9303 / 9505
 Installation \& Operation

MADE
NNAE
USA

PROFESSIONAL POWER AMPLIFIER

WARNING: TO PREVENT FIRE OR SHOCK HAZARD, DO NOT EXPOSE THIS EQUIPMENT TO RAIN OR MOISTURE.

The lightning flash with arrowhead symbol within an equilateral triangle is intended to alert the user to the presence of uninsulated "dangerous voltage" within the product's enclosure, that may be of sufficient magnitude to constitute a risk of electric shock to persons.

The exclamation point within an equilateral triangle is intended to alert the user of the presence of important operating and maintenance (servicing) instructions in the literature accompanying the appliance.

1. READ INSTRUCTIO NS

All the safety and operating instructions of your H afler equipment should be read before power is applied to the equipment.

2. RETAIN OWNER'S MANUAL

These safety and operating instructions should be retained for future reference.
3. HEED WARNINGS

All warnings on the equipment and in the operating instructions are important and should be followed.
4. FOLLOW INSTRUCTIONS

All operating and use instructions are important and should be followed.
5. HEAT

The equipment should be kept away from areas of high temperature, i.e., heater vents, radiators, stoves/ovens, fireplaces, etc.
6. VENTILATION

The equipment should be used in an area suitable for proper ventilation. Care should be taken not to impede airflow in and around the cabinet. Do not mount on a carpeted shelf or in a sealed enclosure. Allow for proper clearance above the equipment.

7. WATER AND MOISTURE

The equipment should not be used in or around water, such as a bathtub, sink, or sw imming area. Also, the equipmentshould not be used in areas prone to flooding, such as a basement.
8. POWER SOURCES

The equipment should be connected only to a power source of the same voltage and frequency as that listed on the rear panel above the power cord entry point.
9. POWER CORD PROTECTION

Power cords should be arranged so they do not interfere with the movement of objects in the room: people, fan blades, utility carts, etc. Also, care should be taken that the cord is not pinched orcut, and placed so it is not in danger of being pinched or cut, as in under a rug, around a tight corner, etc.

10. POWER CORD GROUNDING

The power supply cord is of a three wire grounded type, designed to reduce the risk of electric shock sustained from a live cabinet. It is assumed to be of suitable length for most uses of the equipment. The use of extension cords and power strips is discouraged unless they are of suitable rating to deliver the required total current for safe operation of all connected equip-
ment. Furthermore, extension cordsorpower strips must provide the same three wire grounded connection. Itisimportant that the blades of the equipment's plug be able to fully insert into the mating receptacle. Never remove the round grounding pin on the plug in an attempt to mate to a two wire ungrounded receptacle: use a grounding adaptor with the grounding tab or wire suitably connected to earth ground.

11. NON-U SE PERIO DS

During periods of extended non-use, the power cord should be unplugged from the power source.

12. CLEANING

The equipment should be cleaned only as detailed in the operating instructions.

13. OBJECT AND LIQ UID ENTRY

Care should be taken so that objects and/or liquids, such as cleaning fluids or beverages, are not spilled into the enclosure of the equipment.

14. DAMAGE REQ UIRING SERVICE

H afler equipmentshould be serviced by qualified service personnel when:
A. The power supply cord or plug has been damaged, or
B. Objects have fallen, or liquid has been spilled into the equipment, or
C. The equipment has been exposed to rain, or
D. The equipment does not appear to operate normally or exhibits a marked change in performance, or
E. The equipment has been dropped, or the enclosure has been damaged.

15. SERVICING

The user should not attempt to service the equipment beyond that which is described in the operating instructions. All other service should be referred to qualified service personnel.

16. CARTS AND STANDS

The equipment should be used with carts or stands only of sufficient strength and stability for the use intended.

An equipment and cartcombination should be moved with care. Q uick stops and starts, excessive force, and uneven surfaces may cause the equipment and cart combination to topple.

Performance Specifications

9303/9505

Full Power Bandwidth: 0.15 Hz to 300 kHz

Signal-to-N oise:	$>100 \mathrm{~dB}$ "A" W eighted
Slew Rate:	$150 \mathrm{~V} / \mu \mathrm{S}$
CM RR:	75 dB at 1 kHz
Gain:	+29 dB max.

