read/written		
		1: All parameters are read only		
		6: Clear PLC program (NOT for VFD*E*C models)		
00.02	Parameter Reset	9: All parameters are reset to factory settings (50Hz, 230V/400V or 220V/380V depends on Pr.00.12)	0	
		10: All parameters are reset to factory settings (60Hz, 220V/440V)		
		0: Display the frequency command value (Fxxx)		
		1: Display the actual output frequency (Hxxx)		
₩ 00.03	Start-up Display	2: Display the content of user-defined unit (Uxxx)	0	
,	Selection	3: Multifunction display, see Pr.00.04	-	
		4: FWD/REV command		
		5: PLCx (PLC selections: PLC0/PLC1/PLC2) (NOT for VFD*E*C models)		
₩ 00.04	Content of Multi- function Display	0: Display the content of user-defined unit (Uxxx)	0	
		1: Display the counter value (c)		
		2: Display PLC D1043 value (C) (NOT for VFD*E*C models)		
		3: Display DC-BUS voltage (u)		
		4: Display output voltage (E)		
		5: Display PID analog feedback signal value (b) (%)		
		6: Output power factor angle (n)		
		7: Display output power (P)		

Chapter 4 Parameters

1.771 =			
1.771			

Parameter	Explanation	Settings	Factory Setting	Customer
		8: Display the estimated value of torque as it relates to current (t)		
		9: Display AVI (I) (V)		
		10: Display ACI / AVI2 (i) (mA/V)		
		11: Display the temperature of IGBT (h) ($^{\circ}$ C)		
		12: Display AVI3/ACI2 level (I.)		
		13: Display AVI4/ACI3 level (i.)		
		14: Display PG speed in RPM (G)		
		15: Display motor number (M)		

Group 1 Basic Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
₩01.11	Accel Time 2	0.1 to 600.0 / 0.01 to 600.0 sec	1.0	
₩01.12	Decel Time 2	0.1 to 600.0 / 0.01 to 600.0 sec	1.0	

Group 2 Operation Method Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
		0: Digital keypad UP/DOWN keys or Multi- function Inputs UP/DOWN. Last used frequency saved.		
(00.00	Source of First	1: 0 to +10V from AVI	_	
₩02.00	Master Frequency Command	2: 4 to 20mA from ACI or 0 to +10V from AVI2	5	
		3: RS-485 (RJ-45)/USB communication		
		4: Digital keypad potentiometer		
		5: CANopen communication		
₩02.01	Source of First	0: Digital keypad	5	
	Operation Command	1: External terminals. Keypad STOP/RESET enabled.		
		2: External terminals. Keypad STOP/RESET disabled.		

Parameter	•	Settings	Factory Setting	Customer
		3: RS-485 (RJ-45)/USB communication. Keypad STOP/RESET enabled.		
		4: RS-485 (RJ-45)/USB communication. Keypad STOP/RESET disabled.		
		5: CANopen communication. Keypad STOP/RESET disabled.		
		0: Digital keypad UP/DOWN keys or Multi- function Inputs UP/DOWN. Last used frequency saved.		
	Source of Second	1: 0 to +10V from AVI		
₩ 02.09	Frequency Command	2: 4 to 20mA from ACI or 0 to +10V from AVI2	0	
		3: RS-485 (RJ-45)/USB communication		
		4: Digital keypad potentiometer		
		5: CANopen communication		
		Read Only		
		Bit0=1: by First Freq Source (Pr.02.00)		
	Display the Master Freq Command Source	Bit1=1: by Second Freq Source (Pr.02.09)	##	
		Bit2=1: by Multi-input function		
		Bit3=1: by PLC Freq command (NOT for VFD*E*C models)		
		Read Only		
02.17		Bit0=1: by Digital Keypad		
	Display the Operation	Bit1=1: by RS485 communication	##	
02.17	Command Source	Bit2=1: by External Terminal 2/3 wire mode		
		Bit3=1: by Multi-input function		
		Bit5=1: by CANopen communication		

Group 3 Output Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
03.09	Reserved			
03.10	Reserved			

Group 4 Input Function Parameters

Parameter	Explanation	Settings	Factory Setting	Customer
04.05 Multi-function Input Terminal (MI3)	0: No function	1		
	1: Multi-Step speed command 1			

Chapter 4 Parameters |

		Chapter 4 Parameters		7/22/02	
Parameter	Explanation	Settings	Factory Setting	Customer	
		2: Multi-Step speed command 2			
04.06	Multi-function Input	3: Multi-Step speed command 3	2		
	Terminal (MI4)	4: Multi-Step speed command 4			
		5: External reset			
04.07	Multi-function Input	6: Accel/Decel inhibit	3		
	Terminal (MI5)	7: Accel/Decel time selection command			
		8: Jog Operation			
04.08	Multi-function Input	9: External base block	23		
	Terminal (MI6)	10: Up: Increment master frequency			
		11: Down: Decrement master frequency			
		12: Counter Trigger Signal			
		13: Counter reset			
		14: E.F. External Fault Input			
		15: PID function disabled			
		16: Output shutoff stop			
		17: Parameter lock enable			
		18: Operation command selection (external terminals)			
		19: Operation command selection(keypad)			
		20: Operation command selection (communication)			
		21: FWD/REV command			
		22: Source of second frequency command			
		23: Quick Stop (Only for VFD*E*C models)			
		24: Download/execute/monitor PLC Program (PLC2) (NOT for VFD*E*C models)			
		25: Simple position function			
		26: OOB (Out of Balance Detection)			
		27: Motor selection (bit 0)			
		28: Motor selection (bit 1)			
04.24	Reserved				

Chapter 4 Parameters 1/2013						
Parameter	Explanation	Settings Fac	tory: ting	Customer		
04.25	Reserved					

Group 7 Motor Parameters

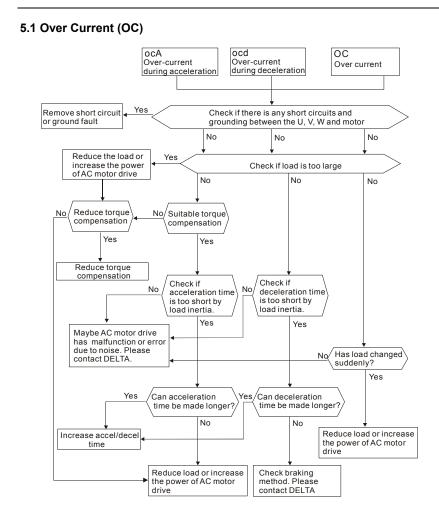
Parameter	Explanation	Settings	Factory Setting	Customer
07.08	Torque Compensation Time Constant	0.01 ~10.00 Sec	0.30	

Group 9 Communication Parameters

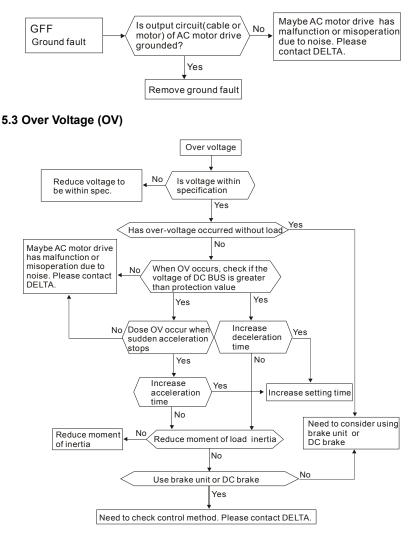
Parameter	Explanation	Settings	Factory Setting	Customer
09.12	Reserved			
09.13	CANopen Communication Address	0: disable 1: 1 to 127	1	
09.14	CANbus Baud Rate	0: 1M 1: 500K 2: 250K 3: 125K 4: 100K 5: 50K	0	
09.15	Gain of CANbus Frequency	0.00~2.00	1.00	
09.16	CANbus Warning	bit 0 : CANopen Guarding Time out bit 1 : CANopen Heartbeat Time out bit 2 : CANopen SYNC Time out bit 3 : CANopen SDO Time out bit 4 : CANopen SDO buffer overflow bit 5 : CANbus Off bit 6 : Error protocol of CANopen bit 7 : CANopen boot up fault	Read- only	

Group 11 Parameters for Extension Card

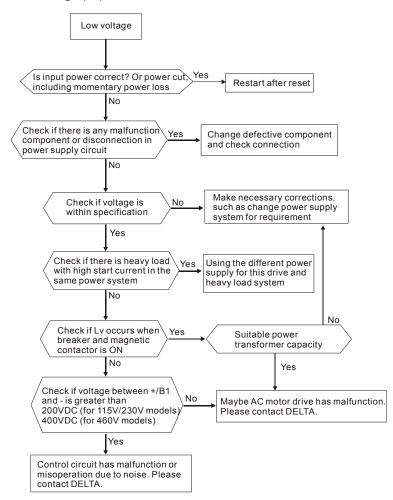
Chapter 4 Parameters |

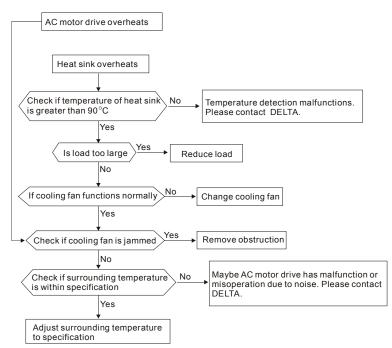

4-157

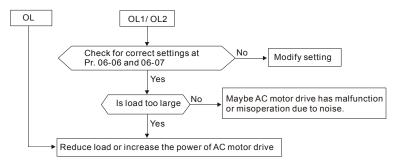
_		Chapter 4 Parameters		7 AM
Parameter	Explanation	Settings	Factory Setting	Customer
		0: No function	0	
11.06	Multi-function Input Terminal (MI7)	1: Multi-Step speed command 1		
		2: Multi-Step speed command 2		
		3: Multi-Step speed command 3	0	
	Multi-function Input Terminal (MI8)	4: Multi-Step speed command 4		
		5: External reset		
		6: Accel/Decel inhibit	0	
11.08	Multi-function Input Terminal (MI9)	7: Accel/Decel time selection command		
()		8: Jog Operation		
		9: External base block	0	
11.09	Multi-function Input Terminal (MI10)	10: Up: Increment master frequency		
		11: Down: Decrement master frequency		
		12: Counter Trigger Signal	0	
11.10	Multi-function Input	13: Counter reset		
11.10	Terminal (MI11)	14: E.F. External Fault Input		
		15: PID function disabled		
11.11	Multi-function Input	16: Output shutoff stop	0	
	Terminal (MI12)	17: Parameter lock enable		
		18: Operation command selection (external terminals)		
		19: Operation command selection (keypad)		
		20: Operation command selection (communication)		
		21: FWD/REV command		
		22: Source of second frequency command		
		23: Quick Stop (Only for VFD*E*C models)		
		24: Download/execute/monitor PLC Program (PLC2) (NOT for VFD*E*C models)		
		25: Simple position function		
		26: OOB (Out of Balance Detection)		

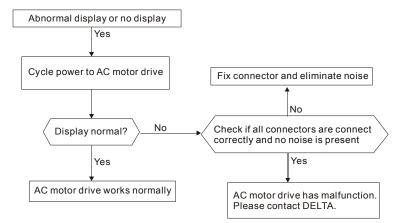

Parameter	Explanation	Settings	Factory Setting	Customer
		27: Motor selection (bit 0)		
		28: Motor selection (bit 1)		

Group 13: PG function Parameters for Extension Card

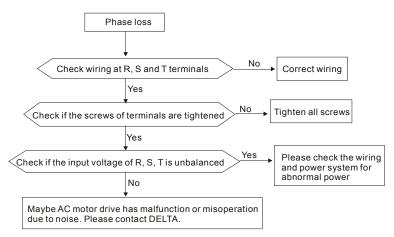

Parameter	Explanation	Settings	Factory Setting	Customer
13.10	Reserved			

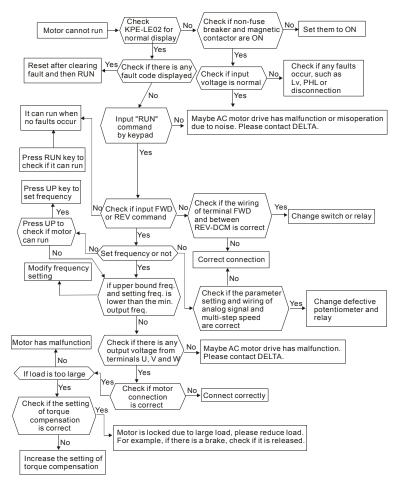

5.2 Ground Fault


5.4 Low Voltage (Lv)



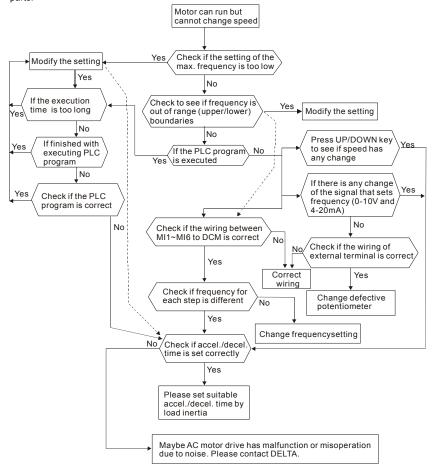
5.5 Over Heat (OH)


5.6 Overload

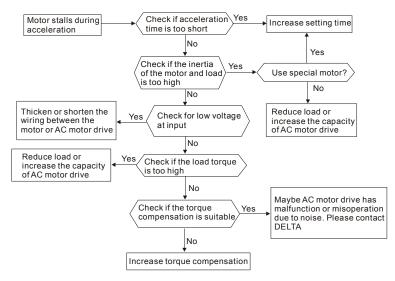


5.7 Keypad Display is Abnormal

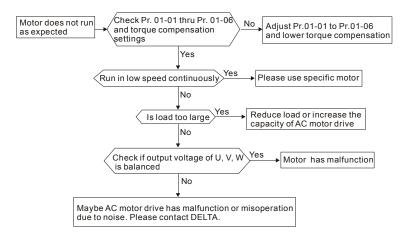
5.8 Phase Loss (PHL)



5.9 Motor cannot Run



5.10 Motor Speed cannot be Changed


For VFD*E*C models, no PLC function is supported. Please follow the dashed line to skip the PLC parts.

5.11 Motor Stalls during Acceleration

5.12 The Motor does not Run as Expected

5.13 Electromagnetic/Induction Noise

Many sources of noise surround AC motor drives and penetrate it by radiation or conduction. It may cause malfunctioning of the control circuits and even damage the AC motor drive. Of course, there are solutions to increase the noise tolerance of an AC motor drive. But this has its limits. Therefore, solving it from the outside as follows will be the best.

- 1. Add surge suppressor on the relays and contacts to suppress switching surges.
- Shorten the wiring length of the control circuit or serial communication and keep them separated from the power circuit wiring.
- Comply with the wiring regulations by using shielded wires and isolation amplifiers for long length.
- The grounding terminal should comply with the local regulations and be grounded independently, i.e. not to have common ground with electric welding machines and other power equipment.
- Connect a noise filter at the mains input terminal of the AC motor drive to filter noise from the power circuit.

In short, solutions for electromagnetic noise exist of "no product" (disconnect disturbing equipment), "no spread" (limit emission for disturbing equipment) and "no receive" (enhance immunity).

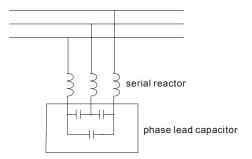
5.14 Environmental Condition

Since the AC motor drive is an electronic device, you should comply with the environmental conditions. Here are some remedial measures if necessary.

- To prevent vibration, the use of anti-vibration dampers is the last choice. Vibrations must be within the specification. Vibration causes mechanical stress and it should not occur frequently, continuously or repeatedly to prevent damage to the AC motor drive.
- Store the AC motor drive in a clean and dry location, free from corrosive fumes/dust to
 prevent corrosion and poor contacts. Poor insulation in a humid location can cause shortcircuits. If necessary, install the AC motor drive in a dust-proof and painted enclosure and
 in particular situations, use a completely sealed enclosure.
- 3. The ambient temperature should be within the specification. Too high or too low temperature will affect the lifetime and reliability. For semiconductor components, damage will occur once any specification is out of range. Therefore, it is necessary to periodically check air quality and the cooling fan and provide extra cooling of necessary. In addition, the microcomputer may not work in extremely low temperatures, making cabinet heating necessary.

Chapter 5 Troubleshooting |

 Store within a relative humidity range of 0% to 90% and non-condensing environment. Use an air conditioner and/or exsiccator.


5.15 Affecting Other Machines

An AC motor drive may affect the operation of other machines due to many reasons. Some solutions are:

High Harmonics at Power Side

High harmonics at power side during running can be improved by:

- 1. Separate the power system: use a transformer for AC motor drive.
- 2. Use a reactor at the power input terminal of the AC motor drive.
- If phase lead capacitors are used (never on the AC motor drive output!!), use serial reactors to prevent damage to the capacitors damage from high harmonics.

Motor Temperature Rises

When the motor is a standard induction motor with fan, the cooling will be bad at low speeds, causing the motor to overheat. Besides, high harmonics at the output increases copper and core losses. The following measures should be used depending on load and operation range.

- 1. Use a motor with independent ventilation (forced external cooling) or increase the motor rated power.
- 2. Use a special inverter duty motor.
- 3. Do NOT run at low speeds for long time.

Chapter 6 Fault Code Information and Maintenance

6.1 Fault Code Information

The AC motor drive has a comprehensive fault diagnostic system that includes several different alarms and fault messages. Once a fault is detected, the corresponding protective functions will be activated. The following faults are displayed as shown on the AC motor drive digital keypad display. The five most recent faults can be read from the digital keypad or communication.

Wait 5 seconds after a fault has been cleared before performing reset via keypad of input terminal.

Fault Name	Fault Descriptions	Corrective Actions
oc	Over current Abnormal increase in current.	 Check if motor power corresponds with the AC motor drive output power. Check the wiring connections to U/T1, V/T2, W/T3 for possible short circuits. Check the wiring connections between the AC motor drive and motor for possible short circuits, also to ground. Check for loose contacts between AC motor drive and motor. Increase the Acceleration Time. Check for possible excessive loading conditions at the motor. If there are still any abnormal conditions when operating the AC motor drive after a short- circuit is removed and the other points above are checked, it should be sent back to manufacturer.
00	Over voltage The DC bus voltage has exceeded its maximum allowable value.	 Check if the input voltage falls within the rated AC motor drive input voltage range. Check for possible voltage transients. DC-bus over-voltage may also be caused by motor regeneration. Either increase the Decel. Time or add an optional brake resistor (and brake unit). Check whether the required brake power is within the specified limits.

6.1.1 Common Problems and Solutions

Fault Name	Fault Descriptions	Corrective Actions
0 X 1 0 X 2	Overheating Heat sink temperature too high	 Ensure that the ambient temperature falls within the specified temperature range. Make sure that the ventilation holes are not obstructed. Remove any foreign objects from the heatsinks and check for possible dirty heat sink fins. Check the fan and clean it. Provide enough spacing for adequate ventilation. (See chapter 1)
Lu	Low voltage The AC motor drive detects that the DC bus voltage has fallen below its minimum value.	 Check whether the input voltage falls within the AC motor drive rated input voltage range. Check for abnormal load in motor. Check for correct wiring of input power to R-S- T (for 3-phase models) without phase loss.
٥٤	Overload The AC motor drive detects excessive drive output current. NOTE: The AC motor drive can withstand up to 150% of the rated current for a maximum of 60 seconds.	 Check whether the motor is overloaded. Reduce torque compensation setting in Pr.07.02. Use the next higher power AC motor drive model.
ol 1	Overload 1 Internal electronic overload trip	 Check for possible motor overload. Check electronic thermal overload setting. Use a higher power motor. Reduce the current level so that the drive output current does not exceed the value set by the Motor Rated Current Pr.07.00.
ol2	Overload 2 Motor overload.	 Reduce the motor load. Adjust the over-torque detection setting to an appropriate setting (Pr.06.03 to Pr.06.05).
XPF ;	CC (current clamp)	
<u> </u>	OV hardware error	Return to the factory.
ХРГЗ	GFF hardware error	
ХРЕЧ	OC hardware error	
66	External Base Block. (Refer to Pr. 08.07)	 When the external input terminal (B.B) is active, the AC motor drive output will be turned off. Deactivate the external input terminal (B.B) to operate the AC motor drive again.

