AF-300 MICRO-SAVER II ${ }^{\text {m }}$
 1/4-5 Horsepower Instructions

General Information - AF-300 M icro-\$aver II " Drive Instructions

These instructions do not purport to cover all details or variations in equipment, nor to provide for every possible contingency to be met during installation, operation, and maintenance. Should further information be desired or should particular problems arise that are not covered sufficiently for the purchaser's purpose, the matter should be referred to GE Fuji Electric, Customer Service.

This document contains proprietary information of GE Fuji Electric and is furnished to its customers solely to assist that customer in the installation, testing, and/or maintenance of the equipment described. This document shall not be reproduced in whole or in part nor shall its contents be disclosed to any third party without the written approval of GE Fuji Electric.

NOTE: The terms "inverter", "controller", and "drive" are sometimes used interchangeably throughout the industry. We will use the term "Drive" in this document.

AF-300 Micro-Saver IITM and X\$D ${ }^{\text {TM }}$ are trademarks of General Electric Company. Energy Saver® is a registered trademark of General Electric Company.

The terms "AF-300 Micro-Saver II" and AF-300M\$II will be used interchangeably throughout this document.

> WARNING: Always read the complete instructions priortoapplying power or troubleshooting the equipment and follow all procedures step by step.

SHOCK HAZARD labels may be located on or inside the Drive to alert people that dangerous voltage may be present. (Refer to Section 1: Safety Precautions for Warnings and Cautions.)

Blank space has been intentionally left at the bottom of each page for the convenience of the user in documenting notes.

TABLE OF CONTENTS

Section Title Page

1. SAFETY PRECAUTIONS 1-1
2. DESCRIPTION, COMPONENT IDENTIFICATION, AND SPECIFICATIONS 2-1
General Description 2-1
Delivery Inspection Procedures 2-1
Nameplate Data 2-1
Drive Keypad Functions and Layout 2-2
Drive Components 2-3
Table 1: Standard Specifications 2-4
Table 2: Drive Dimensions 2-7
Table 3: Drive Ratings, Efficiencies and Watts Loss 2-7
3. INSTALLATION GUIDELINES 3-1
Installation Environment 3-1
Installation Mounting Clearance 3-1
Dimension Drawings 3-2
Dimensions of Keypad Mounting Holes 3-4
4. WIRING PROCEDURES 4-1
Remove Terminal Top Cover 4-1
Control Circuit Wiring 4-2
Main Circuit Wiring 4-3
Table 4: Drive Wire Size Recommendations 4-4
and Circuit Protection Rating
Control/ Circuit Terminal Block 4-5
Drive Wiring Diagram 4-6
Table 5: Terminal Identification/ Function 4-7
Drive Interface Details 4-9
5. DRIVE OPERATION 5-1
Keypad Panel Identification/ O peration 5-1
Function Code and Data Code Description/ Selection 5-1
Keypad and Display O peration Programming 5-2
Stop Mode 5-3
Run Mode 5-4
Program Mode while stopped 5-5
Program M ode while running 5-6
Trip Mode 5-7
Summary of Operating M odes 5-8
Pre-O peration Inspection 5-9
Table 6: Function Code List 5-10
6. FUNCTION CODE DESCRIPTIONS (01 thru 79) 6-1
(Settings and Diagrams)
7. MAINTENANCE AND INSPECTION 7-1
Megger Test 7-1
Periodic Parts Replacement 7-1
Inspection Items 7-2
M easurement Points and M eters 7-3

TABLE OF CONTENTS (continued)

Section Title Page
8. TROUBLESHOOTING 8-1
Table 8: Fault Condition Description and O peration 8-1
(1) Overcurrent 8-2
(2) Overvoltage 8-3
(3) Undervoltage 8-4
(4) Drive O verheat 8-5
(5) External Alarm Input 8-5
(6) Drive Overload 8-6
(7) Memory Error, Keypad Communication, CPU Error 8-7
(8) Drive O utput Circuit Error 8-8
(9) Motor will not run 8-9
(10) Motor will run but speed will not change 8-10
(11) Motor will stall during acceleration 8-11
(12) Motor H eating Abnormal 8-12
9. WARRANTY PARTS AND SERVICE 9-1
Warranty Coverage 9-1
O ut-of-Warranty Procedure 9-1
M otors 9-1
In-Warranty Failure Check List 9-2
(Data necessary for Warranty Administration)
AF-300M \$II Spare Parts List 9-3
10. CE MARK 10-1

Section 1

SAFETY PRECAUTIONS

DANGER, WARNING, CAUTION AND NOTES

The following format is used on the equipment or found in this manual. Read all labels and follow the directions whenever working on the equipment.

Abstract

A DANGER WARNS ABOUT HAZARDS THAT WILL RESULT IN IMMEDIATE SERIOUS PERSONAL INJURY OR DEATH IF IGNORED.

AWARNING Denotes operating procedures and practices that may result in personal injury or loss of life if not correctly followed.

ACAUTION Denotes operating procedures and practices that, if not strictly observed, may result in damage to, or destruction of the equipment.

NOTE: Notes call attention to information that is especially significant in understanding and operating the equipment.

DANGER, WARNING, CAUTION AND NOTE PARAGRAPHS WITHIN THIS INSTRUCTION MANUAL

The above paragraphs list some general safety reminders and safety recommendations to be followed when operating or installing this equipment. These safety precautions will be repeated throughout this instruction book where applicable.

Due to CSA requirements, pertinent warnings are also provided in French and set off by ()

WARNINGS

A DANGER MECHANICAL MOTION

 HAZARD: Drive systems cause mechanical motion. It is the responsibility of the user to insure that any such motion does not result in an unsafe condition. Customer provided interlocks, and operating limits should not be bypassed or modified.AWARNING ELECTRICAL SHOCK AND BURN HAZARD: When using instruments such as oscilloscopes to work on live equipment, the oscilloscope's chassis should be grounded and a differential amplifier input should be used. Care should be used in the selection of probes and leads and in the adjustment of the oscilloscope so that accurate readings may be made. See instrument manufacturer's instruction book for proper operation and adjustments to the instrument.

AWARNING FIRE AND EXPLOSION

 HAZARD: Fires or explosions might result from mounting Drives in hazardous areas such as locations where flammable or combustible vapors or dusts are present. Drives should be installed away from hazardous areas, even if used with motors suitable for use in these locations.
AWARNING STRAIN HAZARD:

Improper lifting practices can cause serious or fatal injury. Lift only with adequate equipment and trained personnel.

AWARNING ELECTRICAL SHOCK HAZARD: All motor bases and equipment enclosure housings should be grounded in accordance with the National Electric Code or equivalent.

AWARNING (AVERTISSEMENT)

 HAZARD OF ELECTRICAL SHOCK (RIS QUE DE CHOC ELECTRIQUE)- Separate motor overcurrent, overload, and overheating protection is required to be provided in accordance with the Canadian Electrical Code, Part 1.
- (Le moteur dolt etre muni d'une protection distincte contre les surintensites, la surcharge et la surchauffe confrmement au Code Canadian de L'electricite, premierb partie.)

Abstract

AWARNING The Drive leakage current to ground is higher than 3mA. Use grounding conductor as specified in Table 250-95 of National Electric Code, ANSI/NFPA 70-1993 or Table 31 CSA22.2, No. 14-M91.

A DANGER HAZARD OF MOTOR OVERSPEED:

ANY APPLICATIONS REQUIRING OPERATION ABOVE 120 HZ MUST BE APPROVED BY THE MOTOR MANUFACTURER.

Bias frequency setting is available when analog frequency setting method (i.e. the Function code " 01 " data is set at 1) is selected. At the stop condition, the reference frequency will be blinking on the LED display. If the Bias frequency is set at a certain level and the reference frequency is Zero, during the stop condition, the display will be blinking Zero. Thus, when a RUN command is given to the Drive, the motor will run at the Bias frequency setting (up to 400 Hz) even if the reference frequency is Zero.
With 400 Hz Drive output possible, the Drive will allow the motor to run up to 6-7 times its base speed. Never operate the motor above its top mechanical speed or a catastrophic failure may occur.

Abstract

AWARNING Before disassembling, disconnect and lock out power from the Drive. Failure to disconnect power may result in death or serious injury. A bus charge Light "CRG" provides visual indication that bus voltage is present; verify the bus voltage level by measuring the voltage between power terminals $P(+)$ and $N(-)$ using an analog meter. Do not attempt to service the Drive until the charge indicator ("CRG" lamp) has extinguished and the bus voltage has discharged to zero volts.

AWARNING Replace all covers before applying power to the Drive. Failure to do so may result in death or serious injury.

CAUTIONS

ACAUTION This product is suitable for use on a circuit capable of delivering not more than 1,000 (1 HP or less) or 5,000 (2 HP or more) rms symmetrical amperes.
AC input fuses to be customer supplied and may be branch circuit protection fused. The maximum allowance fuse ratings per TABLE 4.

ACAUTION Do not connect power supply voltage that exceeds the standard specified voltage permissible. If excessive voltage is applied to the Drive, damage to the internal components will result.

Do not connect power supply to the output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$). Connect power supply only to the power terminals (L1, L2, L3).

ACAUTION Do not connect power supply to the breaking resistor connection terminals ($\mathrm{P}(+)$, DB). Never short-circuit between P (+) - DB terminals, and do not connect any resistance with an ohm and/or wattage value less than standard application breaking resistor.

ACAUTION Do not connect a power supply to the control circuit terminals (except 30A, B, C, maximum rating 250 volts, $0.3 \mathrm{~A} \mathrm{ac} / \mathrm{dc}$).

ACAUTION For RUN and STOP, use the

 FWD-CM (forward) and REV-CM (reverse) terminals. Do not use a contactor (ON/OFF) installed on the line side of the Drive for RUN and STOP.ACAUTION Do not use a switch on the output side of the Drive for ON/OFF operation.

> ACAUTION Do not connect power factor correcting capacitors on the output side of the Drive.

ACAUTION Do not operate the Drive

 without the ground wire connected. The motor chassis should be grounded to earth through a ground lead separate from all other equipment ground leads to prevent noise coupling. The grounding connector shall be sized in accordancewith the NEC or Canadian Electrical Code. The connection shall be made by a UL listed or CSA certified closed-loop terminal connector sized for the wire gauge involved. The connector is to be fixed using the crimp tool specified by the connector manufacturer.

ACAUTION Do not perform a megger test between the Drive terminals or on the control circuit terminals.