9303

Power Rating: $\quad 150 \mathrm{wpc} @ 8 \Omega, 225 \mathrm{wpc} @ 4 \Omega, 450 \mathrm{~W}$ atts mono @ 8Ω
Distortion: $\quad 0.07 \%$ THD $20-20 \mathrm{~Hz}$, Typically 0.005% THD 1 kHz , at rated power into 8Ω
Damping Factor: 800 (to 1 kHz); 80 (to 20 kHz); 20 (to 100 kHz) into 8Ω
Input Sensitivity Range: 1.22 Vrms for 150 W into $8 \Omega, 1.06 \mathrm{Vrms}$ for 225 W into 4Ω
Dimensions: $\quad 19$ "W x 12-1/2"D x 3-1/2"H (excluding feet)
W eight: $\quad 36$ lbs. (16.4kg)
Power Consumption: Q uiescent, 84 VA ; at rated power, 612 VA (150W into 8Ω, both channels driven)

9505

Power Ratin
Distortion:
Damping Factor:
Input Sensitivity Range:
Dimensions: $\quad 19$ " $\mathrm{W} \times 12-1 / 2^{\prime \prime} \mathrm{D} \times 5-1 / 4 \mathrm{H} \mathrm{H}$ (excluding feet)
W eight: $\quad 50$ lbs. $(22.7 \mathrm{~kg})$
Power Consumption:
$250 \mathrm{wpc} @ 8 \Omega, 375 \mathrm{wpc} @ 4 \Omega, 750 \mathrm{~W}$ atts mono @ 8Ω

1000 (to 1 kHz); 100 (to 20 kHz); 20 (to 100 kHz) into 8Ω
1.58 Vrms for 250 W into $8 \Omega, 1.37 \mathrm{Vrms}$ for 375 W into 4Ω
0.1% THD $20-20 \mathrm{~Hz}$, Typically 0.005% THD 1 kHz , at rated power into 8Ω

Q uiescent, 132 VA ; at rated power, $1020 \mathrm{VA}(250 \mathrm{~W}$ into 8Ω, both channels driven)

Table of Contents

SAFETY PRECAUTIO NS i
PERFO RMANCE SPECIFICATIO NS ii
INTRODUCTION 1
INSTALLATIO N
Location 1
AC Line 1
Input 2
Balanced Input: 1/4" Tip Ring Sleeve 2
Balanced Input: XLR 2
U nbalanced Input 2
Unbalanced Source with Balanced Input 2
O utput Connections 2
Monophonic Use 2
OPERATIO N
Power Switch 3
Balanced/U nbalanced Input Switch 3
Ground Switch 3
Mono Switch 3
Load Fault Protection 3
W arm Up 3
Cleaning and M aintenance 3
Schematic Diagram 4
PC Board Layout 6
Parts List 7
9303/9505 Functional Block Diagram 8
TECHNICAL INFO RMATIO N
Theory and O peration of trans• nova 9
Circuit Implementation 9
Calibration 10
Common Mode Rejection 10
Bias 10
W ARRANTY 11

INTRODUCTION

The Hafler 9303 and 9505 aretwo channel professional power amplifiers. Passivecooling with large heatsinks is used for low mechanical noise. Our patented trans•nova circuit topology and M OSFET output stageensures trouble free, long term operation and is backed by our seven year warranty.

This manual contains information on using the 9303 and 9505 amplifiers. It is organized into three main sections. "Installation" coversthelocation and connection of theamplifier in thesystem. Likemany precision components careful attention to the initial setup can yield dividends in higher performance and trouble-free use. "Operation" covers the controls and features of the amplifiers and how to use them to get the best effect. The"Technical Information"section containsinformation on thecircuit implementation and theschematic diagram and parts list. We strongly urge reading over the Installation and Operation portions of this manual before putting the amplifier into service.

Thecircuitry used in the 9303 and 9505 isthelatest refinement of our trans•nova (TRAN Sconductance NO dal Voltage Amplifier, US Patent $4,467,288$) circuit. The 9303 and 9505 utilize our proprietary DIABLO (patent application in progress) transconductancedriver stage which combinesthelinearity of ClassA operation with the current headroom of a Class B system. When used in combination with the robust output stage used with these models, DIABLO yields lower high frequency distortion without the sonic penalties associated with increasing the negative feedback.

