HP 39G/40G

GRAPHING CALCULATOR

USER'S GUIDE

Version 1.1

Contents

Preface
Manual conventions P-1
Notice P-2
1 Getting started
On/off, cancel operations. 1-1
The display 1-2
The keyboard 1-3
Menus 1-8
Input forms 1-9
Mode settings 1-9
Setting a mode 1-11
Aplets (E-lessons) 1-11
Aplet library 1-15
Aplet views 1-15
Aplet view configuration 1-17
Mathematical calculations 1-18
Using fractions 1-24
Complex numbers 1-27
Catalogs and editors 1-28
Differences between the HP 38G and the HP 39G/40G 1-29
2 Aplets and their views
Aplet views 2-1
About the Symbolic view 2-1
Defining an expression (Symbolic view) 2-1
Evaluating expressions 2-3
About the Plot view 2-5
Setting up the plot (Plot view setup) 2-5
Exploring the graph 2-7
Other views for scaling and splitting the graph 2-14
About the numeric view 2-16
Setting up the table (numeric view setup) 2-17
Exploring the table of numbers 2-18
Building your own table of numbers 2-19
"Build Your Own" menu keys 2-20
Example: plotting a circle 2-21
3 Function aplet
About the Function aplet 3-1
Getting started with the Function aplet 3-1
Function aplet interactive analysis 3-8
Plotting a piecewise defined function example 3-11
4 Parametric aplet
About the Parametric aplet 4-1
Getting started with the Parametric aplet 4-1
5 Polar aplet
Getting started with the polar aplet 5-1
6 Sequence aplet
About the Sequence aplet 6-1
Getting started with the Sequence aplet 6-1
7 Solve aplet
About the Solve aplet 7-1
Getting started with the Solve aplet 7-2
Use an initial guess 7-5
Interpreting results 7-6
Plotting to find guesses 7-8
Using variables in equations 7-10
8 Statistics aplet
About the Statistics aplet 8-1
Getting started with the Statistics aplet 8-1
Entering and editing statistical data 8-5
Defining a regression model (2VAR) 8-11
Computed statistics 8-13
Plotting 8-15
Plot types 8-16
Fitting a curve to 2VAR data 8-17
Setting up the plot (Plot setup view) 8-18
Trouble-shooting a plot. 8-19
Exploring the graph 8-20
Calculating predicted values. 8-21
9 Inference aplet
About the Inference aplet 9-1
Getting started with the Inference aplet 9-2
Importing Sample Statistics from the Statistics aplet 9-5
Hypothesis tests 9-9
One-Sample Z-Test 9-9
Two-Sample Z-Test 9-10
One-Proportion Z-Test 9-11
Two-Proportion Z-Test 9-12
One-Sample T-Test 9-13
Two-Sample T-Test 9-14
Confidence intervals 9-16
One-Sample Z-Interval 9-16
Two-Sample Z-Interval 9-17
One-Proportion Z-Interval 9-18
Two-Proportion Z-Interval 9-19
One-Sample T-Interval 9-20
Two-Sample T-Interval 9-21
10 Using mathematical functions
Math functions 10-1
The MATH menu 10-1
Math functions by category 10-3
Keyboard functions 10-4
Calculus functions. 10-7
Complex number functions 10-8
Constants 10-9
Hyperbolic trigonometry 10-9
List functions 10-10
Loop functions 10-11
Matrix functions 10-11
Polynomial functions 10-12
Probability functions 10-13
Real-number functions 10-15
Statistics-Two 10-18
Symbolic functions 10-19
Test functions 10-20
Trigonometry functions 10-21
Symbolic calculations 10-22
Finding derivatives 10-23
11 Variables and memory management
Introduction 11-1
Storing and recalling variables 11-2
The VARS menu 11-4
Memory Manager 11-9
12 Matrices
Introduction 12-1
Creating and storing matrices 12-2
Working with matrices 12-4
Matrix arithmetic 12-6
Solving systems of linear equations 12-8
Matrix functions and commands 12-9
Argument conventions 12-10
Matrix functions 12-10
Examples 12-13
13 Lists
Creating lists 13-1
Displaying and editing lists 13-4
Deleting lists 13-6
Transmitting lists 13-6
List functions 13-7
Finding statistical values for list elements 13-10
14 Notes and sketches
Introduction 14-1
Aplet note view 14-1
Aplet sketch view 14-3
The notepad 14-6
15 Programming
Introduction 15-1
Program catalog 15-2
Creating and editing programs 15-4
Using programs 15-7
Working with programs 15-8
About customizing an aplet 15-9
Aplet naming convention 15-10
Customizing an aplet example 15-10
Programming commands 15-14
Aplet commands 15-14
Branch commands 15-17
Drawing commands 15-19
Graphic commands 15-20
Loop commands 15-22
Matrix commands 15-23
Print commands 15-25
Prompt commands 15-25
Stat-One and Stat-Two commands 15-29
Storing and retrieving variables in programs 15-30
Plot-view variables 15-30
Symbolic-view variables 15-37
Numeric-view variables 15-39
Note variables 15-42
Sketch variables 15-42
16 Extending aplets
Creating new aplets based on existing aplets 16-1
Resetting an aplet 16-4
Annotating an aplet with notes 16-4
Annotating an aplet with sketches 16-4
Downloading e-lessons from the web 16-4
Sending and receiving aplets 16-5
Sorting items in the aplet library menu list 16-6

Reference information

Regulatory information ...R-1
USA ..R-1
Canada ..R-1
LED safety ..R-2
Warranty ...R-2
CAS ...R-4
Resetting the HP 39G/40G ..R-4
To erase all memory and reset defaults ...R-5
If the calculator does not turn on ...R-5
Glossary ...R-6
Operating details.. $\mathrm{R}-\mathrm{7}$
Batteries ...R-7
Menu maps of the VARS menu...R-8
Home variables ..R-8
Function aplet variables...R-9
Parametric aplet variables...R-10
Polar aplet variables ...R-11
Sequence aplet variables..R-12
Solve aplet variables...R-13
Statistics aplet variables ..R-14
Menu maps of the MATH menu ...R-15
Math functions ...R-15
Program constants..R-17
Program commands ...R-18
Selected status messages ...R-19

Index

Preface

The HP 39G/40G is a feature-rich graphing calculator. It is also a powerful mathematics learning tool. The HP 39G/40G is designed so that you can use it to explore mathematical functions and their properties.

You can get more information on the HP 39G/40G from Hewlett-Packard's Calculators web site. You can download customized aplets from the web site and load them onto your calculator. Customized aplets are special applications developed to perform certain functions, and to demonstrate mathematical concepts.

Hewlett Packard's Calculators web site can be found at www.hp.com/calculators

Manual conventions

The following conventions are used in this manual to represent the keys that you press and the menu options that you choose to perform the described operations.

- Key presses are represented as follows:

SIN, COS, HOME, etc.

- Shift keys, that is the key functions that you access by pressing the SHIFT key first, are represented as follows:

SHIFT CLEAR, SHIFT MODES, SHIFT ACOS, etc.

- Numbers and letters are represented normally, as follows:

5, 7, A, B, etc.

- Menu options, that is, the functions that you select using the menu keys at the top of the keypad are represented as follows:

- Input form fields and choose list items are represented as follows:

Function, Polar, Parametric

- Your entries as they appear on the command line or within input forms are represented as follows:

$$
2 * x^{2}-3 x+5
$$

Notice

This manual and any examples contained herein are provided as-is and are subject to change without notice. Except to the extent prohibited by law, Hewlett-Packard Company makes no express or implied warranty of any kind with regard to this manual and specifically disclaims the implied warranties and conditions of merchantaiblity and fitness for a particular purpose and Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damage in connection with the furnishing, performance or use of this manual and the examples herein.
© Hewlett-Packard Company 2000, all rights reserved.
The programs that control your HP 39G/40G are copyrighted and all rights are reserved. Reproduction, adaptation or translation of those programs without prior written permission of Hewlett Packard is prohibited.

Getting started

On/off, cancel operations

To turn on	Press $O N$ to turn on the calculator.		
To cancel	When the calculator is on, the $O N$ key cancels the current operation.		
To turn off	Press SHIFT OFF to turn the calculator off.		
To save power, the calculator turns itself off after several			
minutes of inactivity. All stored and displayed information is			
saved.			
If you see the ((॰)) annunciator or the Low Bat message,			
then the calculator needs fresh batteries.		\quad	HOME is the calculator's home view and is common to all
:---			
aplets. If you want to perform calculations, or you want to quit			
the current activity (such as an aplet, a program, or an editor),			
press HOME. All mathematical functions are available in the			
HOME. The name of the current aplet is displayed in the title			
of the home view.			

The display

To adjust the contrast

To clear the display

Simultaneously press ON and \square(orto increase (or decrease) the contrast.

- Press CANCEL to clear the edit line.
- Press SHIFT CLEAR to clear the edit line and the display history.

Parts of the

 display

Menu key or soft key labels. The labels for the menu keys' current meanings. this picture. "Press CIITE" means to press the first menu key, that is, the leftmost top-row key on the calculator keyboard.

Edit line. The line of current entry.
History. The HOME display (HOME) shows up to four lines of history: the most recent input and output. Older lines scroll off the top of the display but are retained in memory.

Title. The name of the current aplet is displayed at the top of the HOME view. RAD, GRD, DEG specify whether Radians, Grads or Degrees angle mode is set for HOME. The \mathbf{v} and $\boldsymbol{\Delta}$ symbols indicate whether there is more history in the HOME display. Press the ∇ and Δ to scroll in the HOME display
NOTE The HP 40G is packaged with a computerized algebra system (CAS). Press tritit to access the computerized algebra system. This User's Guide contains images from the HP39G and do not display the CIETE menu key label.

Annunciators. Annunciators are symbols that appear above the title bar and give you important status information.

Annunciator	Description
α	Shift in effect for next keystroke. To cancel, press SHIFT again.
$((\bullet))$	Alpha in effect for next keystroke. To cancel, press ALPHA again. Low battery power.
\square	Busy. Data is being transferred via infrared or cable.
$\boldsymbol{\square}$	

The keyboard

Menu keys

- On the calculator keyboard, the top row of keys are called menu keys. Their meanings depend on the context-that's why their tops are blank. The menu keys are sometimes called "soft keys".
- The bottom line of the display shows the labels for the menu keys' current meanings.

Aplet control keys

The aplet control keys are:

Key	Meaning
SYMB	Displays the Symbolic view for the current aplet. See "Symbolic view" on page 1-15. PLOT NUM Displays the Plot view for the current aplet. See "Plot view" on page 1-15.
HOME	Displays the Numeric view for the current aplet. See "Numeric view" on page 1-15.
APLET	Displays the HOME view. See "HOME" on page 1-1.
VIEWS	Displays the Aplet Library menu. See "Aplet library" on page 1-15.
Displays the VIEWS menu. See "Aplet views" on page 1-15.	

The entry and edit keys are:

Key	Meaning
ON (CANCEL)	Cancels the current operation if the calculator is on by pressing $O N$. Pressing SHIFT, then OFF turns the calculator off.
SHIFT	Accesses the function printed in blue above a key.
HOME	Returns to the HOME view, for performing calculations.
ALPHA	Accesses the alphabetical characters printed in orange below a key. Hold down to enter a string of characters.
ENTER	Enters an input or executes an operation. In calculations, ENTER acts as a menu key, ENTER acts the same as pressing DEE or EITIEI.
(-)	Enters a negative number. To enter -25 , press $[-) 25$. Note: this is not the same operation that the subtract button performs ($-\square$).
X,T, ${ }^{\text {e }}$	Enters the independent variable by inserting X, T, θ, or N into the edit line, depending on the current active aplet.
DEL	Deletes the character under the cursor. Acts as a backspace key if the cursor is at the end of the line.
SHIFT CLEAR	Clears all data on the screen. On a settings screen, for example Plot Setup, SHIFT CLEAR returns all settings to their default values.
Δ, Δ, Δ	Moves the cursor around the display. Press SHIFT first to move to the beginning, end, top or bottom.
SHIFT CHARS	Displays a menu of all available characters. To type one, use the arrow keys to highlight it, and press [ied. To select multiple characters, select each

Shifted keystrokes

There are two shift keys that you use to access the operations and characters printed above the keys: SHIFT and ALPHA.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Key } & \text { Description } \\
\hline \text { SHIFT } & \begin{array}{l}\text { Press the SHIFT key to access the } \\
\text { operations printed in blue above the } \\
\text { keys. For instance, to access the Modes } \\
\text { screen, press SHIFT, then press HOME. } \\
\text { (MODES is labelled in blue above the } \\
\text { HOME key). You do not need to hold } \\
\text { down [SHIFT when you press HOME. } \\
\text { This action is depicted in this manual as } \\
\text { "press SHIFTMODES." } \\
\text { To cancel a shift, press SHIFT again. } \\
\text { The alphabetic keys are also shifted }\end{array}
$$

keystrokes. For instance, to type Z, press

ALPHAZ. (The letters are printed in

orange to the lower right of each key.)

To cancel Alpha, press ALPHA again.

For a lower case letter, press

SHIFT ALPHA.\end{array}\right\}\)| For a string of letters, hold down |
| :--- |
| ALPHA while typing. |

HELPWITH

Example

The HP 39G built-in help is available in HOME only. It provides syntax help for built-in math functions.

Access the HELPWITH command by pressing SHIFT SYNTAX and then the math key for which you require syntax help.

Press SHIFT SYNTAX x^{2} ENTER

Note: Remove the left parenthesis from built-in commands such as sine, cosine, and tangent before invoking the HELPWITH command.

Math keys

Program commands

Inactive keys

HOME (HOME) is the place to do calculations.
Keyboard keys. The most common operations are available from the keyboard, such as the arithmetic (like \dagger) and trigonometric (like SIN) functions. Press ENTER to complete the operation: SHIFT $\sqrt{ } 256$ ENTER displays 16.

MATH menu. Press MATH to open the MATH menu. The MATH menu is a comprehensive list of math functions that do not appear on
 the keyboard. It also includes categories for all other functions and constants. The functions are grouped by category, ranging in alphabetical order from Calculus to Trigonometry.

- The arrow keys scroll through the list $(\boldsymbol{\nabla}, \Delta)$ and move from the category list in the left column to the item list in the right column (\triangle, Δ).
- Press UE to insert the selected command onto the edit line.
- Press CIEETII to dismiss the MATH menu without selecting a command.
- Pressing Ledes displays the list of Program Constants. You can use these in programs that you develop.
- Pressing [直国 takes you to the beginning of the MATH menu.

See "Math functions by category" on page 10-3 for details of the math functions.

HINT When using the MATH menu, or any menu on the HP 39G/ 40G, pressing an alpha key takes you straight to the first menu option beginning with that alpha character. With this method, you do not need to press ALPHA first. Just press the key that corresponds to the command's beginning alpha character.

Pressing SHIFT CMDS displays the list of Program Commands. See "Programming commands" on page 15-14.

If you press a key that does not operate in the current context, a warning symbol like this appears. There is no beep.

Menus

A menu offers you a choice of items. Menus are displayed in one or two columns.

- The Cl arrow in the display means more items below.
- The Tll arrow in the display means more items above.

To search a menu - Press ∇ or Δ to scroll through the list. If you press SHIFT \square or SHIFT \triangle, you'll go all the way to the end or the beginning of the list. Highlight the item you want to select, then press DEE (or ENTER).

- If there are two columns, the left column shows general categories and the right column shows specific contents within a category. Highlight a general category in the left column, then highlight an item in the right column. The list in the right column changes when a different category is highlighted. Press DEE or ENTER when you have highlighted your selection.
- To speed-search a list (with no edit line), type the first letter of the word. For example, to find the Matrix category in MATH, press (D), the Alpha "M" key.
- To go up a page, you can press SHIFT (4. To go down a page, press SHIFT \square.

To cancel a menu

Press $O N$ (for CANCEL) or GEIECIE This cancels the current operation.

Input forms

An input form shows several fields of information for you to examine and specify. After highlighting the field to edit, you can enter or edit a number (or expression). You can also select options from a list (${ }^{[5 \mathrm{HCW}}$ II). Some input forms include items to check (란III). See below for an example of an input form.

ENTER	minimum horizantal value					PLIT	FUNCTION				aneaus		
EOIT		Phas -											

Reset input form values

To reset a default field value in an input form, move the cursor to that field and press DEL. To reset all default field values in the input form, press SHIFT CLEAR.

Mode settings

You use the Modes input form to set the modes for HOME.
H I N T Although the numeric setting in Modes affects only HOME, the angle setting controls HOME and the current aplet. The angle setting selected in Modes is the angle setting used in both HOME and current aplet. To further configure an aplet, you use the SETUP keys (SHIFT PLOT and SHIFT NUM).

Press SHIFT MODES to access the HOME MODES input form.

Setting	Options
Angle	Angle values are: Degrees. 360 degrees in a circle. Radians. 2π radians in a circle. Grads. 400 grads in a circle. The angle mode you set is the angle setting used in both HOME and the current aplet. This is done to ensure that trigonometric calculations done in the current aplet and HOME give the same result.

Setting	Options (Continued)
Number	The number format mode you set is the number format used in both HOME and the current aplet.
	Standard. Full-precision display. Fixed. Displays results rounded to a number of decimal places. Example: 123.456789 becomes 123.46 in Fixed 2 format.
	Scientific. Displays results with an exponent, one digit to the left of the decimal point, and the specified number of decimal places. Example: 123.456789 becomes 1.23E2 in Scientific 2 format.
	Engineering. Displays result with an exponent that is a multiple of 3, and the specified number of significant digits beyond the first one. Example: 123.456E7 becomes 1.23E9 in Engineering 2 format.
	Fraction. Displays results as fractions based on the specified number of decimal places. Examples: 123.456789 becomes 123 in Fraction 2 format, and .333 becomes 1/3 and 0.142857 becomes 1/7. See "Using fractions" on page 1-24.
Decimal	Dot or Comma. Displays a number as 12456.98 (Dot mode) or as 12456,98 (Comma mode). Dot mode uses commas to separate elements in lists and matrices, and to separate function arguments. Comar mode uses periods (dot) as separators in these contexts.

Setting a mode

This example demonstrates how to change the angle measure from the default mode, radians, to degrees for the current aplet. The procedure is the same for changing number format and decimal mark modes.

1. Press SHIFTMODES to open the HOME MODES input form.

The cursor (highlight) is in the first field, Angle Measure.

 DEELMAL MAKK: Dot (.)

CHODSE ANGLE MEASURE CHDOR M
2. Press CHEWis to display a list of choices.

3. Press Δ to select Degrees, and press [CII. The angle measure changes to degrees.
4. Press HOME to return to

ANGLE MEASUFE: DEarevers hNGLE MEASURE: DERGEES
NUMMEER FDRMAT: Frgact ion 4 DECIMAL MARK: DOt (.)

CHOSE ANGLE MEASURE CHODIL MEnSURE HOME.
HINT Whenever an input form has a list of choices for a field, you can press \dagger to cycle through them instead of using

Aplets (E-lessons)

Aplets are the application environments where you explore different classes of mathematical operations. You select the aplet that you want to work with.

Aplets come from a variety of sources:

- Built-in the HP 39G/40G (initial purchase).
- Aplets created by saving existing aplets, which have been modified, with specific configurations. See "Creating new aplets based on existing aplets" on page 16-1.
- Downloaded from HP's Calculators web site.
- Copied from another calculator.

Aplets are stored in the Aplet library. See "Aplet library" on page 1-15 for further information.

ET	
Function	C6EE*
Inference	Q18B
Parametric	QKB
Polar	Q1KB
Sequence	Q1. ${ }^{\text {a }}$

You can modify configuration
 settings for the graphical, tabular, and symbolic views of the aplets in the following table. See "Aplet view configuration" on page 1-17 for further information.

Aplet name	Use this aplet to explore:
Function	Real-valued, rectangular functions y in Iterms of x. Example: $y=2 x^{2}+3 x+5$.
Parametric	Confidence intervals and Hypothesis tests based on the Normal and Students-t distributions. Parametric relations x and y in terms of t. Example: $x=\cos (t)$ and $y=\sin (t)$.
Polar	Polar functions r in terms of an angle θ. Example: $r=2 \cos (4 \theta)$.
Solve	Sequence functions U in terms of n, or in terms of previous terms in the same or another sequence, such as U_{n-1} and $U_{n-2} \cdot$ Example: $U_{1}=0, U_{2}=1$ and $U_{n}=U_{n-2}+U_{n-1} \cdot$ Equations in one or more real-valued variables. Example: $x+1=x^{2}-x-2$. One-variable (x) or two-variable $(x$ and $y)$ statistical data.
Statistics	

In addition to these aplets, which can be used in a variety of applications, the HP 39G/40G is supplied with two teaching aplets: Quad Explorer and Trig Explorer. You cannot modify configuration settings for these aplets.

A great many more teaching aplets can be found at HP's web site and other web sites created by educators, together with accompanying documentation, often with student work sheets. These can be downloaded free of charge and transferred to the HP 39G/40G using the separately supplied Connectivity Kit.

Quad Explorer aplet

The Quad Explorer aplet is used to investigate the behaviour of $y=a(x+h)^{2}+v$ as the values of a, h and v change, both by manipulating the equation and seeing the change in the graph, and by manipulating the graph and seeing the change in the equation.

HINT More detailed documentation, and an accompanying student work sheet can be found at HP's web site.

When first started, the aplet is in GITEIE mode, in which the arrow keys, the \square and keys and the $[(-)$ key are used to change the shape of the
 graph. This changing shape is reflected in the equation displayed at the top right corner of the screen, while the original graph is retained for comparison. In this mode the graph controls the equation.

It is also possible to have the equation control the graph. Pressing EIETEI displays a sub-expression of your equation (see right).

Pressing the Δ and \square key moves between subexpressions, while pressing the Δ and \square key changes their values.

Pressing [icieril allows the user to select whether all three subexpressions will be explored at once or only one at a time.

A 1 [1311 button is provided to evaluate the student's knowledge. Pressing 1 EETI displays a target quadratic graph. The student must

manipulate the equation's parameters to make the equation match the target graph. When a student feels that they have correctly chosen the parameters a CIIECEI button evaluates the answer and provide feedback. An for those who give up!

Trig Explorer aplet

The Trig Explorer aplet is used to investigate the behaviour of the graph of $y=a \sin (b x+c)+d$ as the values of a, b, c and d change, both by manipulating the equation and seeing the change in the graph, or by manipulating the graph and seeing the change in the equation.

When the user presses in the ETilitil view, the screen shown right is displayed.

In this mode, the graph controls the equation. Pressing the $\Delta \square$ and $\triangle \Delta$ keys transforms the graph, with these transformations reflected
 in the equation.
 toggle between BIETE and EEMilizl. When Matal is chosen, the 'point of control' is at the origin $(0,0)$ and the $\triangle \square$ and $\triangle \square$ keys control vertical and horizontal transformations. When [ExiRE]
 is chosen the 'point of control' is on the first extremum of the graph (i.e. for the sine graph at $(\pi / 2,1)$.

The arrow keys change the amplitude and frequency of the graph. This is most easily seen by experimenting.

Pressing SYMB displays the equation at the top of the screen. The equation is controls the graph. Pressing the \triangle and \triangle keys moves from parameter to parameter.

Pressing the Δ or key changes the parameter's values.
The default angle setting for this aplet is radians. The angle setting can be changed to degrees by pressing [[ime.

Aplet library

Aplets are stored in the Aplet library.

To open an aplet

Press APLET to display the Aplet library menu. Select the aplet and press EITRER or ENTER.

From within an aplet, you can return to HOME any time by pressing HOME.

Aplet views

When you have configured an aplet to define the relation or data that you want to explore, you can display it in different views. Here are illustrations of the three major aplet views (Symbolic, Plot, and Numeric), the six supporting aplet views (from the VIEWS menu), and the two user-defined views (Note and Sketch).

Symbolic view

Press SYMB to display the aplet's Symbolic view.
You use this view to define the function(s) or equation(s) that you want to explore.

See "About the Symbolic view" on page 2-1 for further
 information.

Plot view

Numeric view

Press PLOT to display the aplet's Plot view.
In this view, the functions that you have defined are displayed graphically.

See "About the Plot view" on page 2-5 for further

information.

Press NUM to display the aplet's Numeric view.
In this view, the functions that you have defined are displayed in tabular format.

See "About the numeric view"
 on page 2-15 for further
information.

Plot-Table
view

Plot-Detail view

Overlay Plot view

The VIEWS menu contains the Plot-Table view.
VIEWS
Select Plot-Table DEA
Splits the screen into the plot and the data table. See "Other views for scaling and splitting
 the graph" on page 2-13 for futher information.

The VIEWS menu contains the Plot-Detail view.
VIEWS
Select Plot-Detail DE
Splits the screen into the plot and a close-up.

See "Other views for scaling and splitting the graph" on page 2-13 for further information.

The VIEWS menu contains the Overlay Plot view.
VIEWS
Select Overlay Plot IIE
Plots the current expression(s) without erasing any preexisting plot(s).

See "Other views for scaling and splitting the graph" on page 2-13 for further information.

Press SHIFT NOTE to display the aplet's note view.
This note is transferred with the aplet if it is sent to another calculator or to a PC. A note view contains text to supplement an aplet.

See "Notes and sketches" on page 14-1 for further information.

Press SHIFT SKETCH to display the aplet's sketch view.

Displays pictures to supplement an aplet.

See "Notes and sketches" on page 14-1 for further information.

Aplet view configuration

You use the SETUP keys (SHIFT PLOT, and SHIFT NUM) to configure the aplet. For example, press SHIFTSETUP-PLOT (SHIFT PLOT) to display the input form for setting the aplet's plot settings. Angle measure is controlled using the MODES view.

Plot Setup
Press SHIFT SETUP-PLOT. Sets

YENG:	-7.1285.,. 7.5
MTIG:	1 YTIGK 1
fes:	Faster
ENTER	Minimum hafizantal yalue

Numeric Setup

Press SHIFT SETUP-NUM. Sets parameters for building a table of numeric values.

Symbolic Setup

This view is only available in the Statistics aplet in 2VAR mode, where it plays an important role in choosing data models. Press (SHIFT)SETUP
 SYMB.

To change views	Each view is a separate environment. To change a view, select a different view by pressing SYMB, NUM, PLOT keys or select a view from the VIEWS menu. To change to HOME, press HOME. You do not explicitly close the current view, you just enter another one-like passing from one room into another in a house. Data that you enter is automatically saved as you enter it.
To save aplet	You can save an aplet configuration that you have used, and transfer the aplet to other HP 39G/40G calculators. See configuration

Mathematical calculations

The most commonly used math operations are available from the keyboard. Access to the rest of the math functions is via the MATH menu (MATH).

To access programming commands, press SHIFT CMDS. See "Programming commands" on page 15-14 for further information.

Where to start

Entering expressions

Example

The home base for the calculator is the HOME view (HOME). You can do all calculations here, and you can access all MATH operations.

- Enter an expression into the HP $39 \mathrm{G} / 40 \mathrm{G}$ in the same left-to-right order that you would write the expression. This is called algebraic entry.
- To enter functions, select the key or MATH menu item for that function. You can also enter a function by using the Alpha keys to spell out its name.
- Press ENTER to evaluate the expression you have in the edit line (where the blinking cursor is). An expression can contain numbers, functions, and variables.
Calculate $\frac{23^{2}-14 \sqrt{8}}{-3} \ln (45)$:

14
X SHIFT $\sqrt{8}$
$\bigcirc(-){ }^{\circ}$
(1045 [)
ENTER

Long results If the result is too long to fit on the display line, or if you want to see an expression in textbook format, press Δ to highlight it and then press EIBEI.

Negative numbers

Type sign.

To raise a negative number to a power, enclose it in parentheses. For example, $(-5)^{2}=25$, whereas $-5^{2}=-25$.

Scientific notation (powers of 10)

Example

A number like 5×10^{4} or 3.21×10^{-7} is written in scientific notation, that is, in terms of powers of ten. This is simpler to work with than 50000 or 0.000000321 . To enter numbers like these, use EEX. (This is easier than using $\mathbb{X} 10 x^{*}$.)
Calculate $\frac{\left(4 \times 10^{-13}\right)\left(6 \times 10^{23}\right)}{3 \times 10^{-5}}$
(1) 4 SHIFT EEX
(-) 13 (D)
x (16 SHIFT EEX
23 (7) 3 SHIFT EEX
ENTER

Explicit and implicit multiplication

Implied multiplication takes place when two operands appear with no operator in between. If you enter AB, for example, the result is $A * B$.

However, for clarity, it is better to include the multiplication sign where you expect multiplication in an expression. It is clearest to enter $A B$ as $A * B$.

H IN T Implied multiplication will not always work as expected. For example, entering $A(B+4)$ will not give $A *(B+4)$. Instead an error message is displayed: "Invalid User Function". This is because the calculator interprets $A(B+4)$ as meaning 'evaluate function A at the value $B+4$ ', and function A does not exist. When in doubt, insert the * sign manually.

Parentheses

You need to use parentheses to enclose arguments for functions, such as $\operatorname{SIN}(45)$. You can omit the final parenthesis at the end of an edit line. The calculator inserts it automatically.

Parentheses are also important in specifying the order of operation. Without parentheses, the HP 39G/40G calculates according to the order of algebraic precedence (the next topic). Following are some examples using parentheses.

Entering...	Calculates...
SIN 45 + SHIFT π	$\sin (45+\pi)$
\triangle SIN 45 [] + SHIFT π	$\sin (45)+\pi$
SHIFT $\sqrt{85 \times 9}$	$\sqrt{85} \times 9$
SHIFT $\sqrt{(0) 85 \times 9]}$	$\sqrt{85 \times 9}$

Algebraic precedence order of evaluation

Largest and smallest numbers

Functions within an expression are evaluated in the following order of precedence. Functions with the same precedence are evaluated in order from left to right.

1. Expressions within parentheses. Nested parentheses are evaluated from inner to outer.
2. Prefix functions, such as SIN and LOG.
3. Postfix functions, such as !
4. Power function, ^, NTHROOT.
5. Negation, multiplication, and division.
6. Addition and subtraction.
7. AND and NOT
8. OR and XOR.
9. Left argument of | (where).
10. Equals, $=$.

Clearing numbers

Using
 previous
 results

To copy a previous line

To reuse the last result

To repeat a

- DEL clears the character under the cursor. When the cursor is positioned after the last character, DEL deletes the character to the left of the cursor, that is, it performs the same as a backspace key.
- CANCEL (ON) clears the edit line.
- SHIFT CLEAR clears all input and output in the display, including the display history.

The HOME display (HOME) shows you four lines of input/ output history. An unlimited (except by memory) number of previous lines can be displayed by scrolling. You can retrieve and reuse any of these values or expressions.

When you highlight a previous input or result (by pressing (Δ), the 価霍 and

Highlight the line (press Δ) and press expression) is copied into the edit line.

Press SHIFT ANS (last answer) to put the last result from the HOME display into an expression. ANS is a variable that is updated each time you press ENTER.

To repeat the very last line, just press ENTER. Otherwise, highlight the line (press Δ) first, and then press ENTER. The highlighted expression or number is re-entered. If the previous line is an expression containing the $A N S$, the calculation is repeated iteratively.

Example

See how [SHIFT ANS retrieves and reuses the last result (50), and ENTER updates ANS (from 50 to 75 to 100).
50 ENTER
25
ENTER ENTER

You can use the last result as the first expression in the edit line without pressing $[$ SHIFT $A N S$. Pressing $\oplus, \square, \boxtimes$, or \div, (or other operators that require a preceding argument) automatically enters ANS before the operator.

You can reuse any other expression or value in the HOME display by highlighting the expression (using the arrow keys), then pressing ExTRTS See "Using previous results" on page 121 for more details.

The variable aNS is different from the numbers in HOME's display history. A value in ANS is stored internally with the full precision of the calculated result, whereas the displayed numbers match the display mode.

HINT When you retrieve a number from ANS, you obtain the result to its full precision. When you retrieve a number from the HOME's display history, you obtain exactly what was displayed.

Pressing ENTER evaluates (or re-evaluates) the last input, whereas pressing SHIFT ANS copies the last result (as ANS) into the edit line.

Storing a value in a variable

You can save an answer in a variable and use the variable in later calculations. There are 27 variables available for storing real values. These are A to Z and θ. See Chapter 11 ,
"Variables and memory management" for more information on variables. For example:

1. Perform a calculation.

STIT $\square+\square$
2. Store the result in the A variable.

3. Perform another calculation using the A variable.

Accessing the display history

Pressing \triangle enables the highlight bar in the display history. While the highlight bar is active, the following menu and keyboard keys are very useful:

Key	Function
- , V	Scrolls through the display history.
酸慨	Copies the highlighted expression to the position of the cursor in the edit line.
EHEX	Displays the current expression in standard mathematical form.
DEL	Deletes the highlighted expression from the display history, unless there is a cursor in the edit line.
$\frac{\text { SHIFT }}{\text { CLEAR }}$	Clears all lines of display history and the edit line.

Clearing the display history

It's a good habit to clear the display history (SHIFT CLEAR) whenever you have finished working in HOME. It saves calculator memory to clear the display history. Remember that all your previous inputs and results are saved until you clear them.

Using fractions

To work with fractions in HOME, you set the number format to Fractions, as follows:

Setting Fraction mode

1. In HOME, open the HOME MODES input form.

SHIFT MODES

MNGLE MEMDHE HODES ANGLE MEASURE: REdi ans DECIMAL MARK: DOt (.)

CHODSE ANGLE MEASURE hNGLE MEASUK
 options, then select Fraction.

3. Press Did to select the option, then select the precision value.

GE \square

4. Enter the precision that you want to use, and press De set the precision. Press HOME to return to HOME.

See "Setting fraction precision" below for more information.

Setting fraction precision

The fraction precision setting determines the precision in which the HP 39G/40G converts a decimal value to a fraction. The greater the precision value that is set, the closer the fraction is to the decimal value.

By choosing a precision of 1 you are saying that the fraction only has to match 0.234 to at least 1 decimal place ($3 / 13$ is 0.23076...).

The fractions used are found using the technique of continued fractions.

When converting recurring decimals this can be important. For example, at precision 6 the decimal 0.6666 becomes 3333/5000 (6666/10000) whereas at precision 3, 0.6666 becomes $2 / 3$, which is probably what you would want.
For example, when converting 234 to a fraction, the precision value has the following effect:

- Precision set to 1 :

- Precision set to 2:

- Precision set to 3:

- Precision set to 4

Fraction
calculations

Converting decimals to fractions

When entering fractions:

- You use the \ddagger key to separate the numerator part and the denominator part of the fraction.
- To enter a mixed fraction, for example, $1 \frac{1}{2}$, you enter it in the format $\left(1+\frac{1}{2}\right)$.