Fault Name	Fault Descriptions	Corrective Actions
oc 8	Over-current during acceleration	 Short-circuit at motor output: Check for possible poor insulation at the output lines. Torque boost too high: Decrease the torque compensation setting in Pr.07.02. Acceleration Time too short: Increase the Acceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
000	Over-current during deceleration	 Short-circuit at motor output: Check for possible poor insulation at the output line. Deceleration Time too short: Increase the Deceleration Time. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
000	Over-current during constant speed operation	 Short-circuit at motor output: Check for possible poor insulation at the output line. Sudden increase in motor loading: Check for possible motor stall. AC motor drive output power is too small: Replace the AC motor drive with the next higher power model.
٤۶	External Fault	 When multi-function input terminals (MI3-MI9) are set to external fault, the AC motor drive stops output U, V and W. Give RESET command after fault has been cleared.
cF (0	Internal EEPROM can not be programmed.	Return to the factory.
68 ()	Internal EEPROM can not be programmed.	Return to the factory.
c F 2.0	Internal EEPROM can not be read.	 Press RESET key to set all parameters to factory setting. Return to the factory.
c F 2, I	Internal EEPROM can not be read.	 Press RESET key to set all parameters to factory setting. Return to the factory.
c F 3.0	U-phase error	
c 8 3, 1	V-phase error	
c 8 3.2	W-phase error	Return to the factory.
c F 3.3	OV or LV	
с F <u>3</u> ,Ч с F <u>3</u> ,5	Temperature sensor error	

Fault Name	Fault Descriptions	Corrective Actions
GFF	Ground fault	 When (one of) the output terminal(s) is grounded, short circuit current is more than 50% of AC motor drive rated current, the AC motor drive power module may be damaged. NOTE: The short circuit protection is provided for AC motor drive protection, not for protection of the user. Check whether the IGBT power module is damaged. Check for possible poor insulation at the output line.
c ۶ R	Auto accel/decel failure	 Check if the motor is suitable for operation by AC motor drive. Check if the regenerative energy is too large. Load may have changed suddenly.
c E	Communication Error	 Check the RS485 connection between the AC motor drive and RS485 master for loose wires and wiring to correct pins. Check if the communication protocol, address, transmission speed, etc. are properly set. Use the correct checksum calculation. Please refer to group 9 in the chapter 5 for detail information.
codE	Software protection failure	Return to the factory.
88rr	Analog signal error	Check the wiring of ACI
۶۵٤	PID feedback signal error	 Check parameter settings (Pr.10.01) and AVI/ACI wiring. Check for possible fault between system response time and the PID feedback signal detection time (Pr.10.08)
PX1	Phase Loss	Check input phase wiring for loose contacts.
888	Auto Tuning Error	 Check cabling between drive and motor Retry again
CP 10	Communication time-out error on the control board or power board	 Press RESET key to set all parameters to factory setting. Return to the factory.
PE[;	Motor overheat protection	1. Check if the motor is overheat
PE[2	Motor overheat protection	2. Check Pr.07.12 to Pr.07.17 settings
<i>P6</i> 8r	PG signal error	 Check the wiring of PG card Try another PG card
6683	CANopen Guarding Time out (Only for VFDxxxExxC)	Connect to CAN bus again and reset CAN bus

Chapter 6 Fault Code Information and Maintenance |

Fault Name	Fault Descriptions	Corrective Actions
C.868	CANopen Heartbeat Time out (Only for VFDxxxExxC)	Connect to CAN bus again and reset CAN bus
853c	CANopen SYNC Time out (Only for VFDxxxExxC)	Check if CANopen synchronous message is abnormal
8500	CANopen SDO Time out (Only for VFDxxxExxC)	Check if command channels are full
C 5 6 F	CANopen SDO buffer overflow (Only for VFDxxxExxC)	 Too short time between commands, please check SDO message sent from the master Reset CAN bus
C 6 5 F	CAN bus off (Only for VFDxxxExxC)	 Check if it connects to terminal resistor Check if the signal is abnormal Check if the master is connected
C 6 8 8	CAN Boot up fault (Only for VFDxxxExxC)	 Check if the master is connected Reset CAN bus
[Pto	Error communication protocol of CANopen (Only for VFDxxxExxC)	Check if the communication protocol is correct

6.1.2 Reset

There are three methods to reset the AC motor drive after solving the fault:

- 1. Press key on keypad.
- Set external terminal to "RESET" (set one of Pr.04.05~Pr.04.08 to 05) and then set to be ON.
- 3. Send "RESET" command by communication.

Make sure that RUN command or signal is OFF before executing RESET to prevent damage or personal injury due to immediate operation.

6.2 Maintenance and Inspections

Modern AC motor drives are based on solid-state electronics technology. Preventive maintenance is required to keep the AC motor drive in its optimal condition, and to ensure a long life. It is recommended to have a qualified technician perform a check-up of the AC motor drive regularly.

Daily Inspection:

Basic check-up items to detect if there were any abnormalities during operation are:

- 1. Whether the motors are operating as expected.
- 2. Whether the installation environment is abnormal.
- 3. Whether the cooling system is operating as expected.
- 4. Whether any irregular vibration or sound occurred during operation.
- 5. Whether the motors are overheating during operation.
- 6. Always check the input voltage of the AC drive with a Voltmeter.

Periodic Inspection:

Before the check-up, always turn off the AC input power and remove the cover. Wait at least 10 minutes after all display lamps have gone out, and then confirm that the capacitors have fully discharged by measuring the voltage between $\oplus \sim \bigcirc$. It should be less than 25VDC.

- 1. Disconnect AC power before processing!
- Only qualified personnel can install, wire and maintain AC motor drives. Please take off any metal objects, such as watches and rings, before operation. And only insulated tools are allowed.
- 3. Never reassemble internal components or wiring.
- 4. Prevent static electricity.

Periodical Maintenance

Ambient environment

Check Items	Methods and Criterion	Maintenance Period		
		Daily	Half Year	One Year
Check the ambient temperature, humidity, vibration and see if there are any dust, gas, oil or water drops	Visual inspection and measurement with equipment with standard specification	0		
Check if there are any dangerous objects in the environment	Visual inspection	0		

Voltage

		Maintenance Period		
Check Items	Methods and Criterion		Half Year	One Year
Check if the voltage of main circuit and control circuit is correct	Measure with multimeter with standard specification	0		

Keypad

Oha ala Marra	Methods and Criterion		Maintenance Period		
Check Items			Half Year	One Year	
Is the display clear for reading?	Visual inspection	0			
Any missing characters?	Visual inspection	0			

Mechanical parts

Check Items	Methods and Criterion	Maintenance Period		
Check items		Daily	Half Year	One Year
If there is any abnormal sound or vibration	Visual and aural inspection		0	
If there are any loose screws	Tighten the screws		0	
If any part is deformed or damaged	Visual inspection		0	
If there is any color change by overheating	Visual inspection		0	
If there is any dust or dirt	Visual inspection		0	

Main circuit

Check Home	Methods and Criterion	Maintenance Period		
Check Items		Daily	Half Year	One Year
If there are any loose or missing screws	Tighten or replace the screw	0		
If machine or insulator is deformed, cracked, damaged or with changed color change due to overheating or ageing	Visual inspection NOTE: Please ignore the color change of copper plate		0	
If there is any dust or dirt	Visual inspection		0	

Terminals and wiring of main circuit

Check Home	Methods and Criterion		Maintenance Period		
Check Items			Half Year	One Year	
If the wiring shows change of color change or deformation due to overheat	Visual inspection		0		
If the insulation of wiring is damaged or the color has changed	Visual inspection		0		
If there is any damage	Visual inspection		0		

DC capacity of main circuit

Check Items	Methods and Criterion	Maintenance Period		
Check Items		Daily	Half Year	One Year
If there is any leakage of liquid, change of color, cracks or deformation	Visual inspection	0		
Measure static capacity when required	Static capacity \geq initial value X 0.85		0	

Resistor of main circuit

Check Items	Notheda and Oritorian	Maintenance Period				
	Methods and Criterion	Daily	Half Year	One Year		
If there is any peculiar smell or insulator cracks due to overheating	Visual inspection, smell		0			
If there is any disconnection	Visual inspection or measure with multimeter after removing wiring between +/B1 ~ - Resistor value should be within ± 10%		0			

Transformer and reactor of main circuit

		Maintenance Period			
Check Items	Methods and Criterion	Daily	Half Year	One Year	
If there is any abnormal vibration or peculiar smell	Visual, aural inspection and smell	0			

Magnetic contactor and relay of main circuit

		Maintenance Period				
Check Items	Methods and Criterion		Half Year	One Year		
If there are any loose screws	Visual and aural inspection. Tighten screw if necessary.	0				
If the contact works correctly	Visual inspection	0				

Printed circuit board and connector of main circuit

		Maintenance Period				
Check Items	Methods and Criterion	Daily	Half Year	One Year		
If there are any loose screws and connectors	Tighten the screws and press the connectors firmly in place.		0			
If there is any peculiar smell and color change	Visual inspection and smell		0			
If there is any crack, damage, deformation or corrosion	Visual inspection		0			
If there is any leaked liquid or deformation in capacitors	Visual inspection		0			

Cooling fan of cooling system

		Maintenance Period				
Check Items	Methods and Criterion	Daily	Half Year	One Year		
If there is any abnormal sound or vibration	Visual, aural inspection and turn the fan with hand (turn off the power before operation) to see if it rotates smoothly			0		
If there is any loose screw	Tighten the screw			0		
If there is any change of color due to overheating	Change fan			0		

Ventilation channel of cooling system

Charle Home	Nother the and Orithmican	-	intenar Period	
Check Items	Methods and Criterion		Half Year	One Year
If there is any obstruction in the heat sink, air intake or air outlet	Visual inspection		0	

6-11

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A Specifications

There are 115V, 230V and 460V models in the VFD-E series. For 115V models, it is 1-phase models. For 0.25 to 3HP of the 230V models, there are 1-phase/3-phase models. Refer to following specifications for details.

	Voltage Class		115V Class					
	Model Number VFD-XXXE	002	007					
Max	Applicable Motor Output (kW)	0.2	0.4	0.75				
Max	Applicable Motor Output (hp)	0.25	0.5	1.0				
0	Rated Output Capacity (kVA)	0.6	1.0	1.6				
atinç	Rated Output Current (A)	1.6	2.5	4.2				
Output Rating	Maximum Output Voltage (V)	3-Phase	Proportional to Twice the Inp	ut Voltage				
	Output Frequency (Hz)	0.1~600 Hz						
	Carrier Frequency (kHz)	1-15						
	Dated Input Current (A)	Single-phase						
ting	Rated Input Current (A)	6	9	18				
nput Rating	Rated Voltage/Frequency	S	ingle phase, 100-120V, 50/60	Hz				
Indu	Voltage Tolerance		<u>+</u> 10%(90~132 V)					
<u>-</u>	Frequency Tolerance	<u>+</u> 5%(47~63 Hz)						
Coc	ling Method	Natura	Fan Cooling					
Wei	ight (kg)	1.2	1.2	1.2				

	Voltage Class	230V Class										
Ν	Model Number VFD-XXXE	002	004	007	015	022	037	055	075			
Max. A	Applicable Motor Output (kW)	0.2	0.4	0.75	1.5	2.2	3.7	5.5	7.5			
Max. A	Applicable Motor Output (hp)	0.25	0.5	1.0	2.0	3.0	5.0	7.5	10			
D	Rated Output Capacity (kVA)	0.6	1.0	1.6	2.9	4.2	6.5	9.5	12.5			
atin	Rated Output Current (A)	1.6	2.5	4.2	7.5	11.0	17	25	33			
Output Rating	Maximum Output Voltage (V)	3-Phase Proportional to Input Voltage										
	Output Frequency (Hz)	0.1~600 Hz										
0	Carrier Frequency (kHz)	1-15										
		Single/3-phase						3-phase				
ing	Rated Input Current (A)	4.9/1.9	6.5/2.7	9.5/5.1	15.7/9	24/15	20.6	26	34			
Input Rating	Rated Voltage/Frequency	Single/3-phase 3-phase 200-240 V, 50/60Hz 200-240V, 50/60Hz										
dul	Voltage Tolerance				<u>+</u> 10%	%(180~264	4 V)					
	Frequency Tolerance	<u>+</u> 5%(47~63 Hz)										
Coolir	ng Method	Na	tural Cool	ing		F	an Coolin	g				
Weigh	nt (kg)	1.1	1.1	1.1	*1.2/1.9	1.9	1.9	3.5	3.5			

*NOTE: the weight for VFD015E23P is 1.2kg.

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11

Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix A Specifications |

A-2

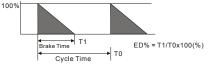
	Voltage Class	460V Class									
N	Model Number VFD-XXXE	004	007	015	022	037	055	075	110		
Max. A	Applicable Motor Output (kW)	0.4	0.75	1.5	2.2	3.7	5.5	7.5	11		
Max. A	Applicable Motor Output (hp)	0.5	1.0	2.0	3.0	5.0	7.5	10	15		
DC	Rated Output Capacity (kVA)	1.2	2.0	3.3	4.4	6.8	9.9	13.7	18.3		
Output Rating	Rated Output Current (A)	1.5	2.5	4.2	5.5	8.2	13	18	24		
tput	Maximum Output Voltage (V)	3-Phase Proportional to Input Voltage									
no	Output Frequency (Hz)	0.1~600 Hz									
	Carrier Frequency (kHz)				1-	15					
		3-phase									
ting	Rated Input Current (A)	1.9	3.2	4.3	7.1	11.2	14	19	26		
nput Rating	Rated Voltage/Frequency			3-ph	ase, 380-4	480V, 50/6	60Hz				
dul	Voltage Tolerance				<u>+</u> 10%(3-	42~528V)					
	Frequency Tolerance				<u>+</u> 5%(4	7~63Hz)					
Coolir	ng Method	Natural	Cooling			Fan C	ooling				
Weigh		1.2	1.2	1.2	1.9	1.9	4.2	4.2	4.2		

	General Specifications									
	Control Sys	tem	SPWM(Sinusoidal Pulse Width Modulation) control (V/f or sensorless vector control)							
	Frequency	Setting Resolution	0.01Hz							
	Output Free	uency Resolution	0.01Hz							
Control Characteristics	Torque Cha	racteristics	Including the auto-torque/auto-slip compensation; starting torque can be 150% at 3.0Hz							
ctei	Overload Er	ndurance	150% of rated current for 1 minute							
ıara	Skip Freque	ency	Three zones, setting range 0.1-600Hz							
þ	Accel/Dece	Time	0.1 to 600 seconds (2 Independent settings for Accel/Decel time)							
ntro	Stall Prever	tion Level	Setting 20 to 250% of rated current							
Cor	DC Brake		Operation frequency 0.1-600.0Hz, output 0-100% rated current Start time 0-60 seconds, stop time 0-60 seconds							
	Regenerate	d Brake Torque	Approx. 20% (up to 125% possible with optional brake resistor or externally mounted brake unit, 1-15hp (0.75-11kW) models have brake chopper built-in)							
	V/f Pattern		4-point adjustable V/f pattern							
s	Frequency	Keypad	Setting by 🔺 💌							
Characteristics	Setting	External Signal	Potentiometer-5k Ω /0.5W, 0 to +10VDC, 4 to 20mA, RS-485 interface; Multifunction Inputs 3 to 9 (15 steps, Jog, up/down)							
Jare	Operation	Keypad	Set by RUN and STOP							
ting Cł	Setting Signal	External Signal	2 wires/3 wires (MI1, MI2, MI3), JOG operation, RS-485 serial interface (MODBUS), programmable logic controller							
Operating	Multi-function Input Signal		Multi-step selection 0 to 15, Jog, accel/decel inhibit, 2 accel/decel switches, counter, external Base Block, ACI/AVI selections, driver reset, UP/DOWN key settings, NPN/PNP input selection							

		General Specifications
_	Multi-function Output Indication	AC drive operating, frequency attained, zero speed, Base Block, fault indication, overheat alarm, emergency stop and status selections of input terminals
	Analog Output Signal	Output frequency/current
	Alarm Output Contact	Contact will be On when drive malfunctions (1 Form C/change-over contact and 1 open collector output) for standard type)
	Operation Functions	Built-in PLC(NOT for CANopen models), AVR, accel/decel S-Curve, over- voltage/over-current stall prevention, 5 fault records, reverse inhibition, momentary power loss restart, DC brake, auto torque/slip compensation, auto tuning, adjustable carrier frequency, output frequency limits, parameter lock/reset, vector control, PID control, external counter, MODBUS communication, abnormal reset, abnormal re-start, power-saving, fan control, sleep/wake frequency, 1st/2nd frequency source selections, 1st/2nd frequency source combination, NPN/PNP selection, parameters for motor 0 to motor 3, DEB and OOB (Out Of Balance Detection)(for washing machine)
	Protection Functions	Over voltage, over current, under voltage, external fault, overload, ground fault, overheating, electronic thermal, IGBT short circuit, PTC
	Display Keypad (optional)	6-key, 7-segment LED with 4-digit, 5 status LEDs, master frequency, output frequency, output current, custom units, parameter values for setup and lock, faults, RUN, STOP, RESET, FWD/REV, PLC
	Built-in Brake Chopper	VFD002E11T/21T/23T, VFD004E11T/21T/23T/43T, VFD007E21T/23T/43T, VFD015E23T/43T, VFD007E11A, VFD015E21A, VFD022E21A/23A/43A, VFD03TE23A/43A VFD007E11C, VFD015E21C, VFD022E21C/23C/43C, VFD037E23C/43C, VFD055E23A/43A, VFD075E23A/43A, VFD110E43A, VFD055E23C/43C, VFD075E23C/43C, VFD110E43C
	Built-in EMI Filter	For 230V 1-phase and 460V 3-phase models.
	Enclosure Rating	IP20
ons	Pollution Degree	2
onditi	Installation Location	Altitude 1,000 m or lower, keep from corrosive gasses, liquid and dust
Environmental Conditions	Ambient Temperature	-10°C to 50°C (40°C for side-by-side mounting) Non-Condensing and not frozen
ironme	Storage/ Transportation Temperature	-20 °C to 60 °C
Env	Ambient Humidity	Below 90% RH (non-condensing)
	Vibration	9.80665m/s 2 (1G) less than 20Hz, 5.88m/s 2 (0.6G) at 20 to 50Hz
Appro	ovals	

This page intentionally left blank

B.1 All Brake Resistors & Brake Units Used in AC Motor Drives


Note: Please only use DELTA resistors and recommended values. Other resistors and values will void Delta's warranty. Please contact your nearest Delta representative for use of special resistors. The brake unit should be at least 10 cm away from AC motor drive to avoid possible interference. Refer to the "Brake unit Module User Manual" for further details.

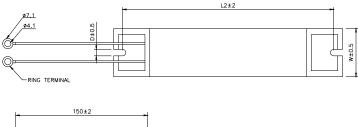
Voltage	Applio Mo		AC Drive Part No.	Full Load	Equivalent Resistor Value	Brake Unit P No. and	art	Brake Resisto Part No. and		Brake Torque	Min. Equivalent Resistor Value
Nol	hp	kW		Torque KG-M	(recommended)	Quantity		Quantity		10%ED	for each AC Motor Drive
<i>(</i>)	0.25	0.2	VFD002E11A/11C/11P	0.110	200W 250 Ω	BUE-20015	1	BR200W250	1	343	200 Ω
Series	0.25	0.2	VFD002E11T	0.110	200W 250Ω			BR200W250	1	343	200 Ω
/ Se			VFD004E11A/11C/11P		200W 250Ω	BUE-20015	1	BR200W250	1	170	100 Ω
115V :	0.5	0.4	VFD004E11T	0.216	200W 250 Ω			BR200W250	1	170	100 Ω
-	1	0.75	VFD007E11A/11C/11P	0.427	200W 150Ω			BR200W150	1	143	80 Ω
	0.25	0.2	VFD002E21A/21C/21P/23A 23C/23P	0.110	200W 250 Ω	BUE-20015	1	BR200W250	1	343	200 Ω
			VFD002E21T/23T		200W 250 Ω			BR200W250	1	343	200 Ω
	0.5	0.4	VFD004E21A/21C/21P/23A /23C/23P	0.216	200W 250 Ω	BUE-20015	1	BR200W250	1	170	100 Ω
			VFD004E21T/23T		200W 250Ω			BR200W250	1	170	100 Ω
Series	1 0.75 /23C/23F	VFD007E21A/21C/21P/23A /23C/23P	0.427	200W 150Ω	BUE-20015	1	BR200W150	1	143	80 Ω	
Se			VFD007E21T/23T		200W 150Ω			BR200W150	1	143	80 Ω
230V			VFD015E21A/21C	0.849	300W 85Ω			BR300W100	1	107	40 Ω
23	2	1.5	VFD015E23T		300W 85Ω			BR300W100	1	107	80 Ω
			VFD015E23A/23C/23P		300W 85Ω	BUE-20015	1	BR300W100	1	107	80 Ω
	3	2.2	VFD022E21A/21C/23A/23C	1.262	600W 50Ω			BR300W100	2	143	40 Ω
	5	3.7	VFD037E23A/23C	2.080	600W 50Ω			BR300W100	2	85	40 Ω
	7.5	5.5	VFD055E23A/23C	3.111	800W 37.5 Ω			BR200W150	4	76	34 Ω
	10	7.5	VFD075E23A/23C	4.148	1200W 25Ω			BR300W100	4	85	24 Ω
	0.5	0.4	VFD004E43A/43C/43P	0.216	300W 400 Ω	BUE-40015	1	BR300W400	1	428	400 Ω
	0.5	0.4	VFD004E43T	0.210	300W 400 Ω			BR300W400	1	428	400 Ω
	1	0.75	VFD007E43A/43C/43P	0.427	300W 400Ω	BUE-40015	1	BR300W400	1	214	200 Ω
		0.75	VFD007E43T	0.427	300W 400 Ω			BR300W400	1	214	200 Ω
Series	2	1.5	VFD015E43A/43C	0.849	400W 300 Ω	BUE-40015	1	BR200W150	2	143	160 Ω
Ser	2	1.5	VFD015E43T	0.649	400W 300Ω			BR200W150	2	143	160 Ω
460V :	3	2.2	VFD022E43A/43C	1.262	600W 200Ω			BR300W400	2	143	140 Ω
46	5	3.7	VFD037E43A/43C	2.080	900W 133Ω			BR300W400	3	129	96 Ω
	7.5	5.5	VFD055E43A/43C	3.111	1200W 100 Ω			BR300W400	4	115	96 Ω
	10	7.5	VFD075E43A/43C	4.148	1500W 80Ω			BR300W400	5	107	69 Ω
	15	11	VFD110E43A/43C	6.186	2100W 57Ω			BR300W400	7	100	53 Ω



- Please select the brake unit and/or brake resistor according to the table. "-" means no Delta product. Please use the brake unit according to the Equivalent Resistor Value.
- If damage to the drive or other equipment is due to the fact that the brake resistors and the brake modules in use are not provided by Delta, the warranty will be void.
- 3. Take into consideration the safety of the environment when installing the brake resistors.
- If the minimum resistance value is to be utilized, consult local dealers for the calculation of the power in Watt.
- Please select thermal relay trip contact to prevent resistor over load. Use the contact to switch power off to the AC motor drive!
- 6. When using more than 2 brake units, equivalent resistor value of parallel brake unit can't be less than the value in the column "Minimum Equivalent Resistor Value for Each AC Drive" (the right-most column in the table).
- Please read the wiring information in the user manual of the brake unit thoroughly prior to installation and operation.
- 8. Definition for Brake Usage ED%

Explanation: The definition of the barking usage ED(%) is for assurance of enough time for the brake unit and brake resistor to dissipate away heat generated by braking. When the brake resistor heats up, the resistance would increase with temperature, and brake torque would decrease accordingly. Suggest cycle time is one minute

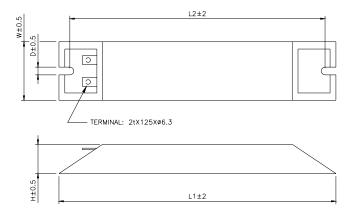
9. For safety reasons, install a thermal overload relay between brake unit and brake resistor. Together with the magnetic contactor (MC) in the mains supply circuit to the drive it offers protection in case of any malfunctioning. The purpose of installing the thermal overload relay is to protect the brake resistor against damage due to frequent brake or in case the brake unit is continuously on due to unusual high input voltage. Under these circumstances the thermal overload relay switches off the power to the drive. Never let the thermal overload relay switch off only the brake resistor as this will cause serious damage to the AC Motor Drive.

