HP 39gs graphing calculator

user's guide

Edition3
Part Number F2223AA-90001

Notice

REGISTER YOUR PRODUCT AT: www,register.hp,com

THIS MANUAL AND ANY EXAMPLES CONTAINED HEREIN ARE PROVIDED "AS IS" AND ARE SUBJECT TO CHANGE WITHOUT NOTICE. HEWLETT-PACKARD COMPANY MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A PARTICULAR PURPOSE.

HEWLETT-PACKARD CO. SHALL NOT BE LIABLE FOR ANY ERRORS OR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES IN CONNECTION WITH THE FURNISHING, PERFORMANCE, OR USE OF THIS MANUAL OR THE EXAMPLES CONTAINED HEREIN.

© 1994-1995, 1999-2000, 2003, 2006 Hewlett-Packard Development Company, L.P.
Reproduction, adaptation, or translation of this manual is prohibited without prior written permission of Hewlett-Packard Company, except as allowed under the copyright laws.

Hewlett-Packard Company
16399 West Bernardo Drive
MS 8-600
San Diego, CA 92127-1899
USA

Printing History
Edition 2
December 2003
Edition 3
June 2005

Contents

Preface
Manual conventions P-1
Notice P-2
1 Getting started
On/off, cancel operations 1-1
The display 1-2
The keyboard 1-3
Menus $1-8$
Input forms $1-9$
Mode settings 1-10
Setting a mode 1-11
Aplets (E-lessons) 1-12
Aplet library 1-16
Aplet views 1-16
Aplet view configuration. 1-18
Mathematical calculations 1-19
Using fractions 1-25
Complex numbers 1-29
Catalogs and editors $1-30$
2 Aplets and their views
Aplet views 2-1
About the Symbolic view 2-1
Defining an expression (Symbolic view) 2-1
Evaluating expressions 2-3
About the Plot view 2-5
Setting up the plot (Plot view setup) 2-5
Exploring the graph 2-7
Other views for scaling and splitting the graph 2-13
About the numeric view 2-16
Setting up the table (Numeric view setup) 2-16
Exploring the table of numbers 2-17
Building your own table of numbers 2-19
"Build Your Own" menu keys 2-20
Example: plotting a circle 2-20
3 Function aplet
About the Function aplet 3-1
Getting started with the Function aplet 3-1
Function aplet interactive analysis 3-9
Plotting a piecewise-defined function 3-12
4 Parametric aplet
About the Parametric aplet 4-1
Getting started with the Parametric aplet 4-1
5 Polar aplet
Getting started with the Polar aplet 5-1
6 Sequence aplet
About the Sequence aplet 6-1
Getting started with the Sequence aplet 6-1
7 Solve aplet
About the Solve aplet 7-1
Getting started with the Solve aplet 7-2
Use an initial guess 7-5
Interpreting results 7-6
Plotting to find guesses 7-7
Using variables in equations 7-10
8 Linear Solver aplet
About the Linear Solver aplet 8-1
Getting started with the Linear Solver aplet 8-1
9 Triangle Solve aplet
About the Triangle Solver aplet 9-1
Getting started with the Triangle Solver aplet 9-1
10 Statistics aplet
About the Statistics aplet. 10-1
Getting started with the Statistics aplet 10-1
Entering and editing statistical data 10-6
Defining a regression model 10-12
Computed statistics 10-14
Plotting 10-15
Plot types 10-16
Fitting a curve to 2VAR data 10-17
Setting up the plot (Plot setup view) 10-18
Trouble-shooting a plot 10-19
Exploring the graph 10-19
Calculating predicted values 10-20
11 Inference aplet
About the Inference aplet 11-1
Getting started with the Inference aplet 11-1
Importing sample statistics from the Statistics aplet 11-4
Hypothesis tests 11-8
One-Sample Z-Test 11-8
Two-Sample Z-Test 11-9
One-Proportion Z-Test 11-10
Two-Proportion Z-Test 11-11
One-Sample T-Test 11-12
Two-Sample T-Test 11-14
Confidence intervals 11-15
One-Sample Z-Interval 11-15
Two-Sample Z-Interval 11-16
One-Proportion Z-Interval 1-17
Two-Proportion Z-Interval 1-17
One-Sample T-Interval 11-18
Two-Sample T-Interval 11-19
12 Using the Finance Solver
Background 12-1
Performing TVM calculations 12-4
Calculating Amortizations 12-7
13 Using mathematical functions
Math functions 13-1
The MATH menu 13-1
Math functions by category 13-2
Keyboard functions 13-3
Calculus functions 13-6
Complex number functions 13-7
Constants 13-8
Conversions 13-8
Hyperbolic trigonometry 13-9
List functions 13-10
Loop functions 13-10
Matrix functions 13-11
Polynomial functions 13-11
Probability functions 13-12
Real-number functions 13-13
Two-variable statistics 13-17
Symbolic functions 13-17
Test functions 13-18
Trigonometry functions. 13-19
Symbolic calculations 13-20
Finding derivatives 13-21
Program constants and physical constants 13-24
Program constants 13-24
Physical constants 13-25
14 Variables and memory management
Introduction 14.1
Storing and recalling variables $14-2$
The VARS menu 14.4
Memory Manager $14-9$
15 Matrices
Introduction 15-1
Creating and storing matrices 15-2
Working with matrices $15 \cdot 4$
Matrix arithmetic $15-6$
Solving systems of linear equations 15-8
Matrix functions and commands 15-10
Argument conventions 15-10
Matrix functions 15-10
Examples 15-13
16 Lists
Displaying and editing lists $16-4$
Deleting lists $16 \cdot 6$
Transmitting lists 16.6
List functions $16-6$
Finding statistical values for list elements $16-9$
17 Notes and sketches
Introduction 17-1
Aplet note view 17-1
Aplet sketch view $17-3$
The notepad 17.6
18 Programming
Introduction 18-1
Program catalog 18-2
Creating and editing programs $18-4$
Using programs 18-7
Customizing an aplet 18-9
Aplet naming convention 18-10
Example 18-10
Programming commands 18-13
Aplet commands 18-14
Branch commands 18-17
Drawing commands 18-19
Graphic commands 18-21
Loop commands 18-23
Matrix commands 18-24
Print commands 18-26
Prompt commands 18-26
Stat-One and Stat-Two commands 18-30
Stat-Two commands 18-30
Storing and retrieving variables in programs 18-31
Plot-view variables 18-32
Symbolic-view variables 18-39
Numeric-view variables 18-41
Note variables 18-44
Sketch variables 18-44
19 Extending aplets
Creating new aplets based on existing aplets 19-1
Using a customized aplet 19-3
Resetting an aplet. 19-3
Annotating an aplet with notes 19-4
Annotating an aplet with sketches 19-4
Downloading e-lessons from the web 19-4
Sending and receiving aplets 19-4
Sorting items in the aplet library menu list 19-6
Reference information
Glossary R-1
Resetting the HP 39gs R-3
To erase all memory and reset defaults R-3
If the calculator does not turn on R-4
Operating details R-4
Batteries R-4
Variables R-6
Home variables R-6
Function aplet variables R-7
Parametric aplet variables R-8
Polar aplet variables R-9
Sequence aplet variables R-10
Solve aplet variables R-11
Statistics aplet variables R-12
MATH menu categories R-13
Math functions R-13
Program constants R-15
Physical Constants R-16
Program commands R-17
Status messages R-18
Limited Warranty
Service W-3
Regulatory information W-5
Index

Preface

The HP 39gs is a feature-rich graphing calculator. It is also a powerful mathematics learning tool. The HP 39gs is designed so that you can use it to explore mathematical functions and their properties.

You can get more information on the HP 39gs from Hewlett-Packard's Calculators web site. You can download customized aplets from the web site and load them onto your calculator. Customized aplets are special applications developed to perform certain functions, and to demonstrate mathematical concepts.