The9303 and 9505 havefully differential inputsfor usein bal anced linesystems. Thebal anced input terminals work with either $1 / 4^{\prime \prime}$ TRS phone or XLR plugs. Gold-plated RCA phono jacks are available for use with unbalanced source components. The output terminals are gold-plated binding posts, spaced on $3 / 4$ " centers for use with dual banana plugs. For high power applications, the amplifier can run in bridged mono for double the output voltage. Using state-of-the-art surface mount assembly equipment in our manufacturing facility ensures consistency and reliability.

INSTALLATION

LOCATION

The 9303 and 9505 can produce considerable heat in normal operation so the primary consideration when determining a location for the amplifiers is to allow for adequate ventilation. The large heatsinks provide unrestricted airflow, but care must be taken to keep the slots in the bottom panel and top cover clear, as well. If the amplifier ismounted in an equipment rack, makesure adjacent equipment doesnot impedecool air flow through the amplifier bottom and out the top. The attached feet provide sufficient clearance for the bottom when the amplifier is resting on a hard surface. Inadequate ventilation can shorten component life, especially when other equipment raises the ambient air temperature, so a circulating fan should be considered in tight quarters. The power transformer can generate a substantial magnetic field, so caution should be exercised in the placement of low level components such as a tape deck, mixer or mic preamp to avoid inducing noise in the low level circuitry.

AC LINE

The 9303 and 9505 operate from a 120 volt, 60 Hz AC power line. Connection is made by an IEC Type 320, grounded line cord. For safety considerations only a properly grounded (earthed) receptacle should be used. If a grounded circuit is not availabledo not break off the ground pin; usethe proper adapter plug for a two wire receptacle. Located inside the amplifier is theline fuse which interrupts the power to the amplifier. If thisfuse blows replace it only with the sametype and rating fuse. The correct replacement fuse value is included in the parts list in the "Technical Information" section of this manual. If the replacement fuse blows, this is an indication of a fault with the amplifier. Servicing should be performed only by a qualified technician.

INPUT

The 9303 and 9505 have input jacksfor both balanced and unbalanced input signals. The unbalanced inputs use conventional RCA phono jacks. When using the RCA inputs, the rear panel BALANCED/UNBALANCED switch must beset to theUNBALANCED position. Thebal anced input jacksaredual function connectorswhich accept 1/4" TRS (Rip Ring Sleeve) phone or XLR plugs. Set the BALANCED/UNBALANCED switch to the BALANCED Position to use these jacks. The connector pin-out is printed on the rear panel of the amp.

Balanced Input: 1/4" Tip Ring Sleeve

The1/4" bal anced inputjack isconnected accordingto conventional usagewith theTiphigh (+), Ring return (-) and the Sleeve ground shield.

Balanced Input: XLR

The XLR balanced input jack is connected according to the IEC International Standard, with pin 2 high (+), pin 3 return (-) and pin 1 ground shield. When preparing to use the amplifier, check the output configuration of the source unit to maintain the proper signal polarity.

Unbalanced Input

Many popular mixers useunbalanced RCA phono jacks for themonitor outputs. For short cable runs RCA audio patch cablecan be used without any system performance penalty. Check the mixer specs for the maximum cable length it will drive. Make sure the BALANCED/UNBALANCED switch is set for UNBALANCED operation.

Unbalanced Source with Balanced Input

Better noise rejection for long cable runs can be achieved by using a twisted pair balanced cable from the unbalanced source. At the source end of the cable, connect an RCA plug with the return (-) wire and shield connected to the ground shell of the plug. Wire the plug at the amplifier end of the cable the same as for the regular bal anced input connection.

OUTPUT CONNECTIONS

The speaker output connectors are dual binding posts. These binding posts will directly accept 12 AWG wire or banana plugs and are spaced on $3 / 4$ " centers to accept dual banana plugs.

MONOPHONIC USE

For systems with high power requirements, theamplifiers can be configured for singlechannel bridged mono operation. To bridge the amplifier, set the rear panel STEREO/M ONO switch to the Mono position; use only theleft channel input, and connect the speaker to thered output binding posts. When the amplifier isbridged, theoutput isfloating. Any speaker which requires a common ground from the amplifier output cannot beused in this application. Since a bridged amplifier shares the load between the two channels, the amplifier will effectively drive half of the load. Therefore, for bridged mono operation we recommend using an eight ohm load as the minimum impedance.