For example, to perform the following calculation:
$3\left(2^{3} / 4+5^{7} / 8\right)$

1. Set the mode Number format to fraction.

SHIFT MODES $\boldsymbol{\nabla}$	
[四面] Select	hngle MEnsure: Radi ans
raction	NUMEER FDRMAT: Fragt ion 4
ENTER $\rightarrow 4$ ded	
	ENTEF decildal pláces to use EDIT CHIDIS

2. Return to HOME and enter the calculation.

3. Evaluate the calculation. ENTER

STIT

To convert a decimal value to a fraction:

1. Set the number mode to Fraction.
2. Either retrieve the value from the History, or enter the value on the command line.
3. Press ENTER to convert the number to a fraction.

Converting a number to a fraction

When converting a number to a fraction, keep the following points in mind:

- When converting a recurring decimal to a fraction, set the fraction precision to about 6 , and ensure that you include more than six decimal places in the recurring decimal that you enter.

In this example, the fraction precision is set to 6 . The top calculation returns the correct result. The bottom one does not.

- To convert an exact decimal to a fraction, set the fraction precision to at least two more than the number of decimal places in the decimal.

In this example, the fraction precision is set to 6 .

Complex numbers

Complex results

To enter complex numbers

The HP 39G/40G can return a complex number as a result for some math functions. A complex number appears as an ordered pair (x, y), where x is the real part and y is the imaginary part. For example, entering $\sqrt{-1}$ returns $(0,1)$.

Enter the number in either of these forms, where x is the real part, y is the imaginary part, and i is the imaginary constant, $\sqrt{-1}$:

- (x, y) or
- $x+i y$.

To enter i :

- press SHIFT ALPHA I
or
- press MATH, Δ or ∇ keys to select Constant, to move to the right column of the menu, ∇ to select i, and DEIS

Storing complex numbers

There are 10 variables available for storing complex numbers: Z 0 to Z 9 . To store a complex number in a variable:
 variable to store the number in and press EENTER.

EDEIC

ALPHAZ 0
ENTER

Catalogs and editors

The HP 39G/40G has several catalogs and editors. You use them to create and manipulate objects. They access features and stored values (numbers or text or other items) that are independent of aplets.

- A catalog lists items, which you can delete or transmit, for example an aplet.
- An editor lets you create or modify items and numbers, for example a note or a matrix.

Catalog/Editor	Contents
Aplet library (APLET)	Aplets.
Sketch editor (SHIFT SKETCH)	Sketches and diagrams, See Chapter 14, "Notes and sketches".
List (SHIFT LIST)	Lists. In HOME, lists are enclosed in \{ \}. See Chapter 13, "Lists".
$\begin{aligned} & \text { Matrix } \\ & \text { (SHIFTMATRIX) } \end{aligned}$	One- and two-dimensional arrays. In HOME, arrays are enclosed in []. See Chapter 12, "Matrices".
Notepad (SHIFT NOTEPAD)	Notes (short text entries). See Chapter 14, "Notes and sketches".
$\begin{aligned} & \text { Program } \\ & \text { (SHIFT PROGRAM) } \end{aligned}$	Programs that you create, or associated with user-defined aplets. See Chapter 15, "Programming".

Differences between the HP 38G and the HP 39G/40G

CAS

Memory

 managerPlot Goto function

Trig Explorer and Quadratic Explorer aplets

To complement the Statistics aplet, a new Inference aplet has been added. Use this aplet to perform hypothesis tests and determine confidence intervals. See "About the Inference aplet" on page 9-1 for more information.
The HP 40G is packaged with a computer algebra system (CAS). Refer to the CAS Manual for further information.

The HP 39G/40G incorporates a memory manager that you can use to see how much memory the objects that you have created or loaded are occupying. See "Memory Manager" on page 11-9 for more information.

In Plot view, you can use the milenu key to jump to a value on the plot instead of having to trace the plot to locate values. See "Exploring the graph" on page 2-7 for more information.

When you choose the [Till option in the Statistics aplet's Plot view screen, it is now possible to Finiel along the regression curve. Once a data set and regression curve is displayed, pressing the up and down arrows will move between the data and the curve of regression. When the regression curve is selected, the values displayed in the Plot view status line are the PREDY values. On the HP 38G, the Trace function would select known data points only.

The teaching aplets Trig Explorer and Quadratic Explorer have been added to the calculator. These two aplets add powerfully to the capabilities of the calculator in the classroom.

Aplets and their views

Aplet views

This section examines the options and functionality of the three main views for the Function, Polar, Parametric, and Sequence aplets: Symbolic, Plot, and Numeric views.

About the Symbolic view

The Symbolic view is the defining view for the Function, Parametric, Polar, and Sequence aplets. The other views are derived from the symbolic expression.

You can create up to 10 different definitions for each Function, Parametric, Polar, and Sequence aplet. You can graph any of the relations (in the same aplet) simultaneously by selecting them.

Defining an expression (Symbolic view)

Choose the aplet from the Aplet Library.

APLET	
	Funict ion . MFKE
Δ or ∇ to select	Inference bla
an aplet.	Parametric .076B
	Sequrnce 606 KB -
The Function,	
Parametric, Polar, and	
Sequence aplets start in the Symbolic view.	
If the highlight is on an e empty line-unless you expression-or, clear one (SHIFT CLEAR).	isting expression, scroll to an 't mind writing over the ne (DEL) or all lines

Expressions are selected (check marked) on entry. To deselect an expression, press Fring. All selected expressions are plotted.

- For a Function definition, enter an expression to define $F(X)$. The only independent variable in the expression is X.
- For a Parametric definition, enter a pair of expressions to define $X(T)$ and $Y(T)$. The only independent variable in the expressions is T.
- For a Polar definition, enter an expression to define $R(\theta)$. The only independent variable in the expression is θ.

R2(θ) $=$	
$\mathrm{RS}(\theta)=$	
$\mathrm{R} 4(\mathrm{\theta})=$	
R5(日)=	\uparrow
[EIT	[SHDE] Exil

- For a Sequence definition, either: Enter the first and second terms for U (U1, or...U9, or $U 0$). Define the nth term of the sequence in terms of N or of the prior terms, $U(N-1)$ and $U(N-2)$. The expressions should produce real-valued sequences with integer domains. Or define the nth term as a non-recursive expression in terms of n only. In this case, the calculator inserts the first two terms based on the expression that you define.

Evaluating expressions

In aplets

In HOME	You can also evaluate any expression in HOME by entering it into the edit line and pressing ENTER.
For example, define F 4 as below. In HOME, type F 4 (9) and	
press ENTER. This evaluates the expression, substituting 9 in	
place of X into F 4.	

SYMB view keys

The following table details the menu keys that you use to work with the Symbolic view．

Key	Meaning
EGTIT	Copies the highlighted expression to the edit line for editing．Press ［बEE when done．
	Checks／unchecks the current expression （or set of expressions）．Only checked expression（s）are evaluated in the Plot and Numeric views．
気罭	Enters the independent variable in the Function aplet．Or，you can use the X，, ， ，key on the keyboard．
	Enters the independent variable in the Parametric aplet．Or，you can use the X，T，0 key on the keyboard．
氟	Enters the independent variable in the Polar aplet．Or，you can use the X, T, θ key on the keyboard．
㘹要	Enters the independent variable in the Sequence aplet．Or，you can use the X，, ，θ key on the keyboard．
	Displays the current expression in text book form．
Emitis	Resolves all references to other definitions in terms of variables and evaluates all arithmetric expressions．
VARS	Displays a menu for entering variable names or contents of variables．
MATH	Displays the menu for entering math operations．
SHIFT	Displays special characters．To enter
CHARS	one，place the cursor on it and press 디르․ To remain in the CHARS menu and enter another special character， press E［ED
DEL	Deletes the highlighted expression or the current character in the edit line．
SHIFT CLEAR	Deletes all expressions in the list or clears the edit line．

About the Plot view

After entering and selecting（check marking）the expression in the Symbolic view，press PLOT．To adjust the appearance of the graph or the interval that is displayed，you can change the Plot view settings．

You can plot up to ten expressions at the same time．Select the expressions you want to be plotted together．

Setting up the plot（Plot view setup）

Press SHIFTSETUP－PLOT to define any of the settings shown in the next two tables．

1．Highlight the field to edit．
－If there is a number to enter，type it in and press ENTER or 酸．
－If there is an option to choose，press 险垔，highlight your choice，and press ENTER or 鲁逪．As a shortcut to 置正至，just highlight the field to change and pressto cycle through the options．
 to check or uncheck it．

3．When done，press PLOT to view the new plot．
Plot view
The plot view settings are： settings

Field	Meaning
XRNG，YRNG	Specifies the minimum and maximum horizontal（X）and vertical （Y）values for the plotting window． RES TRNG ＂Far function plots：Resolution； ＂Faster＂plots in alternate pixel columns；＂Detail＂plots in every pixel column．
Parametric aplet：Specifies the t－	
values（T）for the graph．	
Polar aplet：Specifies the angle（ $\theta)$	
value range for the graph．	

Field	Meaning (Continued)
NRNG	Sequence aplet: Specifies the index (N) values for the graph.
OSTEP	For Parametric plots: the increment for the independent variable.
SEQPLOT	For Polar plots: the increment value for the independent variable.
FTICK	For Sequence aplet: Stairstep or Cobweb types.
YTICK	Horizontal spacing for tickmarks.
Vertical spacing for tickmarks.	

Those items with space for a checkmark are settings you can

Field	Meaning
SIMULT	If more than one relation is being plotted, plots them simultaneously (otherwise sequentially).
INV. CROSS	Cursor crosshairs invert the status of the pixels they cover.
LONNECT	Connect the plotted points. (The Sequence aplet always connects them.)
AXES	Label the axes with XRNG and YRNG values.
GRID	Draw the axes. Draw grid points using XTICK and YTICK spacing.

Reset plot settings

To reset the default values for all plot settings, press SHIFT CLEAR in the Plot Setup view. To reset the default value for a field, highlight the field, and press DEL.

Exploring the graph

Plot view gives you a selection of keys and menu keys to explore a graph further．The options vary from aplet to aplet．

PLOT view keys

The following table details the keys that you use to work with the graph．

Key	Meaning
SHIFT CLEAR	Erases the plot and axes．
VIEWS	Offers additional pre－defined views for splitting the screen and for scaling （＂zooming＂）the axes．
SHIFT 4	Moves cursor to far left or far right．
SHIFT \triangle	
\square	Moves cursor between relations．
［rimitisior on	Interrupts plotting．
	Continues plotting if interrupted．
	Turns menu－key labels on and off．When the labels are off，pressing 國道面 turns them back on．
	－Pressing 줄펴흎 once displays the full row of labels． －Pressing REDTiti a second time removes the row of labels to display only the graph． the coordinate mode．
	Displays ZOOM menu list．
	Turns trace mode on／off．A white box
Ficis	Opens an input form for you to enter an X （or T or N or θ ）value．Enter the value and press 国．The cursor jumps to the point on the graph that you entered．
［［ E $^{\text {a }}$	Function aplet only：Turns on menu list for root－finding functions（see＂Analyse graph with FCN functions＂on page 3－3．
	Displays the current，defining expression．Press 줄ㅍㅍTill to restore the menu．

Trace a graph

To move between relations

To jump directly to a value

To turn trace on／ off

You can trace along a function using the \triangle or \square key which moves the cursor along the graph．The display also shows the current coordinate position (x, y) of the cursor．Trace mode and the coordinate display are automatically set when a plot is drawn．

Note：Tracing might not appear to exactly follow your plot if the resolution（in Plot Setup view）is set to Faster．This is because RES：FASTER plots in only every other column， whereas tracing always uses every column．

In Function and Sequence Aplets：You can also scroll （move the cursor）left or right beyond the edge of the display window in trace mode，giving you a view of more of the plot．

If there is more than one relation displayed，press Δ or ∇ to move between relations．

To jump straight to a value rather than using the Trace function，use the menu key．Press 西面，then enter a value．Press 远远 to jump to the value．

If the menu labels are not displayed，press 졸ㅈNID first．
－Turn off trace mode by pressing $\operatorname{\text {Diniel}}$

－To turn the coordinate display off，press 可E哑．
Zoom within a One of the menu key options is Rooming redraws the graph plot on a larger or smaller scale．It is a shortcut for changing the Plot Setup．

With the Set Factors option you can specify the factors that determine the extent of zooming，and whether the zoom is centered about the cursor．
 displayed，press［ all aplets．

Option	Meaning
Center	Re－centers the plot around the current position of the cursor without changing the scale．
Box．．．	Lets you draw a box to zoom in on．See ＂Other views for scaling and splitting the graph＂on page 2－13．

Option	Meaning (Continued)
In	Divides horizontal and vertical scales by the X-factor and Y-factor. For instance, if zoom factors are 4 , then zooming in results in $1 / 4$ as many units depicted per pixel. (see Set Factors)
Out	Multiplies horizontal and vertical scales by the X-factor and Y-factor (see Set Factors).
X-Zoom In	Divides horizontal scale only, using X-factor.
X-Zoom Out	Multiplies horizontal scale, using X-factor.
Y-Zoom In	Divides vertical scale only, using Y-factor.
Y-Zoom Out	Multiplies vertical scale only, using Y-factor.
Square	Changes the vertical scale to match the horizontal scale. (Use this after doing a Box Zoom, X-Zoom, or Y-Zoom.)
Set Factors...	Sets the X-Zoom and Y-Zoom factors for zooming. Includes option to recenter the plot before zooming.
Auto Scale	Rescales the vertical axis so that the display shows a representative piece of the plot, for the supplied x axis settings. (For Sequence and Statistics aplets, autoscaling rescales both axes.)
	The autoscale process uses the first selected function only to determine the best scale to use.
Decimal	Rescales both axes so each pixel $=0.1$ units. Resets default values for XRNG (-6.5 to 6.5) and YRNG (-3.1 to 3.2). (Not in Sequence or Statistics aplets.)

Option	Meaning (Continued)
Integer	Rescales horizontal axis only, making each pixel $=1$ unit. (Not available in Sequence or Statistics aplets.)
Trig	Rescales horizontal axis so 1 pixel $=\pi / 24$ radian, 7.58 , or $8 \frac{1}{3}$ grads; rescales vertical axis so 1 pixel $=0.1$ unit. (Not in Sequence or Statistics aplets.)
Un-zoom	Returns the display to the previous zoom, or if there has been only one zoom, un-zoom displays the graph with the original plot settings.

The following screens show the effects of zooming options on a plot of $3 \sin x$.

Plot of $3 \sin x$

Zoom In:

Un-zoom:

(Press Δ to move to the bottom of the Zoom list.)

Zoom Out:

Now un-zoom.

X-Zoom In:

Now un-zoom.

X-Zoom Out:

Now un-zoom.

Y-Zoom In:

Now un-zoom.

Y-Zoom Out:

Zoom Square:

To box zoom

To set zoom factors

The Box Zoom option lets you draw a box around the area you want to zoom in on by selecting the endpoints of one diagonal of the zoom rectangle．

3．Position the cursor on one corner of the rectangle．Press TE．

4．Use the cursor keys （ $\boldsymbol{\nabla}$, etc．）to drag to the opposite corner．

5．Press 国配 to zoom in on the boxed area．

1．In the Plot view，press 固鳬胃．
2．Press 要面国．
3．Select Set Factors．．．and press［iE．
4．Enter the zoom factors．There is one zoom factor for the horizontal scale（XZOOM）and one for the vertical scale （YZOOM）．
Zooming out multiplies the scale by the factor，so that a greater scale distance appears on the screen．Zooming in divides the scale by the factor，so that a shorter scale distance appears on the screen．

Other views for scaling and splitting the graph

The preset viewing options menu (VIEWS) contains options for drawing the plot using certain pre-defined configurations. This is a shortcut for changing Plot view settings. For instance, if you have defined a trigonometric function, then you could select Trig to plot your function on a trigonometric scale. It also contains split-screen options.
In certain aplets, for example those that you download from the world wide web, the preset viewing options menu can also contain options that relate to the aplet.

VIEWS menu Press VIEWS, select an option, and press des. options

Option	Meaning
Plot- Detail	Splits the screen into the plot and a close-up.
Plot-Table	Splits the screen into the plot and the data table.
Overlay Plot	Plots the current expression(s) without erasing any pre-existing plot(s).
Auto Scale	Rescales the vertical axis so that the display shows a representative piece of the plot, for the supplied x axis settings. (For Sequence and Statistics aplets, autoscaling rescales both axes.)
	The autoscale process uses the first selected function only to determine the best scale to use.
Decimal	Rescales both axes so each pixel $=0.1$ unit. Resets default values for XRNG (-6.5 to 6.5) and YRNG (-3.1 to 3.2). (Not in Sequence or Statistics aplets.)
Integer	Rescales horizontal axis only, making each pixel $=1$ unit. (Not available in Sequence or Statistics aplets.)
Trig	Rescales horizontal axis so 1 pixel $=\pi / 24$ radian, 7.58 , or $8 \frac{1}{3}$ grads; rescales vertical axis so 1 pixel $=0.1$ unit. (Not in Sequence or Statistics aplets.)

Split the screen
 The Plot-Detail view can give you two simultaneous views of

 the plot.1. Press VIEWS. Select Plot-Detail and press TiEs. The graph is plotted twice. You can now zoom in on the right side.
 or ENTER. This zooms the right side. Here is an example of split screen with Zoom In.

- The Plot menu keys are available as for the full plot (for tracing, coordinate display, equation display, and so on).
- SHIFT \triangle moves the leftmost cursor to the screen's left edge and SHIFT] \square moves the rightmost cursor to the screen's right edge.
- The 区--】 menu key copies the right plot to the left plot.

3. To un-split the screen, press PLOT. The left side takes over the whole screen.

The Plot-Table view gives you two simultaneous views of the plot.

1. Press VIEWS. Select Plot-Table and press TiE. The screen displays the plot on the left side and a table of numbers on the right side.
2. To move up and down the table, use the \square and

\triangle cursor keys. These
keys move the trace point left or right along the plot, and in the table, the corresponding values are highlighted.
3. To move between functions, use the Δ and $\boldsymbol{\nabla}$ cursor keys to move the cursor from one graph to another.
4. To return to a full Numeric (or Plot) view, press NUM (or PLOT).

Overlay plots	If you want to plot over an existing plot without erasing that plot, then use VIEWS Overlay Plot instead of PLOT. Note that tracing follows only the current functions from the current aplet.
Decimal scaling	Decimal scaling is the default scaling. If you have changed the scaling to Trig or Integer, you can change it back with Decimal.
Integer scaling	Integer scaling compresses the axes so that each pixel is 1×1 and the origin is near the screen center.
Trigonometric	Use trigonometric scaling whenever you are plotting an expression that includes trigonometric functions. Scaling
Trigonometric plots are more likely to intersect the axis at points factored by π	

About the numeric view

After entering and selecting (check marking) the expression or expressions that you want to explore in the Symbolic view, press

NUM to view a table of data values for the independent variable (X, T, θ, or N) and dependent variables.

Setting up the table (numeric view setup)

Press SHIFTNUM to define any of the table settings. Use the Numeric Setup input form to configure the table.

1. Highlight the field to edit. Use the arrow keys to move from field to field.

- If there is a number to enter, type it in and press ENTER or CES. To modify an existing number, press ETiT.
- If there is an option to choose, press 聇垔, highlight your choice, and press ENTER or CIER.
 the Plot Setup into NUMSTART and NUMSTEP.
 the table match the pixel columns in the graph view.

2. When done, press NUM to view the table of numbers.

Numeric view settings

The following table details the fields on the Numeric Setup input form.

Field	Meaning
NUMS TART	The independent variable's starting value.
NUMSTEP	The size of the increment from one independent variable value to the next.
NUMZOOM	Type of numeric table: Automatic or Build Your Own. To build your own table, you must type each independent value into the table yourself.
Allows you to zoom in or out on a	
selected value of the independent	
variable.	

Reset numeric
To reset the default values for all table settings, press settings

SHIFT CLEAR.

Exploring the table of numbers

NUM view menu keys

The following table details the menu keys that you use to work with the table of numbers.

Key	Meaning
	Displays ZOOM menu list.
TIE	Toggles between two character sizes.
	Displays the defining function expression for the highlighted column. To cancel this display, press 지르․

Zoom within a table

ZOOM options

Zooming redraws the table of numbers in greater or lesser detail.

The following table lists the zoom options:

Option	Meaning
In	Decreases the intervals for the independent variable so a narrower range is shown. Uses the NUMZOOM factor in Numeric Setup. Increases the intervals for the independent variable so that a wider range is shown. Uses the NUMZOOM factor in Numeric Setup. Changes intervals for the independent variable to 0.1 units. Starts at zero. (Shortcut to changing NUMSTART and
Integer	NUMSTEP.) Changes intervals for the independent variable to 1 unit. Starts at zero. (Shortcut to changing NUMSTEP.) Thanges intervals for independent Tariable to $\pi / 24$ radian or 7.5 degrees or 81/3 grads. Starts at zero. Returns the display to the previous zoom.
Un-zoom	Ina

The display on the right is a Zoom In of the display on the left. The zoom factor is 4 .

HIN T To jump to an independent variable value in the table, use the arrow keys to place the cursor in the independent variable column, then enter the value to jump to.

Automatic recalculation

You can enter any new value in the X column. When you press ENTER, the values for the dependent variables are recalculated, and the entire table is regenerated with the same interval between X values.

Building your own table of numbers

The default NUMTYPE is "Automatic", which fills the table with data for regular intervals of the independent (X, T, θ, or N) variable. With the NUMTYPE option set to "Build Your Own", you fill the table yourself by typing in the independentvariable values you want. The dependent values are then calculated and displayed.

Build a table

1. Start with an expression defined (in Symbolic view) in the aplet of your choice. Note: Function, Polar, Parametric, and Sequence aplets only.
2. In the Numeric Setup (SHIFT $N U M$), choose NUMTYPE : Build Your Own.
3. Open the Numeric view (NUM).
4. Clear existing data in the table (SHIFT CLEAR).
5. Enter the independent values in the left-hand column. Type in a number and press ENTER. You do not have to enter them in order, because the 正覃 function can rearrange them. To insert a number between two others, use IRE.

Clear data

 Press SHIFT CLEAR，䍚豕 to erase the data from a table．
＂Build Your Own＂menu keys

Key	Meaning
E需	Puts the highlighted independent value（ X, T, θ ，or N ）into the edit line．Pressing ENTER replaces this variable with its current value．
TEE	Inserts a row of zero values at the position of the highlight．Replace a zero by typing the number you want and pressing ENTER．
	Sorts the independent variable values into ascending or descending order．Press 畺蹎 and select the ascending or descending option
ETE	Toggles between two character sizes．
（19］풀	Displays the defining function expression for the highlighted column．
DEL	Deletes the highlighted row．
SHIFT CLEAR	Clears all data from the table．

Example: plotting a circle

Plot the circle, $x^{2}+y^{2}=9$. First rearrange it to read
$y= \pm \sqrt{9-x^{2}}$.
To plot both the positive and negative y values, you need to define two equations as follows:
$y=\sqrt{9-x^{2}}$ and $y=-\sqrt{9-x^{2}}$

1. In the Function aplet, specify the functions.

2. Reset the graph setup to the default settings.
SHIFT SETUP-PLOT
SHIFT CLEAR

3. Plot the two functions and hide the menu so that you can see all the circle.

4. Reset the numeric setup to the default settings.
SHIFT SETUP-NUM
SHIFT CLEAR

5. Display the functions in numeric form.

NUM

Function aplet

About the Function aplet

The Function aplet enables you to explore up to 10 real-valued, rectangular functions y in terms of x. For example $y=2 x+3$.

Once you have defined a function you can:

- create graphs to find roots, intercepts, slope, signed area, and extrema
- create tables to evaluate functions at particular values.

This chapter demonstrates the basic tools of the Function aplet by stepping you through an example. See "Aplet views" on page 2-1 for further information about the functionality of the Symbolic, Numeric, and Plot views.

Getting started with the Function aplet

The following example involves two functions: a linear function $y=1-x$ and a quadratic equation $y=(x+3)^{2}-2$.

Open the Function aplet

1. Open the Function aplet.

The Symbolic view is the defining view for Function, Parametric, Polar, and Sequence aplets. The other views are derived from the symbolic expression.

Set up the plot You can change the scales of the x and y axes，graph resolution，and spacing of axis ticks．

3．Display plot settings．
SHIFT SETUP－PLOT

Note：For our example，you can leave the plot settings at their default values since we will be using the Auto Scale feature to choose an appropriate y axis for our x axis settings．If your settings do not match this example，press SHIFT CLEAR to restore the default values．

4．Specify a grid for the graph．

```
[隹䌸的
\nabla V F FFEIE
```


Plot the functions

5．Plot the functions．

Change the scale

6. You can change the scale to see more or less of your graphs. In this example, choose Auto Scale. (See "VIEWS menu options" on page 2-13 for a description of Auto Scale).
VIEWS Select Auto Scale [0X

Note: By default, the tracer
 is active.
8. Jump from the linear function to the quadratic function.
Δ

Analyse graph with FCN functions

9. Display the Plot view menu.
[BE EITII

From the Plot view menu, you can use the functions on the FCN menu to find roots, intersections, slopes, and areas for a function defined in the Function aplet (and any Function-based aplets). The FCN functions act on the currently selected graph. See "FCN functions" on page 3-9 for further information.

To find the greater of the two roots of the quadratic function

10. Find the greater of the two roots of the quadratic function.

Note: Move the cursor to the graph of the quadratic equation by pressing the Δ or $\boldsymbol{\nabla}$ key. Then move the cursor so that it is near $x=-1$ by pressing the \square or (4) key.
[EETEI Select Root
DE

The root value is displayed at the bottom of the screen.

11. Find the intersection of the two functions. [GEETMEES ∇ DE

12. Choose the linear function whose intersection with the quadratic function you wish to find.
[E]

The coordinates of the intersection point are displayed at the bottom of the screen.

Note: If there is more
 than one intersection (as in our example), the coordinates of the intersection point closest to the current cursor position are displayed.

To find the slope of the quadratic function

To find the signed area of the two functions

13. Find the slope of the quadratic function at the intersection point.
[TEDITITEL
Select Slope
DE
The slope value is displayed at the bottom
 of the screen
14. To find the area between the two functions in the range $-2 \leq x \leq-1$, first move the cursor to $F 1(x)=1-x$ and select the signed area option.

[EETII [ild

Select Signed area
DE

15. Move the cursor to $x=-1$ by pressing the \square or 4 key.
[IS

16. Press DIE to accept using $\mathrm{F} 2(x)=(x+3)^{2}-2$ as the other boundary for the integral.
17. Choose the end value for
x.
GMim
(-) 2
ME
The cursor jumps to $x=-2$ on the linear function.

18. Display the numerical value of the integral.

ME
Note: See "Shading area" on page 3-10 for another method of calculating area.

To find the extremum of the quadratic

19. Move the cursor to the quadratic equation and find the extremum of the quadratic.

Select Extremum
The coordinates of the extremum are displayed at the bottom of the
 screen.

HINT The Root and Extremum functions return one value only even if the function has more than one root or extremum. The function finds the value closest to the position of the cursor. You need to re-locate the cursor to find other roots or extrema that may exist.

Display the

 numeric view20. Display the numeric view.

NUM

Set up the

 table21. Display the numeric setup.

SHIFT SETUP-NUM

See "Setting up the table (numeric view setup)" on page 2-16 for more information.
22. Match the table settings to the pixel columns in the graph view.
[GEDICR

Explore the table

23. Display a table of numeric values. NUM

To navigate around a table

24. Move to $X=-5.9$.
$\square 6$ times

25. Move directly to $\mathrm{X}=10$. 10 运

26. Zoom in on $\mathrm{X}=10$ by a factor of 4 . Note: NUMZOOM has a setting of 4 .

EDilial In
DE

To change font size

To display the symbolic definition of a column

27. Display table numbers in large font.
[国

28. Display the symbolic definition for the F1 column.
[CE[E]

The symbolic definition of F 1 is displayed at the bottom
 of the screen.

Function aplet interactive analysis

From the Plot view (PLOT), you can use the functions on the FCN menu to find roots, intersections, slopes, and areas for a function defined in the Function aplet (and any Functionbased aplets). See "FCN functions" on page 3-9. The FCN operations act on the currently selected graph.

The results of the FCN functions are saved in the following variables:

- AREA
- EXTREMUM
- ISECT
- ROOT
- SLOPE

For example, if you use the ROOT function to find the root of a plot, you can use the result in calculations in Home.

Access FCN
 The FCN variables are contained in the VARS menu. variables
 To access FCN variables in HOME:

To access FCN variable in the Function aplet's Symbolic view:

FCN functions The FCN functions are:

Function	Description
Root	Select Root to find the root of the current function nearest the cursor. If no root is found, but only an extremum, then the result is labeled EXTR: instead of Root : . The root-finder is also used in the Solve aplet. See also "Interpreting results" on page 7-6.) The cursor is moved to the root value on the x-axis and the resulting x-value is saved in a variable named ROOT.
Select Ext remum to find the	
maximum or minimum of the	
current function nearest the cursor.	
This displays the coordinate values	
and moves the cursor to the	
extremum. The resulting value is	
saved in a variable named	
EXTREMUM.	

Function	Description (Continued)
Signed area	Select Signed area to find the numeric integral. (If there are two or more expressions checkmarked, then you will be asked to choose the second expression from a list that includes the x-axis.) Select a starting point, then move the cursor to selection ending point. The result is saved in a variable named AREA.
Intersection	Select Intersection to find the intersection of two graphs nearest the cursor. (You need to have at least two selected expressions in Symbolic view.) Displays the coordinate values and moves the cursor to the intersection. (Uses Solve function.) The resulting x - value is saved in a variable named ISECT.

Shading area

You can shade a selected area between functions. This process also gives you an approximate measurement of the area shaded.

1. Open the Function aplet. The Function aplet opens in the Symbolic view.
2. Select the expressions whose curves you want to study.
3. Press PLOT to plot the functions.
4. Press \square or to position the cursor at the starting point of the area you want to shade.
5. Press [iEETII.
6. Press [i[ilit then select Signed area and press (IET.
7. Press DiE, choose the function that will act as the boundary of he shaded area, and press DER.
8. Press the \square or Δ key to shade in the area.
9. Press DIT to calculate the area. The area measurement is displayed near the bottom of the screen.
To remove the shading, press PLOT to re-draw the plot.

Plotting a piecewise defined function example

Suppose you wanted to graph the following piecewise defined function.

$$
f(x)= \begin{cases}x+2 & ; x \leq-1 \\ x^{2} & ;-1<x \leq 1 \\ 4-x & ; x \geq 1\end{cases}
$$

1. Open the Function aplet.

2. Highlight the line you want to use, and enter the expression. (You can press DEL to delete an existing line, or SHIFT CLEAR to clear all lines.)

	FUNCTION STMEDLIC MIEN
	$\sim \mathrm{F} 1(\mathrm{X})=(\mathrm{X}+2)-(\mathrm{X} \leq-1)$
(-) 1 [) ENTER	
	$\begin{aligned} & F 4(X)= \\ & F 5(X)= \end{aligned}$
SHIFT CHARS $>(-) 1$	
SHIFT AND 略	
SHIFT CHARS ≤ 1) ENTER	
SHIFT CHARS > 1 D ENTER	

Note: You can use the 略 menu key to assist in the entry of equations. It has the same effect as pressing X,T, X .

Parametric aplet

About the Parametric aplet

The Parametric aplet allows you to explore parametric equations．These are equations in which both x and y are defined as functions of t ．They take the forms $x=f(t)$ and $y=g(t)$ ．

Getting started with the Parametric aplet

The following example uses the parametric equations

$$
\begin{aligned}
& x(t)=3 \sin t \\
& y(t)=3 \cos t
\end{aligned}
$$

Note：This example will produce a circle．For this example to work，the angle measure must be set to degrees．

Open the
1．Open the Parametric aplet．

Parametric aplet

APLET Select
Parametric E正而相

Define the expressions

2．Enter each equation．
$3 X \operatorname{SIN} X, T, \theta(1)$
ENTER
$3 X \operatorname{COS} X, T, \theta$（1）
ENTER

Set angle measure
 3．Set the angle measure to degrees．
 SHIFT MODES
 EHEIS
 Select Degrees

Set up the plot 4．Display the graphing options．
SHIFT PLOT

You can see the Plot Setup input form has two fields not included in the Function aplet，tRNG and tStep．trng specifies the range of t values．TSTEP specifies the step value between t values．

5．Set the TRNG and TSTEP so that t steps from 0° to 360° in 5° steps．
－ 360 国
5 远

Plot the expression

6．Plot the expression．
PLOT

7．To see all the circle，press 國枟再 twice．

Overlay plot

Display the numbers

8. Plot a triangle graph over the existing circle graph.
 rather than a circle (without changing the equation) because the changed value of TSTEP ensures that points being plotted are 120° apart instead of nearly continuous.

You are able to explore the graph using trace, zoom, split screen, and scaling functionality available in the Function aplet. See "Exploring the graph" on page 2-7 for further information.
9. Display the table of numeric values.

NUM
You can see there is a column of t-values.

This column is active in the sense that you can highlight a t-value, type in a replacement value, and see the table jump to that value. You can also zoom in or zoom out on any t-value in the table.
 build your own table, and split screen functionality available in the Function aplet. See "Exploring the table of numbers" on page 2-18 for further information.

Polar aplet

Getting started with the polar aplet

Open the Polar aplet

Define the expression

Specify plot settings

1. Open the Polar aplet.

APLET Select Polar

Like the Function aplet, the Polar aplet opens in the Symbolic view.
2. Define the polar equation $r=2 \pi \cos (\theta / 2) \cos (\theta)^{2}$.

$2[\mathrm{SHIFT} \pi \mathrm{COS}$
X,T,日 $¢ 2$
COS X,T, ${ }^{\text {a }}$
x^{2} EN

. Specify the plot settings. In this example, we will use the default settings, except for the θ RNG fields.

SHIFT SETUP-PLOT
SHIFT CLEAR

- 4 SHIFT π DEE

Plot the
expression
4. Plot the expression.

PLOT

Explore the

 graph5. Display the Plot view menu key labels.
[这E[EII
The Plot view options available are the same as those found in the Function aplet. See

"Exploring the graph"
on page 2-7 for further information.
Display the numbers
6. Display the table of values θ for and R1.

NUM

The Numeric view options available are the same as those found in the Function aplet. See

"Exploring the table of numbers" on page 2-18 for further information.