Hewlett Packard's Calculators web site can be found at:
http://www.hp.com/calculators

Manual conventions

The following conventions are used in this manual to represent the keys that you press and the menu options that you choose to perform the described operations.

- Key presses are represented as follows:
SIN, COS, HOME, etc.
- Shift keys, that is the key functions that you access by pressing the SHIFT key first, are represented as follows:

SHIFT CLEAR, SHIFT MODES, SHIFT ACOS, etc.

- Numbers and letters are represented normally, as follows:

5, 7, A, B, etc.

- Menu options, that is, the functions that you select using the menu keys at the top of the keypad are represented as follows:

- Input form fields and choose list items are represented as follows:

Function, Polar, Parametric

- Your entries as they appear on the command line or within input forms are represented as follows:
$2 * x^{2}-3 x+5$

This manual and any examples contained herein are provided as-is and are subject to change without notice. Except to the extent prohibited by law, Hewlett-Packard Company makes no express or implied warranty of any kind with regard to this manual and specifically disclaims the implied warranties and conditions of merchantability and fitness for a particular purpose and Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damage in connection with the furnishing, performance or use of this manual and the examples herein.
© 1994-1995, 1999-2000, 2003-2006 HewlettPackard Development Company, L.P.
The programs that control your HP 39gs are copyrighted and all rights are reserved. Reproduction, adaptation, or translation of those programs without prior written permission from Hewlett-Packard Company is also prohibited.

Getting started

On/off, cancel operations

To turn on
To cancel

To turn off

HOME

Protective cover

Press $O N$ to turn on the calculator.
When the calculator is on, the $O N$ key cancels the current operation.

Press 5 HIFT OFF to turn the calculator off.
To save power, the calculator turns itself off after several minutes of inactivity. All stored and displayed information is saved.

If you see the $((\bullet))$ annunciator or the Low Bat message, then the calculator needs fresh batteries.

HOME is the calculator's home view and is common to all aplets. If you want to perform calculations, or you want to quit the current activity (such as an aplet, a program, or an editor), press HOME. All mathematical functions are available in the HOME. The name of the current aplet is displayed in the title of the home view.

The calculator is provided with a slide cover to protect the display and keyboard. Remove the cover by grasping both sides of it and pulling down.

You can reverse the slide cover and slide it onto the back of the calculator. this will help prevent you losing the cover while you are using the calculator.

To prolong the life of the calculator, always place the cover over the display and keyboard when you are not using the calculator.

The display

To adjust the contrast

To clear the display

- Press CANCEL to clear the edit line.
- Press SHIFT CLEAR to clear the edit line and the display history.

Parts of the display

Menu key or soft key labels. The labels for the menu keys' current meanings. Ticiel is the label for the first menu key in this picture. "Press 四至II" means to press the first menu key, that is, the leftmost top-row key on the calculator keyboard.

Edit line. The line of current entry.
History. The HOME display (HOME) shows up to four lines of history: the most recent input and output. Older lines scroll off the top of the display but are retained in memory.
Title. The name of the current aplet is displayed at the top of the HOME view. RAD, GRD, DEG specify whether Radians, Grads or Degrees angle mode is set for HOME. The $\boldsymbol{\nabla}$ and $\boldsymbol{\Delta}$ symbols indicate whether there is more history in the HOME display. Press the ∇ and Δ to scroll in the HOME display.

NOTE This user's guide contains images from the HP 39gs and

Annunciators. Annunciators are symbols that appear above the title bar and give you important status information.

Annunciator	Description
\leftrightarrow	Shift in effect for next keystroke. To cancel, press SHIFT again.
α	Alpha in effect for next keystroke. To cancel, press ALPHA again.
((-))	Low battery power.
\%	Busy.
37	Data is being transferred via infrared or cable.

The keyboard

Menu keys

- On the calculator keyboard, the top row of keys are called menu keys. Their meanings depend on the context-that's why their tops are blank. The menu keys are sometimes called "soft keys".
- The bottom line of the display shows the labels for the menu keys' current meanings.

Aplet control keys

The aplet control keys are:

Key	Meaning
SYMB	Displays the Symbolic view for the current aplet. See "Symbolic view" on page 1-16. Displays the Plot view for the current aplet. See "Plot view" on page 1-16. Displays the Numeric view for the Current aplet. See "Numeric view" on page 1-17. NUM
Displays the HOME view. See	
"HOME" on page 1-1.	
Displays the Aplet Library menu. See	
"Aplet library" on page 1-16.	
Displays the VIEWS menu. See	
"Aplet views" on page 1-16.	

Entry／Edit keys

The entry and edit keys are：

Key	Meaning
ON（CANCEL）	Cancels the current operation if the calculator is on by pressing $O N$ ． Pressing SHIFT，then OFF turns the calculator oft．
SHIFT	Accesses the function printed in blue above a key．
HOME	Returns to the HOME view，for performing calculations．
ALPHA	Accesses the alphabetical characters printed in orange below a key．Hold down to enter a string of characters．
ENTER	Enters an input or executes an operation．In calculations，ENTER is present as a menu key，ENTER acts the same as pressing or首佰面．
（－）	Enters a negative number．To enter -25 ，press $[(-)] 25$ ．Note：this is not the same operation that the subtract button performs （7）． \qquad
区，T， $\mathrm{\theta}$	Enters the independent variable by inserting X, T, θ ，or N into the edit line，depending on the current active aplet．
DEL	Deletes the character under the cursor．Acts as a backspace key if the cursor is at the end of the line．
SHIFT CLEAR	Clears all data on the screen．On a settings screen，for example Plot Setup，SHIFT CLEAR returns all settings to their default values．
$\square, \Delta, \Delta,$	Moves the cursor around the display．Press SHIFT first to move to the beginning，end，top or bottom．

Key	Meaning (Continued)
SHIFT CHARS	Displays a menu of all available characters. To type one, use the arrow keys to highlight it, and press BEA . To select multiple characters, select each and press EEEHE, then press WET.

Shifted keystrokes

There are two shift keys that you use to access the operations and characters printed above the keys: [SHIFT and ALPHA.

Key	Description
SHIFT	Press the SHIFT key to access the operations printed in blue above the keys. For instance, to access the Modes screen, press SHIFT, then press HOME. (MODES is labeled in blue above the HOME key). You do not need to hold down SHIFT when you press HOME. This action is depicted in this manual as "press SHIFT MODES." To cancel a shift, press SHIFT again.
ALPHA	The alphabetic keys are also shifted keystrokes. For instance, to type Z, press ALPHA Z. (The letters are printed in orange to the lower right of each key.) To cancel Alpha, press ALPHA again. For a lower case letter, press ALPHA. For a string of letters, hold down ALPHA while typing.

The HP 39gs built-in help is available in HOME only. It provides syntax help for built-in math functions.
Access the HELPWITH command by pressing SHIFT SYNTAX and then the math key for which you require syntax help.

Note: Remove the left parenthesis from built-in functions such as sine, cosine, and tangent before invoking the HELPWITH command.

Math keys
HOME (HOME) is the place to do calculations.
Keyboard keys. The most common operations are available from the keyboard, such as the arithmetic (like $\pm)$ and trigonometric (like SIN) functions. Press ENTER to complete the operation: SHIFT $\sqrt{ } 256$ ENTER displays 16 .

MATH menu. Press
MATH to open the MATH menu. The MATH menu is a comprehensive list of math functions that do not appear
 on the keyboard. It also includes categories for all other functions and constants. The functions are grouped by category, ranging in alphabetical order from Calculus to Trigonometry.

- The arrow keys scroll through the list (\mathbf{T}, Δ) and move from the category list in the lett column to the item list in the right column (\triangle, \triangle).
- Press [ITA to insert the selected command onto the edit line.
- Press Eniliti to dismiss the MATH menu without selecting a command.
- Pressing [CDNS displays the list of Program Constants. You can use these in programs that you develop.
- Pressing FHYS displays a menu of physical constants from the fields of chemistry, physics, and quantum mechanics. You can use these constants in calculations. (See "Physical constants" on page 13-25 for more information.)
- Pressing [0]ititl takes you to the beginning of the MATH menu.