Abstract

ACAUTION The Drives are an IGBT drive which develops an adjustable frequency via pulse width modulation. While this does not present a problem on 200-240 VAC applications, it may on $380-480$ VAC applications. When using the Drives on 380-480 VAC, get the motor manufacturer's approval that his insulation system can withstand the voltage spikes (up to twice the dc bus voltage 2×621 VDC for a 480 VAC power source of the Drive, in conjunction with the long motor cable lengths). If the insulation system does not meet this limit, utilize a RLC filter.

ACAUTION

Because the ambient temperature greatly affects Drive life and reliability, do not install the Drive in any location that exceeds the allowable temperature. Leave the ventilation covers attached for temperatures of 40 degrees C or below, and remove the ventilation port side and top covers for temperatures of between $40\left(104^{\circ} \mathrm{F}\right)$ and 50 ($122^{\circ} \mathrm{F}$) degrees C . If the covers need to be removed, another type of enclosure may be required for safety purposes.

ACAUTION If the Drive's Fault Alarm is activated, consult the TROUBLESHOOTING section of this instruction book, and after correcting the problem, resume operation. Do not reset the alarm automatically by external sequence, etc.

ACAUTION Be sure to remove the desiccant packet(s) when unpacking the Drive. (If not removed these packets may become lodged in the fan or air passages and cause the Drive to overheat.)

CAUTIONS (continued)

ACAUTION
$A C$ induction motors require that they be sized based on the applications speed range and associated torque requirements for the motor-Drive system; this is to avoid excessive motor heating. Observe motor manufacturer's recommendations when operating any ac induction motor with the Drive. Also observe motor manufacturer's recommended voltage/torque boost at lower operating frequencies.

ACAUTION The available power source connected to the Drive is not to exceed 500KVA. If the ac power source is greater than 500KVA and the Drive's rated (HP) is less than 10% of the power source's KVA; ac line reactors will have to be installed in L1, L2 \& L3 power leads of the Drive.

ACAUTION The Drive must be mounted on a building or enclosure wall that is constructed of heat resistant material. While the Drive is operating, the temperature of the Drive's cooling fins can rise to a temperature of $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right.$.)

ACAUTION If the Drive protective function is activated, consult Section 8 "Troubleshooting", and after correcting the problem, resume operation. Do not reset the alarm automatically by external sequence, etc.

ACAUTION Be sure to provide fuses, as specified on "Application of Wiring And Equipment" in Section 4, on line terminals of Drive. Provide power line disconnect or contactor as needed.

NOTES

NOTE:

(1) When terminal operation mode (Function code F_02 setting is 1) - RUN and STOP are being controlled by a maintained contact (e.g., selector switch, toggle switch, etc.) which is connected between the terminal CM and FWD or REV:
-Closing/opening the maintained contact starts/ stops the Drive.
(2) Function code F_02 setting can be changed only when connection between the terminals CM and FWD or REV is open. (i.e. STOP MODE). Drive ships with shorting bar between terminals FWD-CM.
(3) Total wiring between the Drive and the motor must not exceed the length shown below.

Function			OV	Se				V			
F_12 data	Hp	1/4	1/2	12	3	5	1/2	1	2	3	5
F_12 = 0, 1, 2 or 3		1076 ft .				538 ft .754 ft .			1076 ft.		
$F _12=4-15$											

(4) Error in current detection may increase when;
a) A specially designed motor is used.
b) A Drive's capacity is 2 Hp ratings or greater than the motor capacity.

UL/CSA Drive Caution Label

Use $60 / 70^{\circ} \mathrm{C}$ copper wire only. Use Class 1 wire only. Suitable for use on a circuit capable of delivering not more than 1,000 (1HP or less) or 5,000 (2 HP or more) rms symmetrical amperes.

WARNING: HAZARD OF ELECTRICAL SHOCK. DISCONNECT INCOMING POWER BEFORE WORKING ON THIS CONTROL.
ADVERTISSEMENT: RISQUE DE CHOC ELECTRIQUE COUPER L'ALIMENTATION AVANT LE DEPANNAGE DE CETTE COMMANDE. CAUTION: DANGEROUS VOLTAGE EXIST UNTIL CHARGE "CRG" LIGHT IS OFF. ATTENTION: PRESENCE DE TENSIONS DANGEREUSES TANT QUE LE VOYANT N'EST PAS ETEINT.
WARNING: MORE THAN ONE LIVE CIRCUIT. SEE DIAGRAM.* AVERTISSEMENT: CET EQUIPEMENT RENFERME PLUSIEURS CIRCUITS SOUS TENSION. VOIR LE SCHEMA.

SA523154-01
*See diagram on page 4-6.

Section 2
 DESCRIPTION, COMPONENT
 IDENTIFICATION, and SPECIFICATION

The Drive is available in ratings of $1 / 4$ to 3 HP 200-240 VAC single phase input, $1 / 4$ to 5 HP 200-230 VAC three phase, and 1/2 to 5 HP 380-480 VAC three phase. The Drive incorporates advanced Pulse Width Modulated (PWM) "TORQUE VECTOR" control for high starting torque. The Drives are housed in either a NEMA 1 or NEMA 4 type enclosure and all Drives are furnished with a detachable cover to allow ease of accessing control and power wiring.
Drive operation and Function Code setting is performed from the "Keypad Panel" that features a Digital Display and 6 dual function keys. The 6 function keys are used for Drive programming and operation.

General data and specifications for each Drive are listed on the nameplate attached to the Drive.
Refer to TABLE 1, for complete Drive specification listing.

INSPECTION PROCEDURES UPON DELIVERY

Upon receipt of your Drive, inspect the equipment for the following items:

1. Check the nameplate to insure that the specifications correspond to those ordered, and to application requirements.
2. Inspect the unit for any damage that may have occurred during shipment.

- If shipping damage is found or the wrong Drive is received, contact the Distributor from which the equipment was purchased.

	$\left.45.3001 / 4^{4}\right]$	
MODEL NO. SERIAL NO.		S^{69489}
INPUT:	OUTPUT:	
VOLTS	VOLTS	
*IN CASE OF "L.V. DIRECTIVE 73/23/EEC"	FREQ RANGE (HZ)	
AMPS	HP	
FREQ (HZ)	AMPS CONT.	
PHASE (S)	PHASE	
	ROTATION	
	MAX 60 SEC. AMPS	
INSTRUCTION BOOK GEI-100272		MADE IN JAPAN

All models are UL Listed and CSA Approved. CE MARK applies to the 240 VAC single-phase and 480 VAC 3-phase
Figure 2-1. NAMEPLATE DATA IDENTIFICATION

(1) Keypad Part Names and Functions

Digital Display (4 digits) Displays the various Function Codes and data values during setting of the program. During operation, it displays the output frequency, current, voltage, etc. If a fault occurs the cause of the problem will be displayed as a code.

PROGRAM Key (Reset Key)Normal mode or program setting mode select key. When any of the protection functions are activated; this key is used to reset the fault.

FUNCTION Key (Data Key) -

During the normal mode, this key can be used to change the display unit while operation is either stopped or running.

During the program mode, this key can be used to read and write the Function Codes and the data.

RUN Key - Key used for starting operation. The LED (green) lights up during operation.
This key does not function when terminal operation control is selected.

$$
\begin{array}{|l|l|l|l|}
\hline F & & 0 & 2 \\
\hline \hline F & =\begin{array}{|l|l|l|}
\hline & & \\
\hline
\end{array} \\
\hline & & 0 & 2 \\
\hline
\end{array}=\begin{aligned}
& \\
& \hline
\end{aligned}
$$

STOP Key - This key is used for stopping drive operation. When set as follows:

$$
\begin{array}{|l|l|l|l|l|l|l|}
\hline \mathrm{F} & & 0 & 2 \\
\hline
\end{array}
$$

operation command input is accepted from the Keypad (RUN and STOP keys).

When function 2 is set to 1 :

$$
\begin{array}{|l|l|l|l|l|l|}
\hline \mathrm{F} & & 0 & 2 \\
\hline
\end{array}
$$

Operation command input by means of the external signal terminal (FWD, REV). STOP key on the keypad is active. If selection " 1 " is chosen, and the stop button is depressed while the drive is running, the drive will perform the normal stop sequence until the output frequency reaches zero at which point an "Er6" fault shall be indicated on the LED. To reset the
drive you must remove the RUN command and press RESET. When function 2 is set to 2 :

operation command input is accepted by means of the external signal terminal (FWD, REV). STOP key on the keypad is inactive.

UP / DOWN Keys - These keys increase or decrease the frequency reference. When unit is in program setting mode, they change the Function Code or data values.

Unit Display - Unit information is displayed by the LED (red). All three LEDs flash to indicate that the unit is in the program mode.

Operation Mode Indicator -

The LED (green) lights up when keypad panel operation is selected.

Drive RUN Indicator -

The LED (green) lights up in the RUN mode.

(2) Controlling Method for Keypad Panel

When the power supply is activated, the keypad panel display will be as shown in the figure on the right (60.00 FLASHING). If the RUN key is pressed, the Drive will start and accelerate up to 60 Hz according to the factory setting. Use the sTOP key to stop operation.

WARNING-RUNandSTOPkeysfunctiononlyinKeypadoperationmode.(FunctionCodeF_02settingis0)

DriveComponents

1. Unit Cover (Middle)
2. Unit Cover (Top)
3. Keypad Panel (Optional)
4. Heat Sink and Mounting Tabs
5. Mounting Screw Holes
6. Top Cover Screw

Figure 2-3. TYPICAL DRIVE COMPONENTS

NOTE: NEMA 1 unit does not include keypad. Keypad is sold separately.
Keypad type is 6KM\$2KP1 for NEMA 1 unit.