Sequence aplet

About the Sequence aplet

The Sequence aplet allows you to explore sequences.
You can define a sequence named, for example, U1:

- in terms of n
- in terms of U1 ($n-1$)
- in terms of U1 ($n-2$)
- in terms of another sequence, for example, U2(n)
- in any combination of the above.

Getting started with the Sequence aplet

The following example defines and then plots an expression in the Sequence aplet.

Open the Sequence aplet

1. Open the Sequence aplet.

Define the expression

2. Define the Fibonacci sequence, in which each term (after the first two) is the sum of the preceding two terms:
$U_{1}=1, U_{2}=1, U_{n}=U_{n-1}+U_{n-2}$ for $n>3$.
In the Symbolic view of the Sequence aplet, highlight the U1(1) field and begin defining your sequence.

1 ENTER 1 ENTER
亚

Note: You can use the
 keys to assist in the entry of equations.

ENTER

Specify plot settings

3. In Plot Setup, first set the SEQPLOT option to Stairstep. Reset the default plot settings by clearing the Plot Setup view.

- A Stairsteps graph plots n on the horizontal axis and U_{n} on the vertical axis.
- A Cobweb graph plots U_{n-1} on the horizontal axis and U_{n} on the vertical axis.

Plot the sequence

4．Plot the Fibonacci sequence． PLOT

5．In Plot Setup，set the SEQPLOT option to Cobweb．
SHIFTSETUP－PLOT
四正要 Select Cobweb
Ties
PLOT

Display the table

6．Display the table of numeric values for this example． NUM

Solve aplet

About the Solve aplet

The Solve aplet solves an equation or an expression for its unknown variable. You define an equation or expression in the symbolic view, then supply values for all the variables except one in the numeric view. Solve works only with real numbers.

Note the differences between an equation and an expression:

- An equation contains an equals sign. Its solution is a value for the unknown variable that makes both sides have the same value.
- An expression does not contain an equals sign. Its solution is a root, that is, a value for the unknown variable that makes the expression have a value of zero.

You can use the Solve aplet to solve an equation for any one of its variables.

When the Solve aplet is started, it opens in the Solve symbolic view.

- In Symbolic view, you specify the expression or equation to solve. You can define up to ten equations (or expressions), named E0 to E9. Each equation can contain up to 27 real variables, named A to Z and θ.
- In Numeric view, you specify the values of the known variables, highlight the variable that you want to solve for, and press EDEIE.

You can solve the equation as many times as you want, using new values for the knowns and highlighting a different unknown.

Note: It is not possible to solve for more than one variable at once. Simultaneous linear equations, for example, should be solved using matrices or graphs in the Function aplet.

Getting started with the Solve aplet

Suppose you want to find the acceleration needed to increase the speed of a car from $16.67 \mathrm{~m} / \mathrm{sec}(60 \mathrm{kph})$ to $27.78 \mathrm{~m} / \mathrm{sec}$ $(100 \mathrm{kph})$ in a distance of 100 m .
The equation to solve is:

$$
v^{2}=u^{2}+2 a d
$$

Open the Solve aplet

Define the equation

Define known variables

1. Open the Solve aplet.
 the Symbolic view.

Shyll
2. Define the equation.

ALPHA	$\mathrm{V} \mathrm{X}^{2}$
国 ALPH	HA U (${ }^{2}$
+ 2区	
ALPHA	A®
ALPHA	D ENTER

Note: You can use the 툐 menu key to assist in the entry of equations.
3. Display the Solve numeric view screen.
NUM
4. Enter the values for the known variables.

27.78 ENTER	SOLPE NUMEERIC MIEW:
16 . 67 ENTER	w: 27.78
∇	$\underset{\mathrm{A}: ~}{\mathrm{u}:} \overline{16.67}$
100 ENTER	v: 100
	enter yalue di priess solye

HINT If the Decimal Mark setting in the Modes input form (SHIFTMODES) is set to Comma, use \square instead of \square.

Solve the unknown variable

5. Solve for the unknown variable (A).

复SOLVE	E NUMEFIC MIEN賋
v: 27.78	
u: 16.67	
н: 2,4691975	
d: 100	
entef yalue	df Pfess salye
ESIT INFI	DEFNSEILTE

Therefore, the acceleration needed to increase the speed of a car from $16.67 \mathrm{~m} / \mathrm{sec}(60 \mathrm{kph})$ to $27.78 \mathrm{~m} / \mathrm{sec}$ (100 kph) in a distance of 100 m is approximately 2.47 $\mathrm{m} / \mathrm{s}^{2}$.

Because the variable A in the equation is linear, once values are substituted into V, U and D , we know that we need not look for any other solutions.

The Plot view shows one graph for each member of the selected equation. You can choose any of the variables in the Numeric view to be the independent variable.

The other variables take on the values assigned to them in the Numeric view. The current equation is $V^{2}=U^{2}+2 A D$. With the variable A highlighted, the Plot view will show two graphs.

One of these is $Y=V^{2}$, with $V=27.78$, or $Y=771.7284$. This graph will be a horizontal line. The other graph will be $Y=U^{2}+2 A D$, with $U=16.67$ and $D=100$, or $Y=200 A+277.8889$. This graph is also a line. The desired solution is the value of A where these two lines intersect.
6. Plot the equation for variable A .
VIEWS Select Auto
Scale
DES
7. Trace along the graph representing the left member of the equation until the cursor nears the intersection.
$\Delta \approx 20$ times
Note the value of A displayed near the bottom left corner of the
 screen.

The Plot view provides a convenient way to find an approximation to a solution before using the Numeric view Solve option. See "Plotting to find guesses" on page 7-8 for more information.

Solve aplet's NUM view keys

The Solve aplet's NUM view keys are:

Key	Meaning
[E][]	Copies the highlighted value to the edit line for editing. Press 正要 when done.
ITIE]	Displays a message about the solution (see "Interpreting results" on page 7-6).
[icel	Displays other pages of variables, if any.
[CE[E]	Displays the symbolic definition of the current expression. Press $\mathbf{1 8}$ when done.
Fineme	Finds a solution for the highlighted variable, based on the values of the other variables.
DEL	Clears highlighted variable to zero or deletes current character in edit line, if edit line is active.
SHIFT CLEAR	Resets all variable values to zero or clears the edit line, if cursor is in edit line.

Use an initial guess

You can usually obtain a faster and more accurate solution if you supply an estimated value for the unknown variable before pressing SIIIII. Solve starts looking for a solution at the initial guess.

Before plotting, make sure the unknown variable is highlighted in the numeric view. Plot the equation to help you select an initial guess when you don't know the range in which to look for the solution. See "Plotting to find guesses" on page 7-8 for further information.
HINTAA Anitial guess is especially important in the case of a curve that could have more than one solution. In this case, only the solution closest to the initial guess is returned.

Number
 format

You can change the number format for the Solve aplet in the Numeric Setup view. The options are the same as in Home MODES: Standard, Fixed, Scientific, and Engineering. For the latter three, you also specify how many digits of accuracy you want. See "Mode settings" on page 1-9 for more information.

You might find it handy to set a different number format for the Solve aplet if, for example, you define equations to solve for the value of money. A number format of Fixed 2 would be appropriate in this case.

Interpreting results

After Solve has returned a solution, press IEEED in the Numeric view for more information. You will see one of the following three messages. Press DEE to clear the message.
$\left.\begin{array}{|l|l|}\hline \text { Message } & \text { Condition } \\ \hline \text { Zero } & \begin{array}{l}\text { The Solve aplet found a point where } \\ \text { the value of the equation (or the root of } \\ \text { the expression) is zero withan the } \\ \text { calculator's 12-digit accuracy. }\end{array} \\ \text { Extremum } & \begin{array}{l}\text { Solve found two points where the } \\ \text { value of the equation has opposite } \\ \text { signs, but it cannot find a point in } \\ \text { between where the value is zero. This } \\ \text { might be because either the two points } \\ \text { are neighbours (they differ by one in } \\ \text { the twelfth digit), or the equation is not } \\ \text { real-valued between the two points. } \\ \text { Solve returns the point where the value } \\ \text { is closer to zero. If the value of the } \\ \text { equation is a continuous real function, } \\ \text { this point is Solve's best } \\ \text { approximation of an actual root. }\end{array} \\ \begin{array}{l}\text { Solve found a point where the value of } \\ \text { the equation approximates a local } \\ \text { minimum (for positive values) or } \\ \text { maximum (for negative values). This } \\ \text { point may or may not be a root. } O r: \\ \text { Solve stopped searching at }\end{array} \\ \text { 9.99999999999E499, the largest } \\ \text { number the calculator can represent. }\end{array}\right\}$

If Solve could not find a solution, you will see one of the following two messages.

Message	Condition
Bad Guess(es)	The initial guess lies outside the domain of the equation. Therefore, the solution was not a real number or it caused an error.
Constant?	The value of the equation is the same at every point sampled.

HIN T It is important to check the information relating to the solve process. For example, the solution that the Solve aplet finds is not a solution, but the closest that the function gets to zero. Only by checking the information will you know that this is the case.

The RootFinder at work

You can watch the process of the root-finder calculating and searching for a root. Immediately after pressing EDEEI to start the root-finder, press any key except ON . You will see two intermediate guesses and, to the left, the sign of the expression evaluated at each guess. For example:

+ 22.219330555745
- 121.31111111149

You can watch as the root-finder either finds a sign reversal or converges on a local extrema or does not converge at all. If there is no convergence in process, you might want to cancel the operation (press ON) and start over with a different initial guess.

Plotting to find guesses

The main reason for plotting in the Solve aplet is to help you find initial guesses and solutions for those equations that have difficult-to-find or multiple solutions.

Consider the equation of motion for an accelerating body:

$$
x=v_{0} t+\frac{a t^{2}}{2}
$$

where x is distance, v_{0} is initial velocity, t is time, and a is acceleration. This is actually two equations, $y=x$ and $y=v_{0} t+\left(a t^{2}\right) / 2$.

Since this equation is quadratic for t, there can be both a positive and a negative solution. However, we are concerned only with positive solutions, since only positive distance makes sense.

1. Select the Solve aplet and enter the equation.

APLET Select Solve ETETET

2. Find the solution for T (time) when $X=30, V=2$, and $A=4$. Enter the values for X, V, and A; then highlight the independent variable, T.

NUM			
30 ENTER	$\begin{array}{ll} \text { x: } & 30 \\ \mathrm{v:} & 2 \\ \hline \end{array}$		
2 ENTER	T:		
V 4 ENTER	$\text { A: } 4$		
\square T $\boldsymbol{\nabla}$ to highlight T			SOLVE

3. Use the Plot view to find an initial guess for T. First set appropriate X and Y ranges in the Plot Setup. Since we have an equation, $X=V \times T+A \times T^{2} / 2$, the plot will produce two graphs: one for $Y=X$ and one for $Y=V \times T+A \times T^{2} / 2$. Since we have set $X=30$ in this example, one of the graphs will be $Y=30$. Therefore, make the YRNG -5 to 35 . Keep the XRNG default of -6.5 to 6.5 .

SHIFT SETUP-PLOT

- (-) 5 ENTER

35 ENTER

4. Plot the graph.

PLOT
5. Move the cursor near the positive (right-side) intersection. This cursor value will be an initial guess for T.
\square to move cursor to the intersection.

The two points of intersection show that there are two solutions
 for this equation. However, only positive values for x make sense, so we want to find the solution for the intersection on the right side of the y-axis.
6. Return to the Numeric view.

NUM

. in with the position of the cursor from the Plot view.
7. Ensure that the T value is highlighted, and solve the equation.

8. Use this equation to solve for another variable, such as velocity. How fast must a body's initial velocity be in order for it to travel 50 m within 3 seconds? Assume the same acceleration, $4 \mathrm{~m} / \mathrm{s}^{2}$. Leave the last value of V as an initial guess.

Using variables in equations

You can use any of the real variable names, A to Z and θ. Do not use variable names defined for other types, such as M1 (a matrix variable).

Home variables

All home variables (other than those for aplet settings, like Xmin and Ytick) are global, which means they are shared throughout the different aplets of the calculator. A value that is assigned to a home variable anywhere remains with that variable wherever its name is used.

Therefore, if you have defined a value for T (as in the above example) in another aplet or even another Solve equation, that value shows up in the Numeric view for this Solve equation. When you then redefine the value for T in this Solve equation, that value is applied to T in all other contexts (until it is changed again).

This sharing allows you to work on the same problem in different places (such as HOME and the Solve aplet) without having to update the value everywhere whenever it is recalculated.

HINT As the Solve aplet uses any existing variable values, be sure to check for existing variable values that may affect the solve process. (You can use SHIFT CLEAR to reset all values to zero in the Solve aplet's Numeric view if you wish.)

Aplet variables Functions defined in other aplets can also be referenced in the Solve aplet. For example, if, in the Function aplet, you define $F 1(X)=X^{2}+10$, you can enter $F 1(X)=50$ in the Solve aplet to solve the equation $X^{2}+10=50$.

Statistics aplet

About the Statistics aplet

The Statistics aplet can store up to ten separate data sets at one time. It can do one-variable or two-variable statistical analysis of one or more sets of data.

The Statistics aplet starts with the Numeric view which is used to enter data. The Symbolic view is used to specify which columns contain data and which column contains frequencies.

You can also compute statistics values in HOME and recall the values of specific statistics variables.

The values computed in the Statistics aplet are saved in
 function accessible from the Statistics aplet's Numeric view screen.

Getting started with the Statistics aplet

The following example asks you to enter and analyze the advertising and sales data (in the table below), compute statistics, fit a curve to the data, and predict the effect of more advertising on sales.

Advertising minutes (independent, \boldsymbol{x})	Resulting Sales (\$) (dependent, \boldsymbol{y})
2	1400
1	920
3	1100
5	2265
5	2890
4	2200

Open the Statistics aplet

1. Open the Statistics aplet and clear existing data by

The Statistics aplet starts in the Numerical view.

$$
1 \mathrm{VAR} / 2 \mathrm{VAR}
$$

$$
\begin{gathered}
\text { 1VAR/2VAR } \\
\text { menu key label }
\end{gathered}
$$

At any time the
Statistics aplet is configured for only one of two types of statistical explorations: one-variable ($\overline{\text { Winizin}}$) or twovariable (EITin). The 5th menu key label in the Numeric view toggles between these two options and shows the current option.
2. Select EITHET

You need to select Elinin because in this example we are analyzing a dataset comprising two variables: advertising minutes and resulting sales.

Enter data
3. Enter the data into the columns

2 ENTER 1 ENTER
3 ENTER 5 ENTER
5 ENTER 4 ENTER
Δ to move to the next
column

1400 ENTER 920 ENTER
1100 ENTER 2265 ENTER
2890 ENTER 2200 ENTER

Choose fit and data columns

4. Select a fit in the Symbolic setup view.

SHIFT SETUP-SYMB	
	angle measure: Radians slfit:Linear sefit:Linear
Select Linear	s3FIt:Linear sufit:Linear
MEIE	s5FIT:Linear
	CHIOSE STATISTICS MODEL TYPE
	chas)

You can define up to five explorations of two-variable data, named S1 to $S 5$. In this example, we will create just one: S1.
5. Specify the columns that hold the data you want to analyze.

SYMB

your data into columns other than C 1 and C 2 .
6. Find the mean advertising time (MEANX) and the mean sales (MEANY).

NUM

MEANX is about 3.3 minutes and MEANY is about \$1796.

7. Scroll down to display the value for the correlation coefficient (CORR) . The CORR value indicates how well the linear model fits the data.

- 9 times

The value is 0.8995 to four significant digits.国导

Setup plot

8. Change the plotting range to ensure all the data points are plotted (and select a different point mark, if you wish).
SHIFT SETUP-PLOT
$\Delta 7$ ENTER
$(-) 100$ ENTER
4000 ENTER

Plot the graph 9．Plot the graph．

PLOT

Draw the regression curve

Display the equation for best linear fit

10．Draw the regression curve（a curve to fit the data points）．
國里胃国

This draws the regression line for the best linear fit．

11．Return to the Symbolic view．

12．Display the equation for the best linear fit．
∇ to move to the FIT1
field
콜표

The full FIT1
expression is shown．The
$425.875 \times+376.25$
slope（ m ）is 425.875 ．
The y－intercept（b）is about 376.25 ．

Predict values

13．To find the predicted sales figure if advertising were to go up to 6 minutes
ME HOME
MATH S（to highlight Stat－Two）
\square（to highlight PREDY）
CIE 6 ENTER

14．Return to the Plot view．
PLOT

15．Jump to the indicated point on the regression line
\square EME
6

酉导

Observe the predicted y value in the left bottom corner of the screen．

Entering and editing statistical data

The Numeric view（ $N \cup M$ ）is used to enter data into the Statistics aplet．Each column represents a variable named C0 to C9．After entering the data，you must define the data set in the Symbolic view（ $\boxed{\text { SYMB }) . ~}$

H IN T A data column must have at least four data points to provide valid two－variable statistics，or two data points for one－ variable statistics．

You can also store statistical data values by copying lists from HOME into Statistics data columns．For example，in HOME， L1 首面豆 C1 stores a copy of the list L1 into the data－column variable C1．

Statistics aplet＇s NUM view keys

The Statistics aplet＇s Numeric view keys are：

Key	Meaning
EITH	Copies the highlighted item into the edit line．
［EET	Inserts a zero value above the highlighted cell．
	Sorts the specified independent data column in ascending or descending order，and rearranges a specified dependent（or frequency）data column accordingly．
E星	Switches between larger and smaller font sizes．
再而亩 	A toggle switch to select one－variable or two－variable statistics．This setting affects the statistical calculations and plots．The label indicates which setting is current．
	Computes descriptive statistics for each data set specified in Symbolic view．
DEL	Deletes the currently highlighted value．
SHIFT CLEAR	Clears the current column or all columns of data．Press SHIFT CLEAR to display a menu list，then select the current column or all columns option， and press 国配．
$\begin{aligned} & \frac{\text { SHIFT }}{\text { key }} \text { cursor } \end{aligned}$	Moves to the first or last row，or first or last column．

Example

You are measuring the height of students in a classroom to find the mean height. The first five students have the following measurements $160 \mathrm{~cm}, 165 \mathrm{~cm}, 170 \mathrm{~cm}, 175 \mathrm{~cm}$, 180 cm .

1. Open the Statistics aplet.

APLET Select	ApLet Lleknky
Statistics	Statistics . Mrke
Eminin	Inferential S.. -54ke

2. Enter the measurement data.
160 ENTER
165 ENTER
170 ENTER
175 ENTER
180 ENTER

3. Find the mean of the sample.
Ensure the Emin / Ellins menu key label reads

see the statistics
calculated from the sample data in C1. Press the ∇ key to scroll to further statistics.

Note that the title for the column of statistics is H1. There are 5 data set definitions available for one-variable statistics:

$\mathrm{H} 1-\mathrm{H} 5$. If data is entered
in $\mathrm{C} 1, \mathrm{H} 1$ is automatically set to use C 1 for data, and the frequency of each data point is set to 1 . You can select other columns of data from the Statistics Symbolic setup view.

4．Press 酉导 to close the statistics window and press SYMB key to see the data set definitions．

The first column

indicates the associated column of data for each data set definition，and the second column indicates the constant frequency，or the column that holds the frequencies．

The keys you can use from this window are：

Key	Meaning
Emitil	Copies the column variable（or variable expression）to the edit line for editing．Press（IEE when done．
	Checks／unchecks the current data set． Only the checkmarked data set（s）are computed and plotted．
樰 or 娄	Typing aid for the column variables （雷）or for the Fit expressions（露）．
	Displays the current variable expression in standard mathematical form．Press $\overline{\text { 画 }}$ when done．
EITHE	Evaluates the variables in the highlighted column（ C 1, etc．） expression．
VARS	Displays the menu for entering variable names or contents of variables．
MATH	Displays the menu for entering math operations．
DEL	Deletes the highlighted variable or the current character in the edit line．

Key	Meaning (Continued)
SHIFT CLEAR	Resets default specifications for the data sets or clears the edit line (if it was active). Note: If SHIFT CLEAR is used the data sets will need to be selected again before re-use.

To continue our example, suppose that the heights of the rest of the students in the class are measured, but each one is rounded to the nearest of the five values first recorded. Instead of entering all the new data in C 1 , we shall simply add another column, C2, that holds the frequencies of our five data points in C 1 .

Height (cm)	Frequency
160	5
165	3
170	8
175	2
180	1

5. Move the highlight bar into the right column of the H 1 definition and replace the frequency value of 1 with the name

C 2 .
冝 2
6. Return to the numeric view.

NUM

7. Enter the frequency data shown in the above table.
± 5 ENTER
3 ENTER
8 ENTER
2 ENTER
1 ENTER

8．Display the computed statistics．

自自园

You can scroll down to the mean．The mean
 height is approximately 167.63 cm ．

9．Setup a histogram plot for the data．
盢要 SHIFTSETUP－PLOT
Enter set up information appropriate to your data．

10．Plot a histogram of the data．
PLOT

Angle Setting

Save data

Edit a data set In the Numeric view of the Statistics aplet，highlight the data value to change．Type a new value and press ENTER，or press E［TIII to copy the value to the edit line for modification．Press ENTER after modifying the value on the edit line．
－To delete a single data item，highlight it and press DEL． The values below the deleted cell will scroll up one row．
－To delete a column of data，highlight an entry in that column and press SHIFT CLEAR．Select the column name．
－To delete all columns of data，press SHIFT CLEAR．Select All columns．

Insert data Highlight the entry following the point of insertion. Press [IESE, then enter a number. It will write over the zero that was inserted.

Sort data values

1. In Numeric view, highlight the column you want to sort,

2. Select the SORT ORDER option. You can choose either Ascending or Descending.
3. Specify the INDEPENDENT and DEPENDENT data columns. Sorting is by the independent column. For instance, if Age is C1 and Income is C2 and you want to sort by Income, then you make C 2 the independent column for the sorting and C 1 the dependent column.

- To sort just one column, choose None for the dependent column.
- For one-variable statistics with two data columns, specify the frequency column as the dependent column.

4. Press 国置.

Defining a regression model (2VAR)

The Symbolic view includes an expression (Fit1 through Fit5) that defines the regression model, or "fit", to use for the regression analysis of each two-variable data set.

There are three ways to select a regression model:

- Accept the default option to fit the data to a straight line.
- Select one of the available fit options in Symbolic Setup view.
- Enter your own mathematical expression in Symbolic view. This expression will be plotted, but it will not be fitted to the data points.

To choose the

 fit
2. Press SHIFT SETUP-SYMB to display the Symbolic Setup view. Highlight the Fit number (S1FIT to S5FIT) you want to define.
 when done. The regression formula for the fit is displayed in Symbolic view.

Fit models

Fit model	Meaning
Linear	(Default.) Fits the data to a straight line, $y=m x+b$. Uses a least-squares fit.
Logarithmic	Fits to a logarithmic curve, $y=m \ln x+b$.
Exponential	Fits to an exponential curve, $y=b e^{m x}$.
Power	Fits to a power curve, $y=b x^{m}$.
Quadratic	Fits to a quadratic curve, $y=a x^{2}+b x+c$. Needs at least three points.
Cubic	Fits to a cubic curve, $y=a x^{3}+b x^{2}+c x+d$. Needs at least four points.
Logistic	Fits to a logistic curve, $y=\frac{L}{1+a e^{(-b x)}},$
	where L is the saturation value for growth. You can store a positive real value in L, or-if $L=0$-let L be computed automatically.
User Defined	Define your own expression (in Symbolic view.)

1. In Numeric view, make sure trint is set.
2. Display the Symbolic view.
3. Highlight the Fit expression (Fit 1, etc.) for the desired data set.
4. Type in an expression and press ENTER.

The independent variable must be X, and the expression must not contain any unknown variables.
Example: $1.5 \times \cos x+0.3 \times \sin x$.
This automatically changes the Fit type (S1FIT, etc.) in the Symbolic Setup view to User Defined.

Computed statistics

One-variable

Statistic	Definition
N Σ	Number of data points.
TOTE	Sum of data values (with their frequencies).
MEANS	Mean value of data set.
PVARE	Population variance of data set.
SVARE	Sample variance of data set.
PSDEV	Population standard deviation of data set.
SSDEV	Sample standard deviation of data set.
MIN 5	Minimum data value in data set.
Q1	First quartile: median of ordinals to left of median.
MEDIAN	Median value of data set.
Q3	Third quartile: median of ordinals to right of median.
MAX 5	Maximum data value in data set.

When the data set contains an odd number of values, the data set's median value is not used when calculating Q1 and Q3 in the table above. For example, for the following data set:
$\{3,5,7,8,15,16,17\}$
only the first three items, 3, 5, and 7 are used to calculate Q1, and only the last three terms, 15,16 , and 17 are used to calculate Q3.

Two-variable

Statistic	Definition
MEANX	Mean of x - (independent) values.
$\Sigma \mathrm{X}$	Sum of x-values.
5X2	Sum of x^{2}-values.
MEANY	Mean of y-(dependent) values.
ΣY	Sum of y-values.
इY2	Sum of y^{2}-values.
EXY	Sum of each $x y$.
SCOV	Sample covariance of independent and dependent data columns.
PCOV	Population covariance of independent and dependent data columns
CORR	Correlation coefficient of the independent and dependent data columns for a linear fit only (regardless of the Fit chosen). Returns a value from 0 to 1 , where 1 is the best fit.
RELERR	The relative error (for the selected fit). Provides a measure of accuracy for the fit.

Plotting

You can plot：
－histograms（퍂ㅍㅍ）

Once you have entered your data（ N NMM），defined your data set（ SYMB ），and defined your Fit model for two－variable statistics（SHIFT SETUP－SYMB），you can plot your data．You can select up to five scatter or box－and－whisker plots at a time． You can plot only one histogram at a time．

To plot statistical data

1．In Symbolic view（ SYMB ），select（（IF⿱一⿻上丨⿱日一 you want to plot．

2．For one－variable data（ininī），select the plot type in Plot Setup（SHIFTSETUP－PLOT）．Highlight STATPLOT，press四覀要，select either Histogram or BoxWhisker，and press $\overline{\text { GR }}$

3．For any plot，but especially for a histogram，adjust the plotting scale and range in the Plot Setup view．If you find histogram bars too fat or too thin，you can adjust them with the HWIDTH setting．
4．Press PLOT．If you have not adjusted the Plot Setup yourself，you can try VIEWS select Auto Scale $\overline{\text { MIE }}$
HINT Auto Scale can be relied upon to give a good starting scale which can then be adjusted in the Plot Setup view．

Plot types

Histogram

Box and Whisker Plot

One-variable statistics. The numbers below the plot mean that the current bar (where the cursor is) starts at 0 and ends at 2 (not including 2), and the
 frequency for this column, (that is, the number of data elements that fall between 0 and 2) is 1 . You can see information about the next bar by pressing the \triangle key.

One-variable statistics. The left whisker marks the minimum data value. The box marks the first quartile, the median, and the third quartile. The right whisker marks the maximum data value.

Scatter Plot
Two-variable statistics. The numbers below the plot indicate that the cursor is at the first data point for $S 2$, at $(1,6)$. Press \square to move to the next data point and display information about it.

To connect the data points as they are plotted, checkmark CONNECT in the second page of the Plot Setup. This is not a regression curve.

Fitting a curve to 2VAR data

In the Plot view，press［iTis．This draws a curve to fit the checked two－variable data set（s）．See＂To choose the fit＂on page 8－11．

Correlation

 coefficient
Relative Error

The relative error is stored in a variable named RELERR．The relative error provides a measure of fit accuracy for all fits， and it does depend on the Fit model you have chosen．

The relative error is a measure of the error between predicted values and actual values based on the specified Fit．A smaller number means a better fit．

H I N T In order to access these variables after you plot a set of statistics，you must press NUM to access the numeric view and then 自宜室 to display the correlation values．The values are stored in the variables when you access the Symbolic view．

Setting up the plot (Plot setup view)

The Plot Setup view (SHIFTSETUP-PLOT) sets most of the same plotting parameters as it does for the other built-in aplets.
See "Setting up the plot (Plot view setup)" on page 2-5. Settings unique to the Statistics aplet are as follows:

Plot type (1VAR) STATPLOT enables you to specify either a histogram or a
 is set). Press Hiome to change the highlighted setting

Histogram width

HWIDTH enables you to specify the width of a histogram bar. This determines how many bars will fit in the display, as well as how the data is distributed (how many values each bar represents).

Histogram range HRNG enables you to specify the range of values for a set of histogram bars. The range runs from the left edge of the leftmost bar to the right edge of the rightmost bar. You can limit the range to exclude any values you suspect are outliers.

Plotting mark (2VAR)

Connected points (2VAR)

S1MARK through S5MARK enables you to specify one of five symbols to use to plot each data set. Press 파표 highlighted setting.

CONNECT (on the second page), when checkmarked, connects the data points as they are plotted. The resulting line is not the regression curve. The order of plotting is according to the ascending order of independent values. For instance, the data set $(1,1),(3,9),(4,16),(2,4)$ would be plotted and traced in the order $(1,1),(2,4),(3,9),(4,16)$.

Trouble-shooting a plot

If you have problems plotting, check that you have the following:
 view).

- The correct fit (regression model), if the data set is twovariable.
- Only the data sets to compute or plot are checkmarked (Symbolic view).
- The correct plotting range. Try using VIEWS Auto Scale (instead of PLOT), or adjust the plotting parameters (in Plot Setup) for the ranges of the axes and the width of histogram bars (HWIDTH).
- In Emini mode, ensure that both paired columns contain data, and that they are the same length.
- In Hinin mode, ensure that a paired column of frequency values is the same length as the data column that it refers to.

Exploring the graph

The Plot view has menu keys for zooming, tracing, and coordinate display. There are also scaling options under VIEWS. These options are described in"Exploring the graph" on page 2-7.

Statistics aplet's PLOT view keys

\(\left.\left.\begin{array}{|l|l|}\hline Key \& Meaning

\hline SHIFTCLEAR \& Erases the plot.

Offers additional pre-defined views for

splitting the screen, overlaying plots,

and autoscaling the axes.\end{array}\right\} $$
\begin{array}{ll}\text { Moves cursor to far left or far right. }\end{array}
$$\right\}\)| SHIFT |
| :--- |

Calculating predicted values

The functions PREDX and PREDY estimate (predict) values for X or Y given a hypothetical value for the other. The estimation is made based on the curve that has been calculated to fit the data according to the specified fit.

Find predicted values

1. In Plot view, draw the regression curve for the data set.
2. Press $\boldsymbol{\nabla}$ to move to the regression curve.
3. Press 正唒 and enter the value of X. The cursor jumps to the desired point on curve and the coordinate display shows X and the predicted value of Y.

In HOME,

- Enter PREDX(y-value) ENTER to find the predicted (estimated) value for the independent variable given a hypothetical dependent value.
- Enter PREDY(x-value) to find the predicted value of the dependent variable given a hypothetical independent variable.

You can type PREDX and PREDY into the edit line, or you can copy these function names from the MATH menu under the Stat-Two category.
HINT In cases where more than one fit curve is displayed, the PREDY function uses the most recently calculated curve. In order to avoid errors with this function, uncheck all fits except the one that you want to work with, or use the Plot View method.

Inference aplet

About the Inference aplet

The Inference capabilities include calculation of confidence intervals and hypothesis tests based on the Normal Z-distribution or Student's t-distribution.

Based on the statistics from one or two samples, you can test hypotheses and find confidence intervals for the following quantities:

- mean
- proportion
- difference between two means
- difference between two proportions

Example data \quad| When you first access an input form for an Inference test, by |
| :--- |
| default the input form contains example data. This example |
| data is designed to return meaningful results that relate to the |
| test. It is useful for gaining an understanding of what the test |
| does, and for demonstrating the test. The calculator's on-line |
| help provides a description of what the example data |
| represents. |

Getting started with the Inference aplet

This example describes the Inference aplet's options and functionality by stepping you through an example using the example data for the Z-Test on 1 mean.

Open the Inference aplet

1. Open the Inference aplet.

Inference aplet's SYMB view keys

The table below summarizes the options available in Symbolic view.

Hypothesis Tests	Confidence Intervals
Z: 1μ, the Z-Test on 1 mean	Z-Int: 1μ, the confidence interval for 1 mean, based on the Normal distribution
Z: $\mu_{1}-\mu_{2}$, the Z-Test on the difference of two means	Z-Int: $\mu_{1}-\mu_{2}$, the confidence interval for the difference of two means, based on the Normal distribution
Z: 1 P, the Z-Test on 1 proportion	Z-Int: 1 P , the confidence interval for 1 proportion, based on the Normal distribution
$\mathrm{Z}: \mathrm{P}_{1}-\mathrm{P}_{2}$, the Z-Test on the difference in two proportions	Z-Int: $\mathrm{P}_{1}-\mathrm{P}_{2}$, the confidence interval for the difference of two proportions, based on the Normal distribution
T: 1μ, the T-Test on 1 mean	T-Int: 1μ, the confidence interval for 1 mean, based on the Student's t-distribution
T: $\mu_{1}-\mu_{2}$, the T-Test on the difference of two means	T-Int: $\mu_{1}-\mu_{2}$, the confidence interval for the difference of two means, based on the Student's t-distribution

If you choose one of the hypothesis tests, you can choose the alternative hypothesis to test against the null hypothesis. For each test, there are three possible choices for an alternative hypothesis based on a quantitative comparison of two quantities. The null hypothesis is always that the two quantities are equal.Thus, the alternative hypotheses cover the various cases for the two quantities being unequal: <, >, and \neq.

In this section, we will use the example data for the Z-Test on 1 mean to illustrate how the aplet works and what features the various views present.

Define the inferential method

1. Select the Hypothesis Test inferential method.

-imes

2. Define the type of test.
DEB ∇
Himes
Z-Test: 1μ

3. Select an alternative hypothesis.

ME

Enter data
4. Enter the sample statistics and population parameters that define the chosen test or interval.

SHIFTSETUP-NUM

The table below lists the fields in this view for our current Z-Test: 1μ example.

Field name	Definition
$\mu 0$	Assumed population mean
σ	Population standard deviation
\bar{x}	Sample mean
n	Sample size
α	Alpha level for the test

By default, each field already contains a value. These values constitute the example database and are explained in the [HEIET feature of this aplet.

Display on-line help

5. Display the on-line help.
[ifilit
6. To close the on-line help, press [IES.

Display test results in numeric format
7. Display the test results in numeric format.
NUM

The test distribution value and its associated probability are displayed,
 along with the critical value(s) of the test and the associated critical value(s) of the statistic.

Note: You can access the on-line help in Numeric view.