See "Math functions by category" on page 13-2 for details of the math functions.

HINT When using the MATH menu, or any menu on the hp 39gs, pressing an alpha key takes you straight to the first menu option beginning with that alpha character. With this method, you do not need to press ALPHA first. Just press the key that corresponds to the command's beginning alpha character.

Program commands

Inactive keys

Pressing SHIFT CMDS displays the list of Program Commands. See "Programming commands" on page 18-13.

If you press a key that does not operate in the current context, a warning symbol like this appears. There is no beep.

A menu offers you a choice of items. Menus are displayed in one or two columns.

- The $\boldsymbol{\nabla}$ arrow in the display means more items below.
- The Δ arrow in the
 display means more items above.
- Press $\boldsymbol{\nabla}$ or to scroll through the list. If you press SHIFT \square or SHIFT \triangle, you'll go all the way to the end or the beginning of the list. Highlight the item you want to select, then press [⿴囗 (or ENTER).
－If there are two columns，the left column shows general categories and the right column shows specific contents within a category．Highlight a general category in the left column，then highlight an item in the right column．The list in the right column changes when a different category is highlighted． Press IIE or ENTER when you have highlighted your selection．
－To speed－search a list，type the first letter of the word． For example，to find the Matrix category in MATH， press \square ，the Alpha＂M＂key．
－To go up a page，you can press SHIFT 4．To go down a page，press SHIFT Δ ．

To cancel a menu Press O（for CANCEL）or EMELEI．This cancels the current operation．

Input forms

Reset input form values

An input form shows several fields of information for you to examine and specify．After highlighting the field to edit，you can enter or edit a number（or expression）．You can also select options from a list（（且思思）．Some input forms include items to check（（ㄷㅐㅐII ）．See below for examples input forms．

To reset a field to its default values in an input form，move the cursor to that field and press DEL．To reset all default field values in the input form，press SHIFT CLEAR．

Mode settings

You use the Modes input form to set the modes for HOME.
HINT Although the numeric setting in Modes affects only HOME, the angle setting controls HOME and the current aplet. The angle setting selected in Modes is the angle setting used in both HOME and current aplet. To further configure an aplet, you use the SETUP keys (SHIFT PLOT) and (SHIFT NUM).

Press SHIFT MODES to access the HOME MODES input form.

Setting	Options
Angle	Angle values are: Degrees. 360 degrees in a circle. Radians. 2π radians in a circle. Grads. 400 grads in a circle. The angle mode you set is the angle setting used in both HOME and the current aplet. This is done to ensure that trigonometric calculations done in the current aplet and HOME give the Name result.
Formber	The number format mode you set is the number format used in both HOME and the current aplet. Standard. Full-precision display. Fixed. Displays results rounded to a number of decimal places. Example: 123.456789 becomes 123.46 in Fixed 2 format. Scientific. Displays results with an exponent, one digit to the left of the decimal point, and the specified number of decimal places. Example: 123.456789 becomes 1.23E2 in Scientific 2 format.

Setting	Options (Continued)
Decimal Mark	Engineering. Displays result with an exponent that is a multiple of 3 , and the specified number of significant digits beyond the first one. Example: 123.456 E 7 becomes 1.23E9 in Engineering 2 format. Fraction. Displays results as fractions based on the specified number of decimal places. Examples: 123.456789 becomes 123 in Fraction 2 format, and .333 becomes $1 / 3$ and 0.142857 becomes $1 / 7$. See "Using fractions" on page 1-25. Mixed Fraction. Displays results as mixed fractions based on the specified number of decimal places. A mixed fraction has an integer part and a fractional part. Examples: 123.456789 becomes $123+16 / 35$ in Fraction 2 format, and $7 \div 3$ returns $2+1 / 3$. See "Using fractions" on page 1-25. Dot or Comma. Displays a number as 12456.98 (Dot mode) or as 12456,98 (Comma mode). Dot mode uses commas to separate elements in lists and matrices, and to separate function arguments. Comma mode uses periods (dot) as separators in these contexts.

Setting a mode

This example demonstrates how to change the angle measure from the default mode, radians, to degrees for the current aplet. The procedure is the same for changing number format and decimal mark modes.

1. Press SHIFT MODES to open the HOME MODES input form.

The cursor (highlight) is in the first field, Angle Measure.
2. Press [ime to display a list of choices.
3. Press Δ to select Degrees, and press [aEd. The angle measure changes to degrees.

4. Press HOME to return to HOME.

HIN T Whenever an input form has a list of choices for a field, you can press \square to cycle through them instead of using

Aplets (E-lessons)

Aplets are the application environments where you explore different classes of mathematical operations. You select the aplet that you want to work with.
Aplets come from a variety of sources:

- Built-in the HP 39gs (initial purchase).
- Aplets created by saving existing aplets, which have been modified, with specific configurations. See "Creating new aplets based on existing aplets" on page 19-1.
- Downloaded from HP's Calculators web site.
- Copied from another calculator.

Aplets are stored in the Aplet library. See "Aplet library" on page $1-16$ for further information.

You can modify

Function	CKE
Inference	ИKB
Parametric	OKB
Polar	OKB
Sequence	OKB
SHWE [GESET SDIR	IDIEECDISTAET

symbolic views of the aplets in the following table. See "Aplet view configuration" on page 1-18 for further information.

Aplet name	Use this aplet to explore:
Function	Real-valued, rectangular functions y in terms of x. Example: $y=2 x^{2}+3 x+5$.
Inference	Confidence intervals and Hypothesis tests based on the Normal and Students-t distributions.
Parametric	Parametric relations x and y in terms of t. Example: $x=\cos (t)$ and $y=\sin (t)$.
Polar	Polar functions r in terms of an angle θ. Example: $r=2 \cos (4 \theta)$.
Sequence	Sequence functions U in terms of n, or in terms of previous terms in the same or another sequence, such as U_{n-1} and U_{n-2}. Example: $U_{1}=0, U_{2}=1$ and $U_{n}=U_{n-2}+U_{n-1}$.
Solve	Equations in one or more real-valued variables. Example: $x+1=x^{2}-x-2$.
Finance	Time Value of Money (TVM) calculations.
Linear Solver	Solutions to sets of two or three linear equations.
Triangle Solver	Unknown values for the lengths and angles of triangles.
Statistics	One-variable (x) or two-variable (x and y) statistical data.

In addition to these aplets, which can be used in a variety of applications, the HP 39gs is supplied with two teaching aplets: Quad Explorer and Trig Explorer. You cannot modify configuration settings for these aplets.
A great many more teaching aplets can be found at HP^{\prime} s web site and other web sites created by educators, together with accompanying documentation, often with student work sheets. These can be downloaded free of
charge and transferred to the HP 39gs using the provided Connectivity Kit.

Quad Explorer aplet

The Quad Explorer aplet is used to investigate the behaviour of $y=a(x+h)^{2}+v$ as the values of a, h and v change, both by manipulating the equation and seeing the change in the graph, and by manipulating the graph and seeing the change in the equation.
HIN T More detailed documentation, and an accompanying student work sheet can be found at HP's web site.

Press APLET, select Quad Explorer, and then press Elilititi The Quad Explorer aplet opens in Eifilite mode, in which the arrow keys, the \square and \square keys, and the $[(-)$ key are used to change the shape of the graph. This changing shape is reflected in the equation displayed at the top right corner of the screen, while the original graph is retained for comparison. In this mode the graph controls the equation.

It is also possible to have the equation control the graph.
 sub-expression of your equation.

The Trig Explorer aplet is used to investigate the behaviour of the graph of $y=a \sin (b x+c)+d$ as the values of a, b, c and d change, both by manipulating the equation and seeing the change in the graph, or by manipulating the graph and seeing the change in the equation.
 Explorer, and then press顛ilitilit to display the screen shown right.