POWER SWITCH

The POWER switch is located on the front panel of the amplifier. An internal lamp indicates when it isturned on. Standard practice is to turn the amplifier on last and off first when switching components individually to prevent sending damaging transients, generated in the source components, to the speakers. It is possible to leave the power switch in the on position and switch the amplifier remotely through a power distribution block or preamp switched outlet. When doing so makesure the switch is rated for the current required by the amplifier.

BALANCED/UNBALANCED INPUT SWITCH

The BALANCED/UNBALANCED switch configures the input grounding when using the RCA phono input jacks. In the UNBALANCED position the balanced differential input return (-) port is grounded inside the amplifier. This prevents noise pickup or unstable amplifier operation caused by the open input. In the BALANCED position the differential amplifier inputs are connected to the hot (+) and (-) incoming signal connectors.

GROUND SWITCH

Ground loopsarecharacterized by a hum or buzz in thesystem and are caused by a voltage potential difference between two points in a ground circuit. Ground loops are aggravated when multiple paths exist for a given circuit. Mounting components in a rack with metal rails may introduce ground loops between associated equipment, becausetherailscan establish an additional ground path. TheCHASSIS/FLOAT switch allowsyou to select the amplifier grounding scheme for best system compatibility. With the switch in the CHASSIS position all signal grounds are referred to the chassis and power line ground. In the FLOAT position the signal ground is decoupled from the chassis. The position of the switch is determined by the overall noise in the system; choose the position which gives the lowest hum.

MONO SWITCH

Conventional two-channel stereo operation is obtained with the STEREO/MONO switch in the STEREO position. For high powered single channel use, set the switch to MONO and use the left channel input and the RED binding posts only for the output. For thermal considerationswe do not recommend using less than an eight ohm load on the amplifier when running it in mono. When the switch is set in the mono position the left channel (+) and (-) inputs are connected to the right channel in reversed polarity, which inverts the right channel output.

LOAD FAULT PROTECTION

Because of theself-protecting properties and fault tolerance of thel ateral M OSFETsused in the 9303 and 9505 , elaborate voltage and current limiting protection schemes are not necessary. To prevent damage to the amplifier from a fault in the loudspeaker load, the power supply B+and B- rails are fused. Check these fuses if the sound is garbled or there is no output. The fuses should not blow under normal use and a blown fuse is usually an indication of a fault. The fault could be a bad connection, a problem with the speaker or a short in the speaker line. Disconnect power to the amplifier before removing the cover.

WARM UP

In order to achievethebest sonic performancefrom theamplifier, werecommend letting it warm up for 1 hour beforebeginning any critical listening. Theamplifier will not deliver itsfull potential sound qual ity beforethis time has passed.

CLEANING AND MAINTENANCE

There is no requirement for regular maintenance on the electronic components of the amplifier. If the case becomes soiled it can becleaned using a soft cloth and a mild detergent, such as spray window or glass cleaner. If the amplifier is located in a particularly dusty environment cleaning the inside with compressed air or vacuuming every 18 to 24 months is sufficient.

Schematic Diagram

NOTES: Unless specified otherwise

1. All resistors in ohms
2. All capacitors in microfarads
3. Component Designators:

1-99: Left Channel
101-199: Right Channel
201-299: Common Parts 301-399: Chassis/Power Supply
4. Left Channel Only Shown
5. Stereo/M ono Switch Shown in Stereo
6. Balanced/U nbalanced Switch Shown in Balanced Position
7. Chassis/Float Ground Switch Shown in Float Position