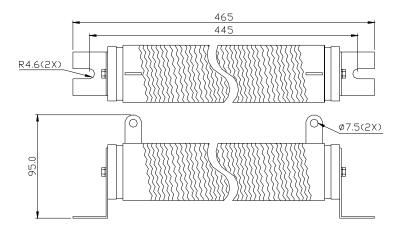

Note1: When using the AC drive with DC reactor, please refer to wiring diagram in the AC drive user manual for the wiring of terminal +(P) of Brake unit.

Note2: Do NOT wire terminal -(N) to the neutral point of power system.

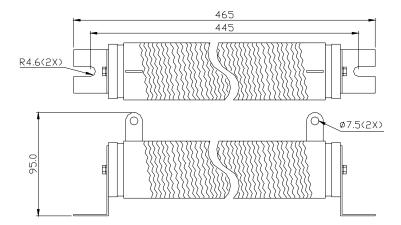
B.1.1 Dimensions and Weights for Brake Resistors

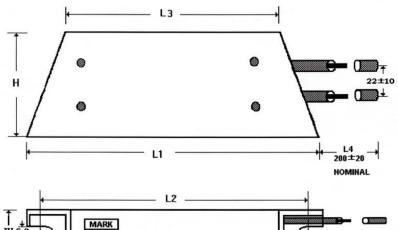
(Dimensions are in millimeter)


Order P/N: BR080W200, BR080W750, BR300W100, BR300W250, BR300W400, BR400W150, BR400W040


Model no.	L1	L2	н	D	W	Max. Weight (g)
BR080W200	140	405	20	5.0	<u></u>	400
BR080W750	140	125	20	5.3	60	160
BR300W100						
BR300W250	215	200	30	5.3	60	750
BR300W400						
BR400W150	005	050	00	- 0	00	
BR400W040	265	250	30	5.3	60	930

Order P/N: BR500W030, BR500W100, BR1KW020, BR1KW075




Model no.	L1	L2	н	D	W	Max. Weight (g)
BR500W030						
BR500W100	335	320	30	5.3	60	1100
BR1KW020						
BR1KW075	400	385	50	5.3	100	2800

Order P/N: BR1K0W050

Order P/N: BR1K0W050, BR1K2W008, BR1K2W6P8, BR1K5W005, BR1K5W040

Model no.	L1±2	L2±2	L3±2	W±1	H±1
BR200W150					
BR200W250	165	150	110	30	60

Order P/N: BR200W150, BR200W250

B.2 No-fuse Circuit Breaker Chart

For 1-phase/3-phase drives, the current rating of the breaker shall be greater than 2 X (rated input current).

1-phase)	3-phase	9
Model	Recommended no-fuse breaker (A)	Model	Recommended no-fuse breaker (A)
VFD002E11A/11T/11C/ 11P	15	VFD002E23A/23C/23T/ 23P	5
VFD002E21A/21T/21C/ 21P	10	VFD004E23A/23C/23T/ 23P	5
VFD004E11A/11C/11T/ 11P	20	VFD004E43A/43C/43T/ 43P	5
VFD004E21A/21C/21T/ 21P	15	VFD007E23A/23C/23T/ 23P	10
VFD007E11A/11C	30	VFD007E43A/43C/43T/ 43P	5
VFD007E21A/21C/21T/ 21P	20	VFD015E23A/23C/23T/ 23P	20
VFD015E21A/21C	30	VFD015E43A/43C/43T	10
VFD022E21A/21C	50	VFD022E23A/23C	30
		VFD022E43A/43C	15
		VFD037E23A/23C	40
		VFD037E43A/43C	20
		VFD055E23A/23C	50
		VFD055E43A/43C	30
		VFD075E23A/23C	60
		VFD075E43A/43C	40
		VFD110E43A/43C	50

B.3 Fuse Specification Chart

Smaller fuses than those shown in the table are permitted.

Model	I (A)	I (A)	Line Fuse		
Model	Input	Output	I (A)	Bussmann P/N	
VFD002E11A/11T/11C/ 11P	6	1.6	15	JJN-15	
VFD002E21A/21T/21C /21P	4.9	1.6	10	JJN-10	
VFD002E23A/23C/23T /23P	1.9	1.6	5	JJN-6	
VFD004E11A/11C/11T/ 11P	9	2.5	20	JJN-20	
VFD004E21A/21C/21T /21P	6.5	2.5	15	JJN-15	
VFD004E23A/23C/23T /23P	2.7	2.5	5	JJN-6	
VFD004E43A/43C/43T /43P	1.9	1.5	5	JJS-6	
VFD007E11A/11C	18	4.2	30	JJN-30	
VFD007E21A/21C/21T /21P	9.7	4.2	20	JJN-20	
VFD007E23A/23C/23T /23P	5.1	4.2	10	JJN-10	
VFD007E43A/43C/43T /43P	3.2	2.5	5	JJS-6	
VFD015E21A/21C	15.7	7.5	30	JJN-30	
VFD015E23A/23C/23T /23P	9	7.5	20	JJN-20	
VFD015E43A/43C/43T	4.3	4.2	10	JJS-10	
VFD022E21A/21C	24	11	50	JJN-50	
VFD022E23A/23C	15	11	30	JJN-30	
VFD022E43A/43C	7.1	5.5	15	JJS-15	
VFD037E23A/23C	20.6	17	40	JJN-40	
VFD037E43A/43C	11.2	8.2	20	JJS-20	
VFD055E23A/23C	26	25	50	JJN-50	

Appendix B Accessories

Model	I (A)	I (A)		Line Fuse
Woder	Input	Output	I (A)	Bussmann P/N
VFD055E43A/43C	14	13	30	JJS-30
VFD075E23A/23C	34	33	60	JJN-60
VFD075E43A/43C	19	18	40	JJS-40
VFD110E43A/43C	26	24	50	JJS-50

B.4 AC Reactor

B.4.1 AC Input Reactor Recommended Value

230V, 50/60Hz, 1-Phase

kW	ЦВ	HP Fundamental	Max. continuous	Inductance (mH)
K V V	пг	Amps	Amps	3~5% impedance
0.2	1/4	4	6	6.5
0.4	1/2	5	7.5	3
0.75	1	8	12	1.5
1.5	2	12	18	1.25
2.2	3	18	27	0.8

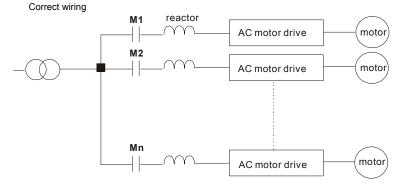
460V, 50/60Hz, 3-Phase

kW	HP	Fundamental	Max.	Inductar	nce (mH)
KVV	nr	Amps	continuous Amps	3% impedance	5% impedance
0.4	1/2	2	3	20	32
0.75	1	4	6	9	12
1.5	2	4	6	6.5	9
2.2	3	8	12	5	7.5
3.7	5	8	12	3	5
5.5	7.5	12	18	2.5	4.2
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2
15	20	35	52.5	0.8	1.2

B.4.2 AC Output Reactor Recommended Value

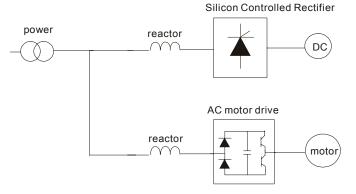
115V/230V, 50/60Hz, 3-Phase

kW	HP	Fundamental	Fundamental Max.	Inductance (mH)		
ĸvv	ΠP	Amps	Amps	3% impedance	5% impedance	
0.2	1/4	4	4	9	12	
0.4	1/2	6	6	6.5	9	
0.75	1	8	12	3	5	
1.5	2	8	12	1.5	3	
2.2	3	12	18	1.25	2.5	
3.7	5	18	27	0.8	1.5	
5.5	7.5	25	37.5	0.5	1.2	
7.5	10	35	52.5	0.4	0.8	


460V, 50/60Hz, 3-Phase

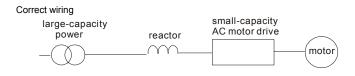
kW	HP	Fundamental	Max. continuous	Inductar	nce (mH)
KVV	ΗP	Amps	Amps	3% impedance	5% impedance
0.4	1/2	2	3	20	32
0.75	1	4	6	9	12
1.5	2	4	6	6.5	9
2.2	3	8	12	5	7.5
3.7	5	12	18	2.5	4.2
5.5	7.5	18	27	1.5	2.5
7.5	10	18	27	1.5	2.5
11	15	25	37.5	1.2	2

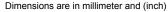
B.4.3 Applications

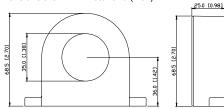

Connected in input circuit

Application 1	Question
When more than one AC motor drive is connected to the same mains power, and one of them is ON during operation.	When applying power to one of the AC motor drive, the charge current of the capacitors may cause voltage dip. The AC motor drive may be damaged when over current occurs during operation.

Application 2	Question
Silicon rectifier and AC motor drive are connected to the same power.	Switching spikes will be generated when the silicon rectifier switches on/off. These spikes
	may damage the mains circuit.

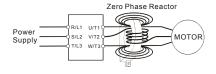

Correct wiring


B-12


Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Application 3	Question
Used to improve the input power factor, to reduce harmonics and provide protection from AC line disturbances- (surges, switching spikes, short interruptions, etc.). The AC line reactor should be installed when the power supply capacity is 500kVA or more and exceeds 6 times the inverter capacity, or the mains wiring distance $\leq 10m$.	When the mains power capacity is too large, line impedance will be small and the charge current will be too high. This may damage AC motor drive due to higher rectifier temperature.

B.5 Zero Phase Reactor (RF220X00A)


Cable type (Note)	Recommended Wire Size		Qty.	Wiring	
	AWG	mm²	Nominal (mm ²)	Qty.	Method
Single- core	≦10	≦5.3	≦5.5	1	Diagram A
	≦2	≦33.6	≦38	4	Diagram B
Three- core	≦12	≦3.3	≦3.5	1	Diagram A
	≦1	≦42.4	≦50	4	Diagram B

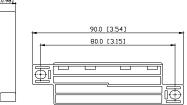

Note: 600V Insulated unshielded Cable.

Diagram A

B-14

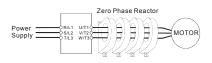
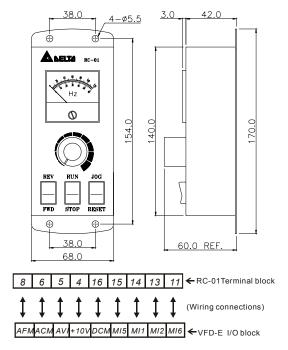

Please wind each wire 4 times around the core. The reactor must be put at inverter output as close as possible.

Diagram B

Please put all wires through 4 cores in series without winding.


Note 1: The table above gives approximate wire size for the zero phase reactors but the selection is ultimately governed by the type and diameter of cable fitted i.e. the cable must fit through the center hole of zero phase reactors.

Note 2: Only the phase conductors should pass through, not the earth core or screen.

Note 3: When long motor output cables are used an output zero phase reactor may be required to reduce radiated emissions from the cable.

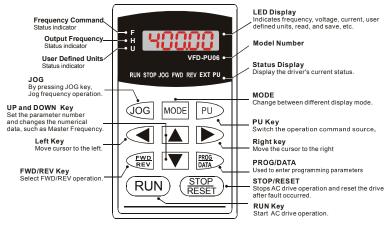
B.6 Remote Controller RC-01

Dimensions are in millimeter

VFD-E Programming:

Pr.02.00 set to 2

Pr.02.01 set to 1 (external controls)

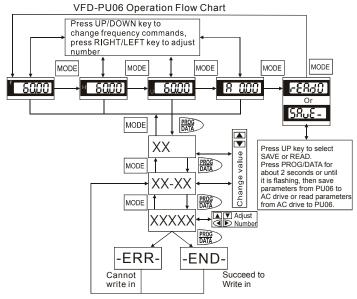

Pr.04.04 set to 1 (setting Run/Stop and Fwd/Rev controls)

Pr.04.07 (MI5) set to 5 (External reset)

Pr.04.08 (MI6) set to 8 (JOG operation)

B.7 PU06

B.7.1 Description of the Digital Keypad VFD-PU06



B.7.2 Explanation of Display Message

Display Message	Descriptions		
60.00	The AC motor drive Master Frequency Command.		
* <u>5880</u>	The Actual Operation Frequency present at terminals U, V, and W.		
, 18000	The custom unit (u)		
<u>8 5.0</u>	The output current present at terminals U, V, and W.		
r88d0	Press to change the mode to READ. Press PROG/DATA for about 2 sec or until it's flashing, read the parameters of AC drive to the digital keypad PU06. It can read 4 groups of parameters to PU06. (read 0 – read 3)		
5808-	Press to change the mode to SAVE. Press PROG/DATA for about 2 sec or until it's flashing, then write the parameters from the digital keypad PU06 to AC drive. If it has saved, it will show the type of AC motor drive.		

<u>.</u>	Appendix B Accessories
Display Message	Descriptions
08-00	The specified parameter setting.
	The actual value stored in the specified parameter.
	External Fault
-End-	"End" displays for approximately 1 second if the entered input data have been accepted. After a parameter value has been set, the new value is automatically stored in memory. To modify an entry, use the or respectively we have a second seco
-600-	"Err" displays if the input is invalid.
[[-3]	Communication Error. Please check the AC motor drive user manual (Chapter 5, Group 9 Communication Parameter) for more details.

B.7.3 Operation Flow Chart

B.8 KPE-LE02

B.8.1 Description of the Digital Keypad KPE-LE02

- Status Display
 Display the driver's current status.
- LED Display Indicates frequency, voltage, current, user defined units and etc.
- Potentiometer
 For master Frequency setting.
- RUN Key
 Start AC drive operation.

O UP and DOWN Key

Set the parameter number and changes the numerical data, such as Master Frequency.

MODE

Change between different display mode.

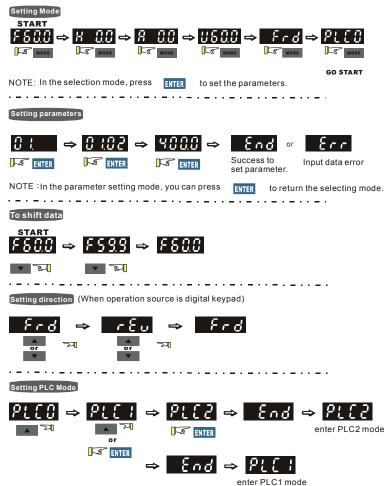
STOP/RESET

Stops AC drive operation and reset the drive after fault occurred.

ENTER

Used to enter/modify programming parameters

Display Message	Descriptions
RUN FWD REV. F 6 0 0 0 STOP	Displays the AC drive Master Frequency.
RUN FWD REV. H S C C STOP	Displays the actual output frequency at terminals U/T1, V/T2, and W/T3.
RUN. FWD. REV.	User defined unit (where U = F x Pr.00.05)
RUN FWD REV. R 5.0	Displays the output current at terminals U/T1, V/T2, and W/T3.
RUN FWD REV. F C	Displays the AC motor drive forward run status.
RUN FWD REV.	Displays the AC motor drive reverse run status.
RUN. FWD. REV.	The counter value (C).
RUN FWD REV.	Displays the selected parameter.


Appendix B Accessories | 1/22/213

Display Message	Descriptions		
RUN• FWD• REV• STOP	Displays the actual stored value of the selected parameter.		
RUN• FWD• REV•	External Fault.		
RUN. End.	Display "End" for approximately 1 second if input has been accepted by pressing ENTER key. After a parameter value has been set, the new value is automatically stored in memory. To modify an entry, use the keys.		
RUN• FWD• REV• FTFF	Display "Err", if the input is invalid.		

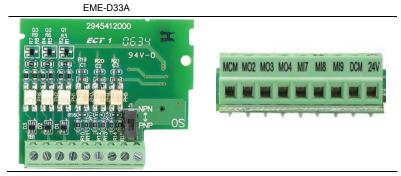
When the setting exceeds 99.99 for those numbers with 2 decimals (i.e. unit is 0.01), it will only display 1 decimal due to 4-digital display.

B.8.2 How to Operate the Digital Keypad

B.8.3 Reference Table for the 7-segment LED Display of the Digital Keypad


Digit	0	1	2	3	4	5	6	7	8	9
LED Display	0	;	2	3	Ч	5	8	7	8	9
English alphabet	А	b	Сс	d	E	F	G	Hh	li	Jj
LED	8	Ь	r _	_	ε	F	5	КЪ	, -	, -
Display	п	0	Ec	ď	C	Г	U	nn		ŪŪ
English alphabet	к	L	n	Oo	Р	q	r	S	Tt	U
LED	P	,	_	0o	2	q	_	5	76	
Display	Г	L	n	00	Г	ר	ſ		10	Ü
English alphabet	v	Y	z							
LED		Ч	-							

B.9 Extension Card

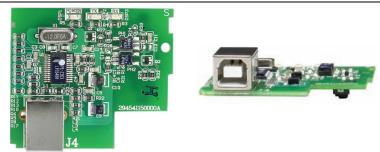

For details, please refer to the separate instruction shipped with these optional cards or download from our website http://www.delta.com.tw/industrialautomation/.

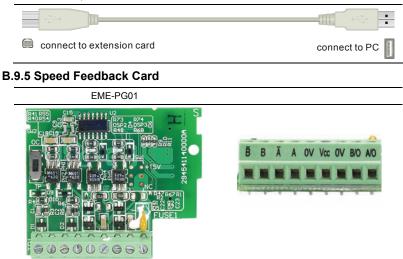
B.9.1 Relay Card



B.9.2 Digital I/O Card

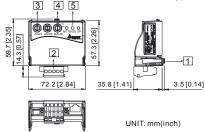
B.9.3 Analog I/O Card


EME-A22A

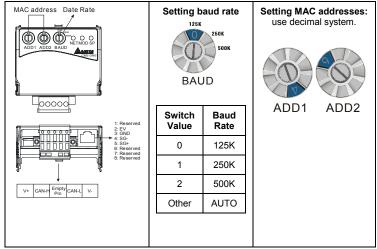


B.9.4 Communication Card

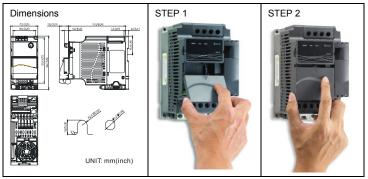
CME-USB01


B.10 Fieldbus Modules

B.10.1 DeviceNet Communication Module (CME-DN01)


B.10.1.1 Panel Appearance and Dimensions

1. For RS-485 connection to VFD-E 2. Communication port for connecting DeviceNet network 3. Address selector 4. Baud rate selector 5. Three LED status indicators for monitor. (Refer to the figure below)


B.10.1.2 Wiring and Settings

Refer to following diagram for details.

B.10.1.3 Mounting Method

Step1 and step2 show how to mount this communication module onto VFD-E. The dimension on the left hand side is for your reference.

B.10.1.4 Power Supply

No external power is needed. Power is supplied via RS-485 port that is connected to VFD-E. An 8 pins RJ-45 cable, which is packed together with this communication module, is used to connect the RS-485 port between VFD-E and this communication module for power. This communication module will perform the function once it is connected. Refer to the following paragraph for LED indications.

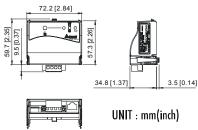
B.10.1.5 LEDs Display

- 1. SP: Green LED means in normal condition, Red LED means abnormal condition.
- Module: Green blinking LED means no I/O data transmission, Green steady LED means I/O data transmission OK.

Red LED blinking or steady LED means module communication is abnormal.

 Network: Green LED means DeviceNet communication is normal, Red LED means abnormal

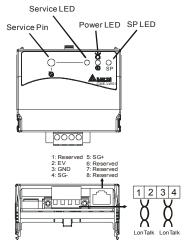
Refer to user manual for detail information-- Chapter 5 Troubleshooting.


B.10.2 LonWorks Communication Module (CME-LW01)

B.10.2.1 Introduction

Device CME-LW01 is used for communication interface between Modbus and LonTalk. CME-LW01 needs be configured via LonWorks network tool first, so that it can perform the function on LonWorks network. No need to set CME-LW01 address.

This manual provides instructions for the installation and setup for CME-LW01 that is used to communicate with Delta VFD-E (firmware version of VFD-E should conform with CME-LW01 according to the table below) via LonWorks Network.



B.10.2.2 Dimensions

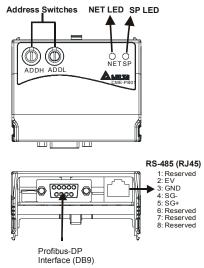
B.10.2.3 Specifications

Power supply: 16-30VDC, 750mW				
Communication:	Modbus in ASCII format, protocol: 9600, 7, N, 2			
LonTalk:	free topology with FTT-10A 78 Kbps.			
LonTalk terminal:	4-pin terminals, wire gauge: 28-12 AWG, wire strip length: 7-8mm			
RS-485 port: 8 pins with	RJ-45			

B.10.2.4 Wiring

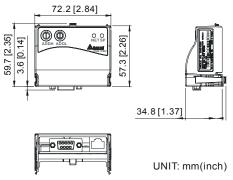
Terminal definition for LonTalk system

Terminal	Symbol	Function
1 2	XX	These are twisted pair cables to connect to LonTalk system. Terminals 1 and 2 should be used as one group, and the
3 4	XXX	same for terminals 3 and 4.


B.10.2.5 LED Indications

There are three LEDs in front panel of CME-LW01. If the communication is normal, power LED, SP LED should be green (red LED means abnormal communication) and service LED should be OFF. If LEDs display do not match, refer to user manual for details.

B.10.3 Profibus Communication Module (CME-PD01)



B.10.3.1 Panel Appearance

- 1. SP LED: Indicating the connection status between VFD-E and CME-PD01.
- 2. NET LED: Indicating the connection status between CME-PD01 and PROFIBUS-DP.
- 3. Address Switches: Setting the address of CME-PD01 on PROFIBUS- DP network.
- 4. RS-485 Interface (RJ45): Connecting to VFD-E, and supply power to CME-PD01.
- PROFIBUS-DP Interface (DB9): 9-PIN connector that connects to PROFIBUS-DP network.
- 6. Extended Socket: 4-PIN socket that connects to PROFIBUS-DP network.

B.10.3.2 Dimensions

B.10.3.3 Parameters Settings in VFD-E

	VFD-E
Baud Rate 9600	Pr.09.01=1
RTU 8, N, 2	Pr.09.04=3
Freq. Source	Pr.02.00=4
Command Source	Pr.02.01=3

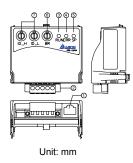
B.10.3.4 Power Supply

The power of CME-PD01 is supplied from VFD-E. Please connect VFD-E to CME-PD01 by using 8 pins RJ-45 cable, which is packed together with CME-PD01. After connection is completed, CME-PD01 is powered whenever power is applied to VFD-E.