In this mode, the graph controls the equation. Pressing the $\Delta \square$ and $\square \square$ keys transforms the graph, with these
 transformations reflected in the equation.

The button labelled तatro is a toggle between Matici and Emind When MaEID is chosen, the 'point of control' is at the origin $(0,0)$ and the $\Delta \square$ and $\square \square$
 keys control vertical and
 'point of control' is on the first extremum of the graph (i.e. for the sine graph at ($\pi / 2,1$).

The arrow keys change the amplitude and frequency of the graph. This is most easily seen by experimenting.

Pressing SYMB displays the equation at the top of the screen. The equation is controlled by the graph. Pressing the \square and \square keys moves from parameter
 to parameter. Pressing the \qquad or ∇ key changes the parameter's values.

The default angle setting for this aplet is radians. The angle setting can be changed to degrees by pressing [雷.

Aplet library

To open an aplet
Aplets are stored in the Aplet library.
Press APLET to display the Aplet library menu. Select the aplet and press EIClitil or ENTER.

From within an aplet, you can return to HOME any time by pressing HOME.

Aplet views

Symbolic view

Plot view
Press PLOT to display the aplet's Plot view.
In this view, the functions that you have defined are displayed graphically.
See "About the Plot view" on page 2-5 for further
 information.

Numeric view

Plot-Table view

Plot-Detail view

Overlay Plot view

Press NUM to display the aplet's Numeric view.
In this view, the functions that you have defined are displayed in tabular format.

See "About the numeric view" on page 2-16 for
 further information.

The VIEWS menu contains the Plot-Table view.

VIEWS

Select Plot-Table MEI
Splits the screen into the plot and the data table. See "Other views for scaling and splitting the graph" on
 page 2-13 for futher information.

The VIEWS menu contains the Plot-Detail view.

VIEWS

Select Plot-Detail WI
Splits the screen into the plot and a close-up.

See "Other views for scaling and splitting the graph" on page 2-13 for further information.

The VIEWS menu contains the Overlay Plot view.

VIEWS

Select Overlay Plot [बI
Plots the current
expression(s) withouterasing any pre-existing plot(s).

See "Other views for scaling and splitting the graph" on page 2-13 for further information.

Note view

Sketch view

Press SHIFT NOTE to display the aplet's note view.
This note is transferred with the aplet if it is sent to another calculator or to a PC. A note view contains text to supplement an aplet.

See "Notes and sketches" on page 17-1 for further information.

Press SHIFT SKETCH to display the aplet's sketch view.
Displays pictures to supplement an aplet.
See "Notes and sketches" on page 17-1 for further information.

Aplet view configuration

You use the SETUP keys (SHIFT PLOT, and SHIFT NUM) to configure the aplet. For example, press SHIFT SETUP-PLOT (SHIFT PLOT) to display the input form for setting the aplet's plot settings. Angle measure is controlled using the MODES view.

Plot Setup

Press SHIFT SETUP-PLOT. Sets parameters to plot a graph.

Numeric Setup
Press SHIFT SETUP-NUM. Sets parameters for building a table of numeric values.

Symbolic Setup
This view is only available in the Statistics aplet in Elific mode, where it plays an important role in choosing data models.
Press SHIFT SETUP-SYMB.

To change views

To save aplet configuration

Each view is a separate environment. To change a view, select a different view by pressing SYMB, NUM, PLOT keys or select a view from the VIEWS menu. To change to HOME, press HOME. You do not explicitly close the current view, you just enter another one-like passing from one room into another in a house. Data that you enter is automatically saved as you enter it.

You can save an aplet configuration that you have used, and transfer the aplet to other HP 39gs calculators. See "Creating new aplets based on existing aplets" on page 19-1.

Mathematical calculations

The most commonly used math operations are available from the keyboard. Access to the rest of the math functions is via the MATH menu (MATH).

To access programming commands, press SHIFT CMDS. See "Programming commands" on page 18-13 for further information.

Where to start

The home base for the calculator is the HOME view (HOME). You can do all calculations here, and you can access all MATH operations.

- Enter an expression into the HP 39 gs in the same left-to-right order that you would write the expression. This is called algebraic entry.
- To enter functions, select the key or MATH menu item for that function. You can also enter a function by using the Alpha keys to spell out its name.
- Press ENTER to evaluate the expression you have in the edit line (where the blinking cursor is). An expression can contain numbers, functions, and variables.

Long results

Negative numbers

Scientific notation (powers of 10)

Example

If the result is too long to fit on the display line, or if you want to see an expression in textbook format, press Δ

Type [(-) to start a negative number or to insert a negative sign.

To raise a negative number to a power, enclose it in parentheses. For example, $(-5)^{2}=25$, whereas $-5^{2}=$ -25.

A number like 5×10^{4} or 3.21×10^{-7} is written in scientific notation, that is, in terms of powers of ten. This is simpler to work with than 50000 or 0.000000321 . To enter numbers like these, use EEX. (This is easier than using $x 10 x^{2}$.)
Calculate $\frac{\left(4 \times 10^{-13}\right)\left(6 \times 10^{23}\right)}{3 \times 10^{-5}}$

(-) 13 (
x 6 SHIFT EEX
23 ($\div 3$ SHIFT EEX
(-) 5

ENTER

Explicit and
implicit multiplication

Implied multiplication takes place when two operands appear with no operator in between. If you enter $A B$, for example, the result is $A * B$.

However, for clarity, it is better to include the multiplication sign where you expect multiplication in an expression. It is clearest to enter $A B$ as $A * B$.

HINT Implied multiplication will not always work as expected. For example, entering $A(B+4)$ will not give $A^{*}(B+4)$. Instead an error message is displayed: "Invalid User Function". This is because the calculator interprets $A(B+4)$ as meaning 'evaluate function A at the value $\mathrm{B}+4^{\prime}$, and function A does not exist. When in doubt, insert the * sign manually.

Parentheses

You need to use parentheses to enclose arguments for functions, such as $\operatorname{SIN}(45)$. You can omit the final parenthesis at the end of an edit line. The calculator inserts it automatically.

Parentheses are also important in specifying the order of operation. Without parentheses, the HP 39gs calculates according to the order of algebraic precedence (the next topic). Following are some examples using parentheses.

Entering...	Calculates...
SIN 45 ¢ SHIFT π	$\sin (45+\pi)$
SIN 45 [${ }_{\text {¢ SHIFT }} \pi$	$\sin (45)+\pi$
SHIFT \checkmark 85区 9	$\sqrt{85} \times 9$
SHIFT $\sqrt{ }$ O85区90	$\sqrt{85 \times 9}$

> Algebraic precedence order of evaluation

Largest and smallest numbers

Clearing numbers

Functions within an expression are evaluated in the following order of precedence. Functions with the same precedence are evaluated in order from left to right.

1. Expressions within parentheses. Nested parentheses are evaluated from inner to outer.
2. Prefix functions, such as SIN and LOG.
3. Postfix functions, such as !
4. Power function, ^, NTHROOT.
5. Negation, multiplication, and division.
6. Addition and subtraction.
7. AND and NOT.
8. OR and XOR.
9. Left argument of | (where).
10.Equals, $=$.

The smallest number the HP 39gs can represent is 1×10^{-499} ($1 \mathrm{E}-499$). A smaller result is displayed as zero. The largest number is $9.99999999999 \times 10^{499}$ (1E499). A greater result is displayed as this number.

- DEL clears the character under the cursor. When the cursor is positioned after the last character, DEL deletes the character to the left of the cursor, that is, it performs the same as a backspace key.
- CANCEL (ON) clears the edit line.
- SHIFT CLEAR clears all input and output in the display, including the display history.

Using previous results

The HOME display (HOME) shows you four lines of input/output history. An unlimited (except by memory) number of previous lines can be displayed by scrolling. You can retrieve and reuse any of these values or expressions.