PC Board Layout

DESIGNATOR VALUE
 ALL RESISTO RS IN OHMS

R1, R101	47.5k, 1/4W, 1\%
R2, R102	47.5k, 1/4W, 1\%
R3, R103	1k, 1/4W, 5\%
R4, R104	1k, 1/4W, 5\%
R5, R105	2.2M, 1/4W, 5\%
R6, R106	100, 1/4W, 5\%
R7, R107	22k, 1/4W, 5\%
R8, R108	100, 1/4W, 5\%
R9, R109	100, 1/4W, 5\%
R10, R110	332, 1/4W, 1\%
R11, R111	100, 1/4W, 5\%
R12, R112	332, 1/4W, 1\%
R13, R113	22.1, 1/4W, 1\%
R14, R114	22.1, 1/4W, 1\%
R15, R115	22.1, 1/4W, 1\%
R16, R116	22.1, 1/4W, 1\%
R17, R117	1k, 1/4W, 5\%
R18, R118	28k, 1/4W, 1\%
R19, R119	909, 1/4W, 1\%
R20, R120	100, 1/4W, 5\%
R21, R121	332, 1/4W, 1\%
R22, R122	475, 1/4W, 1\%
R23, R123	332, 1/4W, 1\%
R24, R124	56, 1/4W, 5\%
R25, R125	56, 1/4W, 5\%
R26, R126	3.32k, 1/4W, 1\%
R27, R127	2k, 1/4W, 5\%
R28, R128	10k, 1/4W, 5\%
R29, R129	100, 1/4W, 5\%
R30, R130	1k, 1/4W, 5\%
R31, R131	100, 1/4W, 5\%
R32, R132	100, 1/4W, 5\%
R33, R133	2k, 1/4W, 5\%
R34, R134	1k, 1/4W, 5\%
R35, R135	1k, 1/4W, 5\%
R36, R136	1k, 1/4W, 5\%
R37, R137	100, 1/4W, 5\%
R38, R138	1k, 1/4W, 5\%
R39, R139	100, 1/4W, 5\%
R40, R140	28k, 1/4W, 5\%
R41, R141	100, 1/4W, 5\%
R42, R142	100, 1/4W, 5\%
R43, R143	1k, 1/4W, 5\%
R44, R144	47.5, 1/4W , 1\%
R45, R145	1k, 1/4W, 5\%
R46, R146	100, 1/4W, 5\%
R47, R147	100, 1/4W, 5\%
R48, R148	47.5, 1/4W , 1\%
R49, R149	475, 1/4W, 1\%
R50, R150	475, 1/4W, 1\%
R51, R151	475, 1/4W, 1\%
R52, 152	475, 1/4W, 1\%
R53, R153	56.2k, 1/4W, 1\%
R54, R154	220, 1/4W, 5\%
R55, R155	220, 1/4W, 5\%
R56, R156	220, 1/4W, 5\%
R57, R157	220, 1/4W, 5\%
R58, R158	0, 1/4W, 1\%
R202	3.92k, 1/4W, 1\%
R203	3.92k, 1/4W, 1\%
R205	22k, 1/4W, 1\%
R206	22k, 1/4W, 1\%
R207	22k, 1/4W, 1\%
R208	22k, 1/4W, 1\%
R209	604k, 1/4W, 1\%
R210	470k, 1/4W, 4\%
R211	1k, 1/4W, 5\%
R212	1k, 1/4W, 5\%