Plot test results
8. Display a graphic view of the test results.

PLOT
Horizontal axes are presented for both the distribution variable and the test statistic. A generic
 bell curve represents the probability distribution function. Vertical lines mark the critical value(s) of the test, as well as the value of the test statistic. The rejection region is marked $<R$ and the test numeric results are displayed between the horizontal axes.

Importing Sample Statistics from the Statistics aplet

The Inference aplet supports the calculation of confidence intervals and the testing of hypotheses based on data in the Statistics aplet. Computed statistics for a sample of data in a column in any Statistics-based aplet can be imported for use in the Inference aplet. The following example illustrates the process.

A calculator produces the following 6 random numbers:
$0.529,0.295,0.952,0.259,0.925$, and 0.592
Open the Statistics aplet

1. Open Statistics aplet. Note: Reset current settings.

APLET Select Statistics
 EMilitil

The Statistics aplet opens in the Numeric view.

EEDIT INE |SDAT EIG IWHEDETATE

Enter data

2. In the C 1 column, enter the random numbers produced by the calculator.
. 529 ENTER295 ENTER
. 9952 ENTER
. 259 ENTER
. 925 ENTER
[. 592 ENTER

HINT If the Decimal Mark setting in the Modes input form (SHIFT MODES) is set to Comma, use \square instead of \square.
3. If necessary, select 1 -variable statistics. Do this by pressing the fifth menu key until Wmien is displayed as its menu label.

Calculate statistics

Open Inference aplet
4. Calculate statistics.唒县

The mean of 0.592 seems a little large compared to the expected value of 0.5 . To see if the difference is statistically significant, we will use the statistics computed here to construct a confidence interval for the true mean of the population of random numbers and see whether or not this interval contains 0.5 .
5. Press DE to close the computed statistics window.
6. Open the Inference aplet and clear current settings.

APLET Select	\%inf Stat swhenlic viewik
Inference	METHOD: HYFOTH TEST
CSTETMES	TYFE: Z-Test: 1μ
Elinill	ALT HYPOTH: $\mu<\mu \mathrm{L}$
	chosse an inferential. hethod chine

Choose inference method and type

Set up the interval calculation9. Set up the interval calculation. Note: The default values are sample data from the on-line help example.
SHIFT SETUP-NUM

7. Choose an inference method.
 Select CONF INTERVAL DE

8. Choose a distribution statistic type.

Import the data

10. Import the data from the Statistics aplet. Note: The data from C1 is displayed by default.

Note: If there are other columns of data in the Statistics aplet, you could select a column and press
 UEI to see the statistics before importing them into the Numeric Setup view. Also, if there is more than one aplet based on the Statistics aplet, you are prompted to choose one.
[IE

```
                    . 592
s: .297844254603
II: 6
6:.99
Sanple Hean
```

11. Specify a 90% confidence interval in the C : field.

$\nabla \nabla \nabla$	to move to the	
C: field 0.9 ENTER		$\overline{\mathrm{x}}$: .592
		sx: 297844254603
		$\begin{array}{ll} \mathrm{n}: & 6 \\ \mathrm{c}: & .9 \end{array}$
		Sahp le hean
		ESIT HELP [\|FTPET

Display Numeric view

Display Plot

 view2. Display the confidence interval in the Numeric view. Note: The interval setting is 0.5 . NUM

3. Display the confidence interval in the Plot view. PLOT
 second text row, that the
mean is contained within the 90% confidence interval (CI) of 0.3469814 to 0.8370186 .

Note: The graph is a simple, generic bell-curve. It is not meant to accurately represent the t-distribution with 5 degrees of freedom.

Hypothesis tests

You use hypothesis tests to test the validity of hypotheses that relate to the statistical parameters of one or two populations. The tests are based on statistics of samples of the populations.

The HP 39G/40G hypothesis tests use the Normal
Z-distribution or Student's t-distribution to calculate probabilities.

One-Sample Z-Test

Menu name

Z-Test: 1μ
On the basis of statistics from a single sample, the 1 mean Z-Test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the population mean equals a specified value $H_{0}: \mu-\mu_{0}$.

You select one of the following alternative hypotheses against which to test the null hypothesis:

$$
\begin{aligned}
& H_{1}: \mu<\mu_{0} \\
& H_{1}: \mu>\mu_{0} \\
& H_{1}: \mu \neq \mu_{0}
\end{aligned}
$$

Inputs
The inputs are:

Field name	Definition
$\overline{\mathrm{x}}$	Sample mean.
n	Sample size.
μ_{0}	Hypothetical population mean.
σ	Population standard deviation.
α	Significance level.

Results

The results are

Result	Description
Test Z	Z-test statistic.
Crob	Probability associated with the Z-Test statistic.
Critical $\overline{\mathrm{x}}$	Boundary values of Z associated with the α level that you supplied.
Boundary values of \bar{x} required by the α value that you supplied.	

Two-Sample Z-Test

Menu name
 Z-Test: $\mu 1-\mu 2$

On the basis of two samples, each from a separate population, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the mean of the two populations are equal $\left(H_{0}: \mu_{1}=\mu_{2}\right)$.

You select one of the following alternative hypotheses against which to test the null hypothesis:

$$
\begin{aligned}
& H_{1}: \mu_{1}<\mu_{2} \\
& H_{1}: \mu_{1}>\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Inputs
The inputs are:

Field name	Definition
$\bar{x} 1$	Sample 1 mean.
$\bar{x} 2$	Sample 2 mean.
n 1	Sample 1 size.
n 2	Sample 2 size.
$\sigma 1$	Population 1 standard deviation.
$\sigma 2$	Population 2 standard deviation.
α	Significance level.

Results

The results are:

Result	Description
Test Z	Z-Test statistic Prob Critical Z
Z-Test statistic.	
Boundary value of Z associated with the α level that you supplied.	

One-Proportion Z-Test

Menu name

Z-Test: 1P

On the basis of statistics from a single sample, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the proportion of successes in the two populations is equal. $H_{0} \pi=\pi_{0}$

You select one of the following alternative hypotheses against which to test the null hypothesis:

$$
\begin{aligned}
& H_{1}: \pi<\pi_{0} \\
& H_{1}: \pi>\pi_{0} \\
& H_{1}: \pi \neq \pi_{0}
\end{aligned}
$$

Inputs
The inputs are:

Field name	Definition
x	Number of successes in the sample.
n	Sample size.
π_{0}	Population proportion of successes.
α	Significance level.

Results

The results are:

Result	Description
Test P	Proportion of successes in the sample.
Test Z	Z-Test statistic.
Crob	Probability associated with the Z-Test statistic.
Boundary value of Z associated with the	
level you supplied.	

Two-Proportion Z-Test

Menu name

Z-Test: P1-P2

On the basis of statistics from two samples, each from a different population, the 2 proportion Z-Test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the proportion of successes in the two populations is equal.
($H_{0}: \pi_{1}=\pi_{2}$).
You select one of the following alternative hypotheses against which to test the null hypothesis:

$$
\begin{aligned}
& H_{1}: \pi_{1}<\pi_{2} \\
& H_{1}: \pi_{1}>\pi_{2} \\
& H_{1}: \pi_{1} \neq \pi_{2}
\end{aligned}
$$

Inputs The inputs are:

Field name	Definition
X1	Sample 1 mean.
X2	Sample 2 mean.
n1	Sample 1 size.
n2	Sample 2 size.
	Significance level.

Results

The results are

Result	Description
Test P1-P2	Difference between the proportions of successes in the two samples.
Prob Z	Z-Test statistic. Probability associated with the Z-Test statistic.
Critical Z	Boundary values of Z associated with the α level that you supplied.

One-Sample T-Test

Menu name

T-Test: 1μ
The One-sample T-Test is used when the population standard deviation is not known. On the basis of statistics from a single sample, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the sample mean has some assumed value, $\mathrm{H}_{0}: \mu=\mu_{0}$

You select one of the following alternative hypotheses against which to test the null hypothesis:)

$$
\begin{aligned}
& H_{1}: \mu<\mu_{0} \\
& H_{1}: \mu>\mu_{0} \\
& H_{1}: \mu \neq \mu_{0}
\end{aligned}
$$

Inputs
The inputs are:

Field name	Definition
\bar{x}	Sample mean.
$\mathrm{S} x$	Sample standard deviation.
n	Sample size.
$\mu 0$	Hypothetical population mean.
α	Significance level.

Results
The results are:

Result	Description
Test T	T-Test statistic.
Crob	Probability associated with the T-Test statistic.
Critical \bar{x}	Boundary value of T associated with the α level that you supplied.
Boundary value of \bar{x} required by the α value that you supplied.	

Two-Sample T-Test

Menu name

T-Test: $\mu 1-\mu 2$
The Two-sample T-Test is used when the population standard deviation is not known. On the basis of statistics from two samples, each sample from a different population, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the two populations means are equal $\left(H_{0}: \mu_{1}=\mu_{2}\right)$.

You select one of the following alternative hypotheses against which to test the null hypothesis

$$
\begin{aligned}
& H_{1}: \mu_{1}<\mu_{2} \\
& H_{1}: \mu_{1}>\mu_{2} \\
& H_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Inputs The inputs are:

Field name	Definition
$\bar{x} 1$	Sample 1 mean.
$\bar{x} 2$	Sample 2 mean.
S1	Sample 1 standard deviation.
S2	Sample 2 standard deviation.
n1	Sample 1 size.
n2	Sample 2 size.
α	Significance level.
_Pooled?	Check this option to pool samples based on their standard deviations.

Results
The results are:

Result	Description
Test T	T-Test statistic.
Prob	Probability associated with the T-Test statistic.

Confidence intervals

The confidence interval calculations that the HP 39G/40G can perform are based on the Normal Z-distribution or Student's t -distribution.

One-Sample Z-Interval

Menu name \quad Z-INT: 1μ
This option uses the Normal Z-distribution to calculate a confidence interval for μ, the true mean of a population, when the true population standard deviation, σ, is known.

Inputs
The inputs are:

Field name	Definition
\bar{x}	Sample mean.
σ	Population standard deviation.
n	Sample size.
C	Confidence level.

Result	Description
Critical Z	Critical value for Z.
$\mu \min$	Lower bound for μ.
$\mu \max$	Upper bound for μ.

Two-Sample Z-Interval

Menu name

Inputs
Z-INT: $\mu 1-\mu 2$
This option uses the Normal Z-distribution to calculate a confidence interval for the difference between the means of two populations, $\mu_{1}-\mu_{2}$, when the population standard deviations, σ_{1} and σ_{2}, are known.

The inputs are:

Field name	Definition
$\bar{x} 1$	Sample 1 mean.
$\bar{x} 2$	Sample 2 mean.
n1	Sample 1 size.
n2	Sample 2 size.
$\sigma 1$	Population 1 standard deviation.
$\sigma 2$	Population 2 standard deviation.
C	Confidence level.

Result	Description
Critical Z	Critical value for Z.
$\Delta \mu \operatorname{Min}$	Lower bound for $\mu_{1}-\mu_{2}$.
$\Delta \mu \operatorname{Max}$	Upper bound for $\mu_{1}-\mu_{2}$.

One-Proportion Z-Interval

Menu name	Z-INT: 1 P
Inputs	This option uses the Normal Z-distribution to calculate a confidence interval for the proportion of successes in a population for the case in which a sample of size, n, has a number of successes, x.
nhe inputs are:	

Field name	Definition
x	Sample success count.
n	Sample size.
C	Confidence level.

Results

The results are:

Result	Description
Critical Z	Critical value for Z.
π Min	Lower bound for π.
π Max	Upper bound for π.

Two-Proportion Z-Interval

Menu name	Z-INT: P1-P2	
	This option uses the Normal Z-distribution to calculate a confidence interval for the difference between the proportions of successes in two populations.	
Inputs	The inputs are:	
	Field name	Definition
	$\bar{x} 1$	Sample 1 success count.
	$\bar{x} 2$	Sample 2 success count.
	n1	Sample 1 size.
	n2	Sample 2 size.
	C	Confidence level.
Results	The results are:	
	Result	Description
	Critical Z	Critical value for Z .
	$\Delta \pi \mathrm{Min}$	Lower bound for the difference between the proportions of successes.
	$\Delta \pi$ Max	Upper bound for the difference between the proportions of successes.

One-Sample T-Interval

Menu name

Inputs
The inputs are:

Field name	Definition
$\overline{\mathrm{x}}$	Sample mean.
$\mathrm{S} x$	Sample standard deviation.
n	Sample size.
C	Confidence level.

Result	Description
Critical T	Critical value for T.
$\mu \operatorname{Min}$	Lower bound for μ.
$\mu \operatorname{Max}$	Upper bound for μ.

Two-Sample T-Interval

Menu name	T-INT: $\mu 1-\mu 2$	
	This option uses the Student's t -distribution to calculate a confidence interval for the difference between the means of two populations, $\mu_{1}-\mu_{2}$, when the population standard deviations, σ_{1} and σ_{2}, are unknown.	
Inputs	The inputs are:	
	Field name	Definition
	$\bar{x} 1$	Sample 1 mean.
	$\bar{x} 2$	Sample 2 mean.
	s1	Sample 1 standard deviation.
	s2	Sample 2 standard deviation.
	n1	Sample 1 size.
	n2	Sample 2 size.
	C	Confidence level.
	_Pooled	Whether or not to pool the samples based on their standard deviations.
Results	The results are:	
	Result	Description
	Critical T	Critical value for T .
	$\Delta \mu \mathrm{Min}$	Lower bound for $\mu_{1}-\mu_{2}$.
	$\Delta \mu \mathrm{Max}$	Upper bound for $\mu_{1}-\mu_{2}$.

Using mathematical functions

Math functions

The HP 39G/40G contains many math functions. The functions are grouped in categories. For example, the Matrix category contains functions for manipulating matrices. The Probability category (shown as Prob. on the MATH menu) contains functions for working with probability.

To use a math function, you enter the function onto the command line, and include the arguments in parentheses after the function. You can also select a math function from the MATH menu.

The MATH menu

The MATH menu provides access to math functions and programming constants.

The MATH menu is organized by category. For each category of functions on the left, there is a list of function names on the right. The highlighted category is the current category.

- When you press MATH, you see the menu list of Math functions. The menu key R Pitie indicates that the MATH FUNCTIONS menu list is active.

To select a function

1. Press MATH to display the MATH menu. The categories appear in alphabetical order. Press ∇ or Δ to scroll through the categories. To skip directly to a category, press the first letter of the category's name. Note: You do not need to press ALPHA first.
2. The list of functions (on the right) applies to the currently highlighted category (on the left). Use Δ and \square to switch between the category list and the function list.
3. Highlight the name of the function you want and press国. This copies the function name (and an initial parenthesis, if appropriate) to the edit line.

Function categories

- Calculus
- Loop
- Complex numbers
- Matrices
- Polynomial
- Constant
- Probability
- Hyperbolic trig
- Real-numbers
- Stat-Two
(Two-variable statistics)
- Symbolic
- Tests
- Lists

Math functions by category

Following are definitions for all categories of functions except List, Matrix, and Statistics, each of which appears in its own chapter. Except for the keyboard operations, which do not appear in the MATH menu, all other functions are listed by their category in the MATH menu.

Syntax

Each function's definition includes its syntax, that is, the exact order and spelling of a function's name, its delimiters (punctuation), and its arguments. Note that the syntax for a function does not require spaces.

Functions common to keyboard and menus

These functions are common to the keyboard and menus.

SHIFT π	For a description, see "p" on page 10-9.
SHIFT $A R G$	For a description, see "ARG" on page 10-8.
d/dx	For a description, see "D" on page 10-7.
SHIFT $A N D$	For a description, see "AND" on page 10-21.
SHIFT!	For a description, see "!" on page 10-13.
SHIFT Σ	For a description, see "S" on page 10-11.
SHIFT EEX	For a description, see "Scientific notation (powers of 10)" on page 1-19.
SHIFT	For a description, see " S " on page 10-7.
SHIFT x^{-1}	The multiplicative inverse function finds the inverse of a square matrix, and the multiplicative inverse of a real or complex number. Also works on a list containing only these object types.

Keyboard functions

The most frequently used functions are available directly from the keyboard. Many of the keyboard functions also accept complex numbers as arguments.

+ +

, \square, x, \square

Natural logarithm. Also accepts complex numbers.
LN(value)

Example

LN (1) returns 0

Add, Subtract, Multiply, Divide. Also accepts complex numbers, lists and matrices. value $1+$ value 2 , etc.

Natural exponential. Also accepts complex numbers. e^{\wedge} value

Example

$e^{\wedge} 5$ returns 148.413159103

Exponential (antilogarithm). Also accepts complex numbers. 10^{\wedge} value

Example

10^3 returns 1000
Common logarithm. Also accepts complex numbers. LOG(value)

Example

LOG (100) returns 2

SIN, COS, TAN
Sine, cosine, tangent. Inputs and outputs depend on the current angle format (Degrees, Radians, or Grads).

SIN(value)
COS(value)
TAN(value)

Example

TAN (45) returns 1 (Degrees mode).

Arc sine: $\sin ^{-1} x$. Output range is from -90° to $90^{\circ},-\pi / 2$ to $\pi / 2$, or -100 to 100 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers.

ASIN(value)

Example

ASIN(1) returns 90 (Degrees mode).
Arc cosine: $\cos ^{-1} x$. Output range is from 0° to $180^{\circ}, 0$ to π, or 0 to 200 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers. Output will be complex for values outside the normal COS domain of $-1 \leq x \leq 1$.

ACOS(value)

Example

$\operatorname{ACOS}(1)$ returns 0 (Degrees mode).
Arc tangent: $\tan ^{-1} x$. Output range is from -90° to $90^{\circ}, 2 \pi / 2$ to $\pi / 2$, or -100 to 100 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers.

ATAN(value)

Example

ATAN (1) returns 45 (Degrees mode).
Square. Also accepts complex numbers.
value ${ }^{2}$

Example

18^{2} returns 324
Square root. Also accepts complex numbers.
\checkmark value

Example

$\sqrt{324}$ returns 18
Negation. Also accepts complex numbers.
-value

Example

$$
-(1,2) \text { returns }(-1,-2)
$$

Power (x raised to y). Also accepts complex numbers. value^power

Example

2^8 returns 256
Absolute value. For a complex number, this is $\sqrt{x^{2}+y^{2}}$.
ABS(value)
$\operatorname{ABS}((x, y))$

Example

ABS (-1) returns 1
ABS ($(1,2))$ returns 2.2360679775
Takes the nth root of x. root NTHROOT value

Example

3 NTHROOT 8 returns 2

Calculus functions

The symbols for differentiation and integration are available directly form the keyboard- $d / d x$ and \int respectively-as well as from the MATH menu.

Differentiates expression with respect to the variable of differentiation. From the command line, use a formal name (S1, etc.) for a non-numeric result. See "Finding derivatives" on page 10-23.
dvariable(expression)

Example

$$
\partial s 1\left(s 1^{2}+3 * s 1\right) \text { returns } 2 * s 1+3
$$

Integrates expression from lower to upper limits with respect to the variable of integration. To find the definite integral, both limits must have numeric values (that is, be numbers or real variables). To find the indefinite integral, one of the limits must be a formal variable (s1, etc.).

$\int($ lower,upper, expression, variable)

See "Using formal variables" on page 10-22 for further details.

Example

$\int(0, s 1,2 * \mathrm{X}+3, \mathrm{X})$ ENTER Δ E墰 ENTER finds the indefinite result $3 * s 1+2 *\left(s 1^{\wedge} 2 / 2\right)$

See "To find the indefinite integral using formal variables" on page 10-25 for more information on finding indefinite integrals.

TAYLOR
Calculates the nth order Taylor polynomial of expression at the point where the given variable $=0$.

TAYLOR(expression,variable,n)

Example

TAYLOR $\left(1+\sin (s 1)^{2}, s 1,5\right)$ with Radians angle measure and Fraction number format (set in MODES) returns $1+s 1^{\wedge} 2-1 / 3 * s 1^{\wedge} 4$.

Complex number functions

These functions are for complex numbers only. You can also use complex numbers with all trigonometric and hyperbolic functions, and with some real-number and keyboard functions. Enter complex numbers in the form (x, y), where x is the real part and y is the imaginary part.

Argument. Finds the angle defined by a complex number. Inputs and outputs use the current angle format set in Modes. $\operatorname{ARG}((x, y))$

Example

ARG ($(3,3))$ returns 45 (Degrees mode)

ARG

IM

RE

CONJ

Complex conjugate. Conjugation is the negation (sign reversal) of the imaginary part of a complex number.
$\operatorname{CONJ}((x, y))$

Example

$\operatorname{CONJ}((3,4))$ returns $(3,-4)$
Imaginary part, y, of a complex number, (x, y).
IM $((x, y))$

Example

$\operatorname{IM}((3,4))$ returns 4
Real part x, of a complex number, (x, y).
$\operatorname{RE}((x, y))$

Example

$\operatorname{RE}((3,4))$ returns 3

Constants

e	Natural logarithm base. Internally represented as 2.71828182846. e
i	Imaginary value for $\sqrt{ }-1$, the complex number $(0,1)$. i
MAXREAL	Maximum real number. Internally represented as $9.99999999999 \times 10^{499}$. MAXREAL
MINREAL	Minimum real number. Internally represented as 1×10^{-499} MINREAL
π	Internally represented as 3.14159265359 .

Hyperbolic trigonometry

The hyperbolic trigonometry functions can also take complex numbers as arguments.

ACOSH
Inverse hyperbolic cosine : $\cosh ^{-1} x$. ACOSH(value)
ASINH \quad Inverse hyperbolic sine $: \sinh ^{-1} x$.
ASINH(value)

ATANH	Inverse hyperbolic tangent : $\tanh ^{-1} x$.
	ATANH(value)
COSH	Hyperbolic cosine
	COSH(value)
SINH	Hyperbolic sine.
	SINH(value)
TANH	Hyperbolic tangent.
	TANH (value)

ALOG Antilogarithm (exponential). This is more accurate than $10^{\wedge} \mathrm{x}$ due to limitations of the power function.
ALOG(value)
EXP Natural exponential. This is more accurate than e^{x} due to limitations of the power function.

$$
\operatorname{EXP}(\text { value })
$$

Exponent minus $1: e^{x}-1$. This is more accurate than EXP when x is close to zero. EXPM1(value)
LNP1
Natural \log plus $1: \ln (x+1)$. This is more accurate than the natural logarithm function when x is close to zero.
LNP 1(value)

List functions

These functions work on list data. See "List functions" on page 13-7.

Loop functions

The loop functions display a result after evaluating an expression a given number of times.

ITERATE

RECURSE

Σ

Repeatedly for \#times evaluates an expression in terms of variable. The value for variable is updated each time, starting with initialvalue.

ITERATE (expression, variable, initialvalue, \#times)

Example

ITERATE ($\mathrm{X}^{2}, \mathrm{X}, 2,3$) returns 256
Provides a method of defining a sequence without using the Symbolic view of the Sequence aplet. If used with |("where"), RECURSE will step through the evaluation.
RECURSE (sequencename, term-n, term1, term2)

Example

Stores a factorial-calculating function named U1.
When you enter U1 (5), for example, the function calculates 5! (120).

Summation. Finds the sum of expression with respect to variable from initialvalue to finalvalue.
Σ (variable=initialvalue, finalvalue, expression)

Example

$$
\Sigma\left(\mathrm{C}=1,5, \mathrm{C}^{2}\right) \text { returns } 55
$$

Matrix functions

These functions are for matrix data stored in matrix variables. See "Matrix functions and commands" on page 12-9.

Polynomial functions

Polynomials are products of constants (coefficients) and variables raised to powers (terms).

POLYCOEF

Polynomial coefficients. Returns the coefficients of the polynomial with the specified roots.

POLYCOEF ([roots])

Example

To find the polynomial with roots $2,-3,4,-5$: POLYCOEF $([2,-3,4,-5])$ returns $[1,2,-25$, $-26,120]$, representing $x^{4}+2 x^{3}-25 x^{2}-26 x+120$.

POLYEVAL

POLYFORM

POLYROOT

Polynomial form. Creates a polynomial in variablel from expression.

POLYFORM(expression,variable1)

Example

POLYFORM ($\left.(X+1)^{\wedge} 2+1, X\right)$ returns $X^{\wedge} 2+2 * X+2$.
Polynomial evaluation. Evaluates a polynomial with the specified coefficients for the value of x.

POLYEVAL ([coefficients], value)

Example

For $x^{4}+2 x^{3}-25 x^{2}-26 x+120$:
POLYEVAL ($[1,2,-25,-26,120], 8)$ returns 3432.
olynomial roots. Returns the roots for the n th-order polynomial with the specified $n+1$ coefficients.

POLYROOT([coefficients])

Example

For $x^{4}+2 x^{3}-25 x^{2}-26 x+120$: POLYROOT ([1,2,-25,-26,120]) returns $[2,-3,4,-5]$.

HINT The results of POLYROOT will often not be easily seen in HOME due to the number of decimal places，especially if they are complex numbers．It is better to store the results of POLYROOT to a matrix．

For example，POLYROOT（ $[1,0,0,-8]$ 宜吾宣M1 will store the three complex cube roots of 8 to matrix M1 as a complex vector．Then you can see them easily by going to the Matrix Catalog．and access them individually in calculations by referring to M1（1），M1（2）etc．

Probability functions

COMB
！
Factorial of a positive integer．For non－integers，$!=\Gamma(x+1)$ ． This calculates the gamma function．
value！
PERM Number of permutations（with regard to order）of n things taken r at a time：$n!/(n-r)$ ！．

$$
\operatorname{PERM}(n, r)
$$

Example

$\operatorname{PERM}(5,2)$ returns 20．That is，there are 20 different permutations of five things taken two at a time．

RANDOM
Random number（between zero and 1）．Produced by a pseudo－ random number sequence．The algorithm used in the RANDOM function uses a＂seed＂number to begin its sequence．To ensure that two calculators must produce different results for the RANDOM function，use the RANDSEED function to seed different starting values before using RANDOM to produce the numbers．

RANDOM

H IN T The setting of Time will be different for each calculator, so using RANDSEED(Time) is guaranteed to produce a set of numbers which are as close to random as possible. You can set the seed using the command RANDSEED.

UTPC

UTPF

UTPN

UTPT

Upper-Tail Chi-Squared Probability given degrees of freedom, evaluated at value. Returns the probability that a χ^{2} random variable is greater than value.

```
UTPC(degrees,value)
```

Upper-Tail Snedecor's F Probability given numerator degrees of freedom and denominator degrees of freedom (of the F distribution), evaluated at value. Returns the probability that a Snedecor's F random variable is greater than value.

UTPF(numerator,denominator,value)
Upper-Tail Normal Probability given mean and variance, evaluated at value. Returns the probability that a normal random variable is greater than value for a normal distribution. Note: The variance is the square of the standard deviation.

UTPN(mean,variance,value)

Upper-Tail Student's t-Probability given degrees of freedom, evaluated at value. Returns the probability that the Student's trandom variable is greater than value.

UTPT(degrees,value)

Real-number functions

Some real-number functions can also take complex arguments.

CEILING

FRAC

DEG \rightarrow RAD

FLOOR

FNROOT

Smallest integer greater than or equal to value. CEILING(value)

Examples

CEILING (3.2) returns 4 CEILING (-3.2) returns -3

Degrees to radians. Converts value from Degrees angle format to Radians angle format. $\mathrm{DEG} \rightarrow \mathrm{RAD}$ (value)

Example

DEG \rightarrow RAD (180) returns 3.14159265359 , the value of π.

Greatest integer less than or equal to value. FLOOR(value)

Example

FLOOR (-3.2) returns -4
Function root-finder (like the Solve aplet). Finds the value for the given variable at which expression most nearly evaluates to zero. Uses guess as initial estimate. FNROOT(expression, variable, guess)

Example

FNROOT (M*9.8/600-1, M, 1) returns 61.2244897959.

Fractional part. FRAC(value)

Example

HMS \rightarrow	Hours-minutes-seconds to decimal. Converts a number or expression in H.MMSSs format (time or angle that can include fractions of a second) to $x . x$ format (number of hours or degrees with a decimal fraction). HMS \rightarrow (H.MMSSs)
	Example
	HMS \rightarrow (8.30) returns 8.5
\rightarrow HMS	Decimal to hours-minutes-seconds. Converts a number or expression in $x . x$ format (number of hours or degrees with a decimal fraction) to H.MMSSs format (time or angle up to fractions of a second). $\rightarrow \operatorname{HMS}(x . x)$
	Example
	\rightarrow HMS (8.5) returns 8.3
INT	Integer part. INT(value)
	Example
	INT (23.2) returns 23
MANT	Mantissa (significant digits) of value. MANT(value)
	Example
	MANT (21.2E34) returns 2.12
MAX	Maximum. The greater of two values. MAX(value1, value2)
	Example
	MAX $(210,25)$ returns 210
MIN	Minimum. The lesser of two values. MIN(value1, value2)
	Example
	MIN (210,25) returns 25
10-16	Using mathematical functions

Modulo. The remainder of value1/value 2 .

$$
\text { value1 MOD value } 2
$$

Example

9 MOD 4 returns 1
\%
x percent of y; that is, $x / 100 * y$.
$\%(x, y)$

Example

$\%(20,50)$ returns 10

\%CHANGE

\%TOTAL

RAD \rightarrow DEG

ROUND

Percent change from x to y, that is, $100(y-x) / x$. $\%$ CHANGE (x, y)

Example

\%CHANGE $(20,50)$ returns 150
Percent total : (100) y / x. What percentage of x is y. \%TOTAL (x, y)

Example

\%TOTAL $(20,50)$ returns 250
Radians to degrees. Converts value from radians to degrees. RAD \rightarrow DEG (value)

Example

```
RAD}->\textrm{DEG}(\pi)\mathrm{ returns }18
```

Rounds value to decimal places. Accepts complex numbers. ROUND(value, places)

Round can also round to a number of significant digits as showed in example 2.

Examples

```
ROUND (7.8676,2) returns 7.68
ROUND (0.0036757,-3) returns 0.00368
```

Sign of value. If positive, the result is 1 . If negative, -1 . If zero, result is zero. For a complex number, this is the unit vector in the direction of the number.

$$
\begin{aligned}
& \operatorname{SIGN}(\text { value }) \\
& \operatorname{SIGN}((x, y))
\end{aligned}
$$

Examples

$$
\begin{aligned}
& \text { SIGN }(-2) \text { returns }-1 \\
& \operatorname{SIGN}((3,4)) \text { returns }(.6, .8)
\end{aligned}
$$

TRUNCATE

XPON

Truncates value to decimal places. Accepts complex numbers.

TRUNCATE(value, places)

Example

TRUNCATE (2.3678,2) returns 2.36

Exponent of value.
XPON(value)

Example

XPON (123.4) returns 2

Statistics-Two

These are functions for use with two-variable statistics. See "Two-variable" on page 8-14.

Symbolic functions

The symbolic functions are used for symbolic manipulations of expressions. The variables can be formal or numeric, but the result is usually in symbolic form (not a number). You will find the symbols for the symbolic functions $=$ and $\mid($ where $)$ in the CHARS menu (SHIFT CHARS) as well as the MATH menu.
$=$ (equals) Sets an equality for an equation. This is not a logical operator and does not store values. (See "Test functions" on page 1020.)
expression $1=$ expression 2

ISOLATE

LINEAR?
Isolates the first occurrence of variable in expression=0 and returns a new expression, where variable=newexpression. The result is a general solution that represents multiple solutions by including the (formal) variables $s l$ to represent any sign and $n l$ to represent any integer.
ISOLATE (expression, variable)

Examples

```
ISOLATE (2*X+8,X) returns -4
ISOLATE (A+B*X/C,X) returns - (A*C/B)
```

Tests whether expression is linear for the specified variable. Returns 0 (false) or 1 (true).

> LINEAR? (expression, variable)

Example

LINEAR? ($\left.\left(X^{\wedge} 2-1\right) /(X+1), X\right)$ returns 0
QUAD
Solves quadratic expression $=0$ for variable and returns a new expression, where variable=newexpression. The result is a general solution that represents both positive and negative solutions by including the formal variable $S 1$ to represent any sign: + or - .

QUAD (expression, variable)

Example

QUAD ($\left.(\mathrm{X}-1)^{2}-7, \mathrm{X}\right)$ returns
$(2+s 1 * 5.29150262213) / 2$

QUOTE

｜（where）

Encloses an expression that should not be evaluated numerically．

QUOTE（expression）

Examples

QUOTE（SIN（45））宣面妾 F1（X）stores the expression $\operatorname{SIN}(45)$ rather than the value of $\operatorname{SIN}(45)$ ．

Another method is to enclose the expression in single quotes．
 expression $\mathrm{X}^{\wedge} 3 _2 * \mathrm{X}$ into $\mathrm{F} 1(\mathrm{X})$ in the Function aplet．

Evaluates expression where each given variable is set to the given value．Defines numeric evaluation of a symbolic expression．
expression \mid variable $1=$ value 1, variable $2=$ value $2, \ldots)$

Example

$$
3 *(X+1) \mid(X=3) \text { returns } 12
$$

Test functions

The test functions are logical operators that always return either a 1 （true）or a 0 （false）．

Less than．Returns 1 if true， 0 if false．
value $1<$ value 2

Less than or equal to．Returns 1 if true， 0 if false．
value $1 \leq$ value 2
$==\quad$ Equals（logical test）．Returns 1 if true， 0 if false.
value $1==$ value 2
Not equal to．Returns 1 if true， 0 if false．
value $1 \neq$ value 2
Greater than．Returns 1 if true， 0 if false．
value1＞value 2
\geq
Greater than or equal to．Returns 1 if true， 0 if false．
value $1 \geq$ value 2

AND IFTE

Compares valuel and value 2 . Returns 1 if they are both nonzero, otherwise returns 0 .
value1 AND value 2
If expression is true, do the trueclause; if not, do the falseclause.

IFTE (expression, trueclause, falseclause)

Example

$$
\operatorname{IFTE}\left(X>0, X^{2}, X^{3}\right)
$$

Returns 1 if value is zero, otherwise returns 0 .
NOT value

OR

XOR
Returns 1 if either value 1 or value 2 is non-zero, otherwise returns 0 .
valuel $O R$ value 2
Exclusive OR. Returns 1 if either value1 or value 2 —but not both of them-is non-zero, otherwise returns 0 .
valuel XOR value 2

Trigonometry functions

The trigonometry functions can also take complex numbers as arguments. For SIN, COS, TAN, ASIN, ACOS, and ATAN, see the Keyboard category.