TABLE 1: Standard Specifications

ITEM
SPECIFICATION

Environmental Conditions

Enclosure	NEMA 1or NEMA 4
InstallationLocation:NEMA1 NEMA4	Suitable for indoor mounting only, less than 1000 meters (3281 feet) elevation, not in contact with corrosive gas, oil mist, or dust. Suitable for use indoors or outdoors to protect the enclosed equipment against splashing water, seepage of water, falling or hose directed water and severe external condensation. Installation should be less than 1000 meters (3281 feet) elevation, not in contact with corrosive gas, or oil mist.
StoredTemperature	-20° to $+65^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.+149^{\circ} \mathrm{F}\right)$
AmbientTemperature	-10° to $+50^{\circ} \mathrm{C}\left(+14^{\circ}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$ (remove ventilation covers if temperature is over ($+40^{\circ} \mathrm{C}+104^{\circ} \mathrm{F}$)
Humidity	20\% to 95\% relative humidity (non-condensing)
Vibration	0.6 G or less
CoolingMethod	1/4 to 1 HP - Convection 2 HP and greater - Forced air (Integral fan)
Output	
RatedOutputVoltage	3-Phase, 3-Wire, 80-240 VAC or 160-480 VAC (Can not exceed power supply voltage)
FrequencyRange	$0-400$ Hertz (0.2 to 15 Hz Start Frequency; 15 to 400 Hz Base Frequency) Above 120 Hz , contact the motor manufacturer for approval of application
OverloadCurrentRating	150% for 1 minute duration (inverse time characteristic) 200% for 0.5 seconds

Power Supply

RatedInputACVoltage	-200 to 240 VAC $50 / 60 \mathrm{~Hz}, 1$ phase (1/4 to 3 HP)
	-200 to 230 VAC $50 / 60 \mathrm{~Hz}, 3$ phase (1/4 to 5 HP)
	-380 to 480 VAC $50 / 60 \mathrm{~Hz}, 3$ phase (1/2 to 5 HP)
	Voltage: $+10 \%$ to -15%; Voltage Unbalance: Within $3 \% ;$ Frequency $\pm 5 \%$
ControlSystem	Sinusoidal PWM "TORQUE VECTOR" Control

Control

FrequencySetting	- Analog: 0.02 Hz step at Maximum frequency of 60 Hz - Digital Keypad: 0.01 Hz Maximum frequency up to $99.99 \mathrm{~Hz} ; 0.1 \mathrm{~Hz}(100$ Hz or more $)$
Accuracy(Stability)	Analog setting: $\pm 0.2 \%$ of Maximum frequency $\left(59^{\circ}\right.$ to $\left.95^{\circ} \mathrm{F}\right)$ Digital Keypad setting: $\pm 0.01 \%$ of Maximum frequency $\left(14^{\circ}\right.$ to $\left.122^{\circ} \mathrm{F}\right)$

Control (continued)

Voltage/Frequency Characteristics(V/F)	Voltage - 80-240 VAC or 160-480 VAC Frequency - 0.2 to 400 Hz
TorqueBoost	0 : Automatic torque boost or 1 to 31.0 code settings (includes selection for variable torque load)
Acceleration/Deceleration Characteristics	0.01 to 3600 seconds (independent acceleration/deceleration) Alternative accel/decel time available as well as linear or 2 S-curves (selectable)
MotorSound	The pitch of the motor sound can be changed by selecting Carrier frequency (F_12: 0 to 15)
FrequencyMeterAdjustment	Scale calibration of externally connected analog meter or pulse frequency
DataProtection	Data lock is possible to ensure that the function codes are not changed
High/LowFrequencyLimiter	Output frequency upper and lower range limit 0 to $400 \mathrm{~Hz} ; 1 \mathrm{~Hz}$ step settings
Bias	Magnitude of the zero offset can be set from 0 to $\pm 100 \%$ of maximum frequency (1 Hz steps)
Gain	Output frequency gain corresponding to the reference signal can be set from 0 to 250%
15StepPresetSpeed	15 programmable preset speeds selectable by 4 contact closures
MaintainedContactOperation	Maintained contact operation/stop command (2-wire operation)
TerminalFunctionChange	Multi-Use terminal changed via Function Code settings (X4 input; Y1 output)

Operation

FrequencyReferenceSignal	Speed potentiometer: 0 to +10 VDC 4 to $20 \mathrm{~mA}[(0$ to $+5 \mathrm{VDC})$ gain adjust 0-250\%]
InputSignal(contacttype)	Forward, reverse, multistep speed setting, alternate accel/decel time settings, coast-to-stop, external alarm, 3-wire control and reset
ExtemalOutputSignals	One Dry Form "C" alarm output contact rated $250 \mathrm{VAC}, 0.3$ amp $1-$ Open collector output rated $27 \mathrm{VDC}, 50 \mathrm{~mA}$ from external power - Drive Run - FDT - FAR - LV- TL - Auto restart mode after momentary power loss (IP)
FrequencyMeterOutputSignal	Pulse frequency (adjustment to 6 kHz maximum) Analog - 0 to +10 VDC (adjustment range of 6.5 to 10.3 VDC$)$

Operation (continued)

ProtectiveFunctions:	- Stall prevention - Undervoltage - Surge input - Overcurrent - Drive overheating - Overvoltage - External faults - Short circuit for output terminals - CPU malfunction - Communication error - Motor overload - Ground fault (at start) (electronic thermal) - Output wiring not connected - Memory error (during auto tuning only)
Keypad	Digital Display - 4 digit LED
DriveOperation	Output frequency, output current, output voltage, motor speed, line speed $(\mathrm{m} / \mathrm{min})$, machine speed ($\mathrm{r} / \mathrm{min}$) can be displayed
DriveSetting	Function Code and Setting Data can be displayed
Datalnitializing	Resets all Function Codes to initial factory settings
DriveFault	- OC1 - Acceleration overcurrent - OC2 - Deceleration overcurrent - OC3 - Constant speed overcurrent - LU (LV) - Undervoltage - OU1 - Overvoltage during acceleration - OU2 - Overvoltage during deceleration - OU3 - Overvoltage at constant speed - OH1 - Drive overheat - OH2 - External alarm input - OLU - Electronic Overload - Semiconductor Overload Protection - OL - Electronic Overload - 4 Pole Motor Overload Protection - Er1-Setting error - Er2-Communication error - Er3-CPU error - Er4-Optional circuit board communication error with Drive - Er5- Optional Problem - when a link error etc. is detected - Er6 - Operating Proc. error - Er7 - Output wiring error
Charge"CRG"Lamp(LED)	Illuminates when DC Link capacitor voltage is present

Table 2: Drive Dimensions

240 Volt - Single Phase											
Model		HP	Weight		Height		Width		Depth		Dim. Figure Pages $3-2$ to 3-5 1
		Const TRQ	LBS	KGS	Inches	MM	Inches	MM	Inches	MM	
NEMA 1	NEMA 4										
6KM\$221F25N1A1	6KM\$221F25X4A1	1/4	2.7	1.2	6.22	158	4.29	109	3.15	80	1 and 4
6KM\$221F50N1A1	6KM\$221F50X4A1	1/2	3.8	1.7	6.22	158	5.67	144	4.29	109	2 and 6
6KM\$221001N1A1	6KM\$221001X4A1	1	4.0	1.8	6.22	158	5.67	144	4.29	109	2 and 6
6KM\$221002N1A1	6KM\$221002X4A1	2	6.2	2.8	6.22	158	8.03	204	5.28	134	3 and 8
6KM\$221003N1A1	6KM\$221003X4A1	3	6.4	2.9	6.22	158	8.03	204	5.28	134	3 and 8
230 Volt - Three Phase											
6KM\$223F25N1A1	6KM\$223F25X4A1	1/4	2.4	1.1	6.22	158	4.29	109	3.15	80	1 and 4
6KM\$223F50N1A1	6KM\$223F50X4A1	1/2	2.9	1.3	6.22	158	4.29	109	3.54	90	1 and 5
6KM\$223001N1A1	6KM\$223001X4A1	1	3.3	1.5	6.22	158	4.29	109	4.69	119	1 and 7
6KM\$223002N1A1	6KM\$223002X4A1	2	4.6	2.1	6.22	158	5.67	144	4.69	119	2 and 7
36KM\$223003N1A1	6KM $\$ 223003 \times 4 \mathrm{~A} 1$	3	6.2	2.8	6.22	158	8.03	204	5.28	134	3 and 8
36KM\$223005N1A1	6KM\$223005X4A1	5	7.0	3.3	6.22	158	8.03	204	5.87	149	3 and 9
480 Volt - Three Phase											
6KM\$243F50N1A1	6KM\$243F50X4A1	1/2	4.2	1.9	6.22	158	5.67	144	4.29	109	2 and 6
6KM\$243001N1A1	6KM\$243001X4A1	1	4.2	1.9	6.22	158	5.67	144	4.29	109	2 and 6
6KM\$243002N1A1	6KM\$243002X4A1	2	6.2	2.8	6.22	158	8.03	204	5.28	134	3 and 8
6KM\$243003N1A1	6KM $\$ 243003 \times 4 \mathrm{~A} 1$	3	6.2	2.8	6.22	158	8.03	204	5.28	134	3 and 8
$6 \mathrm{KM} \$ 243005 \mathrm{~N} 1 \mathrm{~A} 1$	6KM\$243005X4A1	5	7	3.3	6.22	158	8.03	204	5.87	149	3 and 9

Table 3: Drive Rating Efficiency and Watts Loss Table

240 Volt - Single Phase									
Model		HP	Output Current		Output Power	Efficiency Percentage		Watts Loss	
NEMA 1	NEMA 4		Low	High	KW	Low	High	Low	High
6KM\$221F25N1A1	6KM\$221F25X4A1	1/4	1.5	1.3	0.19	87.6	80.9	27	45
6KM\$221F50N1A1	6KM\$221F50X4A1	1/2	3.0	2.5	0.37	88.1	83.2	50	75
6KM\$221001N1A1	6KM\$221001X4A1	1	5.0	4.0	0.75	90.4	88.8	80	95
6KM\$221002N1A1	6KM\$221002X4A1	2	8.0	7.0	1.50	92.9	91.5	115	140
6KM\$221003N1A1	6KM\$221003X4A1	3	11.0	10.0	2.20	93.6	92.4	150	180
230 Volt - Three Phase									
6KM\$223F25N1A1	6KM\$223F25X4A1	1/4	1.5	1.3	0.20	87.6	80.9	27	45
6KM\$223F50N1A1	6KM\$223F50X4A1	1/2	3.0	2.5	0.40	88.1	83.2	50	75
6KM\$223001N1A1	6KM\$223001X4A1	1	5.0	4.0	0.75	90.4	88.8	80	95
6KM\$223002N1A1	6KM\$223002X4A1	2	8.0	7.0	1.50	92.9	91.5	115	140
36KM\$223003N1A1	6KM\$223003X4A1	3	11.0	10.0	2.20	93.6	92.4	150	180
36KM\$223005N1A1	6KM\$223005X4A1	5	17.0	16.5	3.70	94.6	93.4	212	260
480 Volt - Three Phase									
6KM\$243F50N1A1	6KM\$243F50X4A1	1/2	1.6	1.4	0.37	86.0	79.9	60	93
6KM\$243001N1A1	6KM\$243001X4A1	1	2.5	2.1	0.75	90.4	86.9	80	113
6KM\$243002N1A1	6KM\$243002X4A1	2	3.7	3.7	1.50	93.2	88.1	110	203
6KM\$243003N1A1	6KM 243003 X 4 A 1	3	5.5	5.3	2.20	94.4	89.4	130	260
6KM\$243005N1A1	6KM\$243005X4A1	5	9.0	8.7	3.70	94.9	91.0	200	366

[^0]
Section 3

INSTALLATION GUIDELINES

INSTALLATION ENVIRONMENT

Install the Drive in an indoor location that meets the following requirements:

- The ambient temperature is between $-10^{\circ} \mathrm{C}$ and $+50^{\circ} \mathrm{C}\left(+14^{\circ} \mathrm{F}\right.$ to $\left.+122^{\circ} \mathrm{F}\right)$. Remove the ventilation covers when the temperature exceeds $+40^{\circ} \mathrm{C}$ [$+104^{\circ} \mathrm{F}$].
- The relative humidity is between 20% and 95%. Avoid any location subject to condensation, freezing, or where the Drive would come in contact with water.
- Do not install in any location subject to direct sunlight, dust, corrosive gas, inflammable gas, or oil mist.
— Vibration should be less than 0.6G.
- The Drive should be installed at an elevation below 1000 meters (3281 feet). For installation above 1000 meters (3300 feet) the Drive will need to be derated 1% per 333 feet.