When you highlight a previous input or result (by pressing

To copy a previous line

To reuse the last result

To repeat a previous line

Example

Highlight the line (press Δ) and press [GT] The number (or expression) is copied into the edit line.

Press SHIFT ANS (last answer) to put the last result from the HOME display into an expression. ANS is a variable that is updated each time you press ENTER.

To repeat the very last line, just press ENTER. Otherwise, highlight the line (press Δ) first, and then press ENTER. The highlighted expression or number is re-entered. If the previous line is an expression containing the aNS, the calculation is repeated iteratively.

See how SHIFT ANS retrieves and reuses the last result (50), and ENTER updates ANS (from 50 to 75 to 100).

You can use the last result as the first expression in the edit line without pressing SHIFT ANS. Pressing $\oplus, \square, \boxtimes$, or ; (or other operators that require a preceding argument) automatically enters $A N S$ before the operator.

You can reuse any other expression or value in the HOME display by highlighting the expression (using the arrow keys), then pressing ETITi. See "Using previous results" on page 1-22 for more details.
The variable $A N S$ is different from the numbers in HOME's display history. A value in ANS is stored internally with the full precision of the calculated result, whereas the displayed numbers match the display mode.

HINT When you retrieve a number from $A N S$, you obtain the result to its full precision. When you retrieve a number from the HOME's display history, you obtain exactly what was displayed.

Pressing ENTER evaluates (or re-evaluates) the last input, whereas pressing SHIFT ANS copies the last result (as $A N S$) into the edit line.

Storing a value in a variable

You can save an answer in a variable and use the variable in later calculations. There are 27 variables available for storing real values. These are A to Z and θ. See Chapter 14, "Variables and memory management" for more information on variables. For example:

1. Perform a calculation.

2. Store the result in the A variable.

3. Perform another calculation using the A variable.

Accessing the display history

Pressing enables the highlight bar in the display history．While the highlight bar is active，the following menu and keyboard keys are very useful：

Key	Function
－，	Scrolls through the display history．
國页翟	Copies the highlighted expression to the position of the cursor in the edit line．
	Displays the current expression in standard mathematical form．
DEL	Deletes the highlighted expression from the display history，unless there is a cursor in the edit line．
$\underset{\text { SLIFT }}{ }$	Clears all lines of display history and the edit line．

Clearing the display history

It＇s a good habit to clear the display history（SHIIFT CLEAR）whenever you have finished working in HOME．It saves calculator memory to clear the display history． Remember that all your previous inputs and results are saved until you clear them．

Using fractions

To work with fractions in HOME，you set the number format to Fraction or Mixed Fraction，as follows：

Setting Fraction mode

1．In HOME，open the HOME MODES input form．
SHIFT MODES

2．Select Number Format，press 国酸 to display the options，and highlight Fraction or Mixed Fraction．

3．Press［］E to select the Number Format option，then move to the precision value field．


```
ENTEF DECINHL PLALES TD USE
EDIT EHD⿴囗⿱一一\
```

4．Enter the precision value that you want to use，and press［⿴囗 to HOME．

See＂Setting fraction precision＂below for more information．

Setting fraction precision

The fraction precision setting determines the precision in which the HP 39gs converts a decimal value to a fraction． The greater the precision value that is set，the closer the fraction is to the decimal value．

By choosing a precision of 1 you are saying that the fraction only has to match 0.234 to at least 1 decimal place（ $3 / 13$ is $0.23076 \ldots$ ）．

The fractions used are found using the technique of continued fractions．

When converting recurring decimals this can be important．For example，at precision 6 the decimal 0.6666 becomes $3333 / 5000(6666 / 10000)$ whereas at precision $3,0.6666$ becomes $2 / 3$ ，which is probably what you would want．

For example，when converting .234 to a fraction，the precision value has the following effect：

- Precision set to 1 :

- Precision set to 2 :

- Precision set to 3:

- Precision set to 4

	11/47
. 234	
	117/560
[iTM	

Fraction calculations

When entering fractions:

- You use the \div key to separate the numerator part and the denominator part of the fraction.
- To enter a mixed fraction, for example, $1^{1} / 2$ y you enter it in the format $(1+1 / 2)$.

For example, to perform the following calculation:
$3\left(2^{3} / 4+5^{7} / 8\right)$

1. Set the Number format mode to Fraction or Mixed Fraction and specify a precision value of 4. In this example, we'll select Fraction as our format.)

2. Enter the calculation.

Note: Ensure you are in the HOME view.
3. Evaluate the calculation.

ENTER

Note that if you had selected Mixed Fraction instead of Fraction as the
Number format, the answer would have been expressed as $25+7 / 8$.

Converting decimals to fractions

To convert a decimal value to a fraction:

1. Set the number format mode to Fraction or Mixed Fraction.
2. Either retrieve the value from the History, or enter the value on the command line.
3. Press ENTER to convert the number to a fraction.

When converting a decimal to a fraction, keep the following points in mind:

- When converting a recurring decimal to a fraction, set the fraction precision to about 6 , and ensure that you include more than six decimal places in the recurring decimal that you enter.

In this example, the fraction precision is set to 6 . The top calculation returns the correct result. The
 bottom one does not.

- To convert an exact decimal to a fraction, set the fraction precision to at least two more than the number of decimal places in the decimal.

In this example, the fraction precision is set to 6 .

Complex numbers

Complex results

To enter complex numbers

The HP 39gs can return a complex number as a result for some math functions. A complex number appears as an ordered pair (x, y), where x is the real part and y is the imaginary part. For example, entering $\sqrt{-1}$ returns $(0,1)$.

Enter the number in either of these forms, where x is the real part, y is the imaginary part, and i is the imaginary constant, $\sqrt{-1}$:

- (x, y) or
- $x+i y$.

To enter i:

- press SHIFT ALPHA 1
or
- press MATH, Δ or ∇ keys to select Constant, \square to move to the right column of the menu, ∇ to select i, and DEI.

There are 10 variables available for storing complex numbers: Z0 to Z9. To store a complex number in a variable:
 variable to store the number in, and press ENTER.

Catalogs and editors

The HP 39gs has several catalogs and editors. You use them to create and manipulate objects. They access features and stored values (numbers or text or other items) that are independent of aplets.

- A catalog lists items, which you can delete or transmit, for example an aplet.
- An editor lets you create or modify items and numbers, for example a note or a matrix.

Catalog/Editor	Contents
Aplet library (APLET) $)$	Aplets.
Sketch editor (SHIFT SKETCH)	Sketches and diagrams, See Chapter 17, "Notes and sketches".
List (SHIFT LIST)	Lists. In HOME, lists are enclosed in \{\}. See Chapter 16, "Lists".
Matrix (SHIFT	One- and two-dimensional arrays. In HOME, arrays are enclosed in []. See Chapter 15, "Matrices".
Notepad (STIX) NOTEPAD)	Notes (short text entries). See Chapter 17, "Notes and sketches".
Program (SHIFT PROGRM)	Programs that you create, or associated with user-defined aplets. See Chapter 18,
"Programming".	

2

Aplets and their views

Aplet views

This section examines the options and functionality of the three main views for the Function, Polar, Parametric, and Sequence aplets: Symbolic, Plot, and Numeric views.

About the Symbolic view

The Symbolic view is the defining view for the Function, Parametric, Polar, and Sequence aplets. The other views are derived from the symbolic expression.
You can create up to 10 different definitions for each Function, Parametric, Polar, and Sequence aplet. You can graph any of the relations (in the same aplet) simultaneously by selecting them.

Defining an expression (Symbolic view)

Choose the aplet from the Aplet Library.

APLET

Press Δ or ∇ to select an aplet.

EThist

Funct ion	. 55 KB
Inference	OKB
Parametric	OKB
Polar	DKB
Sequence	0 KB
SAWE [3ESET SD	ECDISTATIT

The Function,
Parametric, Polar, and Sequence aplets start in the Symbolic view.