ACOT

Arc cotangent.
ACOT(value)
ACSC
Arc cosecant.
ACSC(value)
ASEC
Arc secant.
ASEC(value)

COT	Cotangent: $\cos x / \sin x$.
	$\operatorname{COT}($ value $)$
CSC	Cosecant: $1 / \sin x$
SEC	$\operatorname{CSC}($ value $)$
	Secant: $1 / \cos x$.
	$\operatorname{SEC}($ value $)$

Symbolic calculations

The HP 39G/40G has the ability to perform symbolic calculations, for example, symbolic integration and differentiation. You can perform symbolic calculations in HOME and in the Function aplet.

In HOME
Using formal variables

When you perform calculations that contain normal variables, the calculator substitutes values for any variables. For example, if you enter $\mathrm{A}+\mathrm{B}$ on the command line and press ENTER, the calculator retrieves the values for A and B from memory and substitutes them in the calculation.

To perform symbolic calculations, for example symbolic differentiations and integrations, you need to use formal names. The HP 39G/40G has six formal names available for use in symbolic calculations. These are S0 to S5. When you perform a calculation that contains a formal name, the HP 39G/40G does not carry out any substitutions.

You can mix formal names and real variables. Evaluating $(A+B+S 1)^{2}$ will evaluate $A+B$, but not $S 1$.

If you need to evaluate an expression that contains formal names numerically, you use the | (where) command, listed in the Math menu under the Symbolic category.

For example to evaluate $(S 1 * S 2)^{2}$ when $S 1=2$ and $\mathrm{S} 2=4$, you would enter the calculation as follows:

(The \mid symbol is in the CHARS menu: press SHIFTCHARS. The $=$ sign is listed in the MATH menu under Symbolic functions.)

Symbolic calculations in the Function aplet

You can perform symbolic operations in the Function aplet's Symbolic view. For example, to find the derivative of a function in the Function aplet's Symbolic view, you define two functions and define the second function as a derivative of the first function. You then evaluate the second function. See "To find derivatives in the Function aplet's Symbolic view" on page 10-24 for an example.

Finding derivatives

The HP 39G/40G can perform symbolic differentiation on some functions. There are two ways of using the HP 39G/40G to find derivatives.

- You can perform differentiations in HOME by using the formal variables, S1 to S5.
- You can perform differentiations of functions of X in the Function aplet.

To find derivatives in HOME

To find the derivative of the function in HOME, use a formal variable in place of X . If you use X , the differentiation function substitutes the value that X holds, and returns a numeric result.

For example, consider the function:

$$
d x\left(\sin \left(x^{2}\right)+2 \cos (x)\right)
$$

1. Enter the differentiation function onto the command line, substituting S1 in place of X .

2. Evaluate the function. ENTER

3. Show the result.

To find derivatives in the Function aplet's Symbolic view

To find the derivative of the function in the Function aplet's Symbolic view, you define two functions and define the second function as a derivative of the first function. For example, to differentiate $\sin \left(x^{2}\right)+2 \cos x$:

1. Access the Function aplet's Symbolic view and define F1.

2. Define $\mathrm{F} 2(\mathrm{X})$ as the derivative of $\mathrm{F}(1)$.
d/dx P (1 ALPHA
F1 (1) 8 (1)
相

EDIT VCHR X SHOWIENAL
3. Select $\mathrm{F} 2(\mathrm{X})$ and evaluate it.
Δ EIMIE

 view the entire function.)

You could also just define

$$
F 1(x)=d x\left(\sin \left(x^{2}\right)+2 \cos (x)\right)
$$

To find the indefinite integral using formal variables

For example, to find the indefinite integral of
$\int 3 x^{2}-5 d x$ use:
$\int\left(0, S 1,3 X^{2}-5, X\right)$

1. Enter the function.

SHIFT	d/dx 00
ALPHA	S 1 O 3
ALPHA	$\left.\mathrm{X} \times \mathrm{x}^{2}\right]$
ALPHA	X [D] ENTER

HINTIIf the Decimal Mark setting in the Modes input form (SHIFT MODES) is set to Comma, use $[$.$] instead of \square$.
2. Show the result format.

3. Press 亩需 to close the
 show window.
4. Copy the result and evaluate.

Thus, substituting X for S 1 , it can be seen that:

$$
\int 3 x^{2}-5 d x=-5 x+3\left(\frac{\frac{x^{3}}{3}}{\frac{\partial}{\partial X}(X)}\right)
$$

This result derives from substituting $X=S 1$ and $X=0$ into the original expression found in step 1 . However, substituting $X=0$ will not always evaluate to zero and may result in an unwanted constant.
To see this, consider: $\int(x-2)^{4} d x=\frac{(x-2)^{5}}{5}$

The 'extra' constant of 6.4 results from the substitution of $x=0$ into $(x-2)^{5} / 5$, and should be disregarded if an indefinite integral is required.


```
f(0, 51,(x-2)^4,%
(x-2)
(x-2)^(4+1) (< (4+1)*2)
        (S1-2)
[TIT\
```


Variables and memory management

Introduction

The HP 39G/40G has approximately 232 K of user memory. The calculator uses this memory to store variables, perform computation, and store history.
A variable is an object that you create in memory to hold data. The HP 39G/40G has two types of variables, home variables and aplet variables.

- Home variables are available in all aplets. For example, you can store real numbers in variables A to Z and complex numbers in variables Z 0 to Z 9 . These can be numbers you have entered, or the results of calculations. These variables are available within all aplets and within any programs.
- Aplet variables apply only to a single aplet. Aplets have specific variables allocated to them which vary from aplet to aplet.
You use the calculator's memory to store the following objects:
- copies of aplets with specific configurations
- new aplets that you download
- aplet variables
- home variables
- variables created through a catalog or editor, for example a matrix or a text note
- programs that you create.

You can use the Memory Manager (SHIFT MEMORY) to view $^{\text {M }}$ the amount of memory available. The catalog views, which are accessible via the Memory Manager, can be used to transfer variables such as lists or matrices between calculators.

Storing and recalling variables

You can store numbers or expressions from a previous input or result into variables.

Numeric Precision

To store a value

A number stored in a variable is always stored as a 12-digit mantissa with a 3-digit exponent. Numeric precision in the display, however, depends on the display mode (Standard, Fixed, Scientific, Engineering, or Fraction). A displayed number has only the precision that is displayed. If you copy it from the HOME view display history, you obtain only the precision displayed, not the full internal precision. On the other hand, the variable Ans always contains the most recent result to full precision.

1. On the command line, enter the value or the calculation for the result you wish to store.
2. Press
3. Enter a name for the variable.
4. Press ENTER.

To store the results of a calculation

If the value you want to store is in the HOME view display history, for example the results of a previous calculation, you need to copy it to the command line, then store it.

1. Perform the calculation for the result you want to store.

2. Move the highlight to the result you wish to store.
3. Press 䤍ilil to copy the result to the command line.
4. Press Cime
5. Enter a name for the variable.

6. Press ENTER to store the result.

The results of a calculation can also be stored directly to a variable. For example:

To recall a value To recall a variable's value, type the name of the variable and press ENTER.
ALPHA A ENTER

To use variables in calculations

You can use variables in calculations. The calculator substitutes the variable's value in the calculation:

STII

The VARS menu

You use the VARS menu to access all variables in the calculator. The VARS menu is organised by category. For each variable category in the left column, there is a list of variables in the right column. You select a variable category and then select a variable in the category.

1. Open the VARS menu. VARS

2. Use the arrow keys or press the alpha key of the first letter in the category to select a variable category.
For example, to select the Matrix category, press [1].

Note: In this instance,
 there is no need to press the ALPHA key.
3. Move the highlight to the variables column.
\square
4. Use the arrow keys to select the variable that you want. For example, to select the M2 variable, press ∇.

[^0]5．Choose whether to place the variable name or the variable value on the command line．
－Press UFIEIE to indicate that you want the variable＇s contents to appear on the command line．
－Press［ificill to indicate that you want the variable＇s name to appear on the command line．

6．Press［IES to place the value or name on the command line．The selected object appears on the command line．

DEE

Note：The VARS menu can also be used to enter the names or values of variables into programs．

Example

This example demonstrates how to use the VARS menu to add the contents of two list variables，and to store the result in another list variable．

1．Display the List catalog．
SHIFT LIST
to select L1
EEIE

2．Enter the data for L1．
88 鳬 90 DE 89 正
65 国置 70 DE

3．Return to the List Catalog to create L2．
SHIFT LIST
（T）to select L2
ELTIT

4. Enter data for L2.

55 DE 48 DE 86 DE
90 正 77 (IE

5. Press HOME to access HOME.
6. Open the variable menu and select L1.

 option is highlighted, the variable's name, rather than its contents, is copied to the command line.
DE

8. Insert the + operator and select the L2 variable from the List variables.

9. Store the answer in the List catalog L3 variable.
EIEIEALPHAL3 ENTER

Note: You can also type

list names directly from the keyboard.

It is not possible to store data of one type in a variable of another type. For example, you use the Matrix catalog to create matrices. You can create up to ten matrices, and you can store these in variables M0 to M9. You cannot store matrices in variables other than M0 to M9.

Category	Available names
Complex	Z0 to Z9
	For example, (1,2) ETMED or $2+3 i$ EIME Z1. You can enter a complex number by typing (r, i), where r represents the real part, and i represents the imaginary part.
Graphic	G0 to G9
	See "Graphic commands" on page 15-20 for more information on storing graphic objects via programming commands. See "To store into a graphics variable" on page 14-5 for more information on storing graphic object via the sketch view.
Library	Aplet library variables can store aplets that you have created, either by saving a copy of a standard aplet, or downloading an aplet from another source.
List	L0 to L9
	For example, $\{1,2,3\}$ Eiplill
Matrix	M0 to M9 can store matrices or vectors. For example, [[1,2],[3,4]]
Modes	Modes variables store the modes settings that you can configure using SHIFT MODES.
Notepad	Notepad variables store notes.
Program	Program variables store programs.
Real	A to Z and θ.
	For example, 7.45 轵区IA.

Aplet variables

Aplet variables store values that are unique to a particular aplet. These include symbolic expressions and equations (see below), settings for the Plot and Numeric views, and the results of some calculations such as roots and intersections. See the Reference Information chapter for more information about aplet variables
\(\left.\left.$$
\begin{array}{|l|l|}\hline \text { Category } & \text { Available names } \\
\hline \text { Function } & \begin{array}{l}\text { F0 to F9 (Symbolic view). See "Function } \\
\text { aplet variables" on page R-9. }\end{array} \\
\text { Parametric } & \begin{array}{l}\text { X0, Y0 to X9, Y9 (Symbolic view). See } \\
\text { "Parametric aplet variables" on page R-10. }\end{array} \\
\text { Sequence to R9 (Symbolic view). See "Polar } \\
\text { aplet variables" on page R-11. }\end{array}
$$ \quad $$
\begin{array}{l}\text { U0 to U9 (Symbolic view). See "Sequence } \\
\text { aplet variables" on page R-12. }\end{array}
$$\right\} \begin{array}{l}E0 to E9 (Symbolic view). See "Solve

aplet variables" on page R-13.\end{array}\right\}\)| C0 to C9 (Numeric view). See "Statistics |
| :--- |
| aplet variables" on page R-14. |$|$

To access an aplet variable

1. Open the aplet that contains the variable you want to recall.
2. Press VARS to display the VARS menu.
3. Use the arrow keys to select a variable category in the left column, then press Δ to access the variables in the right column.
4. Use the arrow keys to select a variable in the right column.
5. To copy the name of the variable onto the edit line, press ME. (ETIEIEI is the default setting.)
6. To copy the value of the variable into the edit line, press ITIITIII and press ITI.

[^1]
Memory Manager

You can use the Memory Manager to determine the amount of available memory on the calculator. You can also use Memory Manager to organize memory. For example, if the available memory is low, you can use the Memory Manager to determine which aplets or variables consume large amounts of memory. You can make deletions to free up memory.

Example

1. Start the Memory Manager. A list of variable categories is displayed.

SHIFT MEMORY
Free memory is displayed in the top right corner and the body of

MEFMary	
Hplets	. EKE < 1%
Programs	. 1 KB <1\%
Notes	Q18
Matrices	
Lists	$.1 \mathrm{~KB}<1 \%$
	PIEE ${ }^{\text {a }}$

2. Select the category with which you want to work and press [.[IE[. Memory Manager displays memory details of variables within the category.

3. To delete variables in a category:

- Press DEL to delete the selected variable.
- Press SHIFT CLEAR to delete all variables in the selected category.

Matrices

Introduction

You can perform matrix calculations in HOME and in programs. The matrix and each row of a matrix appear in brackets, and the elements and rows are separated by commas. For example, the following matrix:
$\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]$
is displayed in the history as:
[[1,2,3],[4,5,6]]
(If the Decimal Mark in MODES is set to Comma, then the row separators are periods.)

You can enter matrices directly in the command line, or create them in the matrix editor.

Vectors Vectors are one-dimensional arrays. They are composed of just one row. A vector is represented with single brackets; for example, $[1,2,3]$. A vector can be a real number vector or a complex number vector, for example $[(1,2),(7,3)]$.

Matrices

Matrices are two-dimensional arrays. They are composed of more than one row and more than one column. Twodimensional matrices are represented with nested brackets; for example, $[[1,2,3],[4,5,6]]$. You can create complex matrices, for example, $[[(1,2),(3,4)],[(4,5),(6,7)]]$.

Matrix Variables

There are ten matrix variables available, named M0 to M9. You can use them in calculations in HOME or in a program. You can retrieve the matrix names from the VARS menu, or just type their names from the keyboard.

Creating and storing matrices

You can create, edit, delete, send, and receive matrices in the Matrix catalog.

To open the Matrix catalog, press SHIFT MATRIX.

You can also create and store matrices-named or unnamed-in HOME. For example, the command:

POLYROOT ([1,0,-1,0]) M1
stores the root of the complex vector of length 3 into the M1 variable. M1 now contains the three roots of $x^{3}-x=0$

Matrix Catalog keys

The table below lists the operations of the menu keys in the Matrix Catalog, as well as the use of Delete (DEL) and Clear (SHIFT CLEAR)

Key	Meaning
Efot	Opens the highlighted matrix for editing.
[1]ㄹ]	Prompts for a matrix type, then opens an empty matrix with the highlighted name.
	Transmits the highlighted matrix to another HP 39G/40G or a disk drive. See "Sending and receiving aplets" on page 16-5.
Hitit	Receives a matrix from another HP 39G/40G or a disk drive. See "Sending and receiving aplets" on page 16-5.
DEL	Clears the highlighted matrix.
SHIFT CLEAR	Clears all matrices.
$\begin{aligned} & \text { SHIFT } \nabla \text { or } \\ & \Delta \end{aligned}$	Moves to the end or the beginning of the catalog.

To create a matrix in the matrix catalog

1．Press SHIFT MATRIX to open the Matrix catalog．The Matrix catalog lists the 10 available matrix variables，M0 to M9．
2．Highlight the matrix variable name you want to use and press 디롤․

3．Select the type of matrix to create．
－For a vector（one－dimensional array），select Real vector or Complex vector．Certain operations （,+- ，CROSS）do not recognize a one－dimensional matrix as a vector，so this selection is important．
－For a matrix（two－dimensional array），select Real matrix or Complex matrix．

4．For each element in the matrix，type a number or an expression，and press ENTER．（The expression may not contain symbolic variable names．）
For complex numbers，enter each number in complex form；that is，(a, b) ，where a is the real part and b is the imaginary part．You must include the parentheses and the comma．

5．Use the cursor keys to move to a different row or column． You can change the direction of the highlight bar by pressing 酉．The menu key toggles between the following three options：
－酉要 specifies that the cursor moves to the cell below the current cell when you press ENTER．
－酉垔 specifies that the cursor moves to the cell to the right of the current cell when you press ENTER．
－而 specifies that the cursor stays in the current cell when you press ENTER．

6．When done，press SHIFT MATRIX to see the Matrix catalog，or press HOME to return to HOME．The matrix entries are automatically stored．

A matrix is listed with two dimensions，even if it is 3×1 ．A vector is listed with the number of elements，such as 3 ．

To transmit a matrix

You can send matrices between calculators just as you can send aplets, programs, lists, and notes.

1. Align the HP 39 G calculators' infrared ports.
2. Open the Matrix catalogs on both calculators.
3. Highlight the matrix to send.
4. Press EDETid.
5. Press on the receiving calculator

Matrices can also be transmitted to or from a computer a cable and Connectivity Kit.

Working with matrices

To edit a matrix

Matrix edit keys

In the Matrix catalog, highlight the name of the matrix you want to edit and press ETIIT.
\(\left.$$
\begin{array}{|l|l|l|}\hline \text { Key } & \text { Meaning } \\
\hline \text { EGTII } & \begin{array}{l}\text { Copies the highlighted element to the } \\
\text { edit line. }\end{array}
$$

Inserts a row of zeros above, or a

column of zeros to the left, of the

highlighted cell. (You are prompted to

choose row or column.)\end{array}\right\}\)| A three-way toggle for cursor |
| :--- |
| advancement in the Matrix editor. |
| advances to the right, |
| downward, and |
| at all. |

To display a matrix

To display one element

To create a matrix in HOME

To store one element

－In the Matrix catalog（［SHIFT MATRIX），highlight the matrix name and press［ITII．
－In HOME，enter the name of the matrix variable and press ENTER．

In HOME，enter matrixname（row，column）．For example，if M2 is［［3，4］，［5，6］］，then M2（1，2）ENTER returns 4.

1．Enter the matrix in the edit line．Start and end the matrix and each row with square brackets（the shifted 5 and 6 keys）．

2．Separate each element and each row with a comma． Example：［［1，2］，［3，4］］．

3．Press ENTER to enter and display the matrix．
The left screen below shows the matrix［［2．5，729］，［16，2］］ being stored into M5．The screen on the right shows the vector ［ $66,33,11]$ being stored into M6．Note that you can enter an expression（like $5 / 2$ ）for an element of the matrix，and it will be evaluated．

In HOME，enter：
value 高重要 matrixname（row，column）
For example，to change the element in the first row and second column of M5 to 728，then display the resulting matrix：

728 耚	
ALPHA	M5（10）2®
ENTER	ALPHA M5
ENTER．	

（28isis $(1,2)$		
		728
［［2．5，728］，［16，2］］		

An attempt to store an element to a row or column beyond the size of the matrix results in an error message．

Matrix arithmetic

You can use the arithmetic functions (,,$+- \times, /$) with matrix arguments. Division left-multiplies by the inverse of the divisor. You can enter the matrices themselves or enter the names of stored matrix variables. The matrices can be real or complex.

For the next four examples, store [[1,2],[3,4]] into M1 and [[5,6],[7,8]] into M2.

Example

To multiply and divide by a scalar

For division by a scalar, enter the matrix first, then the operator, then the scalar. For multiplication, the order of the operands does not matter. The matrix and the scalar can be real or complex. For example, to divide the result of the previous example by 2 , use the following key presses:
\div
2 ENTER

To multiply two matrices

To invert a matrix You can invert a square matrix in HOME by typing the matrix (or its variable name) and pressing SHIFT x^{-1} ENTER. Or you can use the matrix INVERSE command. Enter INVERSE(matrixname) in HOME and press ENTER.

To negate each element

To multiply the two matrices M1 and M2 that you created for the previous example, use the following keystrokes:

To multiply a matrix by a vector, enter the matrix first, then the vector. The number of elements in the vector must equal the number of columns in the matrix.

For division of a matrix or a vector by a square matrix, the number of rows of the dividend (or the number of elements, if it is a vector) must equal the number of rows in the divisor.

This operation is not a mathematical division: it is a leftmultiplication by the inverse of the divisor. M1/M2 is equivalent to M^{-1} * M1.

To divide the two matrices M1 and M2 that you created for the previous example, use the following keystrokes:

You can change the sign of each element in a matrix by pressing $[(-)]$ before the matrix name.

Solving systems of linear equations

Example
Solve the following linear system:

$$
\begin{array}{r}
2 x+3 y+4 z=5 \\
x+y-z=7 \\
4 x-y+2 z=1
\end{array}
$$

1. Open the Matrix catalog and choose to create a vector in the M1 variable.

SHIFT MATRIX 죨표

\square ENTER

2. Create the vector of the constants in the linear system.

3. Return to the Matrix catalog. The vector you created is listed as M1.
SHIFT MATRIX

4. Select the M2 variable and create a new matrix.

- EIE

Select Real matrix
面
5. Create a new matrix and enter the equation coefficients.
2 ENTER 3 ENTER
4 ENTER -
1 ENTER 1 ENTER
$((-) 1$ ENTER 4 ENTER
$(-) 1$ ENTER 2 ENTER

6. Return to HOME and enter the calculation to left multiply the constants vector by the inverse of the coefficients matrix.
HOME ALPHA M2
SHIFT $x^{-1} \mathrm{x}$
ALPHA M1

7. Evaluate the calculation. ENTER

The result is a vector of the solutions:

- $x=2$
- $y=3$
- $z=-2$

An alternative method, is to use the RREF function. See "RREF" on page 12-12.

Matrix functions and commands

About functions

- Functions can be used in any aplet or in HOME. They are listed in the MATH menu under the Matrix category. They can be used in mathematical expressions-primarily in HOME-as well as in programs.
- Functions always produce and display a result. They do not change any stored variables, such as a matrix variable.
- Functions have arguments that are enclosed in parentheses and separated by commas; for example, CROSS(vector1,vector2). The matrix input can be either a matrix variable name (such as M1) or the actual matrix data inside brackets. For example, CROSS(M1,[1,2]).

About commands
 Matrix commands are listed in the CMDS menu ([sHIFT CMDS), in the matrix category
 See "Matrix commands" on page 15-23 for details of the matrix commands available for use in programming.
 Functions differ from commands in that a function can be used in an expression. Commands cannot be used in an expression.

Argument conventions

- For row\# or column\#, supply the number of the row (counting from the top, starting with 1) or the number of the column (counting from the left, starting with 1).
- The argument matrix can refer to either a vector or a matrix.

Matrix functions

COLNORM
 Column Norm. Finds the maximum value (over all columns)

 of the sums of the absolute values of all elements in a column.COLNORM(matrix)
COND
Condition Number. Finds the 1-norm (column norm) of a square matrix.

COND (matrix)

CROSS

DET

DOT

Cross Product of vectorl with vector 2 .
CROSS(vector1, vector2)

Determinant of a square matrix
DET(matrix)

Dot Product of two arrays, matrixl matrix2.
DOT(matrix1, matrix2)

EIGENVAL	Displays the eigenvalues in vector form for matrix. EIGENVAL(matrix)
EIGENVV	Eigenvectors and Eigenvalues for a square matrix. Displays a list of two arrays. The first contains the eigenvectors and the second contains the eigenvalues.
	EIGENVV(matrix)
IDENMAT	Identity matrix. Creates a square matrix of dimension size \times size whose diagonal elements are 1 and off-diagonal elements are zero.
	IDENMAT(size)
INVERSE	Inverts a square matrix (real or complex).
	INVERSE(matrix)
LQ	LQ Factorization. Factors an $m \times n$ matrix into three matrices: $\{[[m \times n$ lowertrapezoidal $]],[[n \times n$ orthogonal $]]$, $[[m \times m$ permutation $]]\}$.
	LQ(matrix)
LSQ	Least Squares. Displays the minimum norm least squares matrix (or vector).
	LSQ(matrix1, matrix2)
LU	LU Decomposition. Factors a square matrix into three matrices: $\{[[$ lowertriangular $]],[[$ uppertriangular $]],[[p e r m u t a t i o n]]\}$ The uppertriangular has ones on its diagonal.
	LU(matrix)
MAKEMAT	Make Matrix. Creates a matrix of dimension rows \times columns, using expression to calculate each element. If expression contains the variables I and J, then the calculation for each element substitutes the current row number for I and the current column number for J .

MAKEMAT(expression, rows, columns)

Example

$\operatorname{MAKEMAT}(0,3,3)$ returns a 3×3 zero matrix, [[0,0,0],[0,0,0],[0,0,0]].

QR	QR Factorization. Factors an $m \times n$ matrix into three matrices: $\{[[m \times m$ orthogonal $]],[[m \times n$ uppertrapezoidal $]],[[n \times n$ permutation]]\}.
	QR (matrix)
RANK	Rank of a rectangular matrix.
	RANK(matrix)
ROWNORM	Row Norm. Finds the maximum value (over all rows) for the sums of the absolute values of all elements in a row.
	ROWNORM (matrix)
RREF	Reduced Row Echelon Form. Changes a rectangular matrix to its reduced row-echelon form.
	RREF(matrix)
SCHUR	Schur Decomposition. Factors a square matrix into two matrices. If matrix is real, then the result is $\{[[$ orthogonal $]],[[$ upper-quasi triangular $]]\}$. If matrix is complex, then the result is $\{[[$ unitary $]],[[$ upper-triangular $]]\}$.
	SCHUR(matrix)
SIZE	Dimensions of matrix. Returned as a list: \{rows,columns \}.
	SIZE(matrix)
SPECNORM	Spectral Norm of matrix.
	SPECNORM (matrix)
SPECRAD	Spectral Radius of a square matrix.
	SPECRAD (matrix)
SVD	Singular Value Decomposition. Factors an $m \times n$ matrix into two matrices and a vector: $\{[[m \times m$ square orthogonal $]],[[n \times n$ square orthogonal $]]$, [real] $\}$.
	SVD (matrix)
SVL	Singular Values. Returns a vector containing the singular values of matrix.
	SVL(matrix)

TRACE

TRN

Transposes matrix. For a complex matrix, TRN finds the conjugate transpose. TRN(matrix)
Finds the trace of a square matrix. The trace is equal to the sum of the diagonal elements. (It is also equal to the sum of the eigenvalues.)

TRACE(matrix)

Examples

Identity Matrix

Transposing a
Matrix

Reduced-Row
Echelon Form

The following set of equations $x-2 y+3 z=14$

$$
2 x+y-z=-3
$$

$$
4 x-2 y+2 z=14
$$

can be written as the augmented matrix $\left[\begin{array}{ccc|c}1 & -2 & 3 & 14 \\ 2 & 1 & -1 & -3 \\ 4 & -2 & 2 & 14\end{array}\right]$
which can then stored as a 3×4 real matrix in M1.

You can use the RREF function to change this to reduced row echelon form, storing it as M2 for convenience.

The reduced row echelon matrix gives the solution to the linear equation in the forth column.

An advantage of using the RREF function is that it will also work with inconsistent matrices resulting from systems of equations which have no solution or infinite solutions.

For example, the following set of equations has an infinite number of solutions:

```
x+y-z=5
2x-y=7
x-2y+z=2
```

The final row of zeros in the reduced-row echelon form of the augmented matrix indicates an inconsistency.

Lists

You can do list operations in HOME and in programs. A list consists of comma-separated real or complex numbers, expressions, or matrices, all enclosed in braces. A list may, for example, contain a sequence of real numbers such as $\{1,2,3\}$. (If the Decimal Mark in MODES is set to Comma, then the separators are periods.) Lists represent a convenient way to group related objects.

There are ten list variables available, named L0 to L9. You can use them in calculations or expressions in HOME or in a program. Retrieve the list names from the VARS menu, or just type their names from the keyboard.

You can create, edit, delete, send, and receive named lists in the List catalog (SHIFT LIST). You can also create and store lists-named or unnnamed-in HOME.

Creating lists

List variables are identical in behaviour to the columns C1.C0 in the Statistics aplet. You can store a statistics column to a list (or vice versa) and use any of the list functions on the statistics columns, or the statistics functions, on the list variables.

Create a list in
the List
Catalog

1. Open the List catalog.

SHIFT LIST.
2. Highlight the list name you want to use (L1, etc.) and press [ETII to display the List editor.

EEDTI

3. Enter the values you want in the list, pressing ENTER after each one.

Values can be real or complex numbers (or an expression). If you enter a calculation, it is evaluated and the result
 is inserted in the list.
4. When done, press SHIFT LIST to see the List catalog, or press HOME to return to HOME.

List catalog keys The list catalog keys are:

Key	Meaning
EETEI	Opens the highlighted list for editing. Transmits the highlighted list to another HP 39G/40G or a PC. See "Sending and receiving aplets" on page 16-5 for further information.
EEEET	Receives a list from another HP 39G/ 40G or a PC. See "Sending and receiving aplets" on page 16-5 for further information.
DEL	Clears the highlighted list.
SHIFT CLEAR	Clears all lists. SHIFT
Dor	Moves to the end or the beginning of the catalog.

List edit keys

When you press edit to create or change a list, the following keys are available to you:

Key	Meaning
EDilil	Copies the highlighted list item into the edit line.
[123	Inserts a new value before the highlighted item.
DEL	Deletes the highlighted item from the list.
SHIFT CLEAR	Clears all elements from the list.
SHIFT or	Moves to the end or the beginning of the list.

Create a list in HOME

1. Enter the list in the edit line. Start and end the list with braces (the shifted 8 and 9 keys) and separate each element with a comma.
2. Press ENTER to evaluate and display the list.

Immediately after typing in the list, you can store it in a variable by pressing EIECI listname ENTER. The list variable names are L0 through L9.

This example stores the list $\{25,147,8\}$ in L1.
(You can omit the final brace when entering a list.)

Displaying and editing lists

To display a list - In the List catalog, highlight the list name and press EEDTI.

- In HOME, enter the name of the list and press ENTER.

To display one In HOME, enter listname(element\#). For example, if L2 is element $\{3,4,5,6\}$, then L2 (2) ENTER returns 4.

To edit a list

1. Open the List catalog. SHIFT LIST.

2. Press Δ or ∇ to highlight the name of the list you want to edit (L1, etc.) and press [iTili to display the list contents.
EITill

3. Press Δ or ∇ to
highlight the element you want to edit. In this example, edit the third element so that it has a value of 5 .

\checkmark	- ECLI
DEL	DEL

4. Press DET.

To insert an element in a list

1. Open the List catalog.

SHIFT LIST.

2. Press Δ or $\boldsymbol{\nabla}$ to highlight the name of the list you want to edit (L1, etc.) and press E[Till to display the list contents.

ECDIT

. Press Δ or \square to the insertion position.

New elements are inserted above the highlighted position. In this example, an element, with the value of 9 , is inserted between the first and second elements in the list.

[EES
9

4. Press [EE

To store one element

In HOME, enter value to store the second element of L1 to 148, type 148 Hind L1 (2) ENTER.

Deleting lists

To delete a list In the List catalog, highlight the list name and press DEL. You are prompted if you want to delete the contents of the highlighted list variable. Press ENTER to delete the contents.

To delete all lists In the List catalog, press SHIFT CLEAR.

Transmitting lists

You can send lists to calculators or PCs just as you can aplets, programs, matrices, and notes.

1. Align the HP 39G calculators' infrared ports.
2. Open the List catalogs on both calculators.
3. Highlight the list to send.
4. Press EEETI.
5. Press [EEII on the receiving calculator.

Lists can also be transmitted to or from a computer a cable and Connectivity Kit.

List functions

Following are details of list functions. You can use them in HOME, as well as in programs.

You can type in the name of the function, or you can copy the name of the function from the List category of the MATH menu. Press
 MATH] (the alpha L character key). This displays the List category. Press \triangle, select a function, and press DIES.

List functions have the following syntax:

- Functions have arguments that are enclosed in parentheses and separated by commas. Example: CONCAT (L1, L2). An argument can be either a list variable name (such as L1) or the actual list. For example, $\operatorname{REVERSE}(\{1,2,3\})$.
- If Decimal Mark in MODES is set to Comma, use periods to separate arguments. For example, CONCAT (L1.L2).

Common operators like,,$+- \times$, and / can take lists as arguments. If there are two arguments and both are lists, then the lists must have the same length, since the calculation pairs up the elements. If there are two arguments and one is a real number, then the calculation pairs the number with each element of the list.

Example

```
5*{1,2,3} returns {5,10,15}.
```

Besides the common operators that can take numbers, matrices, or lists as arguments, there are commands that can only operate on lists.

CONCAT
Δ LIST

Concatenates two lists into a new list.

```
CONCAT (list1,list2)
```


Example

```
CONCAT ({1,2, 3},{4}) returns {1, 2, 3, 4}.
```

Creates a new list composed of the differences between the sequential elements in listl. The new list has one fewer elements than listl. The first differences for $\left\{x_{1} x_{2} \ldots x_{n}\right\}$ are $\left\{x_{2}-x_{1} \ldots x_{n}-x_{n-1}\right\}$.
$\Delta \operatorname{LIST}$ (listl)

Example

In HOME, store $\{3,5,8,12,17,23\}$ in $L 5$ and find the first differences for the list.

MAKELIST
Calculates a sequence of elements for a new list. Evaluates expression with variable from begin to end values, taken at increment steps.

MAKELIST (expression, variable, begin, end, increment)

The MAKELIST function generates a series by automatically producing a list from the repeated evaluation of an expression.

Example

In HOME, generate a list of squares from 23 to 27.

HIN T If the Decimal Mark setting in the Modes input form
(SHIFT MODES) is set to Comma, use \square instead of \square.

Calculates the product of all elements in list.
ПLIST (list)

Example

ПLIST (\{2, 3, 4\}) returns 24.

Returns the position of an element within a list. The element can be a value, a variable, or an expression. If there is more than one instance of the element, the position of the first occurrence is returned. A value of 0 is returned if there is no occurrence of the specified element.
POS (list, element)

Example

$\operatorname{POS}(\{3,7,12,19\}, 12)$ returns 3

Creates a list by reversing the order of the elements in a list. REVERSE (list)

Calculates the number of elements in a list. SIZE (list)

Also works with matrices.
Calculates the sum of all elements in list.

Example

$\operatorname{LLIST}(\{2,3,4\})$ returns 9.

Sorts elements in ascending order.

Finding statistical values for list elements

To find values such as the mean, median, maximum, and minimum values of the elements in a list, use the Statistics aplet.

Example
In this example, use the Statistics aplet to find the mean, median, maximum and minimum values of the elements in the list, L1.

1. Create L1 with values $88,90,89,65,70$, and 89 .

HINT If the Decimal Mark setting in the Modes input form (SHIFT MODES) is set to Comma, use \square instead of \square.
2. In HOME, store L1 into C1. You will then be able to see the list data in the Numeric view of the Statistics aplet.
ALPHAL1
EITE ALPHA C1
ENTER

3. Start the Statistics aplet, and select 1 -variable mode (press EITIII, if necessary, to display EITEI).
APLET Select
Statistics
ETHITill

Note: Your list values are now in column1
 (C1).
4. In the Symbolic view, define H1 (for example) as C1 (sample) and 1 (frequency). Make sure that H 1 is checkmarked.