Example: $5 \mathrm{HP}, 460$ VAC, output current 9 amps. Application altitude 3900 feet.
$\%$ derate $=\left(\frac{3900-3300}{333}\right) \times 1 \%=1.8 \%$
$(9 \mathrm{amps}) \times\left(\frac{100-1.8}{100}\right)=8.84 \mathrm{amps}$ derated output current.

Motor derate may also be required, contact motor manufacturer.

CAUTION: Because the ambient temperature greatly affects Drive life and reliability, do not install the Drive in any location that exceeds the allowable temperatures.

INSTALLATION MOUNTING CLEARANCE

- Install at a sufficient distance from other equipment, walls, or wiring ducts as shown in Figure 3-1 (these clearances are required to allow the heat generated by the Drive to escape).
- Install the Drive perpendicular to the ground and with the lettering right side up. (If the Drive is installed upside-down or horizontally, heat buildup will occur.)
- Mounting screws or bolts should be of appropriate size for weight of Drive.
- See the appropriate figures on pages 3-2 and 3-3 for the location of mounting holes.
- After removing the knockouts in the wiring lead-in plate, install the rubber bushings supplied to prevent cable damage and to minimize dust entry.

CAUTION: The mounting wall for the Drive must be constructed of heat resistant material because during operation, the temperature of the Drive's cooling fins rises to approximately 90 degrees $\mathrm{C}\left(194^{\circ} \mathrm{F}\right)$.

NOTE: When installing two or more Drives in close proximity, allow sufficient space as shown in Figure 3-1 and install them in a horizontal row. If they must be installed in a vertical column, at least 19.7 inches (50cm) internal space must be provided between each one or a ventilation baffle should be provided to prevent the ambient temperature from rising.

Figure 3-1. DRIVE MOUNTING CLEARANCE

Dimensions

NOTE: NEMA 1 unit does not have Keypad. Shown with optional Keypad

Figure 2

Figure 3

Note: Inches (MM)

Dimensions

Note: Inches (MM)

Dimensions of Keypad and Keypad Mounting Holes

Keypad Part \#
6KM\$2KP1 for NEMA 1 unit 6KM\$2KP4 for NEMA 4 unit

Inches (MM)

Section 4
 WIRING PROCEDURES

Removing Top Cover

To access Main and Control Circuit Terminals remove the top cover as follows (see Figure 4-1):

1. Loosen the screw located at the bottom of the top cover.
2. Press upward on the bottom of the top cover (see arrows Figure 4-1 step 2) and lift off.
3. See Figure 4-1 for the location of the Main Circuit Terminal Block and the Control Circuit Terminal Block.

WARNING: Some printed circuit boards and Drive components may contain hazardous voltage levels. If LED light "CRG" on the Base Driver Board is illuminated, hazardous voltages are present in the Drive circuit boards. Remove and lock out power before you disconnect or reconnect wires, and before you remove or replace fuses and circuit boards. Do not attempt to service the Drive until the "CRG" indicator has extinguished and the bus voltage has discharged to zero volts.

Step 1:
Loosen Top Cover screw. (1 to 2 turns)

Main Circuit
Teminal Block-
Step 2:
Press Upward at the locations indicated by the arrows to remove the top cover.

Figure 4-1. REMOVING THE TOP COVER

Control Circuit Wiring

Drive is wired at shipment for operation and frequency setting through the keypad panel (frequency is set at 60 Hz.)

- See Figure 4-2, and 4-4 for wiring connections.
- See TABLE 5 for description of all terminals.

Make wire connections as shown in Figure 4-4 through 4-6 for desired mode of external operation through Control Circuit Terminals.

CAUTION: The Control Circuit Terminal wiring should be kept as far away as possible from the main power wiring to prevent operational error due to noise interference. Never install both types of wiring in the same duct or conduit. (A separation distance of 4 inches [10 centimeters] or more is recommended.) If the control circuit wiring must cross the main power wiring, it should cross at a right angle.

CAUTION: Use shielded or twisted wire for the control circuit wiring (wiring should be as short as possible, i.e. 65 feet or less [20 meters.]) Connect outer covering of the shielded wires to the Drive ground terminal and leave the other end open, but taped with electrical insulating tape.

Figure 4-2. CONNECTION OF SURGE SUPPRESSION DEVICES

CAUTION: Install a suppressor in parallel with any relay or solenoid type coil as shown above, that may be close to the Drive to prevent noise from causing erratic Drive operation.

Main Circuit Wiring

CAUTION: Be sure that the power supply is never connected to the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ terminals or the $\mathrm{P}(1), \mathrm{P}(+)$, DB terminals.

1. Connect the ground terminal as shown in the appropriate view of Figure 4-3. (Do not operate without the unit being grounded.)

- The ground wire must be minimum 14 AWG and short as possible

2. Connect the power supply wires to the L1, L2, and L3 terminals of the Main Circuit Terminal Block as shown in the appropriate view of Figure 4-3. (See TABLE 5 for description of all terminals and TABLE 4 for recommended wire sizes.) Note that L1 and L2 terminals only, are available on single phase input models.
3. Connect the 3-phase motor wires to the U, V, and W terminals of the Main Circuit Terminal Block as shown in the appropriate view of Figure 4-3. (See TABLE 5 for description of all terminals and TABLE 4 for recommended wire sizes.)
4. Suitable for use on a circuit capable of delivering not more than 1000A (1 HP or less) or 5000A (2 HP or more) RMS symmetrical.
5. AC input fuses are to be customer supplied and may be branch circuit protection fuses. The maximum allowance fuse rating per TABLE 4.

NOTE: Motor will rotate counterclockwise when viewed from the shaft end when connected normally. If the motor rotates in reverse direction, interchange any two of the U, V, or W terminal connections.

240V - Single Phase 1/4 to 3 HP

230 \& 480V - Three Phase $1 / 4$ to 5 HP

Figure 4-3. MAIN CIRCUIT TERMINAL LAYOUT

Table 4:

Wire Size Recommendations \& Circuit Protection Ratings

240V - Single Phase and 230V Three Phase

Model		PH Input	$\begin{aligned} & \text { HP } \\ & \text { Const } \\ & \text { TRQ } \\ & \hline \end{aligned}$	Output Current Carrier Frequency		Power Wire AWG	DBResistor**WireAWG	Incoming Power AC - Line Devices		
NEMA 1	NEMA 4							Circuit		
				Low	High			Fuses*	Breaker	
6KM\$221F25N1A1	6KM\$221F25X4A1	1	1/4	1.5	1.3		16	-	6	5
6KM\$221F50N1A1	6KM\$221F50X4A1	1	1/2	3	2.5	16	16	10	10	
6KM\$221001N1A1	6KM\$221001X4A1	1	1	5	4	14	14	15	15	
6KM\$221002N1A1	6KM\$221002X4A1	1	2	8	7	12	12	20	20	
6KM\$221003N1A1	6KM $\$ 221003 \mathrm{X} 4 \mathrm{~A} 1$	1	3	11	10	10	10	30	30	
6KM\$223F25N1A1	6KM\$223F25X4A1	3	1/4	1.5	1.3	16	-	6	5	
6KM\$223F50N1A1	6KM\$223F50X4A1	3	1/2	3	2.5	16	16	10	5	
6KM\$223001N1A1	6KM\$223001X4A1	3	1	5	4	16	16	15	10	
6KM\$223002N1A1	6KM\$223002X4A1	3	2	8	7	14	14	20	15	
6KM $223003 N 1$ A1	6KM $\$ 223003 \times 4 \mathrm{~A} 1$	3	3	11	10	14	14	30	20	
6KM\$223005N1A1	6KM\$223005X4A1	3	5	17	16.5	10	10	40	30	

480V - Three Phase

Model		PH Input	$\begin{aligned} & \text { HP } \\ & \text { Const } \\ & \text { TRQ } \end{aligned}$	Output Current Carrier Frequency		Power Wire AWG	DB Resistor** Wire AWG	Incoming Power AC - Line Devices		
NEMA 1	NEMA 4							Circuit		
				Low	High			Fuses*	Breaker	
6KM\$243F50N1A1	6KM\$243F50X4A1	3	1/2	1.6	1.4		16	14	6	5
6KM\$243001N1A1	6KM\$243001X4A1	3	1	2.5	2.1	16	14	6	5	
6KM\$243002N1A1	6KM\$243002X4A1	3	2	3.7	3.7	16	14	15	10	
6KM ${ }^{\text {2 }} 243003 \mathrm{~N} 1 \mathrm{~A} 1$	6KM\$243003X4A1	3	3	5.5	5.3	16	14	15	15	
6KM 243005 N 1 A 1	6KM $\$ 243005 \mathrm{X} 4 \mathrm{~A} 1$	3	5	9.0	8.7	14	14	20	15	

WARNING - Device ratings such as system coordination, short-circuit rating and type must be carefully reviewed by the user.

NOTE: Wire size from NEC table 310-16. Copper wire rated $60^{\circ} \mathrm{C}$ for 100 amps or less, $75^{\circ} \mathrm{C}$ for over 100 amps in $30^{\circ} \mathrm{C}$ ambient and 1.25 times Drive rated amps. These are minimum wire sizes; consult and conform to local and national codes.
*NOTE: AC input fuses are required to validate the drive's UL and CSA approvals. The fuse should be Class J type such as Bussman, JKS or equivalent. Circuit breaker ratings are shown for reference, but UL and CSA approval can only be validated by the use of Class J fuses.

[^1]

* Factory installed jumper

CONTROL CIRCUIT TERMINAL BLOCK LAYOUT

\#1 CAUTION:

Remove jumper from between terminals THR and CM when a motor overload or a motor temperature switch is used. Wire the device thermal switch in series with the THR and CM terminals.