If the highlight is on an existing expression, scroll to an empty line-unless you don't mind writing over the expression - or, clear one line (DEL) or all lines
(SHIFT CLEAR).
Expressions are selected (check marked) on entry. To deselect an expression, press ㄷㅐㅐㅕ. All selected expressions are plotted.

- For a Function definition, enter an expression to define $F(X)$. The only independent variable in the
 expression is X.
- For a

Parametric definition, enter a pair of expressions to define $X(T)$ and
 $Y(T)$. The only independent variable in the expressions is T.

- For a Polar definition, enter an expression to define $R(\theta)$. The only independent variable in the
 expression is θ.
- For a Sequence definition, either enter the first term, or the first and second terms, for U (U1, or...U9, or
 UO). Then define the nth term of the sequence in terms of N or of the prior terms, $U(\mathrm{~N}-1)$ and/or $\mathrm{U}(\mathrm{N}-2)$. The expressions should produce real-valued sequences with integer domains. Or define the nth term as a non-recursive expression in terms of n only. In this case, the calculator inserts the first two terms based on the expression that you define.
- Note: You will have to enter the second term if the hp39gs is unable to calculate it automatically. Typically if $\mathrm{Ux}(\mathrm{N})$ depends on $\mathrm{Ux}(\mathrm{N}-2)$ then you must enter $\mathrm{Ux}(2)$.

Evaluating expressions

In aplets
In the Symbolic view, a variable is a symbol only, and does not represent one specific value. To evaluate a function in Symbolic view, press EUNiL . If a function calls another function, then EDNaL resolves all references to other functions in terms of their independent variable.

1. Choose the Function aplet.

APLET
Select Function ETTHFT

2. Enter the expressions in the Function aplet's Symbolic view.

3. Highlight F3(X).

4. Press Emal

Note how the values for $\mathrm{Fl}(\mathrm{X})$ and $\mathrm{F} 2(\mathrm{X})$ are substituted into F3(X).

In HOME

You can also evaluate any expression in HOME by entering it into the edit line and pressing ENTER.
For example, define F4 as below. In HOME, type F4 (9) and press ENTER. This evaluates the expression, substituting 9 in place of x into $\mathrm{F4}$.

SYMB view keys

The following table details the menu keys that you use to work with the Symbolic view.

Key	Meaning
ESIT	Copies the highlighted expression to the edit line for editing. Press 国 when done.
CTHE	Checks/unchecks the current expression (or set of expressions). Only checked expression(s) are evaluated in the Plot and Numeric views.
[8]	Enters the independent variable in the Function aplet. Or, you can use the X, T, θ key on the keyboard.
T	Enters the independent variable in the Parametric aplet. Or, you can use the X, T, θ key on the keyboard.
B	Enters the independent variable in the Polar aplet. Or, you can use the X,T, θ key on the keyboard.
[\|	Enters the independent variable in the Sequence aplet. Or, you can use the X,T,, key on the keyboard.
EHEDN.	Displays the current expression in text book form.
Email	Resolves all references to other definitions in terms of variables and evaluates all arithmetic expressions.
VARS	Displays a menu for entering variable names or contents of variables.

Key	Meaning（Continued）
MATH	Displays the menu for entering math operations．
SHIFT CHARS	Displays special characters．To enter one，place the cursor on it and press DE．To remain in the CHARS menu and enter another special character， press ECHD．
DEL	Deletes the highlighted expression or the current character in the edit line． SHIFT CLEAR Deletes all expressions in the list or clears the edit line．

About the Plot view

After entering and selecting（check marking）the expression in the Symbolic view，press PLOT．To adjust the appearance of the graph or the interval that is displayed，you can change the Plot view settings．

You can plot up to ten expressions at the same time． Select the expressions you want to be plotted together．

Setting up the plot（Plot view setup）

Press SHIFT SETUP－PLOT to define any of the settings shown in the next two tables．

1．Highlight the field to edit．
－If there is a number to enter，type it in and press ENTER or DER
－If there is an option to choose，press chiose， highlight your choice，and press ENTER or D⿴囗⿱一一厶儿， As a shortcut to［HDE just highlight the field to change and press \pm to cycle through the options．
－If there is an option to select or deselect，press FIHE to check or uncheck it．

2．Press EHETE to view more settings．
3．When done，press PLOT to view the new plot．

Plot view settings

The plot view settings are:

Field	Meaning
XRNG, YRNG	Specifies the minimum and maximum horizontal (X) and vertical (Y) values for the plotting window.
RES	For function plots: Resolution; "Faster" plots in alternate pixel columns; "Detail" plots in every pixel column.
TRNG	Parametric aplet: Specifies the \dagger values (T) for the graph.
θ RNG	Polar aplet: Specifies the angle (θ) value range for the graph.
NRNG	Sequence aplet: Specifies the index (N) values for the graph.
TSTEP	For Parametric plots: the increment for the independent variable.
OSTEP	For Polar plots: the increment value for the independent variable.
SEQPLOT	For Sequence aplet: Stairstep or Cobweb types.
XTICK	Horizontal spacing for tickmarks.
YTICK	Vertical spacing for tickmarks.

Those items with space for a checkmark are settings you can turn on or off. Press FTHET to display the second page.

Field	Meaning
SIMULT	If more than one relation is being plotted, plots them simultaneously (otherwise sequentially).
INV. CROSS	Cursor crosshairs invert the status of the pixels they cover.

Field	Meaning (Continued)
CONNECT	Connect the plotted points. (The Sequence aplet always connects them.)
LabELS	Label the axes with XRNG and YRNG values.
GRID	Draw the axes. Draw grid points using XTICK and YTICK spacing.

Reset plot settings

To reset the default values for all plot settings, press SHIFT CLEAR in the Plot Setup view. To reset the default value for a field, highlight the field, and press DEL.

Exploring the graph

Plot view gives you a selection of keys and menu keys to explore a graph further. The options vary from aplet to aplet.

PLOT view keys

The following table details the keys that you use to work with the graph.

Key	Meaning
SHIFT CLEAR	Erases the plot and axes.
VIEWS	Offers additional pre-defined views for splititing the screen and for scaling ("zooming") the axes.
	Moves cursor to far left or far right.
\square	Moves cursor between relations.
FFites or ON	Interrupts plotting.
conet	Continues plotting if interrupted.

Key	Meaning（Continued）
Nㅓㅌㅣ	Turns menu－key labels on and off． When the labels are off，pressing WENㅔ turns them back on． －Pressing 퍼리 once displays the full row of labels． －Pressing［1ERTD a second time removes the row of labels to display only the graph． －Pressing सIETD a third time displays the coordinate mode．
Enimit	Displays the ZOOM menu list．
TㅏTin退	Turns trace mode on／off．A white box appears over the E on Trinte．
回边可	Opens an input form for you to enter an X（or T or N or θ ）value．Enter the value and press ．The cursor jumps to the point on the graph that you entered．
FCED	Function aplet only：turns on menu list for root－finding functions（see ＂Analyse graph with FCN functions＂ on page 3－4）．
CEF＊	Displays the current，defining expression．Press 버ㅈㅐㅣ to restore the menu．

Trace a graph

To move between If there is more than one relation displayed，press Δ or relations
∇ to move between relations．

You can trace along a function using the Δ or \square key which moves the cursor along the graph．The display also shows the current coordinate position（ x, y ）of the cursor． Trace mode and the coordinate display are automatically set when a plot is drawn．

Note：Tracing might not appear to exactly follow your plot if the resolution（in Plot Setup view）is set to Faster． This is because RES：FASTER plots in only every other column，whereas tracing always uses every column．
In Function and Sequence Aplets：You can also scroll（move the cursor）left or right beyond the edge of the display window in trace mode，giving you a view of more of the plot．

To jump directly to a value

To turn trace on/off

Zoom within a graph

ZOOM options

To jump straight to a value rather than using the Trace function, use the menu key. Press a value. Press 国 to jump to the value.