SYMB

5. Go to the Numeric view
to display calculated statistics.
NUM Eime

See "One-variable" on page 8-13 for the meaning of each computed statistic.

Notes and sketches

Introduction

The HP 39G/40G has text and picture editors for entering notes and sketches.

- Each aplet has its own independent Note view and Sketch view. Notes and sketches that you create in these views are associated with the aplet. When you save the aplet, or send it to another calculator, the notes and sketches are saved or sent as well.
- The Notepad is a collection of notes independent of all aplets. These notes can also be sent to another calculator via the Notepad Catalog.

Aplet note view

You can attach text to an aplet in its Note view.

To write a note in Note view

1. In an aplet, press SHIFT NOTE for the Note view.
2. Use the note editing keys shown in the table in the following section.
3. Set Alpha lock (lowercase Alpha lock, press SHIFT
4. While Alpha lock is on:

- To type a single letter of the opposite case, press SHIFT letter.
- To type a single non-alpha character (such as 5 or [), press ALPHA first. (This turns off Alpha lock for one character.)

Your work is automatically saved. Press any view key (NUM, SYMB, PLOT, VIEWS) or HOME to exit the Notes view.

Note edit keys

Key	Meaning
	Space key for text entry．
［ PTETET	Displays next page of a multi－page note．
Hersis	Alpha－lock for letter entry．
	Lower－case Alpha－lock．
	Backspaces cursor and deletes character．
DEL	Deletes current character．
ENTER	Starts a new line．
SHIFT CLEAR	Erases the entire note．
VARS	Menu for entering variable names， and contents of variables．
MATH	Menu for entering math operations， and constants．
SHIFT CMDS	Menu for entering program commands．
SHIFT CHARS	Displays special characters．To type one，highlight it and press 酉察．To copy a character without closing the CHARS screen，press E严晋．

Aplet sketch view

You can attach pictures to an aplet in its Sketch view （SHIFT SKETCH）．Your work is automatically saved with the aplet．Press any other view key or HOME to exit the Sketch view

Sketch keys

Key	Meaning
品面	Stores the specified portion of the current sketch to a graphics variable （G1 through G0）．
	Adds a new，blank page to the current sketch set．
	Displays next sketch in the sketch set．Animates if held down．
	Opens the edit line to type a text label．
［10］［］	Displays the menu－key labels for drawing．
DEL	Deletes the current sketch．
SHIFT CLEAR	Erases the entire sketch set．
\square	Toggles menu key labels on and off． If menu key labels are hidden， \square or any menu key，redisplays the menu key labels．

To draw a line

1．In an aplet，press SHIFT SKETCH for the Sketch view．
2．In Sketch view，press 四雷国 and move the cursor to where you want to start the line

3．Press 相2E．This turns on line－drawing．
4．Move the cursor in any direction to the end point of the line by pressing the $\Delta, \nabla, \square, \triangle$ keys．
5．Press to finish the line．

To draw a box

To draw a circle

1．In Sketch view，press 西雷園 and move the cursor to where you want any corner of the box to be．

2．Press 䡒．This turns on box－drawing．
3．Move the cursor to mark the opposite corner for the box． You can adjust the size of the box by moving the cursor．

4．Press 酛 to finish the box．

1．In Sketch view，press 再雷娄 and move the cursor to where you want the center of the circle to be．

3．Move the cursor the distance of the radius．
4．Press 画定 to draw the circle．

DRAW keys

Key	Meaning
鲕王	Dot on．Turns pixels on as the cursor moves．
覀面	Dot off．Turns pixels off as the cursor moves．
HETE	Draws a line from the cursor＇s starting position to the cursor＇s current position． Press 面盅 when you have finished．You can draw a line at any angle by moving the cursor．
	Draws a box from the cursor＇s starting position to the point at which you press醍焉。
	Draws a circle with the cursor＇s starting position as the center．The radius is the distance between the cursor＇s starting and ending position．Press to draw the circle．

To label parts of a sketch

To create a set of sketches

To store into a graphics variable

1．Press 县率 and type the text in the edit line．To lock the Alpha shift on，press（for uppercase）or SHIFT 园 （for lowercase）．
To make the label a smaller character size，turn off［］IFI before pressing（ large font size）．The smaller character size cannot display lowercase letters．

2．Press（IE
3．Position the label where you want it by pressing the $\boldsymbol{\Delta}$ ， $\nabla, \triangle, \triangle$ keys．
4．Press again to affix the label．
5．Press［07］to continue drawing，or press HOME to exit Sketch view．

You can create a set of up to ten sketches．This allows for simple animation．
－After making a sketch，press 멀표 page．You can now make a new sketch，which becomes part of the current set of sketches．
－To view the next sketch in an existing set，press rificie． Hold 주표를 down for animation．
－To remove the current page in the current sketch series， press DEL．

You can define a portion of a sketch inside a box，and then store that graphic into a graphics variable．

1．In the Sketch view，display the sketch you want to copy （store into a variable）．

2．Press 自正
3．Highlight the variable name you want to use and press ［这．

4．Draw a box around the portion you want to copy：move the cursor to one corner，press Ge，then move the cursor to the opposite corner and press 酉．

To import a graphics variable

You can copy the contents of a graphics variable into the Sketch view of an aplet．

1．Open the Sketch view of the aplet（［SHIFT）SKETCH）．The graphic will be copied here．
2．Press VARS，面酉目．Highlight Graphic，then press and highlight the name of the variable（G1，etc．）．
3．Press Winill to recall the contents of the graphics variable．

4．Move the box to where you would like to copy the graphic，then press（IET．

The notepad

Subject to available memory，you can store as many notes as you want in the Notepad（SHIFT）NOTEPAD）．These notes are independent of any aplet．The Notepad catalog lists the existing entries by name．It does not include notes that were created in aplets＇Note views，but these can be imported．See ＂To import a note＂on page 14－8．

To create a note in the Notepad

1．．Display the Notepad catalog．
SHIFT NOTEPAD

2．Create a new note． ［ BE $^{[1]}$

3．Enter a name for your note．
园 MYNOTE思

Note：In this example， the name of the note is＇MYNOTE＇．
4. Write your note.

See "Note edit keys" on page 14-2 for more information on the entry and editing of notes.

5. When you are finished, press HOME or an aplet key to exit Notepad. Your work is automatically saved.

Notepad Catalog keys

Key	Meaning
E[面	Opens the selected note for editing.
[[1] [Begins a new note, and asks for a name.
EETET0	Transmits the selected note to another HP 39G/40G or PC.
[ix	Receives a note being transmitted from another HP 39G/40G or PC.
DEL	Deletes the selected note.
SHIFT CLEAR	Deletes all notes in the catalog.

To import a note

You can import a note from the Notepad into an aplet＇s Note view，and vice－versa．Suppose you want to copy a note named ＂Assignments＂from the Notepad into the Function Note view：

1．In the Function aplet，display the Note view （SHIFT）NOTE）．
2．Press VARS HMCI，highlight Notepad in the left－hand list，then highlight the name＂Assignments＂in the right－ hand list．

3．Press 面正酉造 to copy the contents of＂Assignments＂ to the Function Note view．

Note：To recall the name instead of the contents，press

Suppose you want to copy the Note view from the current aplet into the note＂Assignments＂in the Notepad．
1．In the Notepad（［SHIFT）NOTEPAD），open the note ＂Assignments＂．
2．Press VARS Hiten，highlight Note in the left column， then press \square and highlight NoteText in the right column．
 into the note＂Assignments＂．

Programming

Introduction

This chapter describes how to program using the HP 39G/ 40G. In this chapter you'll learn about:

- using the Program catalog to create and edit programs
- programming commands
- storing and retrieving variables in programs
- programming variables.

HIN T More information on programming, including examples and special tools, can be found at HP's calculators web site: www.hp.com/calculators

The Contents of a	
Program	An HP 39G/40G program contains a sequence of numbers, mathematical expressions, and commands that execute automatically to perform a task.
	These items are separated by a colon (:). Commands that take multiple arguments have those arguments separated by a semicolon (;). For example,
PIXON xposition;yposition:	

Program catalog

The Program catalog is where you create, edit, delete, send, receive, or run programs. This section describes how to

- open the Program catalog
- create a new program
- enter commands from the program commands menu
- enter functions from the MATH menu
- edit a program
- run and debug a program
- stop a program
- copy a program
- send and receive a program
- delete a program or its contents
- customize an aplet.

Open Program catalog

1. Press SHIFT PROGRM.

The Program catalog displays a list of program names. If you haven't created any programs, the only name you'll see is Editline.

Editline contains the last expression that you entered from the edit line in HOME, or the last data you entered in an input form. (If you press ENTER from HOME without entering any data, the HP 39G/40G runs the contents of Editline.)
Editline is
a built-in
function.

Program catalog menu

Before starting to work with programs, you should take a few minutes to become familiar with the Program catalog menu keys. You can use any of the following keys (both menu and keyboard), to perform tasks in the Program catalog.

Program catalog keys

The program catalog keys are:

Key	Meaning
[ET]	Opens the highlighted program for editing.
[EEE]	Prompts for a new program name, then opens an empty program.
	Transmits the highlighted program to another HP 39G/40G or to a disk drive.
[EETI	Receives the highlighted program from another HP 39G/40G or from a disk drive.
[[IE]	Runs the highlighted program.
SHIFT Δ or \boldsymbol{V}	Moves to the beginning or end of the Program catalog.
DEL	Deletes the highlighted program.
SHIFT CLEAR	Deletes all programs in the program catalog.

Creating and editing programs

Create a new 1. Press SHIFTPROGRM to open the Program catalog. program
 2. Press [EIEI.
 The HP 39G/40G prompts you for a name.

A program name can contain special characters, such as a space. However, if you use special characters and then run the program by typing it in HOME, you must enclose the program name in double quotes (" "). Don't use the " symbol within your program name.
3. Type your program name, then press DES. When you press DET, the Program Editor opens.

4. Enter your program.

When done, start any other activity. Your work is saved automatically.

Enter commands

Until you become familiar with the HP 39G/40G commands, the easiest way to enter commands is to use the Commands menu from the Program editor. You can always type in commands using alpha characters.

1. From the Program editor, press SHIFT CMDS to open the Program Commands menu.
SHIFT CMDS

2. On the left, use \square or to highlight a command category, then press \square to access the commands in the category. Select the command that you want.

3. Press $\mathbf{U E}$ to paste the command into the program editor. CIE
To enter functions (more

Edit a program

1. Press SHIFT PROGRM to open the Program catalog.

2. Use the arrow keys to highlight the program you want to edit, and press EETII. The HP 39G/40G opens the Program Editor. The name of your program appears in the title bar of the display. You can use the following keys to edit your program.

Editing keys
The editing keys are:

Key	Meaning
Emin	Inserts the character at the editing point.
Finite	Inserts space into text.
PTilis	Displays previous page of the program.
Catien	Displays next page of the program.
$\triangle \square$	Moves up or down one line.
$\square 4$	Moves right or left one character.
[ince	Alpha-lock for letter entry. Press \square SHIFT A...Z to lock lower case.
CEET]	Backspaces cursor and deletes character.
DEL	Deletes current character.
ENTER	Starts a new line.
SHIFT CLEAR	Erases the entire program.
$\begin{aligned} & \text { VARS } \\ & \text { MATH } \end{aligned}$	Menus for entering variable names, contents of variables, math functions, and program constants.
SHIFT CMDS	Menus for entering program conmmands.
SHIFT CHARS	Displays all characters. To type one, highlight it and press DEI.
	To enter several characters in a row, use the Eilitid menu key while in the CHARS menu.

Using programs

Run a program

From HOME, type RUN program_name.
or
From the Program catalog, highlight the program you want to run and press [ITE].
Regardless of where you start the program, all programs run in HOME. What you see will differ slightly depending on where you started the program. If you start the program from HOME, the HP 39G/40G displays the contents of Ans (Home variable containing the last result), when the program has finished. If you start the program from the Program catalog, the HP 39G/40G returns you to the Program catalog when the program ends.

Debug a

If you run a program that contains errors, the program will program stop and you will see an error message.

4 Invalid
 Suntax

Edit Program?

To debug the program:

1. Choose 포켱 to edit the program.

The insert cursor appears in the program at the point where the error occurred.
2. Edit the program to fix the error.
3. Re-start the program.
4. Repeat the process until you find and correct all errors.

Stop a
program
You can stop the execution of a program at any time by pressing CANCEL (the ON key). Note: You may have to press it a couple of times.

Working with programs

Copy a
program
You can use the following procedure if you want to make a copy of your work before editing-or if you want to use one program as a template for another.

1. Press SHIFT PROGRM to open the Program catalog.
2. Press [EEEEI.
3. Type a new file name, then choose DER.

The Program Editor opens with a new program.
4. Press VARS to open the Variable menu.
5. Press 7 to quickly scroll to Program.
6. Press \square, then highlight the program you want to copy.
7. Press Uifime then press Ded.

The contents of the highlighted program are copied into the current program at the cursor location.

HINT If you use a programming routine often, save the routine under a different program name, then use the above method to copy it into your programs.

Transmit a You can send programs to, and receive programs from, other program calculators just as you can send and receive aplets, matrices, lists, and notes.

After aligning the calculators' infrared ports, open the Program catalogs on both calculators. Highlight the program
 on the receiving calculator.

You can also send programs to, and receive programs from, a remote storage device (aplet disk drive or computer). This takes place via a cable connection and requires an aplet disk drive or specialized software running on a PC (such as a connectivity kit).

Delete a program

You can delete any program except Editline.

1. Press SHIFT PROGRM to open the Program catalog.
2. Highlight a program to delete, then press DEL.

Delete all programs

You can delete all programs at once.

1. In the Program catalog, press SHIFT CLEAR.
2. Press 포코․

You can clear the contents of a program without deleting the program name.

1. Press SHIFT PROGRM to open the Program catalog.
2. Highlight a program, then press [旦酉.
3. Press SHIFT CLEAR, then press 표콩․
4. The contents of the program are deleted, but the program name remains.

About customizing an aplet

You can configure an aplet and develop a set of programs to work with the aplet.

Use the SETVIEWS command to create a custom VIEWS menu which links specially written programs to the new aplet.

A useful method for customizing an aplet is illustrated below:

1. Decide on the aplet type that you want to use, for example the Function aplet or the Statistics aplet. The copied aplet inherits all the properties of the parent aplet. Save the standard aplet under a new name.
2. Configure the new aplet if you need to, for example by presetting axes or angle measures.
3. Develop the programs to work with your aplet. When you develop the aplet's programs, use the standard aplet naming convention. This allows you to keep track of the programs in the Program catalog that belong to each aplet. See "Aplet naming convention" on page 15-10.
4. Develop a program that uses the SETVIEWS command to modify the aplet's VIEWS menu. The menu options provide links to associated programs. You can specify any other programs that you want transferred with the aplet. See "SETVIEWS" on page 15-14 for information on the command.
5. Ensure that the new aplet is selected, then run the menu configuration program to configure the aplet's VIEWS menu.
6. Test the aplet and debug the associated programs.(Refer to "Debug a program" on page 15-7).

Aplet naming convention

To assist users in keeping track of aplets and associated programs, use the following naming convention when setting up an aplet's programs:

- Start all program names with an abbreviation of the aplet name. We will use APL in this example.
- Name programs called by menu entries in the VIEWS menu number, after the entry, for example:
- APL.ME1 for the program called by menu option 1
- APL.ME2 for the program called by menu option 2
- Name the program that configures the new VIEWS menu option APL.SV where SV stands for SETVIEWS.

For example, a customized aplet called "Differentiation" might call programs called DIFF.ME1, DIFF.ME2, and DIFF.SV.

Customizing an aplet example

This example aplet is designed to demonstrate the process of configuring an aplet. The new aplet is based on the Function aplet. Note: This aplet is not intended to serve a serious use, merely to illustrate the process.

Save the aplet

1. Open the Function aplet and save it as "EXPERIMENT". The new aplet appears in the Aplet library.

fPL	
EXPERIMENT	53KE
Function	OKB
Statistics	QKE
Inference	Q1KB
Farametric	QKB
[gendirecm

2. Create a program called EXP.ME1 with contents as shown. This program configures the plot ranges, then runs a
 program that allows you to configure the angle format.
3. Create a program called EXP.ME2 with contents as shown. This program sets the numeric view options for the aplet, and
 runs the program that you can use to configure the angle mode.
4. Create a program called EXP.ANG which the previous two programs call.

5. Create a program called EXP.S which runs when you start the aplet, as shown. This program sets the angle mode to
 degrees, and sets up the initial function that the aplet plots.

Configuring the Setviews menu option programs

In this section we will begin by configuring the VIEWS menu by using the SETVIEWS command. We will then create the "helper" programs called by the VIEWS menu which will do the actual work.
6. Open the Program catalog and create a program named "EXP.SV". Include the following code in the program. (Text shown in italics below are comments only.)

Each entry line after the command SETVIEWS is a trio that consists of a VIEWS menu text line (a space indicates none), a
 program name, and a
number that defines the view to go to after the program has run its course. All programs listed here will transfer with an aplet when the aplet is transferred.

SETVIEWS "' ';;' '"; 18;

Sets the first menu option to be "Auto scale". This is the fourth standard Function aplet view menu option and the 18 "Auto scale", specifies that it is to be included in the new menu. The empty quotes will ensure that the old name of "Auto scale" appears on the new menu. See "SETVIEWS" on page 15-14.

```
'My Entry1'';'EXP.ME1''; 1;
```

Sets the second menu option. This option runs program EXP.ME1, then returns to view 1, Plot view.

```
'My Entry2'';'EXP.ME2''; 3;
```

Sets the third menu option. This option runs the program EXP.ME2, then returns to view 3, the NUM view
' ' '; ' EXP.SV'; 0;
This line specifies that the program to set the View menu (this program) is transferred with the aplet. The space character between the first set of quotes in the trio specifies that no menu option appears for the entry. You do not need to transfer this program with the aplet, but it allows users to modify the aplet's menu if they want to.
" '"; ' EXP .ANG'; 0;
The program EXP.ANG is a small routine that is called by other programs that the aplet uses. This entry specifies that the program.EXP.ANG is transferred when the aplet is transferred, but the space in the first quotes ensures that no entry appears on the menu.

```
'START'';'EXP.S'; 7:
```

This specifies the Start menu option. The program that is associated with this entry, .EXP.S, runs automatically when you start the aplet. Because this menu option specifies view 7 , the VIEWS menu opens when you start the aplet.

You only need to run this program once to configure your aplet's VIEWS menu. Once the aplet's VIEWS menu is configured, it remains that way until you run SETVIEWS again.
You do not need to include this program for your aplet to work, but it is useful to specify that the program is attached to the aplet, and transmitted when the aplet is transmitted.
7. Return to the program catalog. The programs that you created should appear as follows:
8. You must now RUN the
 program EXP.SV to execute the SETVIEWS command and create the modified VIEWS menu. Check that the name of the new aplet is highlighted in the APLET view.
9. You can now return to the APLET library and press START to run your new aplet.

Programming commands

This section describes the commands for programming with HP 39G/40G. You can enter these commands in your program by typing them or by accessing them from the Commands menu.

Aplet commands

These commands control aplets.

CHECK

SELECT

SETVIEWS

Checks (selects) the corresponding function in the current aplet. For example, Check 3 would check F3 if the current aplet is Function. Then a checkmark would appear next to F3 in Symbolic view, F3 would be plotted in Plot view, and evaluated in Numeric view.

CHECK n

Selects the named aplet and makes it the current aplet. Note: Quotes are needed if the name contains spaces or other special characters.

SELECT apletname

The SETVIEWS command is used to define entries in the VIEWS menu for aplets that you customize. See "About customizing an aplet" on page 15-9 for an example of using the SETVIEWS command.

When you use the SETVIEWS command, the aplet's standard VIEWS menu is deleted and the customized menu is used in its place. You only need to apply the command to an aplet once. The View menu changes remain unless you apply the command again.
Typically, you develop a program that uses the SETVIEWS command only. The command contains a trio of arguments for each menu option to create, or program to attach. Keep the following points in mind when using this command:

- The SETVIEWS command deletes an aplet's standard Views menu options. If you want to use any of the standard options on your reconfigured VIEWS menu, you must include them in the configuration.
- When you invoke the SETVIEWS command, the changes to an aplet's VIEWS menu remain with the aplet. You need to invoke the command on the aplet again to change the VIEWS menu.
- All the programs that are called from the VIEWS menu are transferred when the aplet is transferred, for example to another calculator or to a PC.
- As part of the VIEWS menu configuration, you can specify programs that you want transferred with the aplet, but are not called as menu options. For example, these can be sub-programs that menu options use, or the program that defines the aplet's VIEWS menu.
- You can include a "Start" option in the VIEWS menu to specify a program that you want to run automatically when the aplet starts. This program typically sets up the aplet's initial configuration. The Start option on the menu is also useful for resetting the aplet.

Command syntax

The syntax for the command is as follows:

> SETVIEWS
> "Promptl";"ProgramName1"; ViewNumber1;
> "Prompt2"; "ProgramName2"; ViewNumber2:
> (You can repeat as many Prompt/ProgramName/ ViewNumber trios of arguments as you like.)

> Within each Prompt/ProgramName/ViewNumber trio, you separate each item with a semi-colon.

Prompt

Prompt is the text that is displayed for the corresponding entry in the Views menu. Enclose the prompt text in double quotes.

Associating programs with your aplet

If Prompt consists of a single space, then no entry appears in the view menu. The program specified in the ProgramName item is associated with the aplet and transferred whenever the aplet is transmitted. Typically, you do this if you want to transfer the Setviews program with the aplet, or you want to transfer a sub-program that other menu programs use.

Auto-run programs

If the Prompt item is "Start", then the ProgramName program runs whenever you start the aplet. This is useful for setting up a program to configure the aplet. Users can select the Start item from the Views menu to reset the aplet if they change configurations.
You can also define a menu item called "Reset" which is autorun if the user chooses the RESET button in the APLET view.

ProgramName

ProgramName is the name of the program that runs when the corresponding menu entry is selected. All programs that are identified in the aplet's SETVIEWS command are transferred when the aplet is transmitted.

ViewNumber

ViewNumber is the number of a view to start after the program finishes running. For example, if you want the menu option to display the Plot view when the associated program finishes, you would specify 1 as the ViewNumber value.

Including standard menu options

To include one of an aplet's standard View menu options in your customized menu, set up the arguments trio as follows:

- The first argument specifies the menu item name:
- Leave the argument empty to use the standard Views menu name for the item, or
- Enter a menu item name to replace the standard name.
- The second argument specifies the program to run:
- Leave the argument empty to run the standard menu option.
- Insert a program name to run the program before the standard menu option is selected.
- The third argument specifies the view and the menu number for the item. Determine the menu number from the View numbers table below.

Note: SETVIEWS with no arguments resets the views to default of the base aplet.

View numbers

The views are numbered as follows:

0	HOME	11	List Catalog
1	Plot	12	Matrix Catalog
2	Symbolic	13	Notepad Catalog
3	Numeric	14	Programs Catalog
4	Plot-Setup	15	Plot-Detail
5	Symbolic-Setup	16	Plot-Table
6	Numeric-Setup	17	Overlay Plot
7	Views	18	Auto scale
8	Note	19	Decimal
9	Sketch view	20	Integer
10	Aplet Catalog	21	Trig

UNCHECK

Unchecks (unselects) the corresponding function in the current aplet. For example, Uncheck 3 would uncheck F3 if the current aplet is Function.

```
UNCHECK n
```


Branch commands

Branch commands let a program make a decision based on the result of one or more tests. Unlike the other programming commands, the branch commands work in logical groups. Therefore, the commands are described together rather than each independently.

IF...THEN...END Executes a sequence of commands in the true-clause only if the test-clause evaluates to true. Its syntax is:

IF test-clause
THEN true-clause END

Example

```
1-A:
IF \(A==1\)
    THEN MSGBOX A " EQUALS 1" :
    END
```


IF... THEN... ELSE... END

Executes the true-clause sequence of commands if the testclause is true, or the false-clause sequence of commands if the test-clause is false.

IF test-clause
THEN true-clause ELSE false-clause END

Example

```
1-A:
IF A==1
    THEN MSGBOX A " EQUALS 1" :
    ELSE MSGBOX A " IS NOT EQUAL TO 1" :
    END
```

Executes a series of test-clause commands that execute the appropriate true-clause sequence of commands. Its syntax is:

```
CASE
IF test-clause 1 THEN true-clause }\mp@subsup{1}{1}{}\mathrm{ END
IF test-clause 2 THEN true-clause2 END
```



```
IF test-clause n THEN true-clause n END
END
```

When CASE is executed, test-clause e_{1} is evaluated. If the test is true, true-clause $_{1}$ is executed, and execution skips to END. If test-clause 1_{1} if false, execution proceeds to test-clause ${ }_{2}$. Execution with the CASE structure continues until a trueclause is executed (or until all the test-clauses evaluate to false).

Many conditions are automatically recognized by the HP 39G/40G as error conditions and are automatically treated as errors in programs.

IFERR...THEN...END allows a program to intercept error conditions that otherwise would cause the program to abort. Its syntax is:

```
IFERR trap-clause
THEN error-clause END
```

RUN Runs the named program. If your program name contains special characters, such as a space, then you must enclose the file name in double quotes (" ").

RUN "program name" or RUN programname

Stops the current program.

> STOP

Drawing commands

The Drawing commands act on the display. The scale of the display depends on the current aplet's Xmin, Xmax, Ymin, and Ymax values. The following examples assume the HP 39G/40G default settings with the Function aplet as the current aplet.

ARC

BOX

Draws a circular arc, of given radians, whose centre is at (x, y) The arc is drawn from start_angle_measurement, and end_angle_measurement.

ARC $x ; y ;$ radius; start_angle_measurment; end_angle_measurment:

Example

ARC 0; 0; 2; 0; 360:
FREEZE:
Draws a circle centered at $(0,0)$ of radius 2 . The FREEZE command
 causes the circle to remain displayed on the screen until you press a key.

Draws a box with opposite corners $(x 1, y 1)$ and $(x 2, y 2)$.
BOX $x 1 ; y 1 ; x 2 ; y 2$:

Example

BOX $-1 ;-1 ; 1 ; 1:$
FREEZE:
Draws a box, lower corner at $(-1,-1)$, upper corner at $(1,1)$

ERASE

Clears the display
ERASE :

FREEZE Halts the program, freezing the current display. Execution resumes when any key is pressed.

LINE

PIXOFF

PIXON

TLINE

Draws a line from $(x 1, y 1)$ to $(x 2, y 2)$. LINE $x 1 ; y 1 ; x 2 ; y 2$:

Turns off the pixel at the specified coordinates (x, y).

```
PIXOFF }x;y
```

Turns on the pixel at the specified coordinates (x, y).

PIXON $x ; y$:

Toggles the pixels along the line from $(x 1, y 1)$ to $(x 2, y 2)$ on and off. Any pixel that was turned off, is turned on; any pixel that was turned on, is turned off. TLINE can be used to erase a line.

$$
\text { TLINE } x 1 ; y 1 ; x 2 ; y 2 \text { : }
$$

Example

TLINE 0;0;3;3:
Erases previously drawn 45 degree line from $(0,0)$ to $(3,3)$, or draws that line if it doesn't already exist.

Graphic commands

The Graphic commands use the graphics variables G0 through G9-or the Page variable from Sketch-as graphicname arguments. The position argument takes the form (x, y). Position coordinates depend on the current aplet's scale, which is specified by Xmin, Xmax, Ymin, and Ymax. The upper left corner of the target graphic (graphic2) is at (Xmin, Ymax).

You can capture the current display and store it in G0 by simultaneously pressing $\mathrm{ON}+\mathrm{PLOT}$.

Stores the current display in graphicname.
DISPLAY \rightarrow graphicname
\rightarrow DISPLAY
Displays graphic from graphicname in the display. \rightarrow DISPLAY graphicname

\rightarrow GROB	Creates a graphic from expression, using font_size, and stores the resulting graphic in graphicname. Font sizes are 1, 2, or 3. If the fontsize argument is 0 , the HP $39 \mathrm{G} / 40 \mathrm{G}$ creates a graphic display like that created by the SHOW operation. \rightarrow GROB graphicname; expression;fontsize
GROBNOT	Replaces graphic in graphicname with bitwise-inverted graphic.
	GROBNOT graphicname
GROBOR	Using the logical OR, superimposes graphicname 2 onto graphicnamel. The upper left corner of graphicname 2 is placed at position.
	GROBOR graphicname1; position; graphicname 2
GROBXOR	Using the logical XOR, superimposes graphicname 2 onto graphicname1. The upper left corner of graphicname 2 is placed at position.
	GROBXOR graphicname1; position;graphicname 2
MAKEGROB	Creates graphic with given width, height, and hexadecimal data, and stores it in graphicname.
	MAKEGROB graphicname;width;height;hexdata
PLOT \rightarrow	Stores the Plot view display as a graphic in graphicname. PLOT \rightarrow graphicname
	PLOT \rightarrow and DISPLAY \rightarrow can be used to transfer a copy of the current PLOT view into the sketch view of the aplet for later use and editing.
Example	$1 \rightarrow$ Pagenum:
	PLOT \rightarrow Page:
	FREEZE:

This program stores the current PLOT view to the first page in the sketch view of the current aplet and then displays the sketch as a graphic object until any key is pressed.
\rightarrow PLOT
Puts graph from graphicname into the Plot view display.

$$
\rightarrow \mathrm{PLOT} \text { graphicname: }
$$

REPLACE Replaces portion of graphic in graphicnamel with graphicname2, starting at position. REPLACE also works for lists and matrices.

> REPLACE graphicname1; (position); graphicname2:

SUB

ZEROGROB

Extracts a portion of the named graphic (or list or matrix), and stores it in a new variable, name. The portion is specified by position and positions.

> SUB name; graphicname ; (position); (positions):

Creates a blank graphic with given width and height, and stores it in graphicname.

ZEROGROB graphicname; width; height:

Loop commands

Loop structures allow a program to execute a routine repeatedly. The HP 39G/40G has three loop structures. The example programs below illustrate each of these structures incrementing the variable A from 1 to 12.

DO...UNTIL ...END

WHILE.. REPEAT.. END

Do ... Until ... End is a loop structure that executes the loopclause repeatedly until test-clause returns a true (nonzero) result. Because the test is executed after the loop-clause, the loop-clause is always executed at least once. Its syntax is:

```
DO loop-clause UNTIL test-clause END
1 A:
DO A + 1 A A
UNTIL A == 12
END
```

While ... Repeat ... End is a loop structure that repeatedly evaluates test-clause and executes loop-clause sequence if the test is true. Because the test-clause is executed before the loop-clause, the loop-clause is not executed if the test is initially false. Its syntax is:

```
WHILE test-clause REPEAT loop-clause END
```

WHILE test-clause REPEAT loop-clause END
1 A:
1 A:
WHILE A < 12
WHILE A < 12
REPEAT A+1 \ A
REPEAT A+1 \ A
END

```
END
```

FOR...TO...STEP ...END

FOR name=start-expression TO end-expression [STEP increment];

loop-clause END

```
FOR A=1 TO 12 STEP 1;
```

DISP 3;A:

END
Note that the STEP parameter is optional. If it is omitted, a step value of 1 is assumed.

Terminates loop.

```
BREAK
```


Matrix commands

The matrix commands take variables M0-M9 as arguments.

ADDCOL

ADDROW

DELCOL

DELROW

EDITMAT

Add Column. Inserts values into a column before column_number in the specified matrix. You enter the values as a vector. The values must be separated by commas and the number of values must be the same as the number of rows in the matrix name.

$$
\text { ADDCOL name; }\left[\text { value1,...,value }{ }_{n}\right] ; \text { column_number }
$$

Add Row. Inserts values into a row before row_number in the specified matrix. You enter the values as a vector. The values must be separated by commas and the number of values must be the same as the number of columns in the matrix name.

$$
\text { ADDROW name; }\left[\text { value }_{1}, \ldots, \text { value }_{n}\right] ; \text { row_number }
$$

Delete Column. Deletes the specified column from the specified matrix.

DELCOL name;column_number
Delete Row. Deletes the specified row from the specified matrix.

DELROW name; row_number
Starts the Matrix Editor and displays the specified matrix. If used in programming, returns to the program when user presses DEE.

EDITMAT name

RANDMAT	Creates random matrix with a specified number of rows and columns and stores the result in name (name must be m0 . . .M9). The entries will be integers ranging from -9 to 9 .
	RANDMAT name; rows; columns
REDIM	Redimensions the specified matrix or vector to size. For a matrix, size is a list of two integers $\{n 1, n 2\}$. For a vector, size is a list containing one integer $\{n\}$.
	REDIM name; size
REPLACE	Replaces portion of a matrix or vector stored in name with an object starting at position start . start for a matrix is a list containing two numbers; for a vector, it is a single number. Replace also works with lists and graphics.
	REPLACE name; start; object
SCALE	Multiplies the specified row_number of the specified matrix by value.
	SCALE name; value; rownumber
SCALEADD	Multiplies the row of the matrix name by value, then adds this result to the second specified row.
	SCALEADD name; value; row1; row2
SUB	Extracts a sub-object-a portion of a list, matrix, or graphic from object-and stores it into name. start and end are each specified using a list with two numbers for a matrix, a number for vector or lists, or an ordered pair, (X,Y), for graphics.
	SUB name; object; start; end
SWAPCOL	Swaps Columns. Exchanges column1 and column2 of the specified matrix.
	SWAPCOL name; column ; column 2
SWAPROW	Swap Rows. Exchanges rowland row 2 in the specified matrix.
	SWAPROW name; rowl; row2

Print commands

These commands print to an HP infrared printer, for example the HP 82240B printer. Note: The HP 40G does not have an infrared port and will not print to an infrared printer.

PRDISPLAY Prints the contents of the display.

PRHISTORY Prints all objects in the history.
PRHISTORY

PRVAR
Prints name and contents of variablename.
PRVAR variablename
You can also use the PRVAR command to print the contents of a program or a note.

PRVAR programname; PROG
PRVAR notename; NOTE

Prompt commands

You can use the following commands to prompt users for input during your program or to provide information to users.

BEEP

CHOOSE
Beeps at the frequency and for the time you specify.
BEEP frequency; seconds
Creates a Choose Box, which is a box containing a list of options from which the user chooses one. Each option is numbered, 1 through n. The result of the choose command is to store the number of the option chosen in a variable. The syntax is

> CHOOSE default_option_number; $^{\text {title } ;}$ option $_{1} ;$ option $_{2}$; ...option $_{n}$
where default_option_number is the number of the option that will be highlighted by default whenever the Choose Box is displayed, title is the text displayed in the title bar of the Choose Box, and option ${ }_{1} \ldots$ option $_{n}$ are the options listed in the Choose Box.