\#2 NOTE:

FWD to CM jumper required for operation using keypad RUN-STOP.

Figure 4-4.

[^2]Figure 4-5. DYNAMIC BRAKING RESISTOR CONNECTIONS

* Terminal 11 should not be connected to CM.
+ L3 not supplied on single phase units.
\# Optional
Figure 4-6. WIRING DIAGRAM

CAUTION:

1. The Control Circuit Terminal wiring should be kept as far as possible from the main circuit wiring to prevent operation error due to noise interference. Never install them in the same duct or conduit. A separation distance of 4 inches or more is recommended. If the control circuit wiring must cross the main circuit wiring, make sure it crosses at a right angle.
2. Use shielded wire for the control circuit wiring, which should be as short as possible (66 feet or less). Connect shield to the Drive ground terminal and leave the other end open but taped.
3. Install a surge protector in parallel with any magnetic contactors, solenoids, relays or timer coils which are close to the Drive.

TABLE 5: Terminal Identification/Function

Terminal Label	Terminal Name	Function
POWER TERMINAL BOARD		
L1, L2, L3	AC Supply Line Input Terminals	Connection for 200-230 VAC or 380-480 VAC, 3-phase, 50/60 Hz; L1 \& L2 for single phase input, 200-240 VAC 50/60 Hz
U, V, W	Drive Output Terminals	Connection for 3-phase induction motor
P+, DB	External Braking Resistor Terminals	Connection for external braking resistor option for single phase and three phase drives (Only on 1/2 HP to 5 HP; not on 1/4 HP)
P1, P+	DC Reactor Terminals	Connection for external DC reactor for power factor improvement (Option). (Remove factory installed jumper)

CONTROL TERMINAL BOARD

11	Frequency Setting \& Analog Freq. Meter Common Terminal	Common connector for terminals 12, 13, C1 and FMA (Do not connect to CM terminal or electrical noise immunity may be lost).
12	Frequency Setting Voltage Input	When 0 to $+10 \mathrm{VDC}\left(0\right.$ to $\left.5 \mathrm{~V}^{*}\right)$ is applied, the maximum frequency is reached at $+10 \mathrm{VDC}\left(5 \mathrm{~V}^{*}\right)$ and is proportional to output frequency down to 0 VDC. Input impedance is 22 K ohm (*250\% gain setting F_35)
13	Frequency Setting Voltage Output Term.	Regulated +10 VDC power supply for frequency setting potentiometer, 10 mA or less (13 to terminal 11)
C1	Frequency Setting Current Input (+)	When the input signal is +4 to +20 mA dc, the maximum frequency is reached at 20 mA and is proportional down to a minimum frequency setting at 4 mA . Input impedance is 250 ohm , must be isolated source
CM	Control Circuit Common Terminal	Common terminal for control input commands, X1-X4, FWD, REV, BX, RST, THR, Y1 and FMP pulse output signal (Do not connect to terminal 11)
FWD	Forward Command Input Terminal	Forward command via FWD-CM (closed). Reverse command via REV-CM (closed). When FWD-CM and REV-CM are closed at the same time, the Drive will decelerate to stop
REV	Reverse Command Input Terminal	
BX	Motor Coast-To-Stop Command Input Terminal	Motor will coast-to-stop with BX-CM (closed). (For use when applying mechanical brake with Drive in operation.) Note: If BX-CM is opened with FWD or REV closed, the Drive will start the motor
RST	Fault Reset Input Terminal A DANGER	After removal of fault condition, Faults are reset when a momentary contact closure is made between the RST-CM terminals for more than 0.1 seconds If there is an input to the FWD or REV terminals with $F_{-} 02=1$ OR 2 and $F_{-} 14=4$ or 5 the Drive will suddenly restart.

TABLE 5: Terminal Identification/Function (continued)

Terminal Label	Terminal Name	Function
CONTROL TERMINAL BOARD (Continued)		
THR	External thermal trip command	With THR-CM (open), OH trip will occur and the motor will coast-to-stop. NOTE: With no external thermal relay or external braking resistor thermostat, the THR-CM terminals must be closed or the Drive will not operate. THR-CM is factory pre-jumpered, remove prior to connecting an external NC contacts.
FMA*	Analog Frequency Meter Connection F_40=0	Provides an output of 0 to +10 VDC (+10 VDC at max frequency), available for connection of a voltmeter with internal resistance of 10K ohms. See Function Code 41 for monitoring selection. Meter connects between terminal FMA \& 11. Note: FMP cannot be used
FMP*	Digital Frequency Meter Connection F_40=1	Pulse frequency output equal to Drive output frequency. Pulse voltage: Peak 5 VDC, 50% duty, Adjustable range $=600$ to 6000 Hz (Max) See Function Code 42 Pulse Rate Multiplier. Meter connects between FMP and CM. Note: FMA cannot be used
$\begin{aligned} & 30 \mathrm{~A} \\ & 30 \mathrm{~B} \\ & 30 \mathrm{C} \end{aligned}$	Fault Relay Output Terminals	During normal operation, the relay is not energized and contact is made between 30 B and 30 C . When a fault is detected, the relay is energized and contact is made between 30 A and 30C. (Contact rating resistive load: 250 VAC, 0.3 Amps)
X1-X3	Multistep Frequency Input Function Selection	Seven individual preset frequency selections via binary combination (closure) between X1, X2, X3, and CM. Frequency selections determined using functions F_21 thru F_27.
X4	Function Extension (Input)	F_43=0 acceleration/deceleration time \#2 is selected when X4-CM is closed. When not closed \#1 setting is activated. (F _43=1) 8 additional frequencies can be selected by $\mathrm{X} 1, \mathrm{X} 2, \mathrm{X} 3$ and X 4 ($F_{-}^{-} 43=2$) 2nd Motor selection when X4-CM is closed. (F _-43=3) Functions as hold signal if 3 -wire operation is desired.
Y1	Output Function (Programmable)	Outputs one of the following signals depending on setting of F_54; 0 : Drive running (RUN) 3: Undervoltage stop mode (LV) 1: Frequency level detection (FDT) 4: Torque limiting mode (TL) 2: Frequency equivalence (FAR) 5: Auto restart mode after momentary power loss (IP) Allowable load: Maximum 27VDC, 50mA or less
PLC	PLC	Prevents PLC fault caused by leakage current from the drive. (See Drive interface details, Figure 4-7)

[^3]
Drive Interface Details

Input Terminal FWD, REV, X1-X4, BX, RST, THR

Reference Input

With PLC Terminal Connection Between PLC and Drive

Figure 4-7. DRIVE INTERFACE DETAILS

Section 5
 DRIVE OPERATION

PRE-OPERATION INSPECTION

After mounting and wiring has been completed, check the Drive for the following items before applying AC power:

- Check for wiring errors.
— Verify that there are no wiring chips, screws, etc. remaining in the Drive.
- Check that all screw and terminal connections are tight.
- Verify that no exposed wire ends are touching other terminals.

KEYPAD PANEL IDENTIFICATION / OPERATION

See the following diagrams for Display and Keypad Operation description when in the Operation Mode, Program Mode or Trip Mode.

FUNCTION CODE AND DATA CODE DESCRIPTION / SELECTION

When AC power is applied to the Drive, the keypad panel display will be as shown in Figure 5-1 and will be flashing on and off. If the RUN key is pressed at this point, operation will be at 60 Hertz according to the Function Code set at the factory. (Use the STOP key to halt operation.)
-- A Flashing display indicates when a run command is not present.
-- A Solid display indicates the actual output when the Drive is running.

If a test run is desired, press the \checkmark key to change the flashing display of 60.00 Hz frequency setting to 5.00 Hz . Press RUN to conduct the test run and check for smooth motor operation and direction of rotation. Removal of AC power will store a frequency reference in memory.

Figure 5-1. KEYPAD PANEL DISPLAY WHEN AC POWER IS APPLIED

Keypad and Display Operation Programming

Mode Selection

The Drive has five (5) modes as shown below. The mode can be changed with the keys on the keypad panel.
(1) Stop Mode: Drive stopped
(4) Program Mode: Motor Running
(2) Run Mode: Drive operational
(3) Program Mode: Motor Stopped
(5) Trip Mode: Drive system faults

Data Setting

(1) Changing Function Codes in the STOP Mode

(2) Changing Function Codes in the RUN Mode (See TABLE 6)

Display and Key Operation

1. Operations and displays in each mode

The keypad panel modes can generally be classified into five types. The operation method and the display contents of each mode are shown below.

NOTE: Following examples are with maximum frequency, F_03 set higher than 60 Hz

(1) STOP Mode (Display continually flashes)

(2) RUN Mode

* NOTE: See TABLE 6 (page 5-12) for Functions that can be changed while in RUN Mode.
(3) PROGRAM mode while stopped (example: changing the Torque Boost 1data)

*NOTE: After changing function data with \wedge, keys, the
 changed data will be canceled and operation will continue with the previous data.
* NOTE: Keypad displays Frequency, Amps, Voltage, etc. based on selection.

(4) PROGRAM mode while running (example: changing the Torque Boost 1data)

*NOTE: After changing function data with $\widehat{\checkmark} \checkmark$ keys, the $\xlongequal{\left.\frac{\text { FUNC }}{\text { DATA }}\right]}$ key must be pressed. If this is not done, the data will not be stored. If the $\left[\frac{\text { PRG }}{\text { Reset }}\right.$ key is pressed before $\left[\frac{\text { FUNC }}{\mathrm{DAAA}}\right]$ key is pressed, the changed data will be canceled and operation will continue with the previous data.

* * NOTE: Keypad displays Frequency, Amps, Voltage, etc. based on selection. See Table 6 for Functions that can be changed while in RUN mode.

(5) TRIP mode

NOTE: Past fault records also can be displayed with Function Code 29.

Display of present fault status

Display of previous fault status

Display of
second- to-last
fault status

Operation

Pre-Operation Inspection

After completion of installation and wiring work, inspect the following items before the power supply to the Drive is switched on.

CAUTION:

1. Check for wiring errors. (Especially the main circuit wiring: connection of the three (single) phase AC power supply to the terminals L1, L2, L3 (L1, L2)).
2. Check that all loose wire strands, metal chips and unnecessary screws, etc. have been removed.
3. Check that all screws, terminals, and components are tight.
4. Check that the wire ends of crimp terminals are not in contact with other terminals.

CAUTION: Megger Test:
Do not conduct megger tests between the Drive main circuit terminals, or control circuit terminals. Refer to Section 7 "Maintenance and Inspection."