PART \#	DESIGNATOR	value	PART \#
	R213	220, 1/4W, 5\%	RM/4-221C
RM/4-4752C	R214	220, 1/4W, 5\%	RM/4-221C
RM/4-4752C	R215	10k, 1/4W, 5\%	RM/4-103C
RM/4-102C			
RM/4-102C	P1, P101	200, Trim Pot	RVH-201 RVH-201
RM/4-225C	P2, P202	200 Trim Pot	RVH-201
RM/4-101C	D1, D101	BAV99L	SS-260SM
RM/4-223C	D2, D102	BAV99L	SS-260SM
RM/4-101C	D3, D103	BAV99L	SS-260SM
RM/4-101C	D4, D104	BAV99L	SS-260SM
RM/4-3320C	D5, D105	BAV99L	SS-260SM
RM/4-101C	D6, D106	BAV99L	SS-260SM
RM/4-3320C	D7, D107	BAV99L	SS-260SM
RM/4-0221C	D201	1N5245B 15V	SS-212
RM/4-0221C	D202	BAV99L	SS-260SM
RM/4-0221C	D203	1N5245B 15V	SS-212
RM/4-0221C	D204	1N5245B 15V	SS-212
RM /4-102C			
RM /4-2802-03	U 1, U 101	N PDS5566	SS-0865
RM/4-9090C	U9, U109	NPDS5566	SS-0865
RM/4-101C	U 201	TL072CD	SS-143SM
RM/4-3320C	U 202	LM 337	SS-240-056
RM/4-4750C	U 203	LM 317	SS-240-056
RM/4-3320C	C1, C101	330pF, 500V	CM-331-024
RM/4-560C	C2, C102	$330 \mathrm{pF}, 500 \mathrm{~V}$	CM-331-024
RM/4-560C	C3, C103	$0.47 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-474
RM/4-3202C	C4, C104	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM/4-103C	C5, C105	100 FF , 50V	CER-107C-024
RM/4-101C	C6, C106	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM/4-102C	C7, C107	100 $\mathrm{FF}, 50 \mathrm{~V}$	CER-107C-024
RM/4-101C	C8, C108	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM/4-101C	C9, C109	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM/4-202C	C10, C110	7pF, 500V	CM-070-024
RM/4-102C	C11, C111	$100 \mathrm{pF}, 500 \mathrm{~V}$	CM-101-024
RM/4-102C	C13, C113	0.047 $\mu \mathrm{F}, 50 \mathrm{~V}$	CYV-473-024
RM/4-102C	C14, C114	$22 \mathrm{pF}, 500 \mathrm{~V}$	CM-220-024
RM/4-101C	C15, C115	680pF, 500 V	CM-681-024
RM/4-102C	C16, C116	47pF, 500V	CM-470-024
RM/ $/ 2802-03$	C17, C117	4.7 $\mu \mathrm{F}, 160 \mathrm{~V}$	CPP-475MC
RM $/ 4-101 \mathrm{C}$	C18, C118	$4.7 \mu \mathrm{~F}, 160 \mathrm{~V}$	CPP-475MC
RM/4-101C	C19, C119	20,000 $\mu \mathrm{F}, 100 \mathrm{~V}$	CER-209E
RM $/ 4-102 \mathrm{C}$	C20, C120	20,000 $\mu \mathrm{F}, 100 \mathrm{~V}$	CER-209E
RM/4-0475C	C21	$0.01 \mu \mathrm{~F}, 1000 \mathrm{~V}$	CD-103/20-024
RM/4-102C	C201, 202	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CDS-104CCDB
RM/4-101C	C203	1000 $\mu \mathrm{F}, 50 \mathrm{~V}$	CER-108C-024
RM/4-101C	C204	$1000 \mu \mathrm{~F}, 50 \mathrm{~V}$	CER-108C-024
RM/4-0475C	C205	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM $/ 4-4750 \mathrm{C}$	C206	$0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$	CYV-104-024
RM/4-4750C	C207	$100 \mathrm{HF}, 50 \mathrm{~V}$	CER-107C-024
RM/4-4750C	C208	$100 \mathrm{\mu F}, 50 \mathrm{~V}$ $10 \mathrm{FF}, 50 \mathrm{~V}$	CER-106C-024
RM/4-4750C	C210	$4.7 \mu \mathrm{~F}, 160 \mathrm{~V}$	CTR-475A-024
RM P/4-5622-03	C211		CTR-475A-024
RM /4-221C	C215	4.7 $0.01 \mu \mathrm{~F}, 1600 \mathrm{~V}$	CD-103A-024
RM/4-221C	C215	$0.01 \mu \mathrm{~F}, 1600 \mathrm{~V}$	CD-103A-024
RM/4-221C	SW 1	DPDT Switch	SW-0280
RM/4-221C	SW 2	DPDT Switch	SW -0280
RM/4-000C	SW 3	DPDT Switch	SW-0280
RM/4-3921C			
RM/4-3921C	S201	Power Switch	SW H-152B
RM/4-223C			
RM/4-223C	TS-201	Inrush Limiter	SSH-618
RM/4-223C		M M BT5088L	SS-0114
RM $/ 4-223 \mathrm{C}$	Q3, Q 103	M M BT5088L	SS-0114
RM/4-6043C	Q4, Q 104	M M BT5088L	SS-0114
RM $/ 4-102 \mathrm{C}$	Q5, Q105	M M BT5087L	SS-0115
RM/4-102C	Q6, Q106	M M BT5088L	SS-0114
	Q7, Q107	M M BT5087L	SS-0115

$\left.\begin{array}{llllll}\text { DESIGNATOR } & \text { VALUE } & \text { PART \# } & \text { DESIGNATOR } & \text { VALUE } & \text { PART \# } \\ \text { Q8, Q108 } & \text { MM MT5087L } & \text { SS-0115 } & \text { BR201 } & \text { Bridge Rectifier } & \text { SS-222 } \\ \text { Q10, Q110 } & \text { MM MT5088L } & \text { SS-0114 } & \text { BR301 } & \text { Bridge Rectifier } & \text { SSH-609 } \\ \text { Q11, Q111 } & \text { MM BT5087L } & \text { SS-0115 } & & \text { BR-302 } & \text { Bridge Rectifier }\end{array}\right]$ SSH-609