Example

DISP

DISPTIME

EDITMAT

Displays textitem in a row of the display at the line_number. A text item consists of any number of expressions and quoted strings of text. The expressions are evaluated and turned into strings. Lines are numbered from the top of the screen, 1 being the top and 7 being the bottom.

DISP line_number;textitem

Example

DISP 3;"A is" $2+2$
Result: A is 4
(displayed on line 3)

A IS 4

Displays the current date and time.

DISPTIME

To set the date and time, simply store the correct settings in the date and time variables. Use the following formats: M. DDYYYY for the date and H.MMSS for the time.

Examples

$5.152000 \vee$ DATE (sets the date to May 15,2000).
$10.1500 \vee$ TIME (sets the time to $10: 15 \mathrm{am}$).

Matrix Editor. Opens the Matrix editor for the specified matrix. Returns to the program when user presses CIE

EDITMAT matrixname

The EDITMAT command can also be used to create matrices.

1. Press SHIFT CMDS [D] SIN DES
2. Press ALPHA $M 1$, and then press ENTER.
3. The Matrix catalog opens with M1 available for editing. EDITMAT matrixname is a shortcut to opening the matrix editor with matrixname.

FREEZE

GETKEY

INPUT

This command prevents the display from being updated after the program runs. This allows you to view the graphics created by the program. Cancel FREEZE by pressing any key.
FREEZE

Waits for a key, then stores the keycode rc.p in name, where r is row number, c is column number, and p is key-plane number. The key-planes numbers are: 1 for unshifted; 2 for shifted; 4 for alpha-shifted; and 5 for both alpha-shifted and shifted.

GETKEY name

Creates an input form with a title bar and one field. The field has a label and a default value. There is text help at the bottom of the form. The user enters a value and presses the DIER menu key. The value that the user enters is stored in the variable name. The title, label, and help items are text strings and need to be enclosed in double quotes.

Use SHIFT CHARS to type the quote marks " ".
INPUT name; title, label; help; default

Example

```
INPUT R; "Circular Area";
    "Radius";
    "Enter Number";1:
```

MSGBOX	Displays a message box containing textitem. A text item consists of any number of expressions and quoted strings of text. The expressions are evaluated and turned into strings of text. For example, "AREA IS:" $2+2$ becomes AREA IS: 4. Use SHIFT CHARS to type the quote marks " ". MSGBOX textitem :
	MSGBOX textitem :
	Example
	```1-A: MSGBOX "AREA IS: " }\mp@subsup{\pi}{}{\starA^2:```
	You can also use the NoteText variable to provide text arguments. This can be used to insert line breaks. For example, press SHIFT NOTE and type AREA IS ENTER.
	The position line
	MSGBOX NoteText " " $\pi^{\star} \mathrm{A}^{\wedge} 2$ 2:
	will display the same message box as the previous example.
PROMPT	Displays an input box with name as the title, and prompts for a value for name. name can only be one character in length.
	PROMPT name
WAIT	Halts program execution for the specified number of seconds.

WAIT seconds

## Stat-One and Stat-Two commands

The following commands are used for analysis of onevariable and two-variable statistical data.

## Stat-One commands

D01VSTATS Calculates STATS using datasetname and stores the results in the corresponding variables: $\mathrm{N} \Sigma$, $\operatorname{Tot} \Sigma$, Mean $\Sigma, \operatorname{PVar} \Sigma$, SVar $\Sigma, \operatorname{PSDev}, \operatorname{SSDev}, \operatorname{Min} \Sigma, \mathrm{Q} 1$, Median, Q3, and Max $\Sigma$. Datasetname can be H1, H2, ..., or H5. Datasetname must define at least two data points.

## D01VSTATS datasetname

SETFREQ Defines datasetname frequency according to column or value. Datasetname can be H1, H2,..., or H5, column can be C0-C9 and value can be any positive integer.

SETFREQ datasetname; column
or
SETFREQ definition; value
SETSAMPLE Defines datasetname sample according to column. Datasetname can be $\mathrm{H} 1-\mathrm{H} 5$, and column can be $\mathrm{CO}-\mathrm{C} 9$.

SETSAMPLE datasetname; column

## Stat-Two commands

DO2VSTATS Calculates STATS using datasetname and stores the results in corresponding variables: MeanX, $\Sigma \mathrm{X}, \Sigma \mathrm{X} 2$, MeanY, $\Sigma \mathrm{Y}$, $\Sigma \mathrm{Y} 2, \Sigma \mathrm{XY}, \mathrm{Corr}, \mathrm{PCov}, \mathrm{SCov}$, and RELERR. Datasetname can be SI, S2,..., or S5. Datasetname must define at least four pairs of data points.

D02VSTATS datasetname
SETDEPEND Defines datasetname dependent column. Datasetname can be S1, S2, ..., or S5 and column can be C0-C9.

SETDEPEND datasetname; column
SETINDEP
Defines datasetname independent column. Datasetname can be $\mathrm{S} 1, \mathrm{~S} 2, \ldots$, or S 5 and column can be $\mathrm{C} 0-\mathrm{C} 9$.

SETINDEP datasetname; column

## Storing and retrieving variables in programs

The HP 39G/40G has both Home variables and Aplet variables. Home variables are used for real numbers, complex numbers, graphics, lists, and matrices. Home variables keep the same values in HOME and in aplets.

Aplet variables are those whose values depend on the current aplet. The aplet variables are used in programming to emulate the definitions and settings you make when working with aplets interactively.

You use the Variable menu (VARS) to retrieve either Home variables or aplet variables. See "The VARS menu" on page 11-4. Not all variables are available in every aplet. S1fit-S5fit, for example, are only available in the Statistics aplet.
Under each variable name is a list of the aplets where the variable can be used.

## Plot-view variables

The following aplet variables control the Plot view.

Area   Function	Contains the last value found by the Area function in PlotFCN menu.
Axes	Turns axes on or off.
All Aplets	From Plot Setup, check (or uncheck) _AXES. or
	In a program, type:   1 - Axes-to turn axes on (default).   0 - Axes-to turn axes off.
Connect	Draws lines between successively plotted points.
Function   Parametric	From Plot Setup, check (or uncheck) __CONNECT.
Polar	or
Solve Statistics	In a program, type
	1 - Connect-to connect plotted points (default, except in Statistics where the default is off).   0 - Connect—not to connect plotted points.

Coord
Function
Parametric
Polar
Sequence
Solve
Statistics

## Extremum

Function
FastRes
Function
Solve

Grid
All Aplets

## Hmin/Hmax

Statistics

Turns the coordinate-display mode in Plot view on or off.
From Plot view, use the Menu mean key to toggle coordinate display on an off.

In a program, type
1 Coord-to turn coordinate display on (default).
0 - Coord-to turn coordinate display off.
Contains the last value found by the Extremum operation in the Plot-FCN menu.

Toggles resolution between plotting in every other column (faster), or plotting in every column (more detail).

From Plot Setup, choose Faster or More Detail.
or
In a program, type
1 - FastRes-for faster (default).
0 - FastRes-for more detail.

Turns the background grid in Plot view on or off. From Plot setup, check (or uncheck) _GRID.
or
In a program, type
1 - Grid to turn the grid on.

- Grid to turn the grid off (default).

Defines minimum and maximum values for histogram bars.
From Plot Setup for one-variable statistics, set values for HRNG.
or
In a program, type
$n_{1} \bullet \mathrm{Hmin}$
$n_{2} \bullet \mathrm{Hmax}$
where $n_{2}>n_{1}$

Hwidth   Statistics	Sets the width of histogram bars.
	From Plot Setup in 1VAR stats set a value for Hwidth
	or
	In a program, type
	$n$ - Hwidth
Indep   All Aplets	Defines the value of the independent variable used in tracing mode.
	In a program, type
	$n-$ Indep
InvCross   All Aplets	Toggles between solid crosshairs or inverted crosshairs. (Inverted is useful if the background is solid).
	From Plot Setup, check (or uncheck) _InvCross
	or
	In a program, type:
	1 InvCross-to invert the crosshairs. $0 \rightarrow$ InvCross -for solid crosshairs (default).
Isect   Function	Contains the last value found by the Intersection function in the Plot-FCN menu.
Labels   All Aplets	Draws labels in Plot view showing X and Y ranges.
	From Plot Setup, check (or uncheck) _Labels
	or
	In a program, type
	$\begin{array}{ll}1 & \text { Labels—to turn labels on. } \\ 0 & \text { Labels-to turn labels off (default). }\end{array}$


Sequence	Defines the minimum and maximum independent variable values. Appears as the NRNG fields in the Plot Setup input form.
	From Plot Setup, enter values for NRNG. or
	In a program, type
	$n_{1}$ - Nmin
	$n_{2} \wedge$ Nmax
	where $n_{2}>n_{1}$
Recenter	Recenters at the crosshairs locations when zooming.
All Aplets	From Plot-Zoom-Set Factors, check (or uncheck) Recenter
	or
	In a program, type
	```1 Recenter- to turn recenter on (default). 0 Recenter-to turn recenter off.```
Root Function	Contains the last value found by the Root function in the Plot-FCN menu.
S1mark-S5mark Statistics	Defines the mark to use for statistics 2-variable scatter plots.
	From Plot Setup for two-variable statistics, S1markS5mark, then choose a mark. or
	In a program, type
	$\begin{aligned} & \mathrm{n} \text { S1mark } \\ & \text { where } \mathrm{n} \text { is } 1,2,3, \ldots 5 \end{aligned}$
SeqPlot	Toggles type of sequence plot: Stairstep or Cobweb.
Sequence	From Plot Setup, select SeqP lot, then choose Stairstep or Cobweb.
	or
	In a program, type
	1 - SeqPlot-for stairstep.
	2 SeqPlot-for cobweb.
Programming	15-33

Simult Function	Toggles between simultaneous and sequential graphing of all selected expressions.
Parametric Polar	From Plot Setup, check (or uncheck) _SIMULT
Sequence	or In a program, type
	```1 Simult-for simultaneous graphing. 0 Simult—for sequential graphing.```
Slope   Function	Contains the last value found by the Slope function in the Plot-FCN menu.
StatPlot   Statistics	Toggles type of 1-variable statistics plot between Histogram or Box-and-Whisker.
	From Plot Setup, select StatPlot, then choose Histogram or BoxWhisker. or
	In a program, type
	1-StatPlot-for Histogram.   2 - StatPlot-for BoxWhisker.
Umin/Umax Polar	Defines the minimum and maximum independent values. Appears as the URNG field in the Plot Setup input form.
	From the Plot Setup input form, enter values for URNG. or
	In a program, type
	$\begin{aligned} & n_{1} \bowtie \text { Umin } \\ & n_{2} \bowtie \text { Umax } \end{aligned}$
	where $n_{2}>n_{1}$
Ustep   Polar	Defines the step size for an independent variable.
	From the Plot Setup input form, enter values for USTEP. or
	In a program, type
	$n$ - Ustep   where $n>0$
15-34	Programming

Tmin / Tmax
Parametric

Tracing
All Aplets

## Tstep

Parametric

## Xcross

All Aplets

Ycross
All Aplets

Defines the minimum and maximum independent variable values. Appears as the TRNG field in the Plot Setup input form.

From Plot Setup, enter values for TRNG.
or
In a program, type
$n_{1} \bullet$ Tmin
$n_{2}$ Tmax
where $n_{2}>n_{1}$
Turns tracing mode on or off in Plot view.
In a program, type
1 - Tracing-to turn Tracing mode on (default).
0 - Tracing-to turn Tracing mode off.
Defines the step size for an independent variable.
From the Plot Setup input form, enter values for TSTEP.
or
In a program, type
$n$ - Tstep
where $n>0$
Defines the horizontal coordinate of crosshairs. Only works with TRACE off.

In a program, type
$n$ - Xcross
Defines the vertical coordinate of crosshairs. Only works with TRACE off.

In a program, type
$n$ - Ycross

Xtick   All Aplets	Defines the distance between tick marks for the horizontal axis.
	From the Plot Setup input form, enter a value for Xtick. or
	In a program, type
	$n$ - Xtick where $n>0$
Ytick   All Aplets	Defines the distance between tick marks for the vertical axis.
	From the Plot Setup input form, enter a value for Ytick.
	or
	In a program, type
	$n$ Ytick where $n>0$
Xmin / Xmax   All Aplets	Defines the minimum and maximum horizontal values of the plot screen. Appears as the XRNG fields (horizontal range) in the Plot Setup input form.
	From Plot Setup, enter values for XRNG.
	or
	In a program, type
	$n_{1} \downarrow$ Xmin
	$n_{2}$ - Xmax
	where $n_{2}>n_{1}$
Ymin / Ymax   All Aplets	Defines the minimum and maximum vertical values of the plot screen. Appears as the YRNG fields (vertical range) in the Plot Setup input form.
	From Plot Setup, enter the values for YRNG.
	or
	In a program, type
	$n_{1} \downarrow$ Ymin
	$n_{2}$ Ymax where $n_{2}>n_{1}$


Xzoom	Sets the horizontal zoom factor.
All Aplets	From Plot-ZOOM-Set Factors, enter the value for XZOOM.
	or
	In a program, type
	$\begin{aligned} & n \triangleright \mathrm{XZOOM} \\ & \text { where } n>0 \end{aligned}$
Yzoom	Sets the vertical zoom factor.
All Aplets	From Plot-ZOOM-Set Factors, enter the value for YZOOM.
	or
	In a program, type
	$n \bullet Y Z O O M$

## Symbolic-view variables

The following aplet variables available in the Symbolic view.

Angle<br>All Aplets

Sets the angle mode.
From Symbolic Setup, choose Degrees, Radians, or Grads for angle measure.
or
In a program, type
1-Angle -for Degrees.
2 - Angle -for Radians.
3 - Angle-for Grads.

F1...F9, F0
Function

Can contain any expression. Independent variable is $X$.

## Example

${ }^{\prime} \operatorname{SIN}(X)^{\prime} \rightarrow \mathrm{FI}(X)$
In the above example, you must put single quotes around the expression to keep it from being evaluated before it is stored. Use SHIFTCHARS to type the single quote mark.

X1, Y1...X9, Y9 $\mathrm{XO}, \mathrm{YO}$
Parametric

R1...R9, R0
Polar

U1...U9, U0
Sequence

## E1...E9, E0

Solve

Can contain any expression. Independent variable is T.

## Example

'SIN(4*T)' Y1(T):'2*SIN(6*T)' STO X1 (T)

Can contain any expression. Independent variable is $\theta$.

## Example

${ }^{\prime} 2 * \operatorname{SIN}(2 * \theta)^{\prime} \rightarrow \mathrm{R} 1(\theta)$
Can contain any expression. Independent variable is N .

## Example

RECURSE $(\mathrm{U}, \mathrm{U}(\mathrm{N}-1) * \mathrm{~N}, 1,2)$ ( $\mathrm{U}(\mathrm{N})$
Can contain any equation or expression. Independent variable is selected by highlighting it in Numeric View.

## Example

$' \mathrm{X}+\mathrm{Y} * \mathrm{X}-2=\mathrm{Y}^{\prime}$ • E 1
Defines the type of fit to be used by the FIT operation in drawing the regression line.

From Symbolic Setup view, specify the fit in the field for S1FIT, S2FIT, etc.
or
In a program, store one of the following constant names or numbers into a variable S1fit, S2fit, etc.

1. Linear
2. LogFit
3. ExpFit
4. Power
5. QuadFit
6. Cubic
7. Logist
8. User defined

## Example

Cubic S2fit
or
6 S2fit

## Numeric-view variables

The following aplet variables control the Numeric view. The value of the variable applies to the current aplet only.

C1...C9, C0
Statistics

Digits
All Aplets

C 0 through C9, for columns of data. Can contain lists.
Enter data in the Numeric view
or
In a program, type
LIST•Cn
where $n=0,1,2,3 \ldots 9$
Number of decimal places to use for Number format.
From Solve's Numeric Setup view, enter a value in the second field of Number Format.
or
In a program, type
$n$ - Digits
where $0<n<11$
Except in Solve, the value of Digits takes effect only after the current aplet is saved with a new name. Until then, HDigit is in effect.

Format	Defines the number display format.
All Aplets	From Solve's Numeric Setup view, choose Standard, Fixed, Scientific, or Engineering in the Number Format field.
	or
	In a program, store the constant name (or its number) into the variable Format.
	1. Standard
	2. Fixed
	3. Scientific
	4. Engineering
	Note: Fraction is not a valid mode in aplets.
	Except in Solve, the value of Format takes effect only after the current aplet is saved with a new name. Until then, HFormat is in effect.
	Example
	Scientific Format
	or
	3 Format
NumCol	Defines the highlighted column in Numeric view.
All Aplets except Statistics aplet	In a program, type
	$n \downarrow$ NumCol
	where $n$ can be $0,1,2,3,4,5,6,7,8,9$.
NumFont	Toggles the font size in Numeric view. Does not appear in the
Function	Num Setup input form. Corresponds to the BIG key in
Parametric	Numeric view.
Polar	In a program, type
SequenceStatistics	
	$\begin{aligned} & 0 \text { NumFont for small (default). } \\ & 1>\text { NumFont for big. } \end{aligned}$
	List of independent values used by Build Your Own Table.
Function	In a program, type
Parametric	
Polar	LIST-NumIndep
Sequence	
15-40	Programming


NumRow   All Aplets except Statistics aplet	Defines the highlighted row in Numeric view.
	In a program, type
	$n$ - NumRow
	where $n>0$
NumStart   Function   Parametric   Polar	Defines the starting value for a table in Numeric view.
	From Num Setup, enter a value for NUMSTART.
	From Num Setup, enter a value for NUMSTARI.
	or
Sequence	In a program, type
	$n$ - NumStart
NumStep   Function   Parametric   Polar   Sequence	Defines the step size (increment value) for an independent variable in Numeric view.
	From Num Setup, enter a value for NUMSTEP.
	or
	In a program, type
	$n \bullet$ NumStep where $n>0$
NumType   Function   Parametric   Polar   Sequence	Choose a table format.
	From Num Setup, choose Automatic or Build Your
	Own.
	or
	In a program, type
	$0 \wedge$ NumType for Build Your Own.   1 NumType for Automatic (default).
NumZoom   Function   Parametric   Polar   Sequence	Defines the Zoom factor in the Numeric view.
	From Num Setup, type in a value for NUMZOOM.
	or
	In a program, type
	$n$ - NumZoom where $n>0$

## StatMode <br> Statistics

Toggles between 1-variable and $2-$ variable statistics in the Statistics aplet. Does not appear in the Plot Setup input form. Corresponds to the MIME and EIFIEI menu keys in Numeric View.

In a program, store the constant name (or its number) into the variable StatMode. $1 \mathrm{VAR}=1,2 \mathrm{VAR}=2$.

## Example

1VAR StatMode
or
1 StatMode

## Note variables

The following aplet variable is available in Note view.
NoteText
Use NoteText to recall text previously entered in Note view.

## Sketch variables

The following aplet variables are available in Sketch view.

Page	Defines a page in a sketch set. A sketch set can contain up to
All Aplets	10 graphics. The graphics can be viewed one at a time using the ETHESE and RGEEC keys.
	The Page variable refers to the currently displayed page of a sketch set.
	In a program, type
	graphicname - Page
PageNum	Index for referring to a particular page of the sketch set (in
All Aplets	Sketch view).
	In a program, type the page that is shown when SHIFT SKETCH is pressed.
	$n \vee$ PageNum

## Extending aplets

Aplets are the application environments where you explore different classes of mathematical operations.

You can extend the capability of the HP 39G/40G in the following ways:

- Create new aplets, based on existing aplets, with specific configurations such as angle measure, graphical or tabular settings, and annotations.
- Transmit aplets between HP 39G calculators via an infra red link.
- Download e-lessons (teaching aplets) from the HewlettPackard's Calculator web site.
- Program new aplets. See chapter 15, Programming, for further details.


## Creating new aplets based on existing aplets

You can create a new aplet based on an existing aplet. To create a new aplet, save an existing aplet under a new name, then modify the aplet to add the configurations and the functionality that you want. You can send your aplet to other calculators so that other people can use it.

Information that defines an aplet is saved automatically as it is entered into the calculator.

To keep as much memory available for storage as possible, delete any aplets you no longer need.

## Aplet Keys

Key	Meaning
	Saves the highlighted aplet with a name．
	Resets the default values and settings in the highlighted aplet．This erases any stored data or functions．
Crint	Alphabetically or chronologically sorts the items in the Aplet Library menu list．
ETEETE	Transmits the highlighted aplet to another HP 39G／40G or a storage device．
国正界 （receive）	Receives the aplet sent from another HP 39G／40G or storage device．
	Opens the selected aplet．

Example：To create a new aplet from an existing Solve aplet

A simple example of a customized aplet is the TRIANGLES aplet．This aplet is a copy of the Solve aplet containing the formulas commonly used in calculations involving right－angled triangles．
1．In APLET，highlight Solve and SAVE it under the new name．

APLET Select Solve	
TRIANGLES	NEW NAME：SOLUE
	TRIFNKLES＊

2．Enter the four formulas：


Radians，or Grads．