- Turn off trace mode by pressing tifitio
- Turn on trace mode by pressing fritice.
- To turn the coordinate display off, press [IEND.

One of the menu key options is Eamed Zooming redraws the plot on a larger or smaller scale. It is a shortcut for changing the Plot Setup.
The Set Factors. . . option enables you to set the factors by which you zoom in or zoom out, and whether the zoom is centered about the cursor.

Press Emind , select an option, and press [0. . If exmm
 available in all aplets.
\(\left.$$
\begin{array}{|l|l|}\hline \text { Option } & \text { Meaning } \\
\hline \text { Center } & \begin{array}{l}\text { Re-centers the plot around the } \\
\text { current position of the cursor without } \\
\text { changing the scale. } \\
\text { Box. . }\end{array}
$$

Ints you draw a box to zoom in on.

See "Other views for scaling and

splitting the graph" on page 2-13.\end{array}\right\}\)| Divides horizontal and vertical |
| :--- |
| scales by the X-factor and Y-factor. |
| For instance, if zoom factors are 4, |
| then zooming in results in 1/4 as |
| many units depicted per pixel. (see |
| Set Factors . . .) |
| Out |

Option	Meaning (Continued)
Y-Zoom In	Divides vertical scale only, using Y-factor.
Y-Zoom Out	Multiplies vertical scale only, using Y-factor.
Square	Changes the vertical scale to match the horizontal scale. (Use this after doing a Box Zoom, X-Zoom, or Y-Zoom.)
```Set Factors...```	Sets the X-Zoom and Y-Zoom factors for zooming in or zooming out. Includes option to recenter the plot before zooming.
Auto Scale	Rescales the vertical axis so that the display shows a representative piece of the plot, for the supplied $x$ axis settings. (For Sequence and Statistics aplets, autoscaling rescales both axes.)   The autoscale process uses the first selected function only to determine the best scale to use.
Decimal	Rescales both axes so each pixel $=$ 0.1 units. Resets default values for XRNG   (-6.5 to 6.5) and YRNG (-3.1 to 3.2). (Not in Sequence or Statistics aplets.)
Integer	Rescales horizontal axis only, making each pixel $=1$ unit. (Not available in Sequence or Statistics aplets.)
Trig	Rescales horizontal axis so 1 pixel $=\pi / 24$ radians, 7.58 , or $8^{1} / 3$ grads; rescales vertical axis so 1 pixel $=0.1$ unit. (Not in Sequence or Statistics aplets.)


Option	Meaning (Continued)
Un-zoom	Returns the display to the previous   zoom, or if there has been only one   zoom, un-zoom displays the graph   with the original plot settings.

## ZOOM examples

The following screens show the effects of zooming options on a plot of $3 \sin x$.

Plot of $3 \sin x$


## Zoom In:

HEND EDWN In WR


## Un-zoom:


Note: Press $\Delta$ to move to the bottom of the Zoom list.


## Zoom Out:

Enow Out DE
Now un-zoom.


## X-Zoom In:

Exiri X-Zoom In
Now un-zoom.


## X-Zoom Out:

Enxix X-Zoom Out N:
Now un-zoom.


## Y－Zoom In：

Enm Y－Zoom In 国
Now un－zoom．


## Y－Zoom Out：

Enity Y－Zoom Out 以下：


## Zoom Square：

Enix Square 망


## To box zoom

The Box Zoom option lets you draw a box around the area you want to zoom in on by selecting the endpoints of one diagonal of the zoom rectangle．

1．If necessary，press स्ता to turn on the menu－key labels．

2．Press Endrand andect Box．．．
3．Position the cursor on one corner of the rectangle． Press DE ．
4．Use the cursor keys （ $\nabla$ ，etc．）to drag to the opposite corner．


5．Press ⿴囗大 to zoom in on the boxed area．


To set zoom factors 1. In the Plot view, press 떠Nㅔㅇ
2. Press Eximis
3. Select Set Factors... and press 国.
4. Enter the zoom factors. There is one zoom factor for the horizontal scale (хzoom) and one for the vertical scale (Yzoom).
Zooming out multiplies the scale by the factor, so that a greater scale distance appears on the screen.
Zooming in divides the scale by the factor, so that a shorter scale distance appears on the screen.

## Other views for scaling and splitting the graph

The preset viewing options menu (VIEWS) contains options for drawing the plot using certain pre-defined configurations. This is a shortcut for changing Plot view settings. For instance, if you have defined a trigonometric function, then you could select Trig to plot your function on a trigonometric scale. It also contains split-screen options.

In certain aplets, for example those that you download from the world wide web, the preset viewing options menu can also contain options that relate to the aplet.

VIEWS menu Press VIEWS, select an option, and press 四. options

Option	Meaning
Plot-   Detail	Splits the screen into the plot and a   close-up.
Plot-Table	Splits the screen into the plot and   the data table.
Overlay   Plot	Plots the current expression(s)   without erasing any pre-existing   plot(s).


Option	Meaning（Continued）
Auto Scale	Rescales the vertical axis so that the display shows a representative piece of the plot，for the supplied $x$ axis settings．（For Sequence and Statistics aplets，autoscaling rescales both axes．）   The autoscale process uses the first selected function only to determine the best scale to use．
Decimal	Rescales both axes so each pixel＝ 0.1 unit．Resets default values for XRNG   （－6．5 to 6．5）and YRNG（－3．1 to 3．2）．（Not in Sequence or Statistics aplets．）
Integer	Rescales horizontal axis only， making each pixel＝1 unit．（Not available in Sequence or Statistics aplets．）
Trig	Rescales horizontal axis so 1 pixel $=\pi / 24$ radian， 7.58 ，or $8^{1 / 3} / 3$ grads；rescales vertical axis so 1 pixel $=0.1$ unit． （Not in Sequence or Statistics aplets．）

## Split the screen

The Plot－Detail view can give you two simultaneous views of the plot．

1．Press VIEWS．Select Plot－Detail and press 国． The graph is plotted twice．You can now zoom in on the right side．
 select the zoom method and press ⿴囗大 ENTER．This zooms the right side．Here is an example of split screen with zoom In．
－The Plot menu keys are available as for the full plot（for tracing，coordinate display，equation display，and so on）．


## Overlay plots

Decimal scaling

Integer scaling

Trigonometric scaling

- SHIFT 4 moves the leftmost cursor to the screen's left edge and SHIFT $\Delta$ moves the rightmost cursor to the screen's right edge.
- The 区-- menu key copies the right plot to the left plot.

3. To un-split the screen, press PLOT. The left side takes over the whole screen.
The Plot-Table view gives you two simultaneous views of the plot.
4. Press VIEWS. Select

Plot-Table and press $\mathbf{0 8}$. The screen displays the plot on the left side and a table of
 numbers on the right side.
2. To move up and down the table, use the 4 and cursor keys. These keys move the tra.ce point left or right along the plot, and in the table, the corresponding values are highlighted.
3. To move between functions, use the PLOT and $\nabla$ cursor keys to move the cursor from one graph to another.
4. To return to a full Numeric (or Plot) view, press NUM (or PLOT).

If you want to plot over an existing plot without erasing that plot, then use VIEWS Overlay Plot instead of PLOT. Note that tracing follows only the current functions from the current aplet.

Decimal scaling is the default scaling. If you have changed the scaling to Trig or Integer, you can change it back with Decimal.

Integer scaling compresses the axes so that each pixel is $1 \times 1$ and the origin is near the screen center.

Use trigonometric scaling whenever you are plotting an expression that includes trigonometric functions.
Trigonometric plots are more likely to intersect the axis at points factored by $\pi$.

## About the numeric view

After entering and selecting (check marking) the expression or expressions that you want to explore in the Symbolic view, press
 NUM to view a table of data values for the independent variable ( $X, T, \theta$, or $N$ ) and dependent variables.

## Setting up the table (Numeric view setup)

Press SHIFT NUM to define any of the table settings. Use the Numeric Setup input form to configure the table.


1. Highlight the field to edit. Use the arrow keys to move from field to field.

- If there is a number to enter, type it in and press ENTER or 0 El . To modify an existing number, press E[JIT.
- If there is an option to choose, press [HH0]s, highlight your choice, and press ENTER or ald