9303 / 9505 Functional Block Diagram

Technical Reference

THEO RY AND OPERATION OF trans• nova

The (TRAN Sconductance N O dal Voltage Amplifier) principle is based on our 1984 U.S. Patent 4,467,288. This patent describes the advantages of audio power amplifiers in which a M O SFET output stage is connected in a grounded source configuration. In this connection the output stage has its full voltage gain of typically 20 dB (ten times), instead of the usual 1dB loss of voltage follower designs.

It is an inevitable result of electrical physics that this output with gain inherently increases the power gain (for the same bandwidth) of the output stage by typically ten times over the conventional follower connection, using exactly the same M O SFET devices.

The output stage is thus now ten times less wasteful of its incoming drive power. The driver stage can now be of a low voltage (± 24 volts) nature and be designed along the same principles always used in high quality preamplifiers: Class A operation, high linearity, and wide bandwidth. A topology utilizing an output stage with gain yields a much simpler, shorter total signal path than that of the usual high voltage driver designs. The number of serial stages is reduced from five or more, to only three.

But all of the above does not make an amplifier trans• nova. The output stage is further refined into a trans-impedance stage (current-to-voltage converter), to achieve extremely short loop (fast) negative feedback. The output stage is driven cooperatively by a transconductance stage (voltage-to-current converter).

The 9303and 9505are the most sophisticated amplifiers we have yet developed utilizing the basic trans• nova principle. And, although the measured specifications are very good, the numbers do not describe the realistic sound of the amplifiers.

CIRCUIT IMPLEMENTATION

Earlier models of amplifiers we have offered using the trans• nova topology have earned the reputation for clean, natural sounding reproduction. A conservative, purist design approach was used to avoid compromising the desirable characteristics of the trans• nova circuits. Circuit innovation was not prevented by this conservatism; as is evident in the discoveries which resulted in developmentofthe DIABLO circuitry to be discussed shortly, and the novel balanced input system.

M any "balanced" amplifiers are merely conventional unbalanced designs with a Balanced-to-U nbalanced converter (usually IC op-amp based) preceding the power amplifier. The 9303 and 9505 , how ever, are true differential input power amplifiers. Each (+) and (-) inputporthas been buffered to allow directsignal access to the differential amplifier, without conversion to unbalanced form. Deactivating the Balanced M ode is accomplished via a rear panel switch that grounds the (-) inputs, effectively converting the amplifier to unbalanced operation.

The input stage is a JFET differential amplifier. This circuit configuration results in excellent front end headroom and extremely low intermodulation effects. The ultra low noise characteristic of theJFETs virtually eliminates noise "mixing" (intermodulation) with the music signal, reducing discordant product frequencies known as "noise grain" or "noise fuzz." A servo integrator has been employed to establish minimal DC offset. This circuit monitors the DC offset at the output of the amplifier, and injects an equal but opposite DC voltage into the (+) port of the differential input, thereby cancelling the offset. This method eliminates the need for a sonically degrading electrolytic capacitor in the audio path, and provides superior subsonic frequency response.

The final output stage utilizes lateral M O SFETs; four pairs are used for each channel in the 9505 and three pairs in the 9303. These devices, unlike conventional bipolar transistors do not exhibit "thermal runaway." Thermal runaway is a phenomenon whereby a transistor heats up as it draws more current, which causes it to get hotter, and conduct more current, and so on until the device self destructs. Since the MOSFETs are inherently self protecting, no sonically degrading, complex circuitry is required to monitor and protect the devices. The lateral M OSFETsalso have alinearinput to output transfer function. Their connection in circuits and their operating characteristics are very similar to vacuum tubes, which is perhaps responsible for their widely recognized sonic trait of being "musical" and non-fatiguing.