```
SHIFT MODES
```


Select Degrees
[0E


4．Ensure the TRIANGLES aplet is saved in the Aplet Library．

The Solve aplet can now

Farametric	
Function	akB
Inferential．．．	－ 5 Sk
	［m］

Example：To use the customized aplet

To use the aplet，simply select the appropriate formula， change to the Numeric view and solve for the missing variable．

Find the length of a ladder leaning against a vertical wall if it forms an angle of $35^{\circ}$ with the horizontal and extends 5 metres up the wall．
1．Select the aplet．
APLET Select
TRIANGLES
E自而童

E1： $\operatorname{siN}(\mathrm{\theta})=0 / \mathrm{H}$	
E5：	
ESOIT TCHE	

2．Choose the sine formula in E1．

3．Change to the Numeric view and enter the known values．
NUM
35 ENTER


5 ENTER
4. Solve for the missing value.

## 

## 8: 35 <br> $\begin{array}{ll}\text { a: } & 3 \\ \text { 0: } & 5\end{array}$ <br> н: B. 7172339781 <br> entef Malue df pfiess salve

The length of the ladder is approximately 8.72 metres

## Resetting an aplet

Resetting an aplet clears all data and resets all default settings.
To reset an aplet, open the Library, select the aplet and press


You can only reset an aplet that is based on a built-in aplet if the programmer who created it has provided a Reset option.

## Annotating an aplet with notes

The Note view ( SHIFT NOTE) attaches a note to the current aplet. See Chapter 14, "Notes and Sketches."

## Annotating an aplet with sketches

The Sketch view (SHIFT)SKETCH) attaches a picture to the current aplet. See chapter 14, "Notes and sketches".

HINT Notes and sketches that you attach to an aplet become part of the aplet. When you transfer the aplet to another calculator, the associated note and sketch are transferred as well.

## Downloading e-lessons from the web

In addition to the standard aplets that come with the calculator, you can download aplets from the world wide web. For example, Hewlett-Packard's Calculators web site contains aplets that demonstrate certain mathematical concepts. Note that you need the Graphing Calculator Connectivity Kit in order to load aplets from a PC.

Hewlett-Packard's Calculators web site can be found at: www.hp.com/calculators

## Sending and receiving aplets

A convenient way to distribute or share problems in class and to turn in homework is to transmit（copy）aplets directly from one HP 39G to another．This takes place via the infrared port．

You can also send aplets to，and receive aplets from，a remote storage device（aplet disk drive or computer）．This takes place via a cable connection and requires an aplet disk drive or special software running on a PC（such as the PC Connectivity Kit）．Note：The HP 40G does not have an IR port．A PC adapter and unit－to－unit cable is supplied instead．

## To transmit an aplet

1．Connect the storage device to the calculator by cable or
align the two calculators＇infrared ports by matching up the triangle marks on the rims of the calculators．Place the calculators no more than 2 inches（ 5 cm ）apart．

2．Sending calculator：Open the Library，highlight the aplet to send，and press Eisili．
－You have two options：another HP 39G or a disk drive on a PC．Highlight your selection and press 国．
－If transmitting to a disk drive，you have the options of sending to the current（default）directory or to another directory．

3．Receiving calculator：Open the aplet library and press

－You have two options：another HP 39G or a disk drive（or computer）．Highlight your selection and press 酉导。

The Transmit annunciator－$\rightarrow$－is displayed until transmission is complete．

If you are using the PC Connectivity Kit to download aplets from a PC，you will see a list of aplets in the PC＇s current directory．Check as many items as you would like to receive．

## Sorting items in the aplet library menu list

Once you have entered information into an aplet, you have defined a new version of an aplet. The information is automatically saved under the current aplet name, such as "Function." To create additional aplets of the same type, you must give the current aplet a new name.

The advantage of storing an aplet is to allow you to keep a copy of a working environment for later use.

The aplet library is where you go to manage your aplets. Press APLET. Highlight (using the arrow keys) the name of the aplet you want to act on.

To sort the aplet list

In the aplet library, press 酉至. Select the sorting scheme and press ENTER.

- Chronologically produces a chronological order based on the date an aplet was last used. (The last-used aplet appears first, and so on.)
- Alphabetically produces an alphabetical order by aplet name.


## To delete an aplet

You cannot delete a built-in aplet. You can only clear its data and reset its default settings.

To delete a customized aplet, open the aplet library, highlight the aplet to be deleted, andess DEL. To delete all custom aplets, press SHIFT CLEAR.

## Reference information

## Regulatory information

This section contains information that shows how the HP 39G/40G graphing calculator complies with regulations in certain regions. Any modifications to the calculator not expressly approved by Hewlett-Packard could void the authority to operate the HP 39G/40G in these regions.

USA
This calculator generates, uses, and can radiate radio frequency energy and may interfere with radio and television reception. The calculator complies with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation.
However, there is no guarantee that interference will not occur in a particular installation. In the unlikely event that there is interference to radio or television reception (which can be determined by turning the calculator off and on), the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Relocate the calculator, with respect to the receiver.


## Connections to To maintain compliance with FCC Rules and Regulations, use peripheral devices only the cable accessories provided.

## Canada

This Class B digital apparatus complies with Canadian EMC
Class B requirements.
Cet appareil numérique de la classe B est comforme à la classe B des normes canadiennes de compatibilité électromagnétiques (CEM).

## LED safety

The infrared port located on the top of the calculator is classified as a Class 1 LED (light emitting diode) device according to International Standard IEC 825-1 (EN 60825-1. This device is not considered harmful, but the following precautions are recommended:

- Do not attempt to make any adjustments to the unit.
- Avoid direct eye exposure to the infrared LED beam. Be aware that the beam is invisible light and cannot be seen.
- Do not attempt to view the infrared LED beam with any type of optical device.


## CLASS 1 LED PRODUCT

LEDSCHÜTZKLASSE 1 PRODUKT

## Warranty

HP 39G/40G Graphical Calculator
Warranty period: 12 months

1. HP warrants to you, the end-user customer, that HP hardware, accessories and supplies will be free from defects in materials and workmanship after the date of purchase, for the period specified above. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
2. HP warrants to you that HP software will not fail to execute its programming instructions after the date of purchase, for the period specified above, due to defects in material and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will replace software media which does not execute its programming instructions due to such defects.
3. HP does not warrant that the operation of HP products will be uninterrupted or error free. If HP is unable, within a reasonable time, to repair or replace any product to a condition as warranted, you will be entitled to a refund of the purchase price upon prompt return of the product.
4. HP products may contain re manufactured parts equivalent to new in performance or may have been subject to incidental use.
5. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.
6. HP MAKES NO OTHER EXPRESS WARRANTY OR CONDITION WHETHER WRITTEN OR ORAL. TO THE EXTENT ALLOWED BY LOCAL LAW, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILITY, SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED TO THE DURATION OF THE EXPRESS WARRANTY SET FORTH ABOVE. Some countries, states or provinces do not allow limitations on the duration of an implied warranty, so the above limitation or exclusion might not apply to you. This warranty gives you specific legal rights and you might also have other rights that vary from country to country, state to state, or province to province.
7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE. Some countries, States or provinces do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.
8. FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

## CAS

The HP 40G is packaged with a computerized algebra system (CAS). Refer to the CAS User Manual for further information.

## Resetting the HP 39G/40G

If the calculator "locks up" and seems to be stuck, you must reset $i t$. This is much like resetting a PC. It cancels certain operations, restores certain conditions, and clears temporary memory locations. However, it does not clear stored data (variables, aplet databases, programs) unless you use the procedure below, "To erase all memory and reset defaults".

To reset using the keyboard

Press and hold the ON key and the third menu key simultaneously, then release them.

If the calculator does not respond to the above key sequence, then:

1. Turn the calculator over and locate the small hole in the back of the calculator.
2. Insert the end of a straightened metal paper clip into the hole as far as it will go. Hold it there for 1 second, then remove it.
3. Press $O N$. If necessary, press $O N$ and the first and last menu keys simultaneously.

## To erase all memory and reset defaults

If the calculator does not respond to the above resetting procedures, you might need to restart it by erasing all of memory. You will lose everything you have stored. All factory-default settings are restored.

1. Press and hold the $O N$ key, the first menu key, and the last menu key simultaneously.
2. Release all keys.

Note: To cancel this process, release only the top-row keys, then press the third menu key.

## If the calculator does not turn on

If the HP 39G/40G does not turn on follow the steps below until the calculator turns on. You may find that the calculator turns on before you have completed the procedure. If the calculator still does not turn on, please contact Customer Support for further information.

1. Press and hold the $O N$ key for 10 seconds.
2. Press and hold the $O$ key and the third menu key simultaneously. Release the third menu key, then release the ON key.
3. Press and hold the $O N$ key, the first menu key, and the sixth menu key simultaneously. Release the sixth menu key, then release the first menu key, and then release the ON key.
4. Locate the small hole in the back of the calculator. Insert the end of a straightened metal paper clip into the hole as far as it will go. Hold it there for 1 second, then remove it. Press the ON key.
5. Remove the batteries (see "Batteries" on page R-7), press and hold the $O N$ key for 10 seconds, and then put the batteries back in. Press the ON key.

## Glossary

aplet	A small application, limited to one topic. The built-in aplet types are Function, Parametric, Polar, Sequence, Solve, and Statistics. An aplet can be filled with the data and solutions for a specific problem. It is reusable (like a program, but easier to use) and it records all your settings and definitions.
command	An operation for use in programs. Commands can store results in variables, but do not display results. Arguments are separated by semicolons, such as DISP expression; line\#.
expression	A number, variable, or algebraic expression (numbers plus functions) that produces a value.
function	An operation, possibly with arguments, that returns a result. It does not store results in variables. The arguments must be enclosed in parentheses and separated with commas (or periods in Comma mode), such as CROSS(matrix1,matrix2).
HOME	The basic starting point of the calculator. Go to HOME to do calculations.
Library	For aplet management: to start, save, reset, send and receive aplets.
list	A set of values separated by commas (periods if the Decimal Mark is Comma) and enclosed in braces. Lists are commonly used to enter statistical data and to evaluate a function with multiple values. Created and manipulated by the List editor and catalog.
matrix	A two-dimensional array of values separated by commas (periods if the Decimal Mark is Comma) and enclosed in nested brackets. Created and manipulated by the Matrix catalog and editor. Vectors are also handled by the Matrix catalog and editor.


menu	A choice of options given in the display． It can appear as a list or as a set of menu－ key labels across the bottom of the display．
menu keys	The top row of keys．Their operations depend on the current context．The labels along the bottom of the display show the current meanings．
note	Text that you write in the Notepad or in the Note view for a specific aplet．
program	A reusable set of instructions that you record using the Program editor．
sketch	A drawing that you make in the Sketch view for a specific aplet．
variable	The name of a number，list，matrix，note， or graphic that is stored in memory．Use莤㶾畐 to store and use VARS to retrieve．
vector	A one－dimensional array of values separated by commas（periods if the Decimal Mark is Comma）and enclosed in single brackets．Created and manipulated by the Matrix catalog and editor．
views	The possible contexts for an aplet：Plot， Plot Setup，Numeric，Numeric Setup， Symbolic，Symbolic Setup，Sketch， Note，and special views like split screens．

## Operating details

Operating temperature： $0^{\circ}$ to $45^{\circ} \mathrm{C}\left(32^{\circ}\right.$ to $\left.113^{\circ} \mathrm{F}\right)$ ．
Storage temperature：$-20^{\circ}$ to $65^{\circ} \mathrm{C}\left(-4^{\circ}\right.$ to $\left.149^{\circ} \mathrm{F}\right)$ ．
Operating and storage humidity： $90 \%$ relative humidity at $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ maximum．Avoid getting the calculator wet．

Battery operates at $4.5 \mathrm{~V} \mathrm{dc}, 60 \mathrm{~mA}$ maximum．

## Batteries

When battery power is low，the $((\bullet))$ annunciator stays on， even when the calculator is off．There is also a warning
message that appears when the calculator is on:
Warning: Low Bat.
The HP 39G/40G uses three AAA batteries. Be sure all three are of the same brand and type. Rechargeable batteries are not recommended because of their lower capacity and more sudden demise.

To replace batteries:

1. Turn the calculator off and place the slide cover over the keyboard to prevent keys from being pressed.
CAUTION Your calculator can lose memory if it is turned on while the batteries are being removed.
Under no circumstances should the batteries be deliberately inserted backwards and the calculator turned on. This may cause hardware damage and will void the warranty.
2. Remove the battery compartment door from the rear of the calculator by pressing down on the dimple and pushing the door off.
3. Replace the batteries within 2 minutes to avoid memory loss. Position the fresh batteries according to the diagram inside the battery compartment.

The Netherlands This regulation applies only to The Netherlands.
Batteries are delivered with this product. When empty do not throw them away but collect as small chemical waste.

Bij dit produkt zijn batterijen geleverd. Wanneer deze leeg zijn, moet u ze niet weggoolen maar
 inlevern als KCA.

## Menu maps of the VARS menu

## Home variables

The home variables are:

Category	Available name
Complex	$\mathrm{z} 1 \ldots \mathrm{Z9}, \mathrm{zo}$


Category	Available name (Continued)
Graphic	G1...G9, G0
	Function   Parametric   Polar   Sequence   Solve   Statistics   User-named
List	L1...L9, L0   Matrix   Modes
M1...M9, M0   Ans   Date   HAngle   HDigits   HFormat   Ierr   Time	
Notepad	User-named   Program   Editline   User-named

## Function aplet variables

The function aplet variables are:

Category	Available name	
Plot	Axes	Xcross
	Connect	Ycross
	Coord	Xtick
	FastRes	Ytick
	Grid	Xmin
	Indep	Xmax
	InvCross	Ymin
	Labels	Ymax
	Recenter	Xzoom
	Simult	Yxoom
	Tracing	


Category	Available name (Continued)	
Plot-FCN	Area	Root
	Extremum	Slope
	Isect	
Symbolic	Angle	F6
	F1	F7
	F2	F8
	F3	F9
	F4	F0
	F5	
		Nigits

## Parametric aplet variables

The parametric aplet variables are:

Category	Available name	
Plot	Axes	Tracing
	Connect	Tstep
	Coord	Xcross
	Grid	Ycross
	Indep	Xtick
	InvCross	Ytick
	Labels	Xmin
	Recenter	Xmax
	Simult	Ymin
	Tmin	Ymax
	Tmax	Xzoom
		Yzoom


Category	Available name (Continued)	
Symbolic	Angle	Y5
	X1	X6
	Y1	Y6
	X2	X7
	Y2	Y7
	X3	X8
	Y3	Y8
	X4	X9
	Y4	Y9
	X5	X0
		YO
Numeric	Digits	NumRow
	Format	NumStart
	NumCol	NumStep
	NumFont	NumType
	NumIndep	NumZoom
Note	NoteText	
Sketch	Page	PageNum

## Polar aplet variables

The polar aplet variables are:

Category	Available names	
Symbolic	Axes	
	Connect	Xcross
	Coord	Ycross
	Grid	Xtick
	Indep	Ytick
	InvCross	Xmin
	Labels	Xmax
	Recenter	Ymin
	Simult	Ymax
	Umin	Xzoom
	Umax	Yxoom
	Ostep	
	Tracing	
	Angle	R6
	R1	R7
	R2	R8
	R3	R9
	R4	R0
	R5	


Category	Available names (Continued)	
Numeric	Digits	NumRow
	Format	NumStart
	NumCol	NumStep
	NumFont	NumType
	NumIndep	NumZoom
Note	NoteText	
Sketch	Page	PageNum

## Sequence aplet variables

The sequence aplet variables are:


## Solve aplet variables

The solve aplet variables are:

Category	Available name	
Plot	Axes	Xcross
	Connect	Ycross
	Coord	Xtick
	FastRes	Ytick
	Grid	Xmin
	Indep	Xmax
	InvCross	Ymin
	Labels	Ymax
	Recenter	Xzoom
	Tracing	Yxoom
Symbolic	Angle	E6
	E1	E7
	E2	E8
	E3	E9
	E4	E0
	E5	
Numeric	Digits	NumCol
	Format	NumRow
Note	NoteText	
Sketch	Page	PageNum

## Statistics aplet variables

The statistics aplet variables are:

Category	Available name	
Plot	Axes	S4mark
	Connect	S5mark
	Coord	StatPlot
	Grid	Tracing
	Hmin	Xcross
	Hmax	Ycross
	Hwidth	Xtick
	Indep	Ytick
	InvCross	Xmin
	Labels	Xmax
	Recenter	Ymin
	S1mark	Ymax
	S2mark	Xzoom
	S3mark	Yxoom
Symbolic	Angle	S3fit
	S1fit	S4fit
	S2fit	S5fit
Numeric	C0, ...C9	NumFont
	Digits	NumRow
	Format	
	NumCol	
Stat-One	Max $\Sigma$	Q3
	Mean $\Sigma$	PSDev
	Median	SSDev
	Min $\Sigma$	PVar $\Sigma$
	N $\Sigma$	SVar $\Sigma$
	Q1	Tot $\Sigma$
Stat-Two	Corr	EX
	Cov	EX2
	Fit	इXY
	MeanX	$\Sigma \mathrm{Y}$
	MeanY	EY2
	RelErr	
Note	NoteText	
Sketch	Page	PageNum

## Menu maps of the MATH menu

## Math functions

The math functions are:

Category	Available name	
Calculus	$\begin{aligned} & \partial \\ & \int_{\text {TAYLOR }} \end{aligned}$	
Complex	ARG CONJ	$\begin{aligned} & \mathrm{IM} \\ & \mathrm{RE} \end{aligned}$
Constant	$\begin{aligned} & e \\ & i \end{aligned}$	MAXREAL MINREAL $\pi$
Hyperb.	ACOSH   ASINH   ATANH   COSH   SINH	TANH   ALOG   EXP   EXPM1   LNP 1
List	CONCAT   $\Delta$ LIST   MAKELIST   $\pi$ LIST   POS	REVERSE   SIZE   「LIST   SORT
Loop	ITERATE   RECURSE $\Sigma$	
Matrix	COLNORM COND CROSS DET DOT EIGENVAL EIGENVV IDENMAT INVERSE LQ LSQ LU MAKEMAT	QR   RANK   ROWNORM   RREF   SCHUR   SIZE   SPECNORM   SPECRAD   SVD   SVL   TRACE   TRN


Category	Available name (Continued)	
Polynom.	POLYCOEF	POLYFORM
	POLYEVAL	POLYROOT
Prob.	COMB	UTPC
	!	UTPF
	PERM	UTPN
	RANDOM	UTPT
Real	CEILING	MIN
	DEG $\rightarrow$ RAD	MOD
	FLOOR	\%
	FNROOT	\%CHANGE
	FRAC	\%TOTAL
	HMS $\rightarrow$	RAD $\rightarrow$ DEG
	$\rightarrow$ HMS	ROUND
	INT	SIGN
	MANT	TRUNCATE
	MAX	XPON
Stat-Two	PREDX   PREDY	
Symbolic	$=$	QUAD
	ISOLATE	QUOTE
	LINEAR?	
Tests	<	AND
		IFTE
	$\leq$	NOT
	$==$	$\begin{aligned} & \text { OR } \\ & \text { XOR } \end{aligned}$
	$\neq$	
	>	
	$\geq$	
Trig	ACOT	COT
	ACSC	CSC
	ASEC	SEC

## Program constants

The program constants are:

Category	Available name	
Angle	Degrees Grads Radians	
Format	Standard Fixed	Sci   Eng   Fraction
SeqPlot	Cobweb Stairstep	
S1...5fit	Linear   LogFit   ExpFit   Power	QuadFit   Cubic   Logist   User
StatMode	Stat1Var Stat2Var	
StatPlot	Hist BoxW	

## Program commands

The program commands are:

Category	Command	
Aplet	CHECK   SELECT   SETVIEWS   UNCHECK	
Branch	IF   THEN   ELSE   END	CASE   IFERR   RUN   STOP
Drawing	ARC   BOX   ERASE   FREEZE	LINE   PIXOFF   PIXON   TLINE
Graphic	DISPLAYR   RDISPLAY   RGROB   GROBNOT   GROBOR   GROBXOR	MAKEGROB   PLOTR   RPLOT   REPLACE   SUB   ZEROGROB
Loop	$\begin{aligned} & \text { FOR } \\ & = \\ & \text { TO } \\ & \text { STEP } \\ & \text { END } \\ & \text { DO } \end{aligned}$	UNTIL   END   WHILE   REPEAT   END   BREAK
Matrix	ADDCOL   ADDROW   DELCOL   DELROW   EDITMAT   RANDMAT	REDIM   REPLACE   SCALE   SCALEADD   SUB   SWAPCOL   SWAPROW
Print	PRDISPLAY   PRHISTORY   PRVAR	
Prompt	BEEP   CHOOSE   DISP   DISPTIME   EDITMAT   FREEZE	GETKEY   INPUT   MSGBOX   PROMPT   WAIT
Stat-One	D01VSTATS   RANDSEED	SETFREQ SETSAMPLE
Stat-Two	DO2VSTATS   SETDEPEND   SETINDEP	

## Selected status messages

The status messages are:

Message	Meaning
Bad Argument Type	Incorrect input for this operation.
Bad Argument Value	The value is out of range for this operation.
Infinite Result	Math exception, such as 1/0.
Insufficient Memory	You must recover some memory to continue operation. Delete one or more matrices, lists, notes, or programs (using catalogs), or custom (not built-in) aplets (using SHIFT MEMORY).
Insufficient Statistics Data	Not enough data points for the calculation. For two-variable statistics there must be two columns of data, and each column must have at least four numbers.
Invalid Dimension	Array argument had wrong dimensions.
Invalid Statistics Data	Need two columns with equal numbers of data values.
Invalid Syntax	The function or command you entered does not include the proper arguments or order of arguments. The delimiters (parentheses, commas, periods, and semi-colons) must also be correct. Look up the function name in the index to find its proper syntax.
Name Conflict	The \| (where) function attempted to assign a value to the variable of integration or summation index.
No Equations Checked	You must enter and check an equation (Symbolic view) before evaluating this function.

$\left.\begin{array}{|l|l|}\hline \text { Message } & \text { Meaning (Continued) } \\ \hline \text { (OFF SCREEN) } & \begin{array}{l}\text { Function value, root, extremum, } \\ \text { or intersection is not visible in the } \\ \text { current screen. }\end{array} \\ \text { Receive Error } & \begin{array}{l}\text { Problem with data reception from } \\ \text { another calculator. Re-send the } \\ \text { data. }\end{array} \\ \text { Arguments } & \begin{array}{l}\text { The command requires more } \\ \text { arguments than you supplied. }\end{array} \\ \text { Undefined Name } & \begin{array}{l}\text { The global variable named does } \\ \text { not exist. }\end{array} \\ \text { Out of Memory } & \begin{array}{l}\text { The calculation has a } \\ \text { mathematically undefined result } \\ \text { (such as 0/0). }\end{array} \\ \text { You must recover a lot of } \\ \text { memory to continue operation. } \\ \text { Delete one or more matrices, lists, } \\ \text { notes, or programs (using } \\ \text { catalogs), or custom (not built-in) } \\ \text { aplets (using SHIFTMEMORY). }\end{array}\right\}$

## Index

## A

absolute value 10-6
add 10-4
algebraic entry 1-18
alpha characters
typing 1-6
alphabetical sorting 16-6
angle measure 1-9
in statistics 8-10
setting 1-11
animation 14-5
creating 14-5
annunciators 1-3
Ans (last answer) 1-22
antilogarithm 10-4, 10-10 aplet
attaching notes 16-4
clearing 16-4
copying 16-5
definition of R-6
deleting 16-6
Function 10-22
Inference 9-2
key 1-4
library 16-6
Note view 14-1
opening 1-15
Parametric 4-1
Polar 5-1
receiving 16-5
resetting 16-4
sending 16-5
Sketch view 14-1
Solve 7-1
sorting 16-6
statistics 8-1
aplet commands
CHECK 15-14
SELECT 15-14
SETVIEWS 15-17
UNCHECK 15-17
aplet variables
definition 11-1, 11-8
in Plot view 15-30
new 11-1
aplet views
canceling operations in 1-1
changing 1-17
note 1-16
Numeric view 1-15
Plot view 1-15
sketch 1-17
split-screen 1-16
Symbolic view 1-15
arc cosecant 10-21
arc cosine 10-5
arc cotangent 10-21
arc secant $10-21$
arc sine $10-5$
arc tangent $10-5$
area
graphical 3-10
interactive 3-10
variable 15-30
arguments
with matrices 12-10
attaching
a note to an aplet 14-1
a sketch to an aplet 14-3
auto scale 2-14
axes
plotting 2-6
variable 15-30

## B

bad argument R-19
bad guesses error message 7-7
batteries
changing R-8
low-battery warning R-8
box-and-whisker plot 8-16
branch commands
CASE...END 15-18
IF...THEN...ELSE...END 15-18
IFERR...THEN...ELSE 15-18
RUN 15-19
STOP 15-19
branch structures 15-17
build your own table 2-19

## C

calculus
operations 10-8
catalogs 1-28
chronological sorting 16-6
circle drawing 14-4
clearing
aplet 16-4
characters 1-21
display 1-21
display history 1-24
edit line 1-21
lists 13-6
plot 2-6
cobweb graph 6-2
coefficients
polynomial 10-12
columns
changing position 15-24
combinations 10-13
comma mode
with matrices 13-7
commands
aplet 15-14
Branch 15-17
definition of R-6
Drawing 15-19
Graphic 15-20
Loop 15-22
Print 15-25
Program 15-5, R-18
Prompt 15-25
Stat-One 15-29
Stat-Two 15-29
with matrices 12-10
complex functions 10-6, 10-18
complex number functions
conjugate $10-8$
imaginary part 10-8
real part 10-8
complex numbers 1-27
entering 1-27
maths functions 10-8
storing 1-28
confidence intervals 9-16
conjugate $10-8$
connecting
data points $8-18$
variable 15-30
connectivity kit 16-5
constant? error message 7-7
constants 10-9
e 10-9
i $10-9$
maximum real number 10-9 minimum real number $10-9$ program R-17
contrast
decreasing display 1-2
increasing display 1-2
coordinate display $2-8$
copying
display 1-21
graphics 14-6
notes 14-8
programs 15-8
correlation
coefficient 8-17
CORR 8-17
statistical 8-14
cosecant 10-21
cosine 10-4
inverse hyperbolic 10-9
cotangent 10-21
covariance
statistical 8-14
creating
aplet 16-1
notes in Notepad 14-6
programs 15-4
sketches 14-3
critical value(s) displayed 9-4
cross product
vector 12-10
curve fitting 8-11, 8-17

## D

data set definition 8-7
date, setting 15-26
debugging programs 15-7
decimal
changing marker format 1-10
scaling 2-14, 2-16
decreasing display contrast 1-2
definite integral 10-7
deleting
aplet 16-6
lists 13-6
matrices 12-4
programs 15-9
statistical data 8-10
delimiters, programming 15-1
derivatives
definition of 10-7
in Function aplet 10-24
in Home 10-23
determinant
square matrix 12-10
differentiation 10-7
display 15-20
adjusting contrast 1-2
annunciator line 1-2
capture 15-20
clearing 1-2
date and time 15-26
element 12-5
engineering 1-10
fixed 1-10
fraction 1-10
history 1-21
line 1-21
list elements 13-4
matrices 12-5
parts of 1-2
printing contents 15-25
rescaling 2-14
scientific 1-10
scrolling through history 1-23
soft key labels 1-2
standard 1-10
divide 10-4
drawing
circles 14-4
keys 14-4
lines and boxes 14-3
Drawing commands
ARC 15-19
BOX 15-19
ERASE 15-19
FREEZE 15-20
LINE $15-20$
PIXOFF 15-20
PIXON 15-20
TLINE 15-20

## E

e 10-9
edit line 1-2
editing
matrices 12-4
notes 14-2
programs 15-5
Editline
Program catalog 15-2
editors 1-28
eigenvalues 12-11
eigenvectors 12-11
element
storing 12-5
E-lessons 1-11
engineering number format 1-10
equals
for equations 10-19
logical test 10-20
equations
solving 7-1
erasing a line in Sketch view 15-20
error messages
bad guesses 7-7
constant? 7-7
exclusive OR 10-21
executing programs 15-7
exiting views 1-17
exponent
minus 1 10-10
of value $10-18$
raising to $10-6$
expression
defining 2-1, R-6
entering in HOME 1-18
evaluating in aplets 2-3
literal 10-20
plot 3-3
extremum
interactive 3-9
F
factorial 10-13
FastRes variable 15-31
fit
a curve to 2 VAR data 8-17
choosing 8-11
defining your own 8-12
regression curve 1-29
fixed number format 1-10
font size
change 3-8, 14-5
forecasting 8-21
fraction number format 1-10
full-precision display 1-10
function
analyse graph with FCN tools 3-3
definition 2-2
definition of R-6
entering 1-18
gamma 10-13
intersection point 3-4
math menu R-15
quadratic 3-4
slope 3-5
syntax 10-3
tracing 2-8
Function aplet 2-21, 3-1
function variables
Area 15-30
Axes 15-30
Connect 15-30
FastRes 15-31
Grid 15-31
in menu map R-9
Indep 15-32
Isect 15-32
Labels 15-33
Recenter 15-33
Root 15-33
Ycross 15-36

## G

glossary R-6
graph
analyzing statistical data in 8-20
auto scale 2-14
box-and-whisker 8-16
capture current display 15-20
cobweb 6-2
comparing 2-5
connected points 8-16
defining the independent variable 15-35
drawing axes 2-6
expressions 3-3
grid points 2-6
in Solve aplet 7-8
index values 2-6
one-variable statistics 8-18
overlaying 2-16
scatter 8-15, 8-16
split-screen view 2-15
splitting into plot and close-up 2-14
splitting into plot and table 2-14
stairsteps 6-2
statistical data 8-15
$t$ values 2-5
tickmarks 2-6
tracing 2-8
Graphic commands
DISPLAY 15-20
GROB 15-21
GROBNOT 15-21
GROBOR 15-21
GROBXOR 15-21
MAKEGROB 15-21
PLOT 15-21
REPLACE 15-22
SUB 15-22
ZEROGROB 15-22
graphics
copying 14-6
copying into Sketch view 14-6
storing and recalling 14-6, 15-20
guarantee R-2

H
histogram 8-15
adjusting 8-15
range 8 -18
setting $\min / m a x$ values for bars 15-31
width 8-18
history $1-2,15-25$
Home 1-1
calculating in 1-18
display 1-2
evaluating expressions 2-3
reusing lines 1-21
home variables 11-1, R-8
definition 11-7
horizontal zoom 15-37
hyperbolic
maths functions $10-10$
hyperbolic trigonometry
ACOSH 10-9
ALOG 10-10
ASINH 10-9
ATANH 10-9
COSH 10-9
EXP 10-10
EXPM1 10-10
LNP1 10-10
SINH 10-9
TANH 10-9
hypothesis
alternative 9-3
inference tests 9-9
null 9-3
tests 9-3

## I

i 10-9
implied multiplication 1-19
importing
graphics 14-6
notes 14-8
increasing display contrast 1-2
indefinite integral
using symbolic variables $10-25$
independent values
adding to table 2-19
independent variable
defined for Tracing mode 15-32
inference
confidence intervals 9-16
hypothesis tests 9-9
One-Proportion Z-Interval 9-18
One-Sample Z-Interval 9-16
One-Sample Z-Test 9-9
Two-Proportion Z-Interval 9-19
Two-Proportion Z-Test 9-12
Two-Sample T-Interval 9-21
Two-Sample Z-Interval 9-17
infinite result R-19
infrared
transmission of aplets between machines 16-5
initial guess 7-5
input forms
resetting default values 1-9
setting Modes 1-11
insufficient memory R-19
insufficient statistics data R-19
integer rank
matrix 12-12
integer scaling 2-14, 2-16
integral
definite 10-7
indefinite $10-25$
integration 10-7
interpreting
intermediate guesses 7-7
intersection
interactive 3-10
invalid
dimension R-19
statistics data R-19
syntax R-19
inverse hyperbolic cosine 10-9
inverse hyperbolic functions $10-10$
inverse hyperbolic sine 10-9
inverse hyperbolic tangent 10-9
inverting matrices 12-7
isect variable 15-32

## K

keyboard
editing keys 1-5
entry keys 1-5
inactive keys 1-7
list keys 13-2
math functions 1-7
menu keys 1-4
Notepad keys 14-8
shifted keystrokes 1-6

## L

labeling
axes 2-6
parts of a sketch 14-5
letters, typing 1-6
library, managing aplets in 16-6
linear fit 8-12
list
arithmetic with 13-7
calculate sequence of elements 13-8
calculating product of 13-9
composed from differences 13-8
concatenating 13-8
counting elements in 13-9
creating 13-1, 13-3, 13-4, 13-5
deleting 13-6
deleting list items 13-3
displaying 13-4
displaying list elements 13-4
editing 13-3
finding statistical values in list elements 13-10
generate a series 13-8
generating series 13-8
list function syntax 13-7
list variables 13-1
returning position of element in 13-9
reversing order in 13-9
sending and receiving 13-6
sorting elements 13-9
storing elements 13-1, 13-4, 13-5
storing one element 13-7
logarithm 10-4
logarithmic
fit 8-12
functions 10-4
logical operators
AND 10-21
equals (logical test) 10-20
greater than 10-20
greater than or equal to $10-20$
IFTE 10-21
less than 10-20
less than or equal to 10-20
NOT 10-21
not equal to 10-20
OR 10-21
XOR 10-21
logistic fit 8-12
loop commands
BREAK 15-23
DO...UNTIL...END 15-22
FOR I= 15-23
WHILE...REPEAT...END 15-22
loop functions
ITERATE 10-11
RECURSE 10-11
summation 10-11
low battery $1-1$
lowercase letters 1-6

## M

mantissa 10-16
math functions
complex number 10-8
hyperbolic $10-10$
in menu map R-15
keyboard 10-4
logical operators 10-20
menu 1-7
polynominal 10-12
probability $10-13$
real-number 10-15
symbolic 10-19
trigonometry 10-21
math operations 1-18
enclosing arguments 1-20
in scientific notation 1-19
negative numbers in 1-18
matrices
adding rows 15-23
addition and subtraction 12-6
arguments 12-10
arithmetic operations in 12-6
assembly from vectors 12-1
changing row position 15-24
column norm 12-10
comma 13-7
commands 12-10
condition number 12-10
create identity $12-13$
creating 12-3
creating in Home 12-5
deleting 12-4
deleting columns 15-23
deleting rows 15-23
determinant 12-10
display eigenvalues 12-11
displaying 12-5
displaying matrix elements $12-5$
dividing by a square matrix 12-7
dot product 12-10
editing 12-4
extracting a portion 15-24
finding the trace of a square matrix 12-13
inverting 12-7
matrix calculations 12-1
multiplying and dividing by scalar 12-6
multiplying by vector 12-7
multiplying row by value and adding result to second row 15-24
multiplying row number by value 15-24
negating elements 12-7
opening Matrix Editor 15-26
redimension 15-24
replacing portion of matrix or vector 15-24
sending or receiving 12-4
singular value decomposition 12-12
singular values $12-12$
size 12-12
spectral norm 12-12
spectral radius 12-12
start Matrix Editor 15-23
storing elements $12-3$, 12-5
storing matrix elements 12-5
swap column 15-24
swap row 15-24
transposing 12-13
variables 12-1
matrix functions $12-10$
COLNORM 12-10
COND 12-10
CROSS 12-10
DET 12-10
DOT 12-10
EIGENVAL 12-11
EIGENVV 12-11
IDENMAT 12-11
INVERSE 12-11
LQ 12-11
LSQ 12-11
LU 12-11
MAKEMAT 12-11
QR 12-12
RANK 12-12
ROWNORM 12-12
RREF 12-12
SCHUR 12-12
SIZE 12-12
SPECNORM 12-12
SPECRAD 12-12
SVD 12-12
SVL 12-12
TRACE 12-13
TRN 12-13
maximum real number 1-20, 10-9
memory R-19
clearing all R-5
organizing 11-9
out of R-20
saving 1-24, 16-1
viewing 11-1
menu lists
searching 1-8
minimum real number 10-9
Modes
angle measure 1-9
decimal mark 1-10
number format 1-10
multiple solutions
plotting to find 7-8
multiplication 10-4
implied 1-19

## N

name conflict R-19
naming
programs 15-4
natural exponential $10-4,10-10$
natural log plus $1 \quad 10-10$
natural logarithm 10-4
negation 10-5
negative numbers 1-18
no equations checked R-19
Normal Z-distribution, confidence inter-
vals 9-16
note
copying 14-8
editing 14-2
importing 14-8
printing 15-25
viewing 14-1
writing 14-1
Notepad 14-1
catalog keys 14-7
creating notes 14-6
writing in 14-6
nrng 2-5
$n$th root 10-6
null hypothesis 9-3
number format
engineering 1-10
fixed 1-10
fraction 1-10
in Solve aplet 7-5
scientific 1-10
Standard 1-10
numeric precision 11-9
Numeric view
adding X values 2-19
automatic 2-17
build your own table 2-19
display defining function for column 2-18
recalculating 2-19
setup 2-17, 2-19

## O

automatic 1-1
power 1-1
On/Cancel 1-1
One-Proportion Z-Interval 9-18
One-Sample T-Interval 9-20
One-Sample T-Test 9-13
One-Sample Z-Interval 9-16
One-Sample Z-Test 9-9
order of precedence 1-20
overlaying plots 2-16, 4-3

## P

$\pi 10-9$
paired columns 8-11
Parametric aplet 4-1
parametric variables
Axes 15-30
Connect 15-30
Grid 15-31
in menu map R-10
Indep 15-32
Labels 15-33
Recenter 15-33
Ycross 15-36
parentheses
to close arguments 1-20
to specify order of operation 1-20
pause 15-28
permutations 10-13
pictures
attaching in Sketch view 14-3
plot
analyzing statistical data in 8-20
auto scale 2-14
box-and-whisker 8-16
cobweb 6-2
comparing 2-5
connected points 8-16, 8-18
decimal scaling 2-14
defining the independent variable 15-35
drawing axes 2-6
expressions 3-3
goto function 1-29
grid points 2-6
in Solve aplet 7-8
index values 2-6
integer scaling 2-14
one-variable statistics 8-18
overlay plot 2-14
overlaying 2-16, 4-3
scaling 2-14
scatter 8-15, 8-16
sequence 2-6
setting up 2-5, 3-2
split-screen view 2-15
splitting 2-15
splitting into plot and close-up 2-14
splitting into plot and table 2-14
stairsteps 6-2
statistical data 8-15
statistics parameters 8-18
$t$ values 2-5
tickmarks 2-6
to capture current display 15-20
tracing 2-8
trigonometric scaling 2-14
plotting resolution
and tracing 2-8
plot-view variables
Area 15-30
Connect 15-30
FastRes 15-31
Function 15-30
Grid 15-31
Hmin/Hmax 15-31
Hwidth 15-32
Isect 15-32
Labels 15-33
Recenter 15-33
RNG 15-34
Root 15-33
S1mark-S5mark 15-33
StatPlot 15-34
Tracing 15-32
Ustep 15-34
polar variables
Axes 15-30
Connect 15-30
Grid 15-31
in menu map R-11
Indep 15-32
Labels 15-33
Recenter 15-33
Ycross 15-36
polynomial
coefficients $10-12$
evaluation $10-12$
form 10-12
roots $10-12$
Taylor 10-7
polynomial functions
POLYCOEF 10-12
POLYEVAL 10-12
POLYFORM 10-12
POLYROOT 10-12
position argument 15-20
power (x raised to y ) $10-6$
precedence 1-20
predicted values
statistical 8-21
print
contents of display 15-25
name and contents of variable 15-25
object in history 15-25
variables 15-25
probability functions
! 10-13
COMB 10-13
permutations 10-13
RANDOM 10-13
UTPC 10-14
UTPF 10-14
UTPN 10-14
UTPT 10-14
program
commands 15-5
copying 15-8
creating 15-4
debugging 15-7
deleting 15-8
delimiters 15-1
editing 15-5
naming 15-4
pausing 15-28
printing 15-25
running 15-7
sending and receiving 15-8
stopping 15-7
structured 15-1
prompt commands
beep 15-25
create choose box 15-25
create input form 15-27
display item 15-26
display message box 15-28
halt program execution 15-28
insert line breaks 15-28
prevent screen display being updated 15-27
set date and time 15-26
store keycode 15-27

Q< $<\varepsilon \phi \alpha \nu \lambda \tau$ фоv $\tau \pi \alpha \rho \alpha>\sigma \tau \varepsilon \pi$ 2-5
$\theta$ rng 2-5
quadratic
extremum 3-6
fit 8-12
function 3-4
quitting views 1-17
quotes
in program names 15-4

## R

random numbers 10-14
real number
maximum 10-9
minimum 10-9
real part 10-8
real-number functions $10-15$
\% 10-17
\%CHANGE 10-17
\%TOTAL 10-17
CEILING 10-15
DEGtoRAD 10-15
FNROOT 10-15
HMSto 10-16
INT 10-16
MANT 10-16
MAX 10-16
MIN 10-16
MOD 10-17
RADtoDEG 10-17
ROUND 10-17
SIGN 10-18

TRUNCATE 10-18
XPON 10-18
recalculation for table 2-19
receive error R-20
receiving
aplet 16-5
lists 13-6
matrices 12-4
programs 15-8
redrawing
table of numbers 2-18
reduced row echelon 12-12
regression
analysis 8-17
fit models 8-12
formula 8-12
user-defined fit 8-12
regulatory information
Canada R-1
USA R-1
relative error
statistical 8-17
resetting
aplet 16-4
calculator R-4
If calculator does not turn on R-5 memory R-5
result
copying to edit line 1-21
reusing 1-21
root
interactive 3-9
$n$th 10-6
variable 15-33
root-finding
displaying 7-7
interactive 3-8
operations 3-9
variables 3-9
running a program 15-7

## s

S1mark-S5mark variables 15-33
scaling
automatic 2-14
decimal 2-9, 2-10, 2-14
integer 2-11, 2-14, 2-16
options 2-14
resetting 2-14
trigonometric 2-14
scatter plot 8-15, 8-16
connected 8-16, 8-18
SCHUR decomposition 12-12
scientific number format 1-10, 1-19
scrolling
in Trace mode 2-8
searching
menu lists 1-8
speed searches 1-8
secant 10-21
sending
aplets 16-5
lists 13-6
programs 15-8
sequence
definition 2-2
sequence variables
Axes 15-30
Grid 15-31
in menu map R-12
Indep 15-32
Labels 15-33
Recenter 15-33
Ycross 15-36
setting
date 15-26
time 15-26
sign reversal 7-6
sine 10-4
inverse hyperbolic 10-9
singular value decomposition
matrix 12-12
singular values
matrix 12-12
sketches
creating 14-5
creating a blank graphic 15-22
creating a set of 14-5
erasing a line $15-20$
labeling 14-5
opening view 14-3
sets $14-5$
storing in graphics variable 14-5
slope
interactive 3-9
soft key labels 1-2
solve
error messages 7-7
initial guesses 7-5
interpreting intermediate guesses 7-7
interpreting results 7-6
plotting to find guesses 7-8
setting number format 7-5
solve variables
Axes 15-30
Connect 15-30
FastRes 15-31
Grid 15-31
in menu map R-13
Indep 15-32
Labels 15-33
Recenter 15-33
Ycross 15-36
sorting 16-6
aplets in alphabetic order 16-6
aplets in chronological order 16-6
elements in a list 13-9
spectral norm 12-12
spectral radius 12-12
square root $10-5$
stack history
printing 15-25
stairsteps graph 6-2
standard number format 1-10
statistics
analysis 8-1
analyzing plots 8-20
angle mode 8-10
calculate one-variable 15-29
calculate two-variable 15-29
computing 2VAR 8-11
data set variables 15-39
data structure 15-39
define one-variable sample 15-29
define two-variable data set's dependent column 15-29
define two-variable data set's independent column 15-29
defining a fit 8-11
defining a regression model 8-11
deleting data 8-10
editing data 8-10
frequency 15-29
inserting data 8-11
plot type 8-18
plotting data 8-15
predicted values 8-21
regression curve (fit) models 8-11
saving data 8-10
sorting data 8-11
specifying angle setting 8-10
toggling between one-variable and two-variable 8-11
tracing plots 8-20
troubleshooting with plots 8-19
zooming in plots 8-20
statistics variables
Axes 15-30
Connect 15-30
Grid 15-31
Hmin/Hmax 15-31
Hwidth 15-32
in menu map R-14
Indep 15-32
Labels 15-33
Recenter 15-33
S1mark-S5mark 15-33
Ycross 15-36
step size of independent variable 15-35
storing
list elements $13-1,13-4,13-5,13-7$
matrix elements 12-3, 12-5
results of calculation 11-3
value 11-2
strings
literal in symbolic operations $10-20$
structured programming 15-1
subtract 10-4
summation function 10-11
symbolic
calculations in Function aplet 10-22
defining expressions 2-1
differentiation 10-23
displaying definitions 3-8
evaluating variables in view 2-3
setup view for statistics 8-10
symbolic functions
| (where) 10-20
equals 10-19
ISOLATE 10-19
LINEAR? 10-19
QUAD 10-19
QUOTE 10-20
Symbolic view
defining expressions 3-2
syntax 10-3
syntax errors 15-7

## T

table
navigate around 3-7
numeric values 3-7
numeric view setup 2-17
tangent 10-4
inverse hyperbolic 10-9
Taylor polynomial 10-7
tickmarks for plotting 2-6
time 10-16
setting 15-26
time, converting 10-16
times sign 1-19
$t \max$ 15-35
$\operatorname{tmin} 15-35$
too few arguments R-20
tracing
functions 2-8
more than one curve $2-8$
not matching plot 2-8
plots 2-8
transmitting
lists 13-6
matrices 12-4
programs 15-8
transposing a matrix 12-13
trigonometric
functions 10-21
scaling 2-11, 2-14, 2-16
trigonometry
cosine 10-9
trigonometry functions
ACOT 10-21
ACSC 10-21

ASEC 10-21
COT 10-21
CSC 10-21
SEC 10-21
sine, cosine, tangent 10-4
trng 2-5
troubleshooting R-1
truncating values to decimal places
10-18
tstep 2-5, 15-35
Two-Proportion Z-Interval 9-19
Two-Proportion Z-Test 9-12
Two-Sample T-Interval 9-21
Two-Sample T-test 9-14
Two-Sample Z-Interval 9-17
typing letters 1-6

## U

undefined
name R-20
result R-20
un-zoom 2-11
upper-tail chi-squared probability $10-14$
upper-tail normal probability $10-14$
upper-tail snedecor's f 10-14
upper-tail student's t-probability $10-14$
user defined
regression fit 8-12
user prompts $15-25$

## V

value
go directly to 3-7
recall 11-3
storing 11-2
variables
aplet 11-1
categories 11-7
definition 11-1, 11-7, R-7
in equations 7-10
in Symbolic view 2-3
independent 15-35
local 11-1
previous result (Ans) 1-22
printing 15-25
root 15-33
root-finding 3-9
step size of independent 15-35
types 11-1, 11-7
use in calculations 11-4
VARS menu 11-4, 11-5
map R-8
vectors
column 12-1
cross product 12-10
definition of R-7
views 1-17
configuration 1-17
definition of R-7

W
warning symbol 1-7
warranty R-2
where command (| ) 10-20

## X

xrng 2-5
Y
Ycross variable 15-36
yrng 2-5

## Z

Z-Interval 9-16
zoom 2-18
axes 2-12
box 2-8
center 2-8
examples of 2-11
factors 2-13
in 2-9, 2-10
options 2-8, 3-7
options within a table 2-18
out 2-9, 2-10
redrawing table of numbers options

$$
2-18
$$

square 2-9, 2-10
un-zoom 2-11
within Numeric view 2-18
X-zoom 2-9, 2-10
Y-zoom 2-9, 2-10
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com


[^0]:    11-4
    Variables and memory management

[^1]:    11-8 Variables and memory management