Test Run Check Points

Use a low frequency reference setting of about 5 Hz to test Drive operation.
The following operating conditions must be confirmed:

1. Smooth motor rotation.
2. Correct direction of equipment rotation.
3. No abnormal vibrations and noise from the motor over full speed range.
4. Smooth acceleration and deceleration over full speed range.

Selecting Operation Method

The following methods can be selected to input the RUN/STOP signals and for frequency setting.

NOTES:

*1: F_02 cannot be changed when there is a short circuit (jumper)between either FWD-CM or REV-CM.
*2: Multistep speed operation (up to 8 steps are possible)
The frequencies of step 1 to step 7 are set with the Function Codes F_21 to F_27 and selected with the terminals X1, X2 and X3 (Additional 8 steps available with F_43 = 1 and F_44 to F_51 using X4).
If input signals are provided to terminals $\mathrm{X} 1, \mathrm{X} 2$ and X 3 , then data setting of F _01 (settings made by keypad panel or analog signal are ignored) and multistep speed operation is controlled by these terminal signals.
*3: F_02 =1 Stop key on the keypad active F_02 = 2 Stop key on the keypad inactive

TABLE 6: Function Codes

Function Code Numbers Followed by Function Descriptions

* Function can be changed while the Drive is operating.

BasicFunctions Page 6			BasicFunctions(cont'd) Page 6-			BasicFunctions(cont'd) Page 6		
00	Data Protection	1	22	*Multistep Frequency Setting 2	10	43	X4 Terminal Function	17
01	Frequency Command	1	23	*Multistep Frequency Setting 3	10	44	*Multistep Frequency Setting 8	17
02	Operation Command	3				45	*Multistep Frequency Setting 9	17
\propto	Maximum Frequency	3	24	*Multistep Frequency Setting 4	10	46	*Multistep Frequency Setting 10	17
04	Base Frequency 1	3	25	*Multistep Frequency Setting 5	10	47	*Multistep Frequency Setting 11	17
05	Maximum Output Voltage	4				48	*Multistep Frequency Setting 12	17
06	*Acceleration Time 1	4	26	*Multistep Frequency Setting 6	10	49	*Multistep Frequency Setting 13	17
						50	*Multistep Frequency Setting 14	17
0	Deceleration Time 1		27	*Multistep Frequency Setting 7	10	51	*Multistep Frequency Setting 15	17
08	*Torque Boost 1	4					*Signal Filter Frequency Setting	
09	*FMA Terminal Voltage	5	28	S-curve Acceleration/ Deceleration (Operation Selection)	11	52		18
						53	Timer	18
10	*Number of Motor Poles	5	29	* Fault Memory/History	12	54	Y1 Terminal (Function)	19
11	*Line Speed Display Coefficient	5	30	Starting Frequency	12	55	*Frequency Level Detection (FDT Operation Level)	19
12	*Motor Sound (Carrier Freq.)	5	31	* (During Accel/Decel) Torque Limit * (At Constant Speed)	12			
13	Number of Restart Attempts	6	32		12	56	*Hysteresis Width	20
14	Restart After Momentary Power Failure	6	33	Braking Torque Selection	13	57	THR Terminal (Function)	20
			34	* Bias Frequency	13	58	*Jump Frequency Hysteresis	21
15	Electronic Overload 1	7	35	* Gain for Frequency Setting Signal	14	59		
							*Jump Frequency 1	21
16	Electronic Overload Setting 1	8	36	* High Frequency Limiter	15	60	*Jump Frequency 2	21
17	DC Brake Operation	9	37	* Low Frequency Limiter	15	61	*Jump Frequency 3	21
18	*DC Brake Starting Frequency	9	38	* Motor Characteristics	15	62	Base Frequency 2	21
19	*DC Braking Level	9	39	Data Initialization (Default Settings)	15	凸	*Acceleration Time 2	21
20	*DC Braking Time	9	40		16	64	*Deceleration Time 2	21
21	*Multistep Frequency	10		FMA, FMP terminals (Operation Selection)		65	*Torque Boost 2	22
			4142	FMA Terminal (Function)	16		cont'd on next page	
				* FMP Pulse Rate Multiplier	16			

TABLE 6: Function Codes (Cont'd)
Function Code Numbers Followed by Function Descriptions

* Function can be changed while the Drive is operating.

Download from Www.Somanuals.com. All Manuals Search And Download.

Section 6

FUNCTION CODE DESCRIPTIONS

Basic Functions

NOTE: * = Function can be changed while Drive is operating.

[^4]

$\begin{gathered} \text { LFD } \\ \text { Display } \end{gathered}$	Setting	Description	Factory Setting	Customer Setting
F_02		OPERATION COMMAND	0/1*	
	0	Selection of the input method for operation commands Operation command input using the keypad (RUN and STOP keys)		
	1	Operation command input by means of the external signal terminal (FWD, REV). STOP key on the keypad is active.		
	2	Operation command input by means of the external signal terminal (FWD, REV). STOP key on the keypad is inactive.		
		If selection "1" is chosen, and the stop button is depressed while the drive is running, the drive will perform the normal stop sequence until when the output frequency reaches zero at which point an "Er6" fault shall be indicated on the LED.		
		NOTE: To change the Operation Command Setting the following three conditions must be met: 1. Remove jumper between CM to FWD 2. Open between CM to FWD and CM to REV 3. F_43 $=3$ for Three Wire Control cannot be selected		
F_03	50 $t 0$ 400	MAXIMUM FREQUENCY	60	
		Maximum operating frequency can be set within		
		the range of 50 to 400 Hz in steps of 1 Hz .		
		WARNING: Prior to operating a motor above its base frequency, you must review the operational capabilities of the motor. Failure to do so could result in severe damage to the motor and could result in injury to personnel.		
F_04	15	BASE FREQUENCY 1	60	
	400	The range is 15 to 400 Hz in steps of 1 Hz . Normally set to the rated nameplate frequency of the motor.		
		NOTE: If the Base Frequency is greater than the Maximum Frequency, the output voltage will not rise to the rated voltage. Set so that the ratio between the Base Frequency and the Maximum Frequency is less than 1:8.		
*Default Value $=0$				
Setting will reset to 0 when default is selected				

$\begin{gathered} \text { LFD } \\ \text { Data } \\ \text { Display } \end{gathered}$	Setting	Description	Factory Setting	Customer Setting
*F_09		FMA (Analog Meter) VOLTAGE ADJUSTMENT	85	
	0 to 99	This function adjusts the full scale voltage level of the analog voltage signal from the FMA terminal. 0: Approx. 6.5 V The value can be adjusted to one of 100 settings within this range.		
		NOTE: This function is only active if $F _40=0$ (FMA terminal output). Select the type of signal output from the FMA terminal by means of F _41 (FMA terminal function selection).		
*F_10		MOTOR POLES	4	
		This sets the number of poles of the motor being used for synchronous speed display.		
		Example: If running a 4-pole motor at 60 Hz , the display will be $120 \times 60 \div 4=1800$.		
		If running a 4-pole motor at 50 Hz , the display will be $120 \times 50 \div 4=1500$.		
*F_11	$\begin{array}{r} 0.01 \\ \text { to } \\ 200.0 \end{array}$	LINE SPEED DISPLAY COEFFICIENT This sets the display coefficient for displaying the line speed [$\mathrm{m} / \mathrm{min}$.] Display value [m/min.]= Output frequency [Hz] x display coefficient	0.01	
		Display Coefficient Setting Step Setting Range		
		0.01 to 9.990 .01		
		10.0 to 200.0 0.1		
*F_12	0	MOTOR SOUND ADJUSTMENT (Carrier Frequency)	2	
	to			
	15	This adjusts the carrier frequency of the Drive within the range of 0.75 to 15 kHz . The acoustic and electromagnetic noise generated by the motor increases as the carrier frequency is decreased. If set to $\mathbf{0}$, the carrier frequency will be set to 0.75 kHz (maximum noise). The adjustment from 1 to 15 kHz can be carried out in 1 kHz steps. NOTE: The higher the carrier frequency, the greater the adverse affects on the motor insulation.		

F_15

Section 7
 MAINTENANCE and INSPECTION

To prevent potential problems and provide long periods of trouble-free operation, the following checks should be periodically conducted.

CAUTION: Do not conduct any inspections until after disconnecting the power supply and after the "CRG" light on the Drive has gone out.

MEGGER TEST

1. Disconnect all Drive terminals and never apply test voltage to the Drive when conducting an external circuit megger test. Use a 250 VDC megger for $230 / 240 \mathrm{~V}$ input Drives and a 500VDC Megger for 480 V input Drives.
2. Perform the test only on the main circuit as shown in Figure $7-1$ when conducting a megger test on the Drive itself.

- Do not conduct a megger test on the control circuits.
- Short L1, L2, L3, U, V, W, P1, P(+), and DB, then megger to the Drive ground terminal E(G).

3. Use a high resistance range type tester to conduct a continuity test on the control circuits and not a megger or a buzzer.

PERIODIC PARTS REPLACEMENT

The life of the Drive will vary according to the installation environment and the amount of running time. However, if continuous operation is within the allowable limits, the life of the DC Link capacitor is approximately five years and the life of the cooling fan is approximately three years. It is recommended that these parts be replaced before failure occurs.

Figure 7-1. MAIN CIRCUIT MEGGER TEST CONNECTIONS

INSPECTION ITEMS

Refer to the Inspection Items Chart in this section for inspection points and corrective action.

INSPECTION ITEMS CHART		
Item	Inspection Criteria	Corrective Action
Power Supply Voltage	Within permissible limits (170-264 Vac) for 1 Phase 240 VAC Drives; (170-253) for 3 Phase 230 VAC Drives; and (323-528) for 3 Phase 480 Vac Drives.	Adjust the power supply voltage.
Ambient Temperature	Within permissible limits (-10° to $+50^{\circ} \mathrm{C}$) ($+14^{\circ}$ to $+122^{\circ} \mathrm{F}$.)	Investigate cause and make corrections until environment is within permissible limits.
Ambient Humidity	Within permissible limits (20-95\% RH) No dew condensation or freezing.	Investigate cause and make corrections until environment is within permissible limits
Vibration	Within permissible limit (0.6G or less) until within permissible limits.	Investigate cause and make adjustments.
Noise	Abnormal audio noise from cooling fan, etc.	Contact the supplier where the Drive was purchased.
Odor	Smell or burning.	Contact the supplier where the Drive was purchased.
Dust	Dust accumulation on cooling fins, cooling fan, or on the control board.	Clean and blow out with dry and filtered compressed air.
Screws/ Connectors	Check for any loosening.	Re-tighten as needed.