B.10.3.5 PROFIBUS Address

CME-PD01 has two rotary switches for the user to select the PROFIBUS address. The set value via 2 address switches, ADDH and ADDL, is in HEX format. ADDH sets the upper 4 bits, and ADDL sets the lower 4 bits of the PROFIBUS address.

Appendix B Accessories |


Address	Meaning
10x7D	Valid PROFIBUS address
0 or 0x7E0xFE	Invalid PROFIBUS address

B.10.4 CME-COP01 (CANopen)

CME-COP01 CANopen communication module is specifically for connecting to CANopen communication module of Delta VFD-E AC motor drive.

B.10.4.1 Product Profile

0	COM port
0	CANopen connection port
3	RUN indicator
4	ERROR indicator
\$	SP (Scan Port) indicator
6	Baud rate switch
Ø	Address switch

B.10.4.2 Specifications

CANopen Connection

Interface	Pluggable connector (5.08mm)	
Transmission method	CAN	
Transmission cable	2-wire twisted shielded cable	
Electrical isolation	500V DC	

Appendix B Accessories

Communication

Message type	Process Data Objects (PDO) Service Data Object (SDO) Synchronization (SYNC) Emergency (EMCY) Network Management (NMT)	Baud rate	10 Kbps 20 Kbps 50 Kbps 125 Kbps 250 Kbps 500 Kbps 800 Kbps 1 Mbps
Product code	Delta VFD-E AC motor drive 22		
Device type	402		
Vendor ID	477		

Environmental Specifications

Noise Immunity	ESD(IEC 61131-2, IEC 61000-4-2): 8KV Air Discharge EFT(IEC 61131-2, IEC 61000-4-4): Power Line: 2KV, Digital I/O: 1KV, Analog & Communication I/O: 1KV Damped-Oscillatory Wave: Power Line: 1KV, Digital I/O: 1KV RS(IEC 61131-2, IEC 61000-4-3): 26MHz ~ 1GHz, 10V/m
Environment	Operation: 0°C ~ 55°C (Temperature), 50 ~ 95% (Humidity), Pollution degree 2; Storage: -40°C ~ 70°C (Temperature), 5 ~ 95% (Humidity)
Vibration / Shock Resistance	Standard: IEC1131-2, IEC 68-2-6 (TEST Fc/IEC1131-2 & IEC 68-2-27 (TEST Ea)
Certifications	Standard: IEC 61131-2,UL508

B.10.4.3 Components

Pin Definition on CANopen Connection Port

To connect with CANopen, use the connector enclosed with CME-COP01 or any connectors

P	'n	Signal	Content
	1	CAN_GND	Ground / 0 V / V-
:	2	CAN_L	Signal-
:	3	SHIELD	Shield
	4	CAN_H	Signal+
	5	-	Reserved

you can buy in the store for wiring.

Baud Rate Setting

Rotary switch (BR) sets up the communication speed on CANopen network in hex. Setup range: 0 ~ 7 (8 ~F are forbidden)

Example: If you need to set up the communication speed of CME-COP01 as 500K, simply switch BR to "5".

BR Value	Baud rate	BR Value	Baud rate
0	10K	4	250K
1	20K	5	500K
2	50K	6	800K
3	125K	7	1M

MAC ID Setting

Rotary switches (ID_L and ID_H) set up the Node-ID on CANopen network in hex. Setup range: 00 ~ 7F (80 ~FF are forbidden)

Example: If you need to set up the communication address of CME-COP01 as 26(1AH), simply switch ID_H to "1" and ID_L to "A".

Switch Setting	Content
0 7F	Valid CANopen MAC ID setting
Other	Invalid CANopen MAC ID setting

B.10.4.4 LED Indicator Explanation & Troubleshooting

There are 3 LED indicators, RUN, ERROR and SP, on CME-COP01 to indicate the communication status of CME-COP01.

RUN	LED
-----	-----

LED Status	State	Indication
OFF	No power	No power on CME-COP01 card
Single Flash (Green)	STOPPED	CME-COP01 is in STOPPED state
Blinking (Green)	PRE-OPERATIONAL	CME-COP01 is in the PRE- OPERATIONAL state
Green ON	OPERATIONAL	CME-COP01 is in the OPERATIONAL state
Red ON	Configuration error	Node-ID or Baud rate setting error

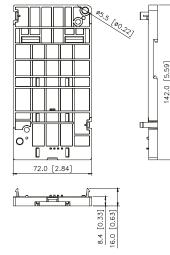
Appendix B Accessories

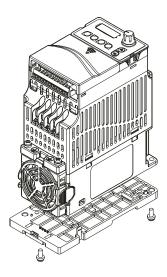
ERROR LED

LED Status	State	Indication
OFF	No error	CME-COP01 is working condition
Single Flash (Red)	Warning limit reached	At least one of error counter of the CANopen controller has reached or exceeded the warning level (too many error frames)
Double Flash (Red)	Error control event	A guard event or heartbeat event has occurred
Red ON	Bus-off	The CANopen controller is bus-off

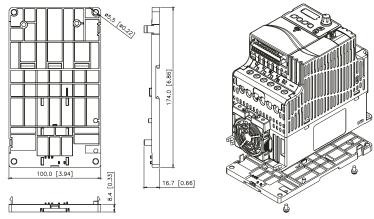
SP LED

LED Status	State	Indication
OFF	No Power	No power on CME-COP01 card
LED Blinking (Red)	CRC check error	Check your communication setting in VFD-E drives (19200,<8,N,2>,RTU)
Red ON	Connection failure/No connection	 Check the connection between VFD-E drive and CME-COP01 card is correct Re-wire the VFD-E connection and ensure that the wire specification is correct
LED Blinking (Green)	CME-COP01 returns error code	Check the PLC program, ensure the index and sub-index is correct
Green ON	Normal	Communication is normal

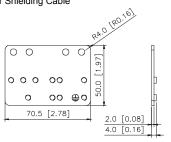

LED Descriptions

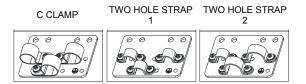

State	Description
LED ON	Constantly on
LED OFF	Constantly off
LED blinking	Flash, on for 0.2s and off for 0.2s
LED single flash	On for 0.2s and off for 1s
LED double flash	On for 0.2s off for 0.2s, on for 0.2s and off for 1s

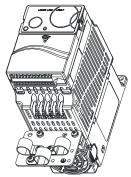
Appendix B Accessories |


B.11 DIN Rail

B.11.1 MKE-DRA




B.11.2 MKE-DRB



B.11.3 MKE-EP

EMC earthing plate for Shielding Cable

B-38

This page intentionally left blank

Appendix C How to Select the Right AC Motor Drive

The choice of the right AC motor drive for the application is very important and has great influence on its lifetime. If the capacity of AC motor drive is too large, it cannot offer complete protection to the motor and motor maybe damaged. If the capacity of AC motor drive is too small, it cannot offer the required performance and the AC motor drive maybe damaged due to overloading.

But by simply selecting the AC motor drive of the same capacity as the motor, user application requirements cannot be met completely. Therefore, a designer should consider all the conditions, including load type, load speed, load characteristic, operation method, rated output, rated speed, power and the change of load capacity. The following table lists the factors you need to consider, depending on your requirements.

		Related Specification			
	ltem		Time ratings	Overload capacity	Starting torque
Load type	Friction load and weight load Liquid (viscous) load Inertia load Load with power transmission	•			•
Load speed and torque characteristics	Constant torque Constant output Decreasing torque Decreasing output	•	•		
Load characteristics	Constant load Shock load Repetitive load High starting torque Low starting torque	•	•	٠	•
Continuous operation, Short-time operation Long-time operation at medium/low speeds			•	•	
Maximum output current (instantaneous) Constant output current (continuous)		•		•	
Maximum frequency, Base frequency Power supply transformer capacity or percentage impedance Voltage fluctuations and unbalance Number of phases, single phase protection Frequency		•		•	•
Mechanical friction, losses in wiring			-	•	•
Duty cycle modification			•		

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11

Download from Www.Somanuals.com. All Manuals Search And Download.

C.1 Capacity Formulas

1. When one AC motor drive operates one motor

The starting capacity should be less than 1.5x rated capacity of AC motor drive The starting capacity=

$$\frac{k \times N}{973 \times \eta \times \cos \varphi} \left(T_L + \frac{GD^2}{375} \times \frac{N}{t_A} \right) \le 1.5 \times the _capacity_of_AC_motor_drive(kVA)$$

2. When one AC motor drive operates more than one motor

- 2.1 The starting capacity should be less than the rated capacity of AC motor drive
- Acceleration time \leq 60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} [n_r + n_s(k_{s-1})] = P_{Cl} \left[1 + \frac{n_r}{n_r} (k_{s-1}) \right] \le 1.5 \times the _capacity_of_AC_motor_drive(kVA)$$

Acceleration time \geq 60 seconds

The starting capacity=

$$\frac{k \times N}{\eta \times \cos \varphi} [n_r + n_s(k_{s-1})] = P_{Cl} \left[1 + \frac{n_r}{n_r} (k_{s-1}) \right] \leq the _capacity_of_AC_motor_drive(kVA)$$

2.2 The current should be less than the rated current of AC motor drive(A)

Acceleration time \leq 60 seconds

$$n_{\tau} + I_{M} \left[1 + \frac{n_{s}}{n_{\tau}} (k_{s} - 1) \right] \leq 1.5 \times the _rated _current_of _AC_motor_drive(A)$$

Acceleration time ≥60 seconds

$$n_{\tau} + I_{M} \Big[1 + \frac{n_{s}}{n_{\tau}} (k_{s} - 1) \Big] \leq the _rated _current _of _AC_motor _drive(A)$$

- 2.3 When it is running continuously
- The requirement of load capacity should be less than the capacity of AC motor drive(kVA) The requirement of load capacity=

$$\frac{k \times P_M}{\eta \times \cos\varphi} \le the _capacity_of_AC_motor_drive(kVA)$$

The motor capacity should be less than the capacity of AC motor drive

$$k \times \sqrt{3} \times V_M \times I_M \times 10^{-3} \le the _capacity_of _AC_motor_drive(kVA)$$

The current should be less than the rated current of AC motor drive(A)

$$k \times I_M \leq the rated current of AC motor drive(A)$$

Symbol explanation

: Motor shaft output for load (kW)
: Motor efficiency (normally, approx. 0.85)
: Motor power factor (normally, approx. 0.75)
: Motor rated voltage(V)
: Motor rated current(A), for commercial power
: Correction factor calculated from current distortion factor (1.05-1.1, depending on PWM method)
: Continuous motor capacity (kVA)
: Starting current/rated current of motor
: Number of motors in parallel
: Number of simultaneously started motors
: Total inertia (GD^2) calculated back to motor shaft (kg m^2)
: Load torque
: Motor acceleration time
: Motor speed

C.2 General Precaution

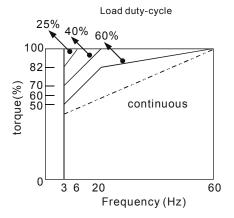
Selection Note

- 1. When the AC Motor Drive is connected directly to a large-capacity power transformer (600kVA or above) or when a phase lead capacitor is switched, excess peak currents may occur in the power input circuit and the converter section may be damaged. To avoid this, use an AC input reactor (optional) before AC Motor Drive mains input to reduce the current and improve the input power efficiency.
- When a special motor is used or more than one motor is driven in parallel with a single AC Motor Drive, select the AC Motor Drive current ≥1.25x(Sum of the motor rated currents).
- 3. The starting and accel./decel. characteristics of a motor are limited by the rated current and the overload protection of the AC Motor Drive. Compared to running the motor D.O.L. (Direct On-Line), a lower starting torque output with AC Motor Drive can be expected. If higher starting torque is required (such as for elevators, mixers, tooling machines, etc.) use an AC Motor Drive of higher capacity or increase the capacities for both the motor and the AC Motor Drive.
- 4. When an error occurs on the drive, a protective circuit will be activated and the AC Motor Drive output is turned off. Then the motor will coast to stop. For an emergency stop, an external mechanical brake is needed to quickly stop the motor.

Parameter Settings Note

C-4

- The AC Motor Drive can be driven at an output frequency up to 400Hz (less for some models) with the digital keypad. Setting errors may create a dangerous situation. For safety, the use of the upper limit frequency function is strongly recommended.
- High DC brake operating voltages and long operation time (at low frequencies) may cause overheating of the motor. In that case, forced external motor cooling is recommended.
- 3. Motor accel./decel. time is determined by motor rated torque, load torque, and load inertia.
- 4. If the stall prevention function is activated, the accel./decel. time is automatically extended to a length that the AC Motor Drive can handle. If the motor needs to decelerate within a certain time with high load inertia that can't be handled by the AC Motor Drive in the


required time, either use an external brake resistor and/or brake unit, depending on the model, (to shorten deceleration time only) or increase the capacity for both the motor and the AC Motor Drive.

C.3 How to Choose a Suitable Motor

Standard motor

When using the AC Motor Drive to operate a standard 3-phase induction motor, take the following precautions:

- 1. The energy loss is greater than for an inverter duty motor.
- Avoid running motor at low speed for a long time. Under this condition, the motor temperature may rise above the motor rating due to limited airflow produced by the motor's fan. Consider external forced motor cooling.
- When the standard motor operates at low speed for long time, the output load must be decreased.
- 4. The load tolerance of a standard motor is as follows:

- If 100% continuous torque is required at low speed, it may be necessary to use a special inverter duty motor.
- Motor dynamic balance and rotor endurance should be considered once the operating speed exceeds the rated speed (60Hz) of a standard motor.

Appendix C How to Select the Right AC Motor Drive |

- Motor torque characteristics vary when an AC Motor Drive instead of commercial power supply drives the motor. Check the load torque characteristics of the machine to be connected.
- Because of the high carrier frequency PWM control of the VFD series, pay attention to the following motor vibration problems:
- Resonant mechanical vibration: anti-vibration (damping) rubbers should be used to mount equipment that runs at varying speed.
- Motor imbalance: special care is required for operation at 50 or 60 Hz and higher frequency.
- To avoid resonances, use the Skip frequencies.
 - 9. The motor fan will be very noisy when the motor speed exceeds 50 or 60Hz.

Special motors:

1. Pole-changing (Dahlander) motor:

The rated current is differs from that of a standard motor. Please check before operation and select the capacity of the AC motor drive carefully. When changing the pole number the motor needs to be stopped first. If over current occurs during operation or regenerative voltage is too high, please let the motor free run to stop (coast).

2. Submersible motor:

The rated current is higher than that of a standard motor. Please check before operation and choose the capacity of the AC motor drive carefully. With long motor cable between AC motor drive and motor, available motor torque is reduced.

3. Explosion-proof (Ex) motor:

Needs to be installed in a safe place and the wiring should comply with the (Ex) requirements. Delta AC Motor Drives are not suitable for (Ex) areas with special precautions.

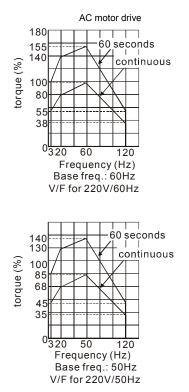
4. Gear reduction motor:

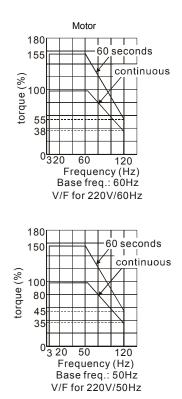
The lubricating method of reduction gearbox and speed range for continuous operation will be different and depending on brand. The lubricating function for operating long time at low speed and for high-speed operation needs to be considered carefully.

5. Synchronous motor:

The rated current and starting current are higher than for standard motors. Please check before operation and choose the capacity of the AC motor drive carefully. When the AC

C-6 Revision June 2008, 04EE, SW–PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download. motor drive operates more than one motor, please pay attention to starting and changing the motor.


Power Transmission Mechanism


Pay attention to reduced lubrication when operating gear reduction motors, gearboxes, belts and chains, etc. over longer periods at low speeds. At high speeds of 50/60Hz and above, lifetime reducing noises and vibrations may occur.

Motor torque

The torque characteristics of a motor operated by an AC motor drive and commercial mains power are different.

Below you'll find the torque-speed characteristics of a standard motor (4-pole, 15kW):

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download. Appendix C How to Select the Right AC Motor Drive |

This page intentionally left blank.

C-8

※ This function is NOT for VFD*E*C models.

D.1 PLC Overview

D.1.1 Introduction

The PLC function built in the VFD-E provides following commands: WPLSoft, basic commands and application commands. The operation methods are the same as Delta DVP-PLC series.

D.1.2 Ladder Diagram Editor – WPLSoft

WPLSoft is a program editor of Delta DVP-PLC series and VFD-E series for WINDOWS. Besides general PLC program planning and general WINDOWS editing functions, such as cut, paste, copy, multi-windows, WPLSoft also provides various Chinese/English comment editing and other special functions (e.g. register editing, settings, the data readout, the file saving, and contacts monitor and set, etc.).

Item	System Requirement
Operation System	Windows 95/98/2000/NT/ME/XP
CPU	Pentium 90 and above
Memory	16MB and above (32MB and above is recommended)
Hard Disk	Capacity: 50MB and above CD-ROM (for installing WPLSoft)
Monitor	Resolution: 640x480, 16 colors and above, It is recommended to set display setting of Windows to 800x600.
Mouse	General mouse or the device compatible with Windows
Printer	Printer with Windows driver
RS-232 port	At least one of COM1 to COM8 can be connected to PLC
Applicable Models	All Delta DVP-PLC series and VFD-E series

Following is the system requirement for WPLSoft:

D.2 Start-up

D.2.1 The Steps for PLC Execution

Please operate PLC function by the following five steps.

1. Switch the mode to PLC2 for program download/upload:

A. Go to "PLC0" page by pressing the MODE key

B. Change to "PLC2" by pressing the "UP" key and then press the "ENTER" key after confirmation

C. If succeeded, "END" is displayed and back to "PLC2" after one or two seconds.

You don't need to care about the PLC warning, such as PLod, PLSv and PldA, before downloading a program to VFD-E.

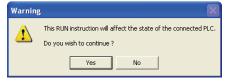
 Connection: Please connect RJ-45 of AC motor drive to computer via RS485-to-RS232 converter.

 Run the program. The PLC status will always be PLC2, even if the AC motor drive is switched off.

There are three ways to operate PLC:

A. In "PLC1" page: execute PLC program.

B. In "PLC2" page: execute/stop PLC program by using WPL software.


C. After setting multi-function input terminals (MI3 to MI9) to 23 (RUN/STOP PLC), it will display "PLC1" for executing PLC when the terminal is ON. It will display "PLC0" to stop PLC program when terminals are OFF.

When external terminals are set to 23 and the terminal is ON, it cannot use keypad to change PLC mode. Moreover, when it is PLC2, you cannot execute PLC program by external terminals.

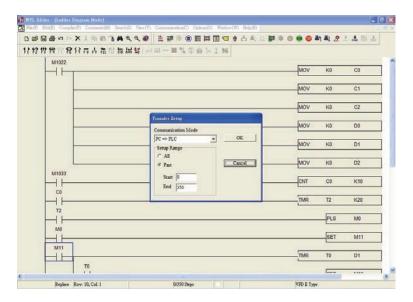
When power on after power off, the PLC status will be in "PLC1".

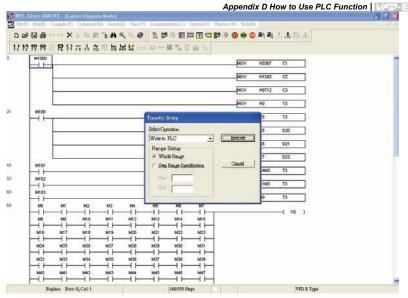
 When you are in "PLC2", please remember to change to "PLC1" when finished to prevent anyone modifying PLC program.

When output/input terminals (MI1~MI9, Relay1~Relay 4, MO1~MO4) are used in PLC program, they cannot be used in other places. For example, When Y0 in PLC program is activated, the corresponding output terminals Relay (RA/RB/RC) will be used. At this moment, parameter 03.00 setting will be invalid. Because the terminal has been used by PLC.

The PLC corresponding input points for MI1 to MI6 are X0 to X5. When extension card are added, the extension input points will be numbered from X06 and output points will start from Y2 as shown in chapter D.2.2.

Device	Х								
ID	0	1	2	3	4	5	6	7	10
Terminals of AC Drives	MI1	MI2	MI3	MI4	MI5	MI6			
3IN/3OUT Card (EME-D33A)	-			-	-	-	MI7	MI8	MI9


D.2.2 Device Reference Table


Device	Y								
ID	0	1	2	3	4				
Terminals of AC Drives	RY	MO1							
Relay Card-2C (EME-DR2CA)			RY2	RY3					
Relay Card-3A (EME-R3AA)			RY2	RY3	RY4				
3IN/3OUT Card (EME-D33A)			MO2	MO3	MO4				

D.2.3 WPLSoft Installation

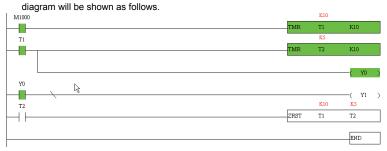
Download PLC program to AC drive: Refer to D.3 to D.7 for writing program and download the editor (WPLSoft V2.09) at DELTA website

http://www.delta.com.tw/product/em/plc/plc_software.asp.

D.2.4 Program Input

D.2.5 Program Download

Please do following s 惧 for program download.


Step 1. Press button for compiler after inputting program in WPLSoft.

Step 2. After finishing compiler, choose the item "Write to PLC" in the communication items.

After finishing Step 2, the program will be downloaded from WPLSoft to the AC motor drive by the communication format.

D.2.6 Program Monitor

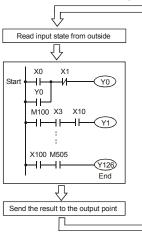
If you execute "start monitor" in the communication item during executing PLC, the ladder

D.2.7 The Limit of PLC

- 1. The protocol of PLC is 7,E,1
- 2. Make sure that the AC drive is stop and stop PLC before program upload/download.
- 3. The priority of commands WPR and FREQ is FREQ > WPR.
- 4. When setting P 00.04 to 2, the display will be the value in PLC register D1043.
 - A. 0 ~ 999 display:

B. 1000 ~ 9999 display: It will only display the first 3 digits. The LED at the bottom-right corner will light to indicate 10 times of the display value. For example, the actual value for the following figure is 100X10=1000.