O peration of the transconductance stage is a major factor in the reproduction quality of the amplifier. The number of M O SFETs used at the output stage of the 9303 and 9505 imposes sufficient capacitive load on the transconductance stage thatif a conventional ClassA stage were used (having intrinsically a 2:1 limiton peak-to-quiescent current) it would begin to show "stress" at the higher audio frequencies. The newly perfected DIABLO driver system (Dynamically Invariant A-B Linear Operation; patent application in progress) satisfies the current headroom requirement by smoothly and continuously varying the current transfer ratios of the two transconductance paths, under the control of the signal currentitself. This implementation allows the currenttransfer ratio of one path to be smoothly and continuously reduced to zero while the other is smoothly and continuously increased by a factor of two. What is remarkably new here is that when this normally-limiting $2: 1$ value is reached there is now about 14 dB of additional, perfectly linear current headroom left to drive the MO SFETs! The result is a dramatic decrease in high-frequency distortion combined with higher ultrasonic stability - the "H oly Grail" of amplifier design.

The power supply utilizes a UI style transformer with a separate primary for each channel. The transformer has a separate secondary for each channel high voltage power supply, each feeding a conventional splitfull wave bridge rectifier. High voltage power supply capacitance is $20,000 \mu \mathrm{~F}$ per rail for each channel for the 9505 and 5,000 for the 9303 . The third transformer secondary feeds a regulated supply for the input stage and driver circuitry. Low voltage power supply capacitance is $1,000 \mu \mathrm{~F}$ per rail, with additional decoupling for each channel.

CALIBRATION

Common Mode Rejection:

The input common mode null is adjusted by the trim pot R1 (R101 for the left channel). The CM RR should be greater than 75 dB below rated output. If the CM RR requires adjustment, feed the amplifier input with a common mode signal and adjust R1. Disconnect the power to the amplifier before removing the cover. Use a sinewave generator set to 1 volt output at 1 kHz . Connect the generator signal output to the tip and ring of a $1 / 4$ " plug and ground to the sleeve. Plug this into the amplifier input. Connect an AC voltmeter to the amplifier outputbinding posts. Adjust R1 to give the lowest voltage output from the amplifier. For a temporary adjustment when a signal generator and voltmeter are not available, use an FM tuner and tune it to an unused station as your signal source, and connect the output to the amplifier as described above. Connect the amplifier output to a small full range speaker and adjust R1 for the lowest output from the speaker.

Bias:

The bias control establishes the quiescent Class AB output current of the amplifier. The bias should not need readjustment from the factory setting; however, if the amplifier is repaired and output devices have been changed, or if the two channels of the amplifier do not run at the same temperature, calibrating the bias is necessary. Disconnect the power to the amplifier before removing the cover. To adjust the bias, disconnect the input and speakers and remove the B+ fuse for that channel. Connect an amp meter across the now vacant fuse clips and adjust R45 (R145 for the left channel) to get a current reading of 300 mA for the $9303,400 \mathrm{~mA}$ for the 9505 .

Service Policy and Limited Warranty

If you encounter any difficulty or have any question concerning your 9303 and 9505 Amplifier, please call ourTechnical Support Department weekdays, 8:00 a.m. to 3:30 p.m., M ountain Standard Time, at 800-795-2385.

Should you have any doubts as to whether the amplifier is malfunctioning and requires service, please call us before sending it in for repair. All units being returned (regardless of warranty status) must receive a Return Authorization (RA) number. In addition, we can offer troubleshooting assistance that may simplify or even eliminate the need for factory service.

The Hafler 9303 and 9505 Amplifiers are warranted to the original owner (non-transferrable) for seven years from the date of purchase, including parts, labor, and return shipping costs within the Continental United States, Alaska, and Hawaii. This warranty applies only to products sold in the United States Of America.

For warranties outside the U.S.A., please contact your local agent.
It is the owner's responsibility to pay shipping (preferably United Parcel Service, UPS) to the factory: collect shipments will not be accepted. Units under warranty should be accompanied by a copy of the dated Bill Of Sale. U se the original carton and all packing material, with the RA number clearly marked on the outside of the package. Be sure to include a return address, the RA number, a daytime telephone number, and a brief description of the difficulty, including whether it occurs continuously or intermittently.

This warranty gives you specific legal rights. You may also have other rights which may vary from state to state.

HAFLER PRO FESSIONAL
A DIVISION OF
ROCKFORD CORPROATION
546 SOUTH ROCKFORD DRIVE

TEM PE, ARIZO NA 85281 U.S.A.
IN U.S.A. (602) 967-3565
IN EU RO PE, FAX (49) 4207-801250
IN JAPAN, FAX (81) 559-79-01265
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com