MEASUREMENT POINTS AND METERS

Since the Drive's input/output voltage and current contain high frequencies, selection of the wrong measuring device can lead to gross miscalculations. When using aCT (current-detection transformer) to measure the current, the amount of error will be large if the frequency is low. Because of this, always use a CT with as large a capacity as possible. See the following chart and Figure 7-2 for recommended measurement devices.

RECOMMENDED MEASUREMENT DEVICE CHART			
$\underline{\text { Item }}$	Simple Measurement	Precision Measurement	
Input Voltage	Tester - (Voltmeter)	Moving-Iron type voltmeter	
Input Current	Clamp Meter	Moving-Iron type ammeter	
Input Power	-	Electrodynamometer type wattmeter	
Output Voltage Tester - (Voltmeter) Rectifier type voltmeter Output Current Clamp Meter Moving-Iron type ammeter Output Power - Electrodynamometer type wattmeter			

Figure 7-2. MEASUREMENT LOCATIONS AND DEVICES EXAMPLE

TROUBLESHOOTING

TABLE 8: Fault Condition Description and Operation

The following Drive protection functions have been incorporated in the basic Drive software and will be indicated in the LED display. Use F_29 to check fault history.

Display	Protective Function	Function Explan	nation	LED	Protective Operation
$\begin{aligned} & \text { OC1, } \\ & \text { OC2, } \\ & \text { OC3 } \end{aligned}$	Overcurrent protection	Protects the Drive if the Drive output current momentarily exceeds the overcurrent detection level. Protects the Drive from overcurrent resulting from an output phase-to-phase or phase-toground short circuit.	During Acceleration During Deceleration	OC1	- Drive output frequency drops to 0.0 Hz - Motor coasts to a stop - Alarm terminals 30A, 30B, and 30C are activated - Alarm signal is maintained internally
	Short circuit, Ground fault		During constant speed operation	OC3	until alarm reset command is given ${ }^{1)}$
LU	Momentary power failure Undervoltage protection	Avoids loss of control of the Drive caused by drops in the power supply. NOTE: Operation will continue if the momentary power failure or undervoltage period is less than 15 msec .		LU	- Drive output frequency drops to 0.0 Hz If the "restart after momentary power failure" mode is selected, operation will restart automatically when power is restored.
	Overvoltage protection	Protects the Drive if momentary overvoltage (regenerative overvoltage) exceeds the overvoltage detection level.	During Acceleration	OU1	- Drive output frequency drops to 0.0 Hz - Motor coasts to a stop - Alarm terminals 30A, 30B, and 30C are activated - Alarm signal is maintained internally until alarm reset command is given ${ }^{1)}$
			During Deceleration	OU2	
			During constant speed operation	OU3	
$\begin{aligned} & \mathrm{OH} 1, \\ & \mathrm{OH} 2, \end{aligned}$	Drive overheating	Detects overheating of the Drive caused by an overload, cooling fan problem or abnormal ambient temperature.		OH 1	- Drive output frequency drops to 0.0 Hz . - Motor coasts to a stop - Alarm terminals 30A, 30B, and 30C are activated - Alarm signal is maintained internally until alarm reset command is given ${ }^{1)}$
	External alarm input	Acts as an external alarm to stop output. If protective device such as the overload relay is connected between THR and CM terminals switches from ON to OFF.		OH 2	
$\begin{aligned} & \mathrm{OL}, \\ & \mathrm{OLU} \end{aligned}$	Electronic overload	Protects semiconductor devices such as the IGBT from overloads.		OLU	- Drive output frequency drops to 0.0 Hz . - Motor coasts to a stop - Alarm terminals 30A, 30B, and 30C are activated - Alarm signal is maintained internally until alarm reset command is given ${ }^{1)}$
		Protects a standard 4-pole motor or a forced air cooled motor from overloads even if an overload relay is not connected.		OL	
Er1, Er2, Er3, Er4, Er5, Er6, Er7	Memory Error	Operates when a memory error occurs due to a data writing error,		Er1	- Drive output frequency drops to 0.0 Hz . - Motor coasts to a stop - Alarm terminals 30A, 30B, and 30C are activated - Alarm signal is maintained internally until alarm reset command is given ${ }^{1)}$
	Communication Error ${ }^{2)}$	Displayed when a communication error occurs between the Drive and the keypad panel.		Er2	
	CPU error	Stops the Drive when an error is detected in the CPU.		Er3	
	Optional circuit board communication error	Displayed when there is a communication "checksum error" or interruption of communication between the Drive and the option circuit board.		Er4	
	Option problem	Displayed when a link error etc. is detected.		Er5	
	Operating Proc. error	Detects Drive operating procedure error during Drive startup. FWD or REV connected to terminal CM at time of main power being applied to Drive. Stop keypad in remote operation		Er6	
	Output wiring error	Stops the Drive when it is detected that the output wiring is not connected during automatic tuning.		Er7	

NOTE 1 Alarm signal hold
When a protection function has been activated and the alarm signal is output; if an AC contactor provided on the power supply side is switched off, and the Drive's control power is not supplied, the alarm signal will not be retained.

NOTE 2
During external terminal operation ($\mathrm{FO}=1$), the Drive will continue running without an alarm being tripped even if error Er2 is displayed. If communication is restored, the Er2 display will disappear, and normal operation will resume.

TROUBLESHOOTING

If the function of the Drive is lost by a failure or if an abnormal condition has occurred, refer to the following diagnosis for its probable cause.

If the cause does not fall under the following explanation, or if the Drive is damaged, please contact GE Fuji Technical Services for assistance.

(1) Overcurrent

 Electric.

(3) Undervoltage

NOTE 1 - When the DC bus capacitor is discharged by a system power failure and the control power of the Drive is reduced, automatic restart after momentary power outage may take place. (Refer to Funtion Code 14 setting.)

(4) Drive overheated

(5) External alarm input

Motor will not run under these conditions:

(1) BX coast to stop command ON/CLOSED.
(2) Wrong setting at one of $F _71,72,73,75$, or 76 . When F_08 torque boost setting is 00 or $F _69$ torque vector control is active while using the wrong capacity motor (F_70, 75, 76.)

(10) Motor will run but speed will not change.

Motor speed change is very small under these conditions:

(1) Wrong setting of F_34 bias frequency, F_35 gain for frequency setting.
(2) If using terminal 12, and C1 check polarity inputs to insure they are correct and do not offset.
(3) During torque limiting or current limiting with excessive load.
(11) Motor will stall during acceleration.

(12) Motor heating abnormal.

Section

9

WARRANTY PARTS AND SERVICE

The purpose of the following section is to provide specific instructions to the user of the AF-300 Micro\$aver II Drive regarding warranty administration and how to obtain assistance on both in-warranty and out-of-warranty equipment.

For all troubleshooting procedures, refer to Section 8 of this Instruction Book. To identify the part or assembly use the noted troubleshooting procedures in Section 8 and the information on page 9-2.

If assistance is required to either determine warranty status or identify defective parts call:

GE Fuji Drives USA, Inc.
1501 Roanoke Blvd. Suite 435
Salem, VA 24153
1-540-387-5739

WARRANTY COVERAGE

The Warranty set forth in Section 1 of FN-1090 (1/91) of GE's Condition of Sale covers all major parts of the Drive such as the main printed circuit boards, transistor modules, etc. The warranty covers replacement of the entire Drive.
"Warranty period is 12 months after installation or 18 months after shipment from the Company, whichever occurs first."

Before calling the number at left to determine warranty status, the Drive serial number will be required. This is located on the Drive nameplate. If the Drive is still under warranty, further information will be required per the "In-Warranty Failure Checklist" shown on page 9-2 of this Instruction Book.

OUT-OF-WARRANTY PROCEDURES

When the defective part has been identified, contact your local Authorized AF-300 Micro-\$aver II Distributor to order replacement parts.

MOTORS

Repairs on motors are generally handled by the motor manufacturer. For specific instructions on your motor, call the distributor from which it was purchased and be prepared to furnish complete nameplate data.

IN-WARRANTY FAILURE CHECKLIST

To assist with warranty troubleshooting, the following information is required. This data is needed to evaluate the cause in an effort to eliminate any further failures.

Model No.:

Serial No.:

Start-Up Date: \qquad
Failure Date: \qquad
Status When Failure Occurred (check one):
Power-Up \quad Running ___ Accel ___ Decel ___
Explanation of Failure:

Application Information (check Yes or No)
Input Transformer: \quad Yes _ No _ _

If Yes: KVA
L1 Volts \qquad L2 Volts \qquad L3 Volts \qquad
Power Factor Correction Capacitors:
Yes \qquad No \qquad

If Yes: Microfarad \qquad
Other Equipment on Same Power \qquad
If Yes, what?
Line Reactor on Input

Yes	No
Yes	No
Yes	No
Yes	No

Control Terminals Used (circle if used)

THR	X1	X2	X3	30A	30B	30C
RST/BX	FWD	REV	C1	11	12	13
RUN	RT1					

Function Codes Different From Factory Settings

Function Code	Setting		Function Code	Setting

Failure Message (see Section 5)

Latest Fault	Previous Faults:	No Message
Hz	1.	
$\mathrm{~A}-$	2.	
$\mathrm{~V}-$	3.	

After all of the Checklist information is acquired, contact the following Service Center number for assistance: 540-387-5739 (8am - 5pm Central Standard time Monday thru Friday).
540-387-8292 (24-hour emergency)
When you return the unit or parts for warranty you need to get a RMA number from your Service Center.