C. 10000~65535 display: It will only display the first 3 digits. The LED at the bottom-right corner and the single decimal point between the middle and the right-most numbers will light to indicate 100 times of the display value. For example, the actual value for the following figure is 100X100=10000.



- 5. When it is changed to "PLC2", RS-485 will be used by PLC.
- When it is in PLC1 and PLC2 mode, the function to reset all parameters to factory setting is disabled (i.e. Pr.00.02 can't be set to 9 or 10).

D.3 Ladder Diagram

D.3.1 Program Scan Chart of the PLC Ladder Diagram

Calculate the result by ladder diagram algorithm (it doesn't sent to the outer output point but the inner equipment will output immediately.)

Execute in cycles

D.3.2 Introduction

Ladder diagram is a diagram language that applied on the automatic control and it is also a diagram that made up of the symbols of electric control circuit. PLC procedures are finished after ladder diagram editor edits the ladder diagram. It is easy to understand the control flow that indicated with diagram and also accept by technical staff of electric control circuit. Many basic symbols and motions of ladder diagram are the same as mechanical and electrical equipments of traditional automatic power panel, such as button, switch, relay, timer, counter and etc.

The kinds and amounts of PLC internal equipment will be different with brands. Although internal equipment has the name of traditional electric control circuit, such as relay, coil and contact. It doesn't have the real components in it. In PLC, it just has a basic unit of internal memory. If this bit is 1, it means the coil is ON and if this bit is 0, it means the coil is OFF. You should read the corresponding value of that bit when using contact (Normally Open, NO or contact a). Otherwise, you should read the opposite sate of corresponding value of that bit when using contact (Normally Closed, NC or contact b). Many relays will need many bits, such as 8-bits makes up a byte. 2 bytes can make up a word. 2 words makes up double word. When using many relays to do calculation, such as add/subtraction or shift, you could

use byte, word or double word. Furthermore, the two equipments, timer and counter, in PLC

not only have coil but also value of counting time and times.

In conclusion, each internal storage unit occupies fixed storage unit. When using these

equipments, the corresponding content will be read by bit, byte or word.

Basic introduction of the inner equipment of PLC:

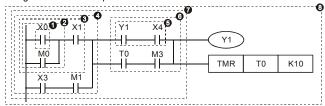
Input relay	Input relay is the basic storage unit of internal memory that corresponds to external input point (it is the terminal that used to connect to external input switch and receive external input signal). Input signal from external will decide it to display 0 or 1. You couldn't change the state of input relay by program design or forced ON/OFF via WPLSoft. The contacts (contact a, b) can be used unlimitedly. If there is no input signal, the corresponding input relay could be empty and can't be used with other functions.
Output relay	Output relay is the basic storage unit of internal memory that corresponds to external output point (it is used to connect to external load). It can be driven by input relay contact, the contact of other internal equipment and itself contact. It uses a normally open contact to connect to external load and other contacts can be used unlimitedly as input contacts. It doesn't have the corresponding output relay, if need, it can be used as internal relay. C Equipment indication: Y0, Y1,Y7, Y10, Y11, The symbol of equipment is Y and the number uses octal.
Internal relay	The internal relay doesn't connect directly to outside. It is an auxiliary relay in PLC. Its function is the same as the auxiliary relay in electric control circuit. Each auxiliary relay has the corresponding basic unit. It can be driven by the contact of input relay, output relay or other internal equipment. Its contacts can be used unlimitedly. Internal auxiliary relay can't output directly, it should output with output point.
Timer	Timer is used to control time. There are coil, contact and timer storage. When coil is ON, its contact will act (contact a is close, contact b is open) when attaining desired time. The time value of timer is set by settings and each timer has its regular period. User sets the timer value and each timer has its timing period. Once the coil is OFF, the contact won't act (contact a is open and contact b is close) and the timer will be set to zero. C Equipment indication: T0, T1,,T15. The symbol of equipment is T and the number uses decimal system. The different number range corresponds with the different timing period.
Counter	Counter is used to count. It needs to set counter before using counter (i.e. the pulse of counter). There are coil, contacts and storage unit of counter in counter. When coil is from OFF to ON, that means input a pulse in counter and the counter should add 1. There are 16-bit, 32-bit and high-speed counter for user to use. Equipment indication: C0, C1,,C7. The symbol of equipment is C and the number uses decimal.
Data register	PLC needs to handle data and operation when controlling each order, timer value and counter value. The data register is used to store data or parameters. It stores

16-bit binary number, i.e. a word, in each register. It uses two continuous number			
of data register to store double words.			
Equipment indication: D0, D1,,D29. The symbol of equipment is D and			
the number uses decimal.			

The structure and explanation of ladder diagram:

Ladder Diagram Structure	Explanation	Command	Equipment
┝┅⊢	Normally open, contact a	LD	X, Y, M, T, C
-и	Normally closed, contact b	LDI	X, Y, M, T, C
<u>├</u> ⊣⊢ ─ ₽	Serial normally open	AND	X, Y, M, T, C
	Parallel normally open	OR	X, Y, M, T, C
	Parallel normally closed	ORI	X, Y, M, T, C
┝╼┅	Rising-edge trigger switch	LDP	X, Y, M, T, C
┝┅┉	Falling-edge trigger switch	LDF	X, Y, M, T, C
┝╌╷┼───┥╄┏──	Rising-edge trigger in serial	ANDP	X, Y, M, T, C
<u>├-1</u> ; 1 ,	Falling-edge trigger in serial	ANDF	X, Y, M, T, C
	Rising-edge trigger in parallel	ORP	X, Y, M, T, C
	Falling-edge trigger in parallel	ORF	X, Y, M, T, C
	Block in serial	ANB	none
	Block in parallel	ORB	none

Ladder Diagram Structure	Explanation	Command	Equipment
	Multiple output	MPS MRD MPP	none
	Output command of coil drive	OUT	Y, M, S
	Basic command, Application command	Application command	Please refer to basic command and application command
→	Inverse logic	INV	none

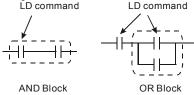

D.3.3 The Edition of PLC Ladder Diagram

The program edited method is from left power line to right power line. (the right power line will be omitted during the edited of WPLSoft.) After editing a row, go to editing the next row. The maximum contacts in a row are 11 contacts. If you need more than 11 contacts, you could have the new row and start with continuous line to continue more input devices. The continuous number will be produced automatically and the same input point can be used repeatedly. The drawing is shown as follows.

The operation of ladder diagram is to scan from left upper corner to right lower corner. The output handling, including the operation frame of coil and application command, at the most right side in ladder diagram.

Take the following diagram for example; we analyze the process step by step. The number at the right corner is the explanation order.

Appendix D How to Use PLC Function	V/72-E
------------------------------------	--------


The explanation of command order:

D-12

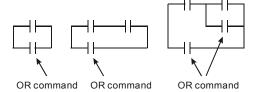
1	LD	X0
2	OR	MO
3	AND	X1
4	LD	X3
	AND	M1
	ORB	
5	LD	Y1
	AND	X4
6	LD	Т0
	AND	M3
	ORB	
7	ANB	
8	OUT	Y1
	TMR	T0 K10

The detail explanation of basic structure of ladder diagram

1. LD (LDI) command: give the command LD or LDI in the start of a block.

The structures of command LDP and LDF are similar to the command LD. The difference is that command LDP and LDF will act in the rising-edge or falling-edge when contact is ON as

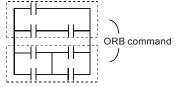
that command LDP and LDF will act in the rising-edge or failing-edge when contact is ON as shown in the following.



2. AND (ANI) command: single device connects to a device or a block in series. AND command AND command

The structures of ANDP and ANDF are the same but the action is in rising-edge or fallingedge.

3. OR (ORI) command: single device connects to a device or a block.



The structures of ORP and ORF are the same but the action is in rising-edge or falling-edge.

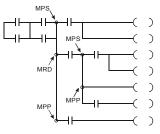
 ANB command: a block connects to a device or a block in series. ANB command

5. ORB command: a block connects to a device or a block in parallel.

If there are several blocks when operate ANB or ORB, they should be combined to blocks or network from up to down or from left to right.

- MPS, MRD, MPP commands: Divergent memory of multi-output. It can produce many various outputs.
- 7. The command MPS is the start of divergent point. The divergent point means the connection place between horizontal line and vertical line. We should determine to have contact memory command or not according to the contacts status in the same vertical line. Basically, each contact could have memory command but in some places of ladder diagram conversion will be omitted due to the PLC operation convenience and capacity limit. MPS command can be used for 8 continuous times and you can recognize this command by the symbol "T".
- MRD command is used to read memory of divergent point. Because the logical status is the same in the same horizontal line, it needs to read the status of original contact to keep

on analyzing other ladder diagram. You can recognize the command MRD by the symbol " $\mbox{${\rm h}$}$ ".

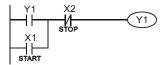

 MPP command is used to read the start status of the top level and pop it out from stack. Because it is the last item of the horizontal line, it means the status of this horizontal line is ending.

You can recognize this command by the symbol

" \hdownames ". Basically, that is all right to use the above

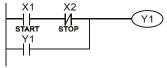
method to analyze but sometimes compiler will

omit the same outputs as shown at the right.


D.3.4 The Example for Designing Basic Program

Start, Stop and Latching

In the same occasions, it needs transient close button and transient open button to be start and stop switch. Therefore, if you want to keep the action, you should design latching circuit. There are several latching circuits in the following:


Example 1: the latching circuit for priority of stop

When start normally open contact X1=On, stop normally contact X2=Off, and Y1=On are set at the same time, if X2=On, the coil Y1 will stop acting. Therefore, it calls priority of stop.

Example 2: the latching circuit for priority of start

When start normally open contact X1=On, stop normally contact X2=Off and Y1=On (coil Y1 will be active and latching) are valid at the same time, if X2=On, coil Y1 will be active due to latched contact. Therefore, it calls priority of start.

SET

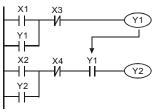
RST

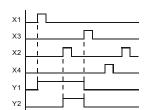
Y1

Y1

Example 3: the latching circuit of SET and RST commands

The figure at the right side is latching circuit that made up of RST and SET command.


It is top priority of stop when RST command is set behind SET command. When executing PLC from up to down, The coil Y1 is ON and coil Y1 will be OFF


when X1 and X2 act at the same time, therefore it calls Top priority of start priority of stop.

It is top priority of start when SET command is set after RST command. When X1 and X2 act at the same time, Y1 is ON so it calls top priority of start.

The common control circuit

Example 4: condition control

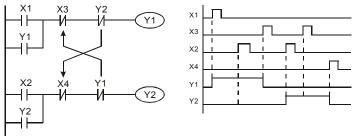
X1 and X3 can start/stop Y1 separately, X2 and X4 can start/stop Y2 separately and they are all self latched circuit. Y1 is an element for Y2 to do AND function due to the normally open contact connects to Y2 in series. Therefore, Y1 is the input of Y2 and Y2 is also the input of Y1.

I be OFF refore it calls Top priority of start

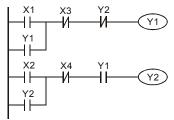
Top priority of stop

X1

1 |-


X2

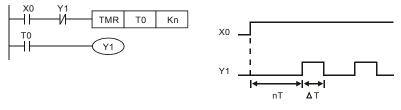
٩ŀ



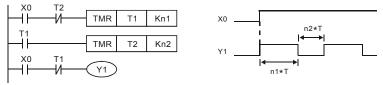
The figure above is the circuit of interlock control. Y1 and Y2 will act according to the start contact X1 and X2. Y1 and Y2 will act not at the same time, once one of them acts and the other won't act. (This is called interlock.) Even if X1 and X2 are valid at the same time, Y1 and Y2 won't act at the same time due to up-to-down scan of ladder diagram. For this ladder diagram, Y1 has higher priority than Y2.

Example 6: Sequential Control

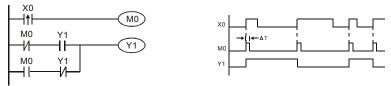
If add normally close contact Y2 into Y1 circuit to be an input for Y1 to do AND function. (as shown in the left side) Y1 is an input of Y2 and Y2 can stop Y1 after acting. In this way, Y1 and Y2 can execute in sequential.


Example 7: Oscillating Circuit

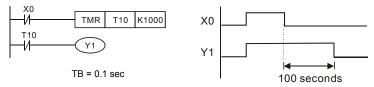
The period of oscillating circuit is $\Delta T + \Delta T$


The figure above is a very simple ladder step diagram. When starting to scan Y1 normally close contact, Y1 normally close contact is close due to the coil Y1 is OFF. Then it will scan Y1 and the coil Y1 will be ON and output 1. In the next scan period to scan normally close contact Y1, Y1 normally close contact will be open due to Y1 is ON. Finally, coil Y1 will be OFF. The result of repeated scan, coil Y will output the vibrating pulse with cycle time Δ T(On)+ Δ T(Off).

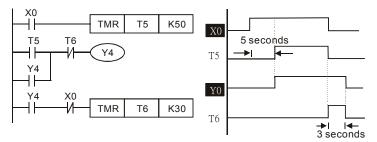
The vibrating circuitry of cycle time $\triangle T(On) + \triangle T(Off)$:


The figure above uses timer T0 to control coil Y1 to be ON. After Y1 is ON, timer T0 will be closed at the next scan period and output Y1. The oscillating circuit will be shown as above. (n is the setting of timer and it is decimal number. T is the base of timer. (clock period))

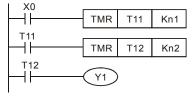
Example 8: Blinking Circuit


The figure above is common used oscillating circuit for indication light blinks or buzzer alarms. It uses two timers to control On/OFF time of Y1 coil. If figure, n1 and n2 are timer setting of T1 and T2. T is the base of timer (clock period)

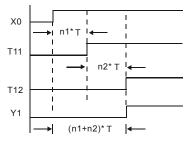
Example 9: Triggered Circuit


In figure above, the rising-edge differential command of X0 will make coil M0 to have a single pulse of ΔT (a scan time). Y1 will be ON during this scan time. In the next scan time, coil M0 will be OFF, normally close M0 and normally close Y1 are all closed. However, coil Y1 will keep on being ON and it will make coil Y1 to be OFF once a rising-edge comes after input X0 and coil M0 is ON for a scan time. The timing chart is as shown above. This circuit usually executes alternate two actions with an input. From above timing: when input X0 is a square wave of a period T, output coil Y1 is square wave of a period 2T.

Example 10: Delay Circuit



When input X0 is ON, output coil Y1 will be ON at the same time due to the corresponding normally close contact OFF makes timer T10 to be OFF. Output coil Y1 will be OFF after delaying 100 seconds (K1000*0.1 seconds =100 seconds) once input X0 is OFF and T10 is ON. Please refer to timing chart above.


Example 11: Output delay circuit, in the following example, the circuit is made up of two timers. No matter input X0 is ON or OFF, output Y4 will be delay.

Example12: Extend Timer Circuit

In this circuit, the total delay time from input X0 is close and output Y1 is ON= (n1+n2)* T. where T is clock period.

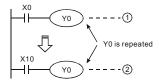
D.4 PLC Devices

D.4.1 Summary of DVP-PLC Device Number

Items					Specifications		Remarks			
					Stored program, cyclic scan system					
					Batch processing (whe instruction is executed		I/O refresh instruction is available			
Exec	cutio	n Speed			Basic commands (mir 0.24 us)	nimum	Application commands (10 ~ hundreds us)			
Prog	ram	Languag	je		Instruction, Ladder Lo	gic, SFC	Including the Step commands			
Prog	ram	Capacity	/		500 STEPS		SRAM + Battery			
Com	mar	nds			45 commands		28 basic commands 17 application commands			
Inpu	t/Ou	tput Cont	act		Input (X): 6, output (Y): 2				
	х	External	I Input Relay		X0~X17, 16 points, octal number system	Total is 32 points	Correspond to external input point			
	Y	External	l Output Relay		Y0~Y17, 16 points, octal number system		Correspond to external output point			
	м	Auxiliary	For gener Auxiliary For specia	al	M0~M159, 160 points		Contacts can switch to On/Off in program			
				al	M1000~M1031, 32 points	192 points				
Relay bit mode	т	Timer	100ms tin	ner	T0~T15, 16 points	Total is 16 points	When the timer indicated by TMR command attains the setting, the T contact with the same number will be On.			
			16-bit count up for general		C0~C7, 8 points	Total is 8 points	When the counter			
			32-bit	1-phase input		Total is 1 point	indicated by CNT command attains the			
	С	Counter	count up/down high-	1-phase 2 inputs	C235, 1 point (need to use with PG card)		setting, the C contact with the same number			
							speed counter	2-phase 2 inputs		P K

		Iter	ns	Specifications	;	Remarks				
	т	Present valu	e of timer	T0~T15, 16 points		When timer attains, the contact of timer will be On.				
data	С	Present value of counter		C0~C7, 8-bit counter, 8 points		When timer attains, the contact of timer will be On.				
ORD	D						For latched	D0~D9, 10 points	-	
er Wo		Data register	For general	D10~D29, 20 points	Total is 75 points	It can be memory area for storing data.				
Register WORD			For special	D1000~D1044, 45 points						
ant	к	Decimal		K-32,768 ~ K32,767 (16-bit ope	eration)				
Const	H Hexadecimal			H0000 ~ HFFFF (16-b	FFF (16-bit operation)					
Communication port (for read/write program)				RS485 (slave)						
Anal	og ir	nput/output		Built-in 2 analog inputs and 1 analog output						
Func	tion	extension mo	odule (optional)	Digital input/output card (A/D, D/A card)						

D.4.2 Devices Functions


The Function of Input/output Contacts

The function of input contact X: input contact X reads input signal and enter PLC by connecting with input equipment. It is unlimited usage times for A contact or B contact of each input contact X in program. The On/Off of input contact X can be changed with the On/Off of input equipment but can't be changed by using peripheral equipment (WPLSoft).

The Function of Output Contact Y

D-20

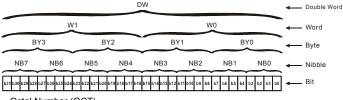
The mission of output contact Y is to drive the load that connects to output contact Y by sending On/Off signal. There are two kinds of output contact: one is relay and the other is transistor. It is unlimited usage times for A or B contact of each output contact Y in program. But there is number for output coil Y and it is recommended to use one time in program. Otherwise, the output result will be decided by the circuit of last output Y with PLC program scan method.

The output of Y0 will be decided by circuit

(2), i.e. decided by On/Off of X10.

D.4.3 Value, Constant [K] / [H]

Constant	к	Decimal	K-32,768 ~ K32,767 (16-bit operation)
Constant	Н	Hexadecimal	H0000 ~ HFFFF (16-bit operation)


There are five value types for DVP-PLC to use by the different control destination. The following is the explanation of value types.

1. Binary Number (BIN)

It uses binary system for the PLC internal operation or storage. The relative information of binary system is in the following.

Bit	:	Bit is the basic unit of binary system, the status are 1 or 0.
Nibble	:	It is made up of continuous 4 bits, such as b3~b0. It can be used to represent number $0~9$ of decimal or $0~F$ of hexadecimal.
Byte	:	It is made up of continuous 2 nibbles, i.e. 8 bits, b7~b0. It can used to represent 00~FF of hexadecimal system.
Word	:	It is made up of continuous 2 bytes, i.e. 16 bits, b15~b0. It can used to represent 0000~FFFF of hexadecimal system.
Double Word	:	It is made up of continuous 2 words, i.e. 32 bits, b31~b0. It can used to represent 00000000~FFFFFFF of hexadecimal system.

The relations among bit, nibble, byte, word, and double word of binary number are shown as follows.

2. Octal Number (OCT)

The numbers of external input and output terminal of DVP-PLC use octal number.

Example:

External input: X0~X7, X10~X17...(device number)

External output: Y0~Y7, Y10~Y17...(device number)

3. Decimal Number (DEC)

The suitable time for decimal number to use in DVP-PLC system.

- To be the setting value of timer T or counter C, such as TMR C0 K50. (K constant)
- To be the device number of M, T, C and D. For example: M10, T30. (device number)
- To be operand in application command, such as MOV K123 D0. (K constant)
 - 4. BCD (Binary Code Decimal, BCD)

It shows a decimal number by a unit number or four bits so continuous 16 bits can use to represent the four numbers of decimal number. BCD code is usually used to read the input value of DIP switch or output value to 7-segment display to be display.

5. Hexadecimal Number (HEX)

The suitable time for hexadecimal number to use in DVP-PLC system.

To be operand in application command. For example: MOV H1A2B D0. (constant H) Constant K:

In PLC, it is usually have K before constant to mean decimal number. For example, K100

means 100 in decimal number.

Exception:

The value that is made up of K and bit equipment X, Y, M, S will be bit, byte, word or double word. For example, K2Y10, K4M100. K1 means a 4-bit data and K2~K4 can be 8, 12 and 16-bit data separately.

Constant H:

In PLC, it is usually have H before constant to mean hexadecimal number. For example,

H100 means 100 in hexadecimal number.

D.4.4 The Function of Auxiliary Relay

There are output coil and A, B contacts in auxiliary relay M and output relay Y. It is unlimited usage times in program. User can control loop by using auxiliary relay, but can't drive

external load directly. There are two types divided by its characteristics.

- 1. Auxiliary relay for general : It will reset to Off when power loss during running. Its state will be Off when power on after power loss.
- 2. Auxiliary relay for special : Each special auxiliary relay has its special function. Please don't use undefined auxiliary relay.

D.4.5 The Function of Timer

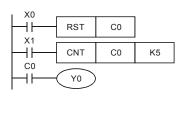
The unit of timer is 1ms, 10ms and 100ms. The count method is count up. The output coil will be On when the present value of timer equals to the settings. The setting is K in decimal number. Data register D can be also used as settings.

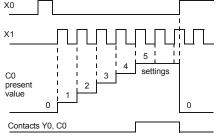
The real setting time of timer = unit of timer * settings

D.4.6 The Features and Functions of Counter

Features:

Item	16 bits counters	32 bits counters			
Туре	General	General High speed			
Count direction	Count up	Count up/down			
Settings	0~32,767	-2,147,483,648~-	+2,147,483,647		
Designate for constant	Constant K or data register D	Constant K or da	ta register D (2 for designated)		
Present value change	Counter will stop when attaining settings	Counter will keep on counting when attaining settings			
Output contact	When count attains settings, contact will be On and latched.	When count up attains settings, contact will be On and latched. When count down attains settings, contact will reset to Off.			
Reset action	The present value will reset to will reset to Off.	t to 0 when RST command is executed and contact			
Present register	16 bits	32 bits			
Contact action	After scanning, act together.	gether. After scanning, act together. Act immediately when courattains. It has no relation w scan period.			