AF-300 Micro-\$aver II Spare Parts List

Description	Part No.	6KM \$223***N1A1(X4A1)						6KM \$221***N1A1(X4A1)					6KM \$243***N1A1(X4A1)				
		F25	F50	001	002	003	005	F25	F50	001	002	003	F50	001	002	003	005
Control PCB	$\begin{aligned} & \text { E9-CPCBF25-M \$2 } \\ & \text { E9-CPCBF50-M \$2 } \\ & \text { E9-CPCB } 001-\mathrm{M} \$ 2 \\ & \text { E9-CPCB } 002-\mathrm{M} \$ 2 \\ & \text { E9-CPCB } 003-\mathrm{M} \$ 2 \\ & \text { E9-CPCB } 005-\mathrm{M} \$ 2 \\ & \hline \end{aligned}$	1	1	1	1	1	1										
	E9-CPCBF25-M \$7 E9-CPCBF50-M $\$ 7$ E9-CPCB 001-M $\$ 7$ E9-CPCB 002-M $\$ 7$ E9-CPCB 003-M $\$ 7$							1	1	1	1	1					
	E9-CPCBF50-M \$4 E9-CPCB 001-M $\$ 4$ E9-CPCB 002-M $\$ 4$ E9-CPCB 003-M $\$ 4$ E9-CPCB $005-\mathrm{M} \$ 4$												1	1	1	1	1
Terminal PCB	E9-TPCB-SW	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Capacitor Unit	$\begin{aligned} & \text { E9-CU2-0.2 } \\ & \text { E9-CU2-0.4 } \\ & \text { E9-CU2-0.8 } \\ & \text { E9-CU2-1.5 } \\ & \text { E9-CU2-2.2 } \\ & \text { E9-CU2-3.7 } \\ & \hline \end{aligned}$	1	1	1	1	1	1	1		1							
	$\begin{aligned} & \text { E9-CU7-0.4 } \\ & \text { E9-CU7-1.5 } \\ & \text { E9-CU7-2.2 } \\ & \hline \end{aligned}$								1	1	1	1					
	$\begin{aligned} & \text { E9-CU4-0.4 } \\ & \text { E9-CU4-0.8 } \\ & \text { E9-CU4-1.5 } \\ & \text { E9-CU4-2.2 } \\ & \text { E9-CU4-3.7 } \\ & \hline \end{aligned}$												1	1	1	1	1
Fan	$\begin{aligned} & \text { E9-FAN } 1.5 \\ & \text { E9-FAN } 3.7 \end{aligned}$				1	1	1				1	1			1	1	1
Power Module	$\begin{aligned} & 4613-02-2 \\ & 4624-04-2 \\ & 4634-08-2 \\ & 4704-15-2 \\ & 4714-22-2 \\ & 4724-37-2 \\ & \hline \end{aligned}$	1	1	1	1	1	1										
	$4655-02-7$ $4655-04-7$ $4675-08-7$ $4735-15-7$ $4745-22-7$							1	1	1	1	1					
	$8406-04-4$ $8416-08-4$ $8426-15-4$ $8436-22-4$ $8446-37-4$												1	1	1	1	1

CE MARK

Electromagnetic Compatibility (EMC)

General

In accordance with the provisions described in the European Commission Guidelines Document on Council Directive 89/336/EEC, GE Fuji Electric Co., Ltd. has chosen to classify the 1 phase, 240 VAC, 3 phase 415 VAC range of Drives as "Complex Components". Classification as "Complex Components" allows a product to be treated as an "apparatus", and thus permits compliance with the essential requirements of the EMC Directive to be demonstrated to both an integrator of Micro-\$aver II Drive and to his consumer or the installer and user.

Micro-\$aver II Drives up to 5 Hp are supplied 'EC marked', signifying compliance with EC Directive 89/ 336/EEC when fitted with specified filter units installed and earthed in accordance with this sheet.. This specification requires the following performance criteria to be met.

Immunity : EN50082-2
Emissions: EN50081-1

RFI Filters

It is strongly recommended that the appropriate Micro-\$aver II Drive input filter be used to limit RF current flowing into the main supply circuit. (Refer to Table 10-1.) Without an input filter a Micro-\$aver II Drive installation may not meet statutory requirement. Micro-\$aver II Drive contain high power semi - conductor devices which are switched at high speeds to synthesize a near - sinusoidal current waveform across the frequency range of output. Rapidly changing voltages and currents will generate some degree of electromagnetic emission.

Emissions will be predominantly conducted through the motor and the main supply cables, although some radiated emissions will be detected in close proximity to the drive system. It is essential that precautions are taken at the design stage, and at the time of installation, to prevent radio frequency interference. (RFI) from the drive system affecting sensitive equipment in close proximity.

The RFI filters range are designed especially for the Micro-\$aver II Drive and help to ensure EMC compliance of machinery as installations using Inverters. The Drives may be mounted on top of the filter using integral fixing positions, the intention being that valuable space inside wiring cabinets may be saved. (Refer to Fig. 10-1 and Table 10-1)

input
Fig. 10-1 RFI Filters

Filter Part No.	Applied Drive	Rated Current	Max Rated Voltage	Dimensions L,W,D mm	Mount Dim. X, Y	Inverter Fixings	Required Sub Fllter
AFL-0.2 E9-7	$\begin{aligned} & \text { 6KM\$221F25N1A1 } \\ & 6 \mathrm{KM} \$ 221 \mathrm{~F} 25 \mathrm{X} 4 \mathrm{~A} 1 \end{aligned}$	3A	1 Phase 240 VAC	200×110×34	84×186	M4x12(4)	$\begin{aligned} & \text { Ferrite Ring } \\ & \text { OC1×1pcs } \end{aligned}$
EFL-0.75 E9-7	6KM\$221F50N1A1 $6 \mathrm{KM} \$ 221 \mathrm{~F} 50 \mathrm{X} 4 \mathrm{~A} 1$ $6 \mathrm{KM} \$ 221001 \mathrm{~N} 1 \mathrm{~A} 1$ $6 \mathrm{KM} \$ 221001 \mathrm{X} 4 \mathrm{~A} 1$	10A		$200 \times 145 \times 40$	118×186	M4×12(4)	Ferrite Ring OC1x1pcs
EFL-2.2 E9-7	6KM\$221002N1A1 $6 K M \$ 221002 X 4 A 1$ $6 K M \$ 221003 N 1 A 1$ $6 K M \$ 221003 X 4 A 1$	23A	$\begin{aligned} & 3 \text { phase } \\ & 415 \text { VAC } \end{aligned}$	$200 \times 205 \times 40$	178×186	M4×12(4)	Ferrite Ring OC1x1pcs
EFL-0.75 E9-4	$6 K M \$ 243 F 50 N 1 A 1$ $6 K M \$ 243 F 50 X 4 A 1$ $6 K M \$ 243001 N 1 A 1$ $6 K M \$ 243001 X 4 A 1$	3A		$200 \times 145 \times 45$	118×186	M4x12(4)	Ferrite Ring OC1x1pcs
EFL-4.0 E9-4	6KM\$243002N1A1 6KM\$243002X4A1 6KM\$243003N1A1 6KM\$243003X4A1 6KM\$243005N1A1 6KM\$243005X4A1	12A		$200 \times 205 \times 45$	178×186	M4x12(4)	Ferrite Ring OC1x1pcs

Table 10-1 RFI Filters Dimensions - Conforms to EN55011 Class B

These instructions must be followed in order to conform to the EMC Directive. Follow the usual safety procedures when working with electrical equipment. All electrical connections to the filter, Inverter, and motor must be made by a qualified electrical technician. (Refer to Fig.2, Fig. 3, and Fig.4)

1. Check the filter rating label to ensure that the current, voltage rating, and part number are correct.
2. The back panel of the wiring cabinet board should be prepared for the mounting dimensions of the filter. Care should be taken to remove any paint etc. from the mounting holes and face area around the hole of the panel. This will ensure the best possible earthing of the filter.
3. The filter should be securely mounted in position, and the Inverter mounted to the front of the filter with the screws provided.
4. Connect the incoming main supply to the filter terminals marked "LINE" and any earth cables to the earth stud provided. Fit the Input Ferrite Ring
(if two ferrite rings are required, refer to table 1), and connect the filter terminals marked "LOAD" to the main input of the of the Drive using a short length of appropriate gauge wire.
5. Fit the output Ferrite Ring as close to the Inverter as possible and connect the motor. Armored or screened cable should be used with the 3 phase conductors passing twice through the center of the Output Ferrite Ring. The earth conductor should be securely earthed at both the ground terminal in the cabinet and at the motor ends. The screen should be connected to the enclosure.
6. It is important that all lead lengths are kept as short as possible and that incoming mains and outgoing motor cables are kept well separated.
7. Segregate power cables from control wiring, as thoroughly as possible, and avoid parallel cable run to minimize 'noise coupling'. When ever runs of power and control cable must cross, try to achieve this at right angles.
8. Micro-\$aver II Drive should be installed, and are designed to operate, with an electrically shielded metal enclosure.

Basic Standard: EN55011. Class B

Fig. 10-2 Recommended installation

Fig. 10-3 Recommended installation detail inside the enclosure (1)

Fig. 10-4 Recommended installation detail inside the enclosure (2)

EC Declaration of Conformity

Product identification

Product:	Inverter
Brand:	GE Fuji Electric
Model/type:	6KM\$221F25N1A1 to 6KM\$221003N1A1
	6KM\$221F25X4A1 to 6KM\$221003X4A1
	6KM\$243F50N1A1 to 6KM\$243005N1A1
	6KM\$243F50X4A1 to 6KM\$243005X4A1

to which this Declaration relates is in conformity with the EMC requirements of the following standards.
Immunity: EN50082-2 "Generic immunity standard Part 2 (industrial environment)"
Emission: EN50081-1 "Generic emission standard Part 1 (Residential, commercial and light industrial)"
and conforms to the protection requirements of Council Directive: 89/336/EEC
relating to Electromagnetic Compatibility
When: Wired and earthed in accordance with the installation instructions.
Installed in a steel enclosure.
Used in conjunction with power input filter and ferrite rings which are recommended by GE Fuji Electric.

Product identification

Product:: Inverter
Brand: GE Fuji Electric
Model/Type: 6KM\$221F25N1A1 to 6KM\$221003N1A1
6KM\$221F25X4A1 to 6KM\$221003X4A1
6KM\$243F50N1A1 to 6KM\$243005N1A1
6KM\$243F50X4A1 to 6KM\$243005X4A1
to which this Declaration relates is in conformity with the Low Voltage requirements of the following standard(s):

DIN VDEO160/1988

Category: Overvoltage category II/Pollution degree 2
and conforms to the protection requirements of Council Directive: 73/23/EEC
relating to low voltage
When: Wired and earthed in accordance with the installation instructions.
Installed in a steel enclosure satisfied 'Pollution degree 2'.
Used in conjunction with 3AC power supply (Line) which has an earthed neutral-point for 3 phase Input Drive and used in conjunction with 1AC power supply (Line) whose one line is earthed for 1-phase Input Drive.

GE Fuji Drives USA, Inc.
1501 Roanoke Blvd. Suite 435
Salem, VA 24153

1-800-543-6196
Internet Address: http://www.ge.com
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

[^0]: NOTE: Carrier Frequency: High setting $F_{-} 12=15$ Low setting $F_{-} 12=0$

[^1]: ** Optional Item.

[^2]: * Not available on 6KM\$221F25X1A1, 6KM\$221F25A4A1, 6KM\$223F25X1A1, 6KM\$223F25A4A1.

[^3]: * Either an analog (FMA) or digital (FMP) frequency meter, not both.

[^4]: *Default value = 0
 Factory setting for NEMA1 $=1$. Will reset to 0 when default is selected