Functions:


When pulse input signal of counter is from Off to On, the present value of counter equals to settings and output coil is On. Settings are decimal system and data register D can also be used as settings. 16-bit counters C0~C7:

- Setting range of 16-bit counter is K0~K32,767. (K0 is the same as K1. output contact will be On immediately at the first count.
- General counter will be clear when PLC is power loss. If counter is latched, it will remember the value before power loss and keep on counting when power on after power loss.
- If using MOV command, WPLSoft to send a value, which is large than setting to C0, register, at the next time that X1 is from Off to On, C0 counter contact will be On and present value will be set to the same as settings.
- The setting of counter can use constant K or register D (not includes special data register D1000~D1044) to be indirect setting.
- If using constant K to be setting, it can only be positive number but if setting is data register D, it can be positive/negative number. The next number that counter counts up from 32,767 is -32,768.

Example:

- LD X0
- RST C0
- LD X1
- CNT C0 K5
- LD CO
- OUT YO
- 1. When X0=On, RST command is executed, C0 reset to 0 and output contact reset to Off.
- 2. When X1 is from Off to On, counter will count up (add 1).
- When counter C0 attains settings K5, C0 contact is Cn and C0 = setting =K5. C0 won't accept X1 trigger signal and C0 remains K5.

32-bit high-speed addition/subtraction counter C235:

- Setting range of 32-bit high-speed addition/subtraction counter is : K-2,147,483,648~K2,147,483,647.
- The settings can be positive / negative numbers by using constant K or data register D (special data register D1000~D1044 is not included). If using data register D, the setting will occupy two continuous data register.

The total band width of high-speed counter that VFD-E supports is up to 30kHz and 500kHz for pulse input.

D.4.7 Register Types

There are two types of register which sorts by characters in the following:

- 1. General register will be cleared to 0 when PLC switches from RUN to STOP or power is off.
- 2. Special : Each special register has the special definition and purpose. It is used to save system status, error messages, monitor state.

Special Read(R)/ Function Μ Write(W) Normally open contact (a contact). This contact is On when running and it is M1000 R On when the status is set to RUN. Normally closed contact (b contact). This contact is Off in running and it is Off M1001 R when the status is set to RUN. On only for 1 scan after RUN. Initial pulse is contact a. It will get positive M1002 R pulse in the RUN moment. Pulse width=scan period. Off only for 1 scan after RUN. Initial pulse is contact a. It will get negative M1003 R pulse in the RUN moment. Pulse width=scan period. M1004 Reserved ___ Fault indication of the AC motor drives M1005 R M1006 R Output frequency is 0 The operation direction of AC motor drives (FWD: 0, REV: 1) M1007 R M1008 Reserved M1009 Reserved M1010 Reserved M1011 10ms clock pulse, 5ms On/5ms Off R M1012 100ms clock pulse, 50ms On / 50ms Off R M1013 1s clock pulse, 0.5s On / 0.5s Off R M1014 1min clock pulse, 30s On / 30s Off R R M1015 Frequency attained M1016 Parameter read/write error R R M1017 Succeed to write parameter M1018 Enable high-speed counter function (When M1028=On) R M1019 Reserved R M1020 Zero flag R M1021 R Borrow flag M1022 Carry flag R M1023 Divisor is 0 R M1024 Reserved

D.4.8 Special Auxiliary Relays

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11

RUN(ON) / STOP(OFF) the AC motor drive

M1025

Download from Www.Somanuals.com. All Manuals Search And Download.

R/W

Special M	Function	
M1026	The operation direction of the AC motor drive (FWD: OFF, REV: ON)	
M1027	Reserved	
M1028	Enable(ON)/disable(OFF) high-speed counter function	R/W
M1029	Clear the value of high-speed counter	R/W
M1030	Decide to count up(OFF)/count down(ON)	R/W
M1031	Reserved	

D.4.9 Special Registers

Special D	Function	Read(R)/ Write(W)
D1000	Reserved	
D1001	PLC firmware version	R
D1002	Program capacity	R
D1003	Checksum	R
D1004- D1009	Reserved	
D1010	Present scan time (Unit: 0.1ms)	R
D1011	Minimum scan time (Unit: 0.1ms)	R
D1012	Maximum scan time (Unit: 0.1ms)	R
D1013- D1019	Reserved	
D1020	Output frequency	R
D1021	Output current	R
D1022	The ID of the extension card: 02 USB Card 03 12-Bit A/D (2CH) 12-Bit D/A (2CH) 04 Relay Card-2C 05 Relay Card-3A 06 3IN/3OUT Card 07 PG Card	R
D1023- D1024	Reserved	

Special D	Function	Read(R)/ Write(W)
D1025	The present value of the high-speed counter C235 (low byte)	R
D1026	The present value of the high-speed counter C235 (high byte)	R
D1027	Frequency command of the PID control	R
D1028	The value of AVI (analog voltage input) 0-10V corresponds to 0- 1023	R
D1029	The value of ACI (analog current input) 4-20mA corresponds to 0- 1023 or the value of AVI2 (analog voltage input) 0-10V corresponds to 0-1023	R
D1030	The value of V.R digital keypad 0-10V corresponds to 0-1023	R
D1031- D1035	Reserved	
D1036	PLC error code	R
D1037- D1039	Reserved	
D1040	Analog output value	R/W
D1041- D1042	Reserved	
D1043	User defined (when Pr.00.04 is set to 2, the register data will be displayed as C xxx)	R/W
D1044	High-speed counter mode	R/W

D.4.10 Communication Addresses for Devices (only for PLC2 mode)

Device	Range	Туре	Address (Hex)
Х	00–17 (octal)	Bit	0400-040F
Y	00–17 (octal)	Bit	0500-050F
Т	00-15	Bit/word	0600-060F
М	000-159	Bit	0800-089F
М	1000-1031	Bit	0BE8-0C07
С	0-7	Bit/word	0E00-0E07
D	00-63	Word	1000-101D
D	1000-1044	Word	13E8-1414

NOTE: when it is in PLC1 mode, the communication address will correspond to the parameter NOT the device. For example, address 0400H will correspond to Pr.04.00 NOT X0.

Function Code	Description	Supported Devices
01	Read coil status	Y, M, T, C
02	Read input status	X, Y, M, T, C
03	Read one data	T, C, D
05	Force changing one coil status	Y, M, T, C
06	Write in one data	T, C, D
0F	Force changing multiple coil status	Y, M, T, C
10	Write in multiple data	T, C, D

D.4.11 Function Code (only for PLC2 mode)

D.5 Commands

D.5.1 Basic Commands

Commands	Function	Operands
LD	Load contact A	X, Y, M, T, C
LDI	Load contact B	X, Y, M, T, C
AND	Series connection with A contact	X, Y, M, T, C
ANI	Series connection with B contact	X, Y, M, T, C
OR	Parallel connection with A contact	X, Y, M, T, C
ORI	Parallel connection with B contact	X, Y, M, T, C
ANB	Series connects the circuit block	
ORB	Parallel connects the circuit block	
MPS	Save the operation result	
MRD	Read the operation result (the pointer not moving)	
MPP	Read the result	
INV	Inverter the result	

Commands	Function	Operands
OUT	Drive coil	Υ, Μ
SET	Action latched (ON)	Υ, Μ
RST	Clear the contacts or the registers	Y, M, T, C, D

D.5.2 Output Commands

D.5.3 Timer and Counters

Commands	Function	Operands
TMR	16-bit timer	T-K or T-D
CNT	16-bit counter	C-K or C-D

D.5.4 Main Control Commands

Commands	Function	Operands
MC	Connect the common series connection contacts	N0~N7
MCR	Disconnect the common series connection contacts	N0~N7

D.5.5 Rising-edge/falling-edge Detection Commands of Contact

Commands	Function	Operands
LDP	Rising-edge detection operation starts	X, Y, M, T, C
LDF	Falling-edge detection operation starts	X, Y, M, T, C
ANDP	Rising-edge detection series connection	X, Y, M, T, C
ANDF	Falling-edge detection series connection	X, Y, M, T, C
ORP	Rising-edge detection parallel connection	X, Y, M, T, C
ORF	Falling-edge detection parallel connection	X, Y, M, T, C

D.5.6 Rising-edge/falling-edge	Output Commands
--------------------------------	-----------------

Commands	Function	Operands
PLS	Rising-edge output	Υ, Μ
PLF	Falling-edge output	Υ, Μ

D.5.7 End Command

Command	Function	Operands
END	Program end	none

D.5.8 Explanation for the Commands

Mnemonic		Function				
LD			Load A	contact		
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	~	~	

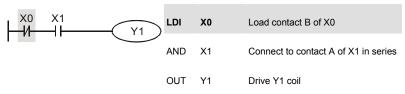
Explanations:

The LD command is used on the A contact that has its start from the left BUS or the A contact that is the start of a contact circuit. Function of the command is to save present contents, and at the same time, save the acquired contact status into the accumulative register.

Program Example:

Ladder diagram	Command code		Operation
X0 X1	LD	X0	Load contact A of X0
	AND	X1	Connect to contact A of X1 in series
	OUT	Y1	Drive Y1 coil

Mnemonic	Function					
LDI		Load B contact				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	~	~	


Explanations:

The LDI command is used on the B contact that has its start from the left BUS or the B contact that is the start of a contact circuit. Function of the command is to save present contents, and at the same time, save the acquired contact status into the accumulative register.

Program Example:

Ladder diagram:

Command code: Operation:

Mnemonic	Function					
AND		Series connection- A contact				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	\checkmark	~	~	~	~	

Explanations:

The AND command is used in the series connection of A contact. The function of the command is to readout the status of present specific series connection contacts first, and then to perform the "AND" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Program Example:

Ladder diagram:

Comm	and code:	Operation:
LDI	X1	Load contact B of X1
AND	XO	Connect to contact A of X0 in series
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ANI		Series connection- B contact				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	\checkmark	\checkmark	

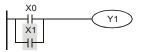
Explanations:

The ANI command is used in the series connection of B contact. The function of the command is to readout the status of present specific series connection contacts first, and then to perform the "AND" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Program Example:

Ladder diagram:

	Command	code:	Operation:
	LD	X1	Load contact A of X1
)	ANI	X0	Connect to contact B of X0 in series
	OUT	Y1	Drive Y1 coil

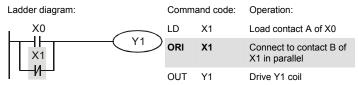

Mnemonic	Function					
OR		Parallel connection- A contact				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
operand	~	~	~	~	~	

Explanations:

D-32

The OR command is used in the parallel connection of A contact. The function of the command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register. Program Example:

Ladder diagram:


Comma	and code:	Operation:
LD	X0	Load contact A of X0
OR	X1	Connect to contact A of X1 in parallel
OUT	Y1	Drive Y1 coil

Mnemonic	Function					
ORI		Parallel connection- B contact				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	~	~	

Explanations:

The ORI command is used in the parallel connection of B contact. The function of the command is to readout the status of present specific series connection contacts, and then to perform the "OR" calculation with the logic calculation result before the contacts, thereafter, saving the result into the accumulative register.

Program Example:

Mnemonic	Function
ANB	Series connection (Multiple Circuits)
Operand	None

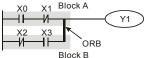
Explanations:

To perform the "ANB" calculation between the previous reserved logic results and contents of the accumulative register.

Program Example:

Ladder diagram: Command code: Operation: X0 ANB X1 LD X0 Load contact A of X0 Y1 И ORI X2 Connect to contact B of X2 in X2 X3 parallel Block A Block B Load contact B of X1 LDI X1 OR Connect to contact A of X3 in Х3 parallel ANB Connect circuit block in series OUT Y1 Drive Y1 coil

Mnemonic	Function
ORB	Parallel connection (Multiple circuits)
Operand	None


Explanations:

To perform the "OR" calculation between the previous reserved logic results and contents of the accumulative register.

Program Example:

D-34

Ladder diagram:

Command code:		Operation:
LD	X0	Load contact A of X0
ANI	X1	Connect to contact B of X1 in series
LDI	X2	Load contact B of X2
AND	X3	Connect to contact A of X3 in series
ORB		Connect circuit block in parallel
OUT	Y1	Drive Y1 coil

Mnemonic	Function			
MPS	Store the current result of the internal PLC operations			
Operand	None			

Explanations:

To save contents of the accumulative register into the operation result. (the result operation pointer pluses 1)

Mnemonic	Function				
MRD	Reads the current result of the internal PLC operations				
Operand None					

Explanations:

Reading content of the operation result to the accumulative register. (the pointer of operation result doesn't move)

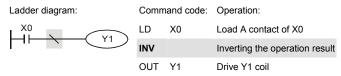
Mnemonic	Function			
MPP	Reads the current result of the internal PLC operations			
Operand	None			

Explanations:

Reading content of the operation result to the accumulative register. (the stack pointer will decrease 1)

Program Example:

Ladder diagram:


Comma	and code:	Operation:
LD	X0	Load contact A of X0
MPS		Save in stack
AND	X1	Connect to contact A of X1 in series
OUT	Y1	Drive Y1 coil
MRD		Read from the stack (without moving pointer)
AND	X2	Connect to contact A of X2 in series
OUT	M0	Drive M0 coil
MPP		Read from the stack
OUT	Y2	Drive Y2 coil
END		End program

Mnemonic	Function		
INV	Inverting Operation		
Operand	None		

Explanations:

Inverting the operation result and use the new data as an operation result.

Program Example:

Mnemonic	Function					
OUT	Output coil					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
operand		~	~			

Explanations:

Output the logic calculation result before the OUT command to specific device.

Motion of coil contact

		OUT command					
Operation result	Coil	Contact					
result		A contact (normally open)	B contact (normally closed)				
FALSE	OFF	Non-continuity	Continuity				
TRUE	ON	Continuity	Non-continuity				

Program Example:

Command code: Operation: Ladder diagram: X0 X1 I DI X0 Load contact B of X0 łŀ И Y1 AND X1 Connect to contact A of X1 in series OUT Y1 Drive Y1 coil

Mnemonic	Function					
SET	Latch (ON)					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
		~	~			

Explanations:

When the SET command is driven, its specific device is set to be "ON," which will keep "ON" whether the SET command is still driven. You can use the RST command to set the device to "OFF".

Program Example:

Ladder diagram:		Comma	nd code:	Operation:
	T V1	LD	X0	Load contact A of X0
		ANI	Y0	Connect to contact B of Y0 in series
		SET	Y1	Y1 latch (ON)

Mnemonic	Function					
RST	Clear the contacts or the registers					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
		~	~	~	~	

Explanations:

When the RST command is driven, motion of its specific device is as follows:

Device	Status
Υ, Μ	Coil and contact will be set to "OFF".
Т, С	Present values of the timer or counter will be set to 0, and the coil and contact will be set to "OFF."
D	The content value will be set to 0.

Program Example:

Ladder diagram		Comm	and code:	Operation:	
X0 RST Y5			LD	X0	Load contact A of X0
			RST	Y5	Clear contact Y5

Mnemonic	Function				
TMR	16-bit timer				
Operand	T-K	T0~T15, K0~K32,767			
operand	T-D	T0~T15, D0~D29			

Explanations:

When TMR command is executed, the specific coil of timer is ON and timer will start to count. When the setting value of timer is attained (counting value >= setting value), the contact will be as following:

NO(Normally Open) contact	Open collector		
NC(Normally Closed) contact	Close collector		

Program Example:

Ladder diagram: Command			and code:	Operation:		
X0	X0 TMR T5 K1000		LD	X0	Load contact A of X0 T5 timer	
	LINIK	15	K1000	TMR	T5 K1000	Setting is K1000

Mnemonic	Function				
CNT	16-bit counter				
Operand	C-K	C0~C7, K0~K32,767			
Operatio	C-D	C0~C7, D0~D29			

Explanations:

 When the CNT command is executed from OFF→ON, which means that the counter coil is driven, and 1 should thus be added to the counter's value; when the counter achieved specific set value (value of counter = the setting value), motion of the contact is as follows:

NO(Normally Open) contact	Continuity
NC(Normally Closed) contact	Non-continuity

 If there is counting pulse input after counting is attained, the contacts and the counting values will be unchanged. To re-count or to conduct the CLEAR motion, please use the RST command.

Program Example:

Ladder diagram:			Command code:		Operation:	
	CNT	C2	K100	LD	X0	Load contact A of X0 C2 counter
1	0.111	02			C2 K100	Setting is K100

Mnemonic	Function			
MC / MCR	Master control Start/Reset			
Operand	N0~N7			

Explanations:

 MC is the main-control start command. When the MC command is executed, the execution of commands between MC and MCR will not be interrupted. When MC command is OFF, the motion of the commands that between MC and MCR is described as follows:

Timer	The counting value is set back to zero, the coil and the contact are both turned OFF			
Accumulative timer	The coil is OFF, and the timer value and the contact stay at the present condition			
Subroutine timer	The counting value is back to zero. Both coil and contact are turned OFF.			

Counter	The coil is OFF, and the counting value and the contact stay at their present condition			
Coils driven up by the OUT command	All turned OFF			
Devices driven up by the SET and RST commands	Stay at present condition			
Application commands	All of them are not acted , but the nest loop FOR-NEXT command will still be executed for times defined by users even though the MC-MCR commands is OFF.			

2. MCR is the main-control ending command that is placed at the end of the main-control program and there should not be any contact commands prior to the MCR command.

3. Commands of the MC-MCR main-control program supports the nest program structure, with 8 layers as its greatest. Please use the commands in order from N0~ N7, and refer to the followina:

Program Example:

Ladder diagram:

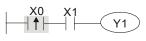
Command code: Operation:

	-					
X0				LD	X0	Load A contact of X0
X1			N0	мс	N0	Enable N0 common series connection contact
	8	- <u>Y0</u>		LD	X1	Load A contact of X1
− 1⊢−	L	MC	N1	OUT :	Y0	Drive Y0 coil
 		<u>Y1</u>		LD	X2	Load A contact of X2
		MCR	N1	мс	N1	Enable N1 common series connection contact
		MCR		LD	Х3	Load A contact of X3
X40				OUT	Y1	Drive Y1 coil
		мс		:		
X11		- Y10		MCR	N1	Disable N1 common series connection contact
	Ţ			:		
	~	MCR	N0	MCR	N0	Disable N0 common series connection contact
				:		
				LD	X10	Load A contact of X10
				мс	N0	Enable N0 common series connection contact

D-40

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D How to Use PLC Function						
LD	X11	Load A contact of X11				
OUT :	Y10	Drive Y10 coil				
MCR	N0	Disable N0 common series connection contact				


Mnemonic	Function					
LDP	Rising-edge detection operation					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
operand	\checkmark	\checkmark	~	\checkmark	\checkmark	

Explanations:

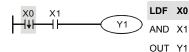
Usage of the LDP command is the same as the LD command, but the motion is different. It is used to reserve present contents and at the same time, saving the detection status of the acquired contact rising-edge into the accumulative register.

Program Example:

Ladder diagram:

Command code:		Operation:		
LDP	X0	Start X0 rising-edge detection		
AND	X1	Series connection A contact of X1		
OUT	Y1	Drive Y1 coil		

Mnemonic	Function					
LDF	Falling-edge detection operation					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	~	~	


Explanations:

Usage of the LDF command is the same as the LD command, but the motion is different. It is used to reserve present contents and at the same time, saving the detection status of the acquired contact falling-edge into the accumulative register.

Program Example:

Ladder diagram:

Command code: Operation:

Start X0 falling-edge detection Series connection A contact of X1 Drive Y1 coil

Mnemonic	Function						
ANDP		Rising-edge series connection					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29	
Operand	~	~	~	~	~		

Explanations:

ANDP command is used in the series connection of the contacts' rising-edge detection.

Program Example:

Ladder diagram:	Comma	and code:	Operation:
	LD	X0	Load A contact of X0
	ANDP	X1	X1 rising-edge detection in series connection
	OUT	Y1	Drive Y1 coil

Mnemonic	Function						
ANDF		Falling-edge series connection					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29	
Operaliu	~	~	~	~	~		

Explanations:

ANDF command is used in the series connection of the contacts' falling-edge detection.

Program Example:

Ladder d	iagram:		Comma	and code:	Operation:
, X0	X1		LD	X0	Load A contact of X0
┝┥┝╴		Y1	ANDF	X1	X1 falling-edge detection in series connection
			OUT	Y1	Drive Y1 coil

Revision June 2008, 04EE, SW–PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

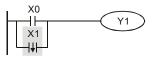
Mnemonic	Function						
ORP		Rising-edge parallel connection					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29	
operatio	~	~	~	~	~		

Explanations:

The ORP commands are used in the parallel connection of the contact's rising-edge detection.

Program Example:

Ladder diagram:	Comm	nand code:	Operation:
X0	LD	X0	Load A contact of X0
Y1 X1	ORP	X1	X1 rising-edge detection in parallel connection
	OUT	Y1	Drive Y1 coil


Mnemonic	Function					
ORF		Falling-edge parallel connection				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operand	~	~	~	~	~	

Explanations:

The ORP commands are used in the parallel connection of the contact's falling-edge detection.

Program Example:

Ladder diagram:

Command code:		and code:	Operation:
LD X0		X0	Load A contact of X0
	ORF	X1	X1 falling-edge detection in parallel connection
	OUT Y1		Drive Y1 coil

Mnemonic		Function					
PLS		Rising-edge output					
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29	
operand		~	~	-	-		

Explanations:

When X0=OFF \rightarrow ON (rising-edge trigger), PLS command will be executed and M0 will send the pulse of one time which the length is a scan time.

Program Example:

Ladder diagram:			Command code:		Operation:	
X0			LD	X0	Load A contact of X0	
мо	PLS	M0	PLS	MO	M0 rising-edge output	
	SET	Y0	LD	MO	Load the contact A of M0	
Timing Diagram	:		SET	Y0	Y0 latched (ON)	

Mnemonic	Function					
PLF		Falling-edge output				
Operand	X0~X17	Y0~Y17	M0~M159	T0~15	C0~C7	D0~D29
Operaliu		~	~			

Explanations:

When X0= $ON \rightarrow OFF$ (falling-edge trigger), PLF command will be executed and M0 will send the pulse of one time which the length is the time for scan one time.

Program Example:

Ladder diagram:

Command code: Operation:

PLF	M0
SET	Y0

Timing Diagram:

X0		
M0	a scan time	
Y0		

LD	X0	Load A contact of X0
PLF	MO	M0 falling-edge output
LD	M0	Load the contact A of M0
SET	Y0	Y0 latched (ON)

Mnemonic	Function
END	Program End
Operand	None

Explanations:

It needs to add the END command at the end of ladder diagram program or command program. PLC will scan from address 0 to END command, after executing it will return to address 0 to scan again.

D.5.9 Description of the Application Commands

	API	-	monic odes	P	Function	Steps		
		16 bits	32 bits	Commanu		16-bit	32-bit	
	10	CMP		\checkmark	Compare	7		
Transmission	11	ZCP		~	Zone compare	9		
Comparison	12	MOV		\checkmark	Data Move	5		
	15	BMOV		\checkmark	Block move	7		
Four Fundamental	20	ADD		\checkmark	Perform the addition of BIN data	7		
Operations of Arithmetic	21	SUB		~	Perform the subtraction of BIN data	7		

	API	Mne	monic odes	P Command	Function	St	eps
		16 bits	32 bits	Commanu		16-bit	32-bit
	22	MUL		~	Perform the multiplication of BIN data	7	
	23	DIV		~	Perform the division of BIN data	7	
	24	INC		~	Perform the addition of 1	3	
	25	DEC		~	Perform the subtraction of 1	3	
Rotation and	30	ROR		~	Rotate to the right	5	
Displacement	31	ROL		\checkmark	Rotate to the left	5	
	53		DHSCS	х	High speed counter enable		13
Special command for	139	FPID		~	Control PID parameters of inverter	5	
AC motor drive	140	FREQ		~	Control frequency of inverter	5	
	141	RPR		~	Read the parameter	9	
	142	WPR		\checkmark	Write the parameter	7	

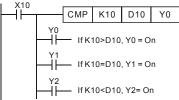
D.5.10 Explanation for the Application Commands

API	Mnemon	Inemonic Operands Function						
10	CMP	Ρ	S ₁ , S ₂ , D	Compare				

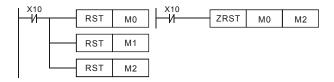
Туре	Bit	Devid	ces		Word devices							Program Steps
OP	х	Y	М	к	Н	KnX	KnY	KnM	Т	С	D	CMP, CMPP: 7 steps
S ₁				*	*	*	*	*	*	*	*	
S ₂				*	*	*	*	*	*	*	*	
D		*	*									

Operands:

D-46


S1: Comparison Value 1 S2: Comparison Value 2 D: Comparison result

Explanations:


- 1. Operand D occupies 3 consecutive devices.
- 2. See the specifications of each model for their range of use.
- 3. The contents in S1 and S2 are compared and the result will be stored in D.
- 4. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction, the comparison will regard the value as negative binary values.

Program Example:

- 1. Designate device Y0, and operand D automatically occupies Y0, Y1, and Y2.
- When X10 = On, CMP instruction will be executed and one of Y0, Y1, and Y2 will be On. When X10 = Off, CMP instruction will not be executed and Y0, Y1, and Y2 remain their status before X10 = Off.
- If the user need to obtain a comparison result with ≥ ≤, and ≠, make a series parallel connection between Y0 ~ Y2.

4. To clear the comparison result, use RST or ZRST instruction.

API	Mnemon	ic	Operands	Function						
11	ZCP	Ρ	S_{1}, S_{2}, S, D	Zone Compare						

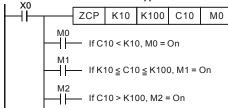
Туре	Bit	Devid	ces			w	ord de	vices				Program Steps
OP	х	Y	М	к	Н	KnX	KnY	KnM	Т	С	D	ZCP, ZCPP: 9 steps
S ₁				*	*	*	*	*	*	*	*	
S ₂				*	*	*	*	*	*	*	*	
S				*	*	*	*	*	*	*	*	
D		*	*									

Operands:

S1: Lower bound of zone comparison S2: Upper bound of zone comparison S: Comparison value

D: Comparison result

Explanations:


- 1. The content in S1 should be smaller than the content in S2.
- 2. Operand D occupies 3 consecutive devices.
- 3. See the specifications of each model for their range of use.
- 4. S is compared with its S1 S2 and the result is stored in D.
- When S1 > S2, the instruction performs comparison by using S1 as the lower/upper bound.
- 6. The two comparison values are compared algebraically and the two values are signed binary values. When b15 = 1 in 16-bit instruction or b31 = 1 in 32-bit instruction, the comparison will regard the value as negative binary values.

Program Example:


D-48

- 1. Designate device M0, and operand D automatically occupies M0, M1 and M2.
- When X0 = On, ZCP instruction will be executed and one of M0, M1, and M2 will be On. When X10 = Off, ZCP instruction will not be executed and M0, M1, and M2 remain their status before X0 = Off.

Appendix D How to Use PLC Function | Variation

3. To clear the comparison result, use RST or ZRST instruction.

ΑΡΙ	Mnemon	ic	Operands Function							
12	MOV	Ρ	S, D	Move						

Туре	Bit	Devid	ces		Word devices							Program Steps
ОР	х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D	MOV, MOVP: 5 steps
S				*	*	*	*	*	*	*	*	
D							*	*	*	*	*	

Operands:

S: Source of data D: Destination of data

Explanations:

- 1. See the specifications of each model for their range of use.
- When this instruction is executed, the content of S will be moved directly to D. When this instruction is not executed, the content of D remains unchanged.

Program Example:

MOV instruction has to be adopted in the moving of 16-bit data.

- When X0 = Off, the content in D10 will remain unchanged. If X0 = On, the value K10 will be moved to D10 data register.
- When X1 = Off, the content in D10 will remain unchanged. If X1 = On, the present value T0 will be moved to D10 data register.

API	Mnemon	ic	Operands Function						
15	BMOV	Ρ	S, D, n Block Move						

Туре	Bit	Devid	ces			w	Vord devices					Program Steps
ОР	х	Υ	М	к	н	KnX	KnY	KnM	Т	С	D	BMOV, BMOVP: 7 steps
S						*	*	*	*	*	*	
D							*	*	*	*	*	
n				*	*				*	*	*	

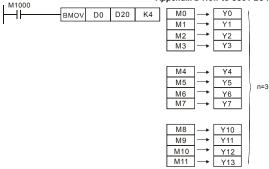
Operands:

S: Start of source devices D: Start of destination devices n: Number of data to be moved Explanations:

- 1. Range of **n**: 1 ~ 512
- 2. See the specifications of each model for their range of use.
- 3. The contents in n registers starting from the device designated by S will be moved to n registers starting from the device designated by D. If n exceeds the actual number of available source devices, only the devices that fall within the valid range will be used.

Program Example 1:

When X10 = On, the contents in registers D0 ~ D3 will be moved to the 4 registers D20 ~ D23.



Program Example 2:

D-50

Assume the bit devices KnX, KnY, KnM and KnS are designated for moving, the number of digits of S and D has to be the same, i.e. their n has to be the same.

Appendix D How to Use PLC Function |

Program Example 3:

To avoid coincidence of the device numbers to be moved designated by the two operands and cause confusion, please be aware of the arrangement on the designated device numbers.

When S > D, the BMOV command is processed in the order as $0 \rightarrow 2 \rightarrow 3$

When S < D, the BMOV command is processed in the order as $\Im \rightarrow \Im \rightarrow \Im$

L X11							
	BMOV	D10	D11	K3	D10	<u>_</u> 3_→	D11
1 11 1	5	DIU	DII	110	D11		D12
					D12		D13

API	Mnemon	ic	Operands	Function
20	ADD	Ρ	S ₁ , S ₂ , D	Addition

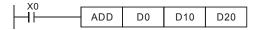
Туре	e Bit Devices					w	ord de	vices				Program Steps
OP	х	Y	М	к	н	KnX	KnY	KnM	т	С	D	ADD, ADDP: 7 steps
S ₁				*	*	*	*	*	*	*	*	
S ₂				*	*	*	*	*	*	*	*	
D							*	*	*	*	*	

Operands:

S1: Summand S2: Addend D: Sum

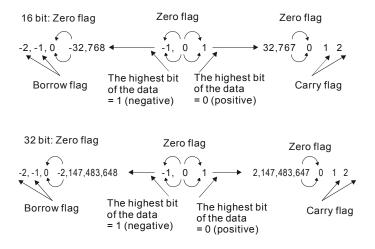
Explanations:

- 1. See the specifications of each model for their range of use.
- 2. This instruction adds S1 and S2 in BIN format and store the result in D.
- The highest bit is symbolic bit 0 (+) and 1 (-), which is suitable for algebraic addition, e.g. 3 + (-9) = -6.
- 4. Flag changes in binary addition


16-bit command:

- A. If the operation result = 0, zero flag M1020 = On.
- B. If the operation result < -32,768, borrow flag M1021 = On.
- C. If the operation result > 32,767, carry flag M1022 = On.

Program Example 1:


16-bit command:

When X0 = On, the content in D0 will plus the content in D10 and the sum will be stored in D20.

Remarks:

Flags and the positive/negative sign of the values:

API	Mnemon	ic	Operands	Function
21	SUB	Ρ	S ₁ , S ₂ , D	Subtraction

Туре	Bit	Devid	ces			w	ord de	vices			Program Steps	
ОР	х	Υ	М	К	Н	KnX	KnY	KnM	Т	С	D	SUB, SUBP: 7 steps
S ₁				*	*	*	*	*	*	*	*	DSUB, DSUBP: 13 steps
S ₂				*	*	*	*	*	*	*	*	
D							*	*	*	*	*	

Operands:

S1: Minuend S2: Subtrahend D: Remainder

Explanations:

- 1. This instruction subtracts S1 and S2 in BIN format and stores the result in D.
- 2. The highest bit is symbolic bit 0 (+) and 1 (-), which is suitable for algebraic subtraction.
- 3. Flag changes in binary subtraction

In 16-bit instruction:

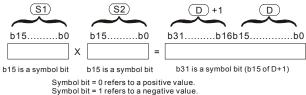
- A. If the operation result = 0, zero flag M1020 = On.
- B. If the operation result < -32,768, borrow flag M1021 = On.
- C. If the operation result > 32,767, carry flag M1022 = On.

Program Example:

In 16-bit BIN subtraction:

When X0 = On, the content in D0 will minus the content in D10 and the remainder will be stored in D20.

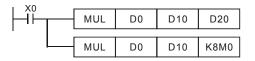
API	Mnemon	ic	Operands	Function
22	MUL	Ρ	S_1,S_2,D	Multiplication


Туре	Bit	Devid	ces			w	ord de	vices	Program Steps			
OP	х	Υ	М	к	Н	KnX	KnY	KnM	Т	С	D	MUL, DMULP: 7 steps
S ₁				*	*	*	*	*	*	*	*	
S ₂				*	*	*	*	*	*	*	*	
D							*	*	*	*	*	

Operands:

S1: Multiplicand S2: Multiplicator D: Product

Explanations:

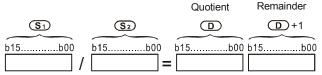

- 1. In 16-bit instruction, D occupies 2 consecutive devices.
- This instruction multiplies S1 by S2 in BIN format and stores the result in D. Be careful with the positive/negative signs of S1, S2 and D when doing 16-bit and 32-bit operations. 16-bit command:

When D serves as a bit device, it can designate K1 ~ K4 and construct a 16-bit result, occupying consecutive 2 groups of 16-bit data.

Program Example:

The 16-bit D0 is multiplied by the 16-bit D10 and brings forth a 32-bit product. The higher 16 bits are stored in D21 and the lower 16-bit are stored in D20. On/Off of the most left bit indicates the positive/negative status of the result value.

API	Mnemon	ic	Operands	Function
23	DIV	Ρ	S ₁ , S ₂ , D	Division


Туре	Bit	Devid	es		Word devices							Program Steps
ОР	х	Υ	М	к	н	KnX	KnY	KnM	Т	С	D	DIV, DIVP: 7 steps
S ₁				*	*	*	*	*	*	*	*	
S ₂				*	*	*	*	*	*	*	*	
D							*	*	*	*	*	

Operands:

 S_1 : Dividend S_2 : Divisor D: Quotient and remainder

Explanations:

- 1. In 16-bit instruction, **D** occupies 2 consecutive devices.
- This instruction divides S₁ and S₂ in BIN format and stores the result in D. Be careful with the positive/negative signs of S₁, S₂ and D when doing 16-bit and 32-bit operations.
 16-bit instruction:

Program Example:

When X0 = On, D0 will be divided by D10 and the quotient will be stored in D20 and remainder in D21. On/Off of the highest bit indicates the positive/negative status of the result value.

	DIV	D0	D10	D20	
	DIV	D0	D10	K4Y0	

API	Mnemon	ic	Operands	Function
24	INC	Ρ	D	Increment

Тур)	Bit Devices					W	ord de	vices	Program Steps			
ОР		х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D	INC, INCP: 3 steps
D								*	*	*	*	*	

Operands:


D: Destination device

Explanations:

- If the instruction is not a pulse execution one, the content in the designated device D will plus "1" in every scan period whenever the instruction is executed.
- 2. This instruction adopts pulse execution instructions (INCP).
- In 16-bit operation, 32,767 pluses 1 and obtains -32,768. In 32-bit operation, 2.147.483.647 pluses 1 and obtains -2.147.483.648.

Program Example:

When X0 goes from Off to On, the content in D0 pluses 1 automatically.

API	Mnemon	ic	Operands	Function
25	DEC	Ρ	D	Decrement

Туре	Bit Devices					w	ord de	vices	Program Steps			
OP	х	Y	М	к	Н	KnX	KnY	KnM	Т	С	D	DEC, DECP: 3 steps
D							*	*	*	*	*	

Operands:

D: Destination

Explanations:

- If the instruction is not a pulse execution one, the content in the designated device D will minus "1" in every scan period whenever the instruction is executed.
- 2. This instruction adopts pulse execution instructions (DECP).
- 3. In 16-bit operation, -32,768 minuses 1 and obtains 32,767. In 32-bit operation, -

2,147,483,648 minuses 1 and obtains 2,147,483,647.

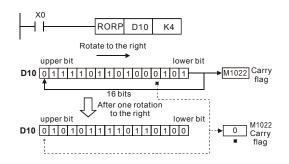
Program Example:

When X0 goes from Off to On, the content in D0 minuses 1 automatically.

API	Mnemon	ic	Operands	Function
30	ROR	Ρ	D, n	Rotate to the Right

Туре	Bit Devices					w	ord de	vices	Program Steps			
ОР	х	Y	М	К	Н	KnX	KnY	KnM	Т	С	D	ROR, RORP: 5 steps
D							*	*	*	*	*	
n				*	*							

Operands:


D: Device to be rotated n: Number of bits to be rotated in 1 rotation

Explanations:

- 1. This instruction rotates the device content designated by **D** to the right for **n** bits.
- 2. This instruction adopts pulse execution instructions (RORP).

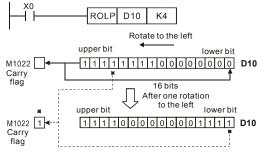
Program Example:

When X0 goes from Off to On, the 16 bits (4 bits as a group) in D10 will rotate to the right, as shown in the figure below. The bit marked with $\frac{1}{2}$ will be sent to carry flag M1022.

API	Mnemon	ic	Operands	Function
31	ROL	Ρ	D, n	Rotate to the Left

Туре	Bit Devices					w	ord de	vices	Program Steps			
ОР	х	Υ	М	к	Н	KnX	KnY	KnM	Т	С	D	ROL, ROLP: 5 steps
D							*	*	*	*	*	
n				*	*							

Operands:


D: Device to be rotated n: Number of bits to be rotated in 1 rotation

Explanations:

- 1. This instruction rotates the device content designated by **D** to the left for **n** bits.
- 2. This instruction adopts pulse execution instructions (ROLP).

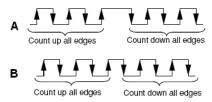
Program Example:

When X0 goes from Off to On, the 16 bits (4 bits as a group) in D10 will rotate to the left, as shown in the figure below. The bit marked with 🔆 will be sent to carry flag M1022.

D.5.11 Special Application Commands for the AC Motor Drive

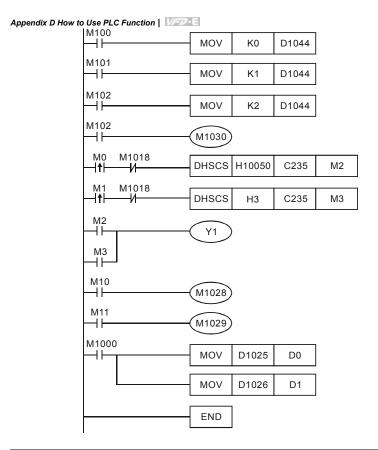
ΑΡΙ	Mnemonic	Operands	Function							
53	DHSCS	S1, S2, D	Compare (for high-speed counter)							

Туре	Bit Devices					w	ord de	vices				Program Steps
OP	х	Y	М	к	Н	KnX	KnY	KnM	Т	С	D	DHSCS: 13 steps
S1				*	*						*	
S2										*		
D		*	*						*	*	*	


Operands:

S1: Comparison Value S2: High-speed counter C235 D: Comparison result

Explanations:


- 1. It needs optional PG card to receive external input pulse.
- To count automatically, please set the target value by using DHSCS command and set M1028=On. The counter C235 will be ON when the count number = target value. If you want to clear C235, please set M1029=ON.

- Please use rising-edge/falling-edge command, such as LDP/LDF, for the contact condition. Please notice that error may occur when using contact A/B for the contact condition.
- 4. There are three input modes for high-speed counter in the following can be set by D1044.
- A-B phase mode(4 times frequency)(D1044=0): user can input the A and B pulse for counting. Make sure that \overline{A} , \overline{B} and GND are grounding.

- Pulse + signal mode(D1044=1): user can count by pulse input or signal. A is for pulse and B is for signal. Make sure that \overline{A} , \overline{B} and GND are grounding.
- Pulse + flag mode(D1044=2): user can count by M1030. Only A is needed for this mode and make sure that \overline{A} , and GND are grounding.

- Assume that when M100=ON, it is set to A-B phase mode. When M101=ON, it is set to pulse+signal mode. When M102=ON, it is set to pulse+flag mode.
- 2. M1030 is used to set to count up (OFF) and count down (ON).
- If M0 goes from OFF to ON, DHSCS command starts to execute the comparison of highspeed counter. When C235 goes from H'2 to H'3 or from H'4 to H'3, M3 will be always be ON.
- If M1 goes from OFF to ON, DHSCS command starts to execute the comparison of highspeed counter. When C235 goes from H'1004F to H'10050 or from H'10051 to H'10050, M2 will be always be ON.
- M1028: it is used to enable(ON)/disable(OFF) the high-speed counter function. M1029: it is used to clear the high-speed counter. M1018: it is used to start high-speed counter function. (when M1028 is ON).
- D1025: the low word of high-speed counter C235. D1026: the high word of high-speed counter C235.

API	Mnemon	ic	Operands	Function							
139	RPR	Ρ	S1, S2	Read the AC motor drive's parameters							

Туре	Bit Devices					w	ord de	vices				Program Steps
OP	х	Υ	М	к	Н	KnX	KnY	KnM	Т	С	D	RPR, RPRP: 5 steps
S1				*	*						*	
S2											*	

Operands:

S1: Data address for reading S2: Register that saves the read data

API	Mnemon	ic	Operands	Function							
140	WPR	Ρ	S1, S2	Write the AC motor drive's parameters							

Type Bit Devices					W	ord de	vices	Program Steps				
ОР	х	Υ	М	К	Н	KnX	KnY	KnM	Т	С	D	WPR, WPRP: 5 steps
S1				*	*						*	
S2				*	*						*	

Operands:

S1: Data address for writing S2: Register that saves the written data

- Assume that it will write the data in address H2100 of the VFD-E into D0 and H2101 into D1.
- 2. When M0=ON, it will write the data in D10 to the address H2001 of the VFD-E.
- When M1=ON, it will write the data in H2 to the address H2000 of the VFD-E, i.e. start the AC motor drive.
- When M2=ON, it will write the data in H1 to the address H2000 of the VFD-E, i.e. stop the AC motor drive.
- 5. When data is written successfully, M1017 will be ON.

M1000							
	RPR	H2100	D0				
	RPR	H2101	D1				
M0 	WPR	D10	H2001				
M1 	WPRP	H2	H2000				
M2 	WPRP	H1	H2000				
M1017	Y0						
	END						

API	Mnemonic		Operands	Function				
141	FPID	Р	S1, S2, S3, S4	PID control for the AC motor drive				

Туре	Bit	Bit Devices			Word devices							Program Steps
ОР	х	Υ	М	к	Н	KnX	KnY	KnM	Т	С	D	FPID, FPIDP: 9 steps
S1				*	*						*	
S2				*	*						*	
S3				*	*						*	
S4				*	*						*	

Operands:

S1: PID Set Point Selection(0-4), S2: Proportional gain P (0-100), S3: Integral Time I (0-10000), S4: Derivative control D (0-100)

Explanation:

 This command FPID can control the PID parameters of the AC motor drive directly, including Pr.10.00 PID set point selection, Pr.10.02 Proportional gain (P), Pr.10.03 Integral time (I) and Pr.10.04 Derivative control (D)

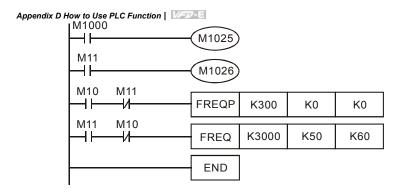
- Assume that when M0=ON, S1 is set to 0 (PID function is disabled), S2=0, S3=1 (unit: 0.01 seconds) and S4=1 (unit: 0.01 seconds).
- Assume that when M1=ON, S1 is set to 0 (PID function is disabled), S2=1 (unit: 0.01), S3=0 and S4=0.
- Assume that when M2=ON, S1 is set to 1(frequency is inputted by digital keypad), S2=1 (unit: 0.01), S3=0 and S4=0.
- 4. D1027: frequency command controlled by PID.

Appendix D How to Use PLC Function | Variation

MO					
	FPID	H0	H0	H1	H1
M1					
	FPID	H0	H1	H0	H0
M2					
	FPID	H1	H1	H0	H0
M1000					
	MOV	D1027	D1		
		1			
	END				
•					

API	Mnemonic		ic	Operands	Function					
142		FREQ	Ρ	S1, S2, S3	Operation control of the AC motor drive					

Type Bit Devices			ces			w	ord de	vices				Program Steps
OP	х	Υ	М	К	Н	KnX	KnY	KnM	Т	С	D	FREQ, FREQP: 7 steps
S1				*	*						*	
S2				*	*						*	
S3				*	*						*	


Operands:

S1: frequency command, S2: acceleration time, S3: deceleration time

Explanation:

 This command can control frequency command, acceleration time and deceleration time of the AC motor drive. Please use M1025 to RUN(ON)/STOP(OFF) the AC motor drive and use M1025 to control the operation direction: FWD(ON)/REV(OFF).

- M1025: RUN(ON)/STOP(Off) the AC motor drive. M1026: operation direction of the AC motor drive – FWD(OFF)/REV(ON). M1015: frequency is reached.
- When M10=ON, setting frequency command of the AC motor drive to K300(3.00Hz) and acceleration/deceleration time is 0.
- When M11=ON, setting frequency command of the AC motor drive to K3000(30.00Hz), acceleration time is 50 and deceleration time is 60.

D.6 Error Code

Code	ID	Description	Corrective Actions
PLod	20	Data write error	Check if the program is error and download the program again
PLSv	21	Data write error when executing	Power on again and download the program again
PLdA	22	Program upload error	 Please upload again. Return to the factory if it occurs continuously
PLFn	23	Command error when download program	Check if the program is error and download program again
PLor	30	Program capacity exceeds memory capacity	Power on again and download program again
PLFF	31	Command error when executing	
PLSn	32	Check sum error	
PLEd	33	There is no "END" command in the program	
PLCr	34	The command MC is continuous used more than nine times	

This page intentionally left blank

Appendix E CANopen Function

The built-in CANopen function is a kind of remote control. Master can control the AC motor drive by using CANopen protocol. CANopen is a CAN-based higher layer protocol. It provides standardized communication objects, including real-time data (Process Data Objects, PDO), configuration data (Service Data Objects, SDO), and special functions (Time Stamp, Sync message, and Emergency message). And it also has network management data, including Boot-up message, NMT message, and Error Control message. Refer to CiA website <u>http://www.can-cia.org/</u> for details.

Delta CANopen supports functions:

- Support CAN2.0A Protocol;
- Support CANopen DS301 V4.02;
- Support DSP-402 V2.0.

Delta CANopen supports services:

- PDO (Process Data Objects): PDO1~ PDO2
- SDO (Service Data Object):
 - Initiate SDO Download;

Initiate SDO Upload;

Abort SDO;

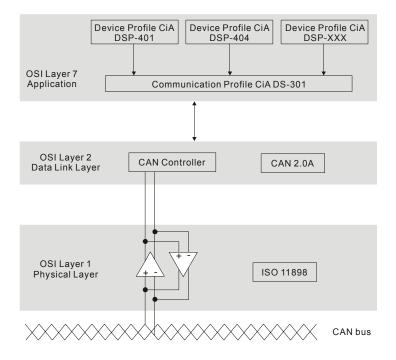
SDO message can be used to configure the slave node and access the Object Dictionary in every node.

SOP (Special Object Protocol):

Support default COB-ID in Predefined Master/Slave Connection Set in DS301 V4.02; Support SYNC service;

Support Emergency service.

 NMT (Network Management): Support NMT module control; Support NMT Error control; Support Boot-up.


Delta CANopen doesn't support service:

- Time Stamp service

E.1 Overview

E.1.1 CANopen Protocol

CANopen is a CAN-based higher layer protocol, and was designed for motion-oriented machine control networks, such as handling systems. Version 4 of CANopen (CiA DS301) is standardized as EN50325-4. The CANopen specifications cover application layer and communication profile (CiA DS301), as well as a framework for programmable devices (CiA 302), recommendations for cables and connectors (CiA 303-1) and SI units and prefix representations (CiA 303-2).

E.1.2 RJ-45 Pin Definition

PIN	Signal	Description
1	CAN_H	CAN_H bus line (dominant high)
2	CAN_L	CAN_L bus line (dominant low)
3	CAN_GND	Ground / 0V /V-
4	SG+	485 communication
5	SG-	485 communication
7	CAN_GND	Ground / 0V /V-

E.1.3 Pre-Defined Connection Set

To reduce configuration effort for simple networks, CANopen define a mandatory default identifier allocation scheme. The 11-bit identifier structure in predefined connection is set as follows:

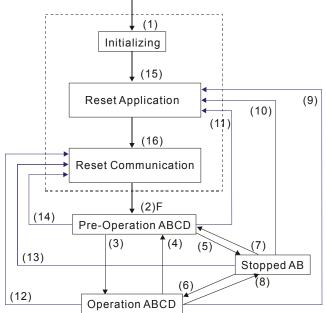
	COB Identifier (CAN Identifier)										
10	10 9 8 7 6 5 4 3 2 1 0										
	Functio	n Code			Node Number						

Object	Function Code	Node Number	COB-ID	Object Dictionary Index						
Broadcast messages										
NMT	0000	-	0	-						
SYNC	0001	-	0x80	0x1005, 0x1006, 0x1007						
TIME STAMP	0010	-	0x100	0x1012, 0x1013						
Point-to-point messages										
Emergency	0001	1-127	0x81-0xFF	0x1014, 0x1015						

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E CANopen Function

Object	Function Code	Node Number	COB-ID	Object Dictionary Index
TPDO1	0011	1-127	0x181-0x1FF	0x1800
RPDO1	0100	1-127	0x201-0x27F	0x1400
TPDO2	0101	1-127	0x281-0x2FF	0x1801
RPDO2	0110	1-127	0x301-0x37F	0x1401
TPDO3	0111	1-127	0x381-0x3FF	0x1802
RPDO3	1000	1-127	0x401-0x47F	0x1402
TPDO4	1001	1-127	0x481-0x4FF	0x1803
RPDO4	1010	1-127	0x501-0x57F	0x1403
Default SDO (tx)	1011	1-127	0x581-0x5FF	0x1200
Default SDO (rx)	1100	1-127	0x601-0x67F	0x1200
NMT Error Control	1110	1-127	0x701-0x77F	0x1016, 0x1017

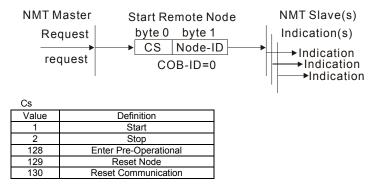

E.1.4 CANopen Communication Protocol

It has services as follows:

- NMT (Network Management Object)
- SDO (Service Data Object)
- PDO (Process Data Object)
- EMCY (Emergency Object)

E.1.4.1 NMT (Network Management Object)

The Network Management (NMT) follows a Master/Slave structure for executing NMT service. Only one NMT master is in a network, and other nodes are regarded as slaves. All CANopen nodes have a present NMT state, and NMT master can control the state of the slave nodes. The state diagram of a node are shown as follows:



(1) After power is applied, it is auto in initialization state	A: NMT			
(2) Enter pre-operational state automatically	B: Node Guard			
(3) (6) Start remote node	C: SDO			
(4) (7) Enter pre-operational state	D: Emergency			
(5) (8) Stop remote node	E: PDO			
(9) (10) (11) Reset node	F: Boot-up			
(12) (13) (14) Reset communication				
(15) Enter reset application state automatically				
(16) Enter reset communication state automatically				

Appendix E CANopen Function |

	Initializing	Pre-Operational	Operational	Stopped
PDO			0	
SDO		0	0	
SYNC		0	0	
Time Stamp		0	0	
EMERG		0	0	
Boot-up	0			
NMT		0	0	0

NMT Protocol is shown as follows:

E.1.4.2 SDO (Service Data Object)

SDO is used to access the Object Dictionary in every CANopen node by Client/Server model. One SDO has two COB-ID (request SDO and response SDO) to upload or download data between two nodes. No data limit for SDOs to transfer data. But it needs to transfer by segment when data exceeds 4 bytes with an end signal in the last segment. The Object Dictionary (OD) is a group of objects in CANopen node. Every node has an OD in the system, and OD contains all parameters describing the device and its network behavior. The access path of OD is the index and sub-index, each object has a unique index in OD, and has sub-index if necessary.

The request and response frame structure of SDO communication is shown as follows:

				D	ata	0				Data	Data	Data	Data	Data	Data	Data
Tumo										1	2	3	4	5	6	7
Туре		7	6	5	4	3	2	1	0	Index	Index	Index	Data	Data	Data	Data
		com	ima	nd						L	Н	Sub	LL	LH	HL	HH
Initiate Domain	Client	0	0	1	-	Ν	1	E	S							
Download	Server	0	1	1	-	-	-	-	-							
Initiate Domain	Client	0	1	0	-	-	-	-	-							
Upload	Server	0	1	0	-	Ν	1	E	S							
Abort Domain	Client	1	0	0	-	-	-	-	-							
Transfer	Server	1	0	0	-	-	-	-	-							

N: Bytes not use

E: normal(0)/expedited(1)

S: size indicated

E.1.4.3 PDO (Process Data Object)

PDO communication can be described by the producer/consumer model. Each node of the network will listen to the messages of the transmission node and distinguish if the message has to be processed or not after receiving the message. PDO can be transmitted from one device to one another device or to many other devices.

Every PDO has two PDO services: a TxPDO and a RxPDO. PDOs are transmitted in a nonconfirmed mode.

PDO Transmission type is defined in the PDO communication parameter index (1400h for the 1st RxPDO or 1800h for the 1st TxPDO), and all transmission types are listed in the following table:

Type Number			PDO							
i ype i tambei	Cyclic	Acyclic	Synchronous	Asynchronous	RTR only					
0		0	0							
1-240	0		0							
241-251		Reserved								
252			0		0					
253				0	0					
254				0						
255				0						

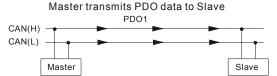
Type number 1-240 indicates the number of SYNC message between two PDO transmissions.

Type number 252 indicates the data is updated (but not sent) immediately after receiving SYNC.

Type number 253 indicates the data is updated immediately after receiving RTR.

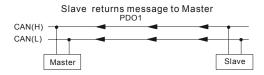
Type number 254: Delta CANopen doesn't support this transmission format.

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11


Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E CANopen Function |

Type number 255 indicates the data is asynchronous transmission.


All PDO transmission data must be mapped to index via Object Dictionary.

Example:

PDO1 data value Data 0, Data 1, Data 2, Data 3, Data 4, Data 5, Data 6, Data 7, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77, 0x88,

	Index	Sub	Definition	Value	R/W	Size
(0x1600	0	0. Number	1	R/W	U8
	0x1600	1	1. Mapped Object	0x604000 <u>10</u>	R/W	U32
PDO1 Map	0x1600	2	2. Mapped Object		R/W	U32
	0x1600	3	3 Mapped Object	\ 0	R/W	U32
	0x1600-	4	4. Mapped Object	0	R/W	U32
~						
0x60400010	0x6040	0	0. Control word	0x2211	R/W	▼U16 (2 Bytes)

PDO1 data value Data 0, Data 1, Data 2, Data 3, Data 4, Data 5, Data 6, Data 7, (0xF3, 0x00,

	Index	Sub	Definition	Value	R/W	Size
-						
(0x1A00	9	0. Number	1	R/W	U8
'	0x1A00	1	1. Mapped Object	0x604100 <u>10</u>	R/W	U32
PDO1 Map	0x1A00	2	2. Mapped Object	0	R/W	U32
	0x1A00	3	 Mapped Object 	0	R/W	U32
	0x1A00	4	4. Mapped Object	0	R/W	U32
~						
	0x6041	0	Status Word	0xF3	R/W	U16

E.1.4.4 EMCY (Emergency Object)

Emergency objects are triggered when hardware failure occurs for a warning interrupt. The data format of a emergency object is a 8 bytes data as shown in the following:

Byte	0	1	2	3	4	5	6	7
Content		gency Error Code	Error register (Object 1001H)	Manu	facturer	speci	fic Erro	or Field

Definition of Emergency Object

Display	Controller Error Code	Description	CANopen Error Code	CANopen Error Register (bit 0~7)
00	0001H	Over current	7400H	1
00	0002H	Over voltage	7400H	2
0 X I	0003H	Overheating	4310H	3
01	0005H	Overload	2310H	1
061	0006H	Overload 1	7120H	1
510	0007H	Overload 2	2310H	1
88	0008H	External Fault	9000H	7
008	0009H	Over-current during acceleration	2310H	1
000	000AH	Over-current during deceleration	2310H	1
000	000BH	Over-current during constant speed operation	2310H	1
688	000CH	Ground fault	2240H	1
10	000DH	Lower than standard voltage	3220h	2
PHL	000EH	Phase Loss	3130h	7
55	000FH	External Base Block	9000h	7
codE	0011H	Software protection failure	6320h	7
cF 10	0013H	Internal EEPROM can not be programmed	5530h	7
0.535	0014H	Internal EEPROM can not be read	5530h	7
80F (0015H	CC (current clamp)	5000h	7
8865	0016H	OV hardware error	5000h	2
НРЕЗ	0017H	GFF hardware error	5000h	2
<u>нргч</u>	0018H	OC hardware error	5000h	1
c F 3.0	0019H	U-phase error	2300h	1
c 8 3. 1	001AH	V-phase error	2300h	1
c 8 3.2	001BH	W-phase error	2300h	1
c F 3.3	001CH	OV or LV	3210h	2
c F 3.4	001DH	Temperature sensor error	4310h	3
cF []	001FH	Internal EEPROM can not be programmed	5530h	7

Revision June 2008, 04EE, SW--PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E CANopen Function |

Display	Controller Error Code	Description	CANopen Error Code	CANopen Error Register (bit 0~7)
1.535	0020H	Internal EEPROM can not be read	5530h	7
8Err	0021H	Analog signal error	FF00h	7
PE[1	0023H	Motor overheat protection	7120h	3
P68r	0024H	PG signal error	7300h	7
c P 10	0029H	Communication time-out error on the control board or power board	7500h	4

Definition of Index

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	NOTE
0x1000	0	Abort connection option code	0x00010192	RO	U32		
0x1001	0	Error register	0	RO	U8		
0x1005	0	COB-ID SYNC message	0x80	RW	U32		
0x1006	0	Communication cycle period	0	RW	U32	us	500us~15000us
0x1008	0	Manufacturer device name	0	RO	U32		
0x1009	0	Manufacturer hardware version	0	RO	U32		
0x100A	0	Manufacturer software version	0	RO	U32		
0x100C	0	Guarding time	0	RW		ms	0x80 + node 1
0x100D	0	Guarding factor	0	RW	U8		
0x1014	0	COB-ID emergency	0x0000080 +Node-ID	RO	U32		
0x1015	0	Inhibit time EMCY	0	RW		100us	It is set to be multiple of 10.
	0	Number	0x1	RO	U8		
0x1016	1	Consumer heartbeat time	0x0	RW	U32	1ms	Heartbeat time can be used when Guarding time is invalid.
0x1017	0	Producer heartbeat time		RW		1ms	Heartbeat time can be used when Guarding time is invalid.
	0	Number	0x3		U8		
	1	Vender ID	0x000001DD	RO	U32		
0x1018	2	Product code	0x00002600 +model	RO	U32		
	3	Revision	0x00010000	RO	U32		
0x1200	0	Server SDO Parameter	2	RO	U8		
	1	COB-ID Client -> Server	0x0000600+ Node-ID	RO	U32		

					HOW L	JUSEFI	LC Function
Index	Sub	Definition	Factory Setting	R/W	Size	Unit	NOTE
	2	COB-ID Client <- Server	0x0000580+ Node-ID	RO	U32		
	0	Number	2	RO	U8		
	1	COB-ID used by PDO	0x00000200 +Node-ID	RW	U32		
0x1400	2	Transmission Type	5	RW	U8		00:Acyclic & Synchronous 01~240:Cyclic & Synchronous 255: Asynchronous
	0	Number	2	RO	U8		
	1	COB-ID used by PDO	0x80000300 +Node-ID	RW	U32		
0x1401	2	Transmission Type	5	RW	U8		00:Acyclic & Synchronous 01~240:Cyclic & Synchronous 255: Asynchronous
	0	Number	2	RW	U8		
	1	1.Mapped Object	0x60400010	RW	U32		
0x1600	2	2.Mapped Object	0x60420020	RW	U32		
	3	3.Mapped Object		RW	U32		
	4	4.Mapped Object		RW	U32		
	0	Number	0		U8		
	1	1.Mapped Object		RW	U32		
0x1601	2	2.Mapped Object	0		U32		
001001	3	3.Mapped Object	0		U32		
	4	4.Mapped Object	0		U32		
	0	Number	5	RO	U8		
	1	COB-ID used by PDO	0x00000180 +Node-ID	RW	U32		
0x1800	2	Transmission Type	5	RW	U8		00:Acyclic & Synchrouous 01~240:Cyclic & Synchrouous 253: Remote function 255: Asynchronous
	3	Inhibit time	0	RW		100us	It is set to be multiple of 10.
	4	Reserved	3		U8		Reserved
	5	Event timer	0	RW	U16	1ms	
0x1801	0	Number	5	RO	U8		
	1	COB-ID used by PDO	0x80000280 +Node-ID	RW	U32		
	2	Transmission Type	5	RW	U8		00:Acyclic & Synchrouous 01~240:Cyclic & Synchrouous 253: Remote function 255: Asynchronous

Revision June 2008, 04EE, SW-PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix E CANopen Function

Index	Sub	Definition	Factory Setting	R/W	Size	Unit	NOTE
	3	Inhibit time	0	RW	U16	100us	It is set to be multiple of 10.
	4	Reserved	3	RW	U8		
	5	Event timer	0	RW	U16	1ms	
	0	Number	2	RW	U8		
	1	1.Mapped Object	0x60410010	RW	U32		
0x1A00	2	2.Mapped Object	0x60430010	RW	U32		
	3	3.Mapped Object	0	RW	U32		
	4	4.Mapped Object	0	RW	U32		
	0	Number	0	RW	U8		
	1	1.Mapped Object	0	RW	U32		
0x1A01	2	2.Mapped Object	0	RW	U32		
	3	3.Mapped Object	0	RW	U32		
	4	4.Mapped Object	0	RW	U32		

Index	Sub	Definition	Factory Setting	RW	Size	Unit	Мар	NOTE
0x6007	0	Abort connection option code	2	RW	S16		Yes	0: No action 2: Disable Voltage 3: Quick stop
0x603F	0	Error code	0	RO	U16		Yes	•
0x6040	0	Control word	0	RW	U16		Yes	bit 0 ~ 3: switch status bit 4: rfg enable bit 5: rfg unlock bit 6: rfg use ref bit 7: Fault reset
0x6041	0	Status word	0	RO	U16		Yes	Bit0 Ready to switch on Bit1 Switched on Bit2 Operation enabled Bit3 Fault Bit4 Voltage enabled Bit5 Quick stop Bit6 Switch on disabled Bit7 Warning Bit8 Bit9 Remote Bit10 Target reached Bit11 Internal limit active Bit12 - 13 Bit14 - 15
0x6042	0	vl target velocity	0	RW	S16	rpm	Yes	
0x6043	0	vl velocity demand	0	RO	S16	rpm	Yes	
0x604F	0	vl ramp function time	10000	RW	U32	1ms	Yes	If Pr.01.19 is set to 0.1, the unit must be 100ms and can't be set to 0.
0x6050	0	vl slow down time	10000	RW	U32	1ms	Yes	If Pr.01.19 is set to 0.1, the unit must be 100ms and can't be set to 0.
0x6051	0	vl quick stop time	1000	RW	U32	1ms	Yes	If Pr.01.19 is set to 0.1, the unit must be 100ms and can't be set to 0.

Revision June 2008, 04EE, SW–PW V1.11/CTL V2.11 Download from Www.Somanuals.com. All Manuals Search And Download.

Appendix D How to Use PLC Function | Variation

Index	Sub	Definition	Factory Setting	RW	Size	Unit	Мар	NOTE
0x605A	0	Quick stop option code	2	RW	S16	1ms	Yes	0 : disable drive function 1 :slow down on slow down ramp 2: slow down on quick stop ramp (2th decel. time) 5 slow down on slow down ramp and stay in QUICK STOP 6 slow down on quick stop ramp and stay in QUICK STOP
0x6060	0	Mode of operation	2	RO	U8		Yes	Speed mode
0x6061	0	Mode of operation display	2	RO	U8		Yes	

E.2 How to Control by CANopen

To control the AC motor drive by CANopen, please set parameters by the following steps:

Step 1. Operation source setting: set Pr.02.01 to 5 (CANopen communication. Keypad STOP/RESET disabled.)

Step 2. Frequency source setting: set Pr.02.00 to 5 (CANopen communication)

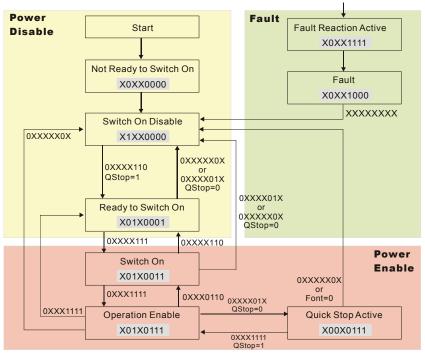
Step 3. CANopen station setting: set Pr.09.13 (CANopen Communication Address 1-127)

Step 4. CANopen baud rate setting: set Pr.09.14 (CANBUS Baud Rate)

Step 5. Set multiple input function to quick stop when necessary: Set Pr.04.05 to 04.08 or Pr.11.06 to 11.11 to 23.

According to DSP-402 motion control rule, CANopen provides speed control mode. There are many status can be switched during Start to Quick Stop. To get current status, please read "Status Word". Status is switched by the PDO index control word via external terminals.

Control word is a 16-byte in index 0x6040 and each bit has specific definition. The status bits are bit 4 to bit 6 as shown in the following:


Bit 4: ramp function enabled

Bit 5: ramp function disabled

Bit 6: rfg use reference

Appendix E CANopen Function |

Following is the flow chart for status switch:

Free Manuals Download Website <u>http://myh66.com</u> <u>http://usermanuals.us</u> <u>http://www.somanuals.com</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.cc</u> <u>http://www.4manuals.com</u> <u>http://www.404manual.com</u> <u>http://www.luxmanual.com</u> <u>http://aubethermostatmanual.com</u> Golf course search by state

http://golfingnear.com Email search by domain

http://emailbydomain.com Auto manuals search

http://auto.somanuals.com TV manuals search

http://tv.somanuals.com