- Shortcut: Press the FLITH key to copy values from the Plot Setup into numstart and nUMSTEP. Effectively, the FLOTP menu key allows you to make the table match the pixel columns in the graph view.

2. When done, press NUM to view the table of numbers.

## Numeric view settings

The following table details the fields on the Numeric Setup input form.

Field	Meaning
NUMSTART	The independent variable's   starting value.
NUMSTEP	The size of the increment from   one independent variable value   to the next.
NUMTYPE	Type of numeric table: Automatic   or Build Your Own. To build your   own table, you must type each   independent value into the table   yourself.
Allows you to zoom in or out on a	
selected value of the independent	
variable.	

## Reset numeric settings

To reset the default values for all table settings, press SHIFT CLEAR.

## Exploring the table of numbers

NUM view menu keys

The following table details the menu keys that you use to work with the table of numbers.

Key	Meaning
Eximer	Displays ZOOM menu list.
W10	Toggles between two character sizes.
[0FFes	Displays the defining function expression for the highlighted column. To cancel this display, press UEFD.

## Zoom within a table

Zooming redraws the table of numbers in greater or lesser detail.

The following table lists the zoom options:
$\left.\begin{array}{|l|l|}\hline \text { Option } & \text { Meaning } \\ \hline \text { In } & \begin{array}{l}\text { Decreases the intervals for the } \\ \text { independent variable so a narrower } \\ \text { range is shown. Uses the NUMZOOM } \\ \text { factor in Numeric Setup. } \\ \text { Increases the intervals for the } \\ \text { independent variable so that a } \\ \text { wider range is shown. Uses the } \\ \text { NUMZOom factor in Numeric Setup. } \\ \text { Decimal } \\ \text { Changes intervals for the } \\ \text { independent variable to 0.1 units. } \\ \text { Starts at zero. (Shortcut to changing } \\ \text { NUMSTART and NUMSTEP.) } \\ \text { Changes intervals for the }\end{array} \\ \text { Independent variable to 1 unit. } \\ \text { Starts at zero. (Shortcut to changing } \\ \text { NUMSTEP.) } \\ \text { Changes intervals for independent } \\ \text { variable to } \pi / 24 \text { radian or 7.5 } \\ \text { degrees or } 81 / 3 \text { grads. Starts at } \\ \text { zero. } \\ \text { Returns the display to the previous } \\ \text { zoom. }\end{array}\right\}$

The display on the right is a Zoom In of the display on the left. The zoom factor is 4 .


HINT To jump to an independent variable value in the table, use the arrow keys to place the cursor in the independent variable column, then enter the value to jump to.

## Automatic recalculation

You can enter any new value in the $X$ column. When you press ENTER, the values for the dependent variables are recalculated, and the entire table is regenerated with the same interval between $X$ values.

## Building your own table of numbers

The default numtype is＂Automatic＂，which fills the table with data for regular intervals of the independent（ $X, T, \theta$ ， or $N$ ）variable．With the numtype option set to＂Build Your Own＂，you fill the table yourself by typing in the independent－variable values you want．The dependent values are then calculated and displayed．

## Build a table

1．Start with an expression defined（in Symbolic view）in the aplet of your choice．Note：Function，Polar， Parametric，and Sequence aplets only．
2．In the Numeric Setup（SHIFT NUM），choose nUMTYPE：Build Your Own．

3．Open the Numeric view（NUM）．
4．Clear existing data in the table（SHIFT CLEAR）．
5．Enter the independent values in the left－hand column． Type in a number and press ENTER．You do not have to enter them in order，because the manir function can rearrange them．To insert a number between two others，use［ax

You enter numbers into the X column


F1 and F2
entries are generated automatically

Press SHIFT CLEAR，WE⿴囗大 to erase the data from a table．

## "Build Your Own" menu keys

Key	Meaning
EEIT	Puts the highlighted independent value ( $X, T, \theta$, or $N$ ) into the edit line. Pressing ENTER replaces this variable with its current value.
Iㅐㅇㅗ	Inserts a zero value at the position of the highlight. Replace a zero by typing the number you want and pressing $\square$
ESAT	Sorts the independent variable values into ascending or descending order. Press E0KT and select the ascending or descending option from the menu, and press as.
E[1]	Toggles between two character sizes.
DEF*	Displays the defining function expression for the highlighted column.
DEL	Deletes the highlighted row.
SHIFT CLEAR	Clears all data from the table.

## Example: plotting a circle

Plot the circle, $x^{2}+y^{2}=9$. First rearrange it to read $y= \pm \sqrt{9-x^{2}}$.

To plot both the positive and negative $y$ values, you need to define two equations as follows:
$y=\sqrt{9-x^{2}}$ and $y=-\sqrt{9-x^{2}}$

1. In the Function aplet, specify the functions.


Function ETHFiT


ENTER

2. Reset the graph setup to the default settings.
SHIFT SETUP-PLOT
SHIFT CLEAR

3. Plot the two functions and hide the menu so that you can see all the circle.


4. Reset the numeric setup to the default settings.

SHIFT SETUP-NUM<br>SHIFT CLEAR

5. Display the functions in numeric form.


## Function aplet

## About the Function aplet

The Function aplet enables you to explore up to 10 real-valued, rectangular functions $y$ in terms of $x$. For example $y=2 x+3$.
Once you have defined a function you can:

- create graphs to find roots, intercepts, slope, signed area, and extrema
- create tables to evaluate functions at particular values.

This chapter demonstrates the basic tools of the Function aplet by stepping you through an example. See "Aplet views" on page 2-1 for further information about the functionality of the Symbolic, Numeric, and Plot views.

## Getting started with the Function aplet

The following example involves two functions: a linear function $y=1-x$ and a quadratic equation $y=(x+3)^{2}-2$.

Open the Function aplet

1. Open the Function aplet.


The Symbolic view is the defining view for Function, Parametric, Polar, and Sequence aplets. The other views are derived from the symbolic expression.

Define the expressions
2. There are 10 function definition fields on the Function aplet's Symbolic view screen. They are labeled F1 (X) to $\mathrm{FO}(\mathrm{X})$. Highlight the function definition field you want to use, and enter an expression. (You can press DEL to delete an existing line, or SHIFT CLEAR to clear all lines.)

1- X,T, ENTER


- 2 ENTER


Set up the plot

Plot the functions

You can change the scales of the $x$ and $y$ axes, graph resolution, and the spacing of the axis ticks.
3. Display plot settings.


Note: For our example, you can leave the plot settings at their default values since we will be using the Auto Scale feature to choose an appropriate y axis for our $x$ axis settings. If your settings do not match this example, press SHIFT CLEAR to restore the default values.
4. Specify a grid for the graph.

HiEIE
$\nabla \nabla \nabla$ Franta
5. Plot the functions.
$\qquad$

## Change the scale

6. You can change the scale to see more or less of your graphs. In this example, choose Auto Scale. (See "VIEWS menu options" on page 2-13 for a description of Auto Scale).

VIEWS Select Auto
Scale ME


Trace a graph
7. Trace the linear function.

46 times


Note: By default, the tracer is active.
8. Jump from the linear function to the quadratic function.
$\Delta$


Analyse graph with FCN functions
9. Display the Plot view menu.

## [

From the Plot view menu, you can use the functions on the FCN menu to find roots, intersections, slopes, and areas for a function defined in the Function aplet (and any Function-based aplets). The FCN functions act on the currently selected graph. See "FCN functions" on page 3-10 for further information.

## To find a root of the quadratic function

To find the intersection of the two functions

10. Move the cursor to the graph of the quadratic equation by pressing the $\Delta$ or key. Then move the cursor so that it is near $x=-1$ by pressing the $\square$ or $\quad$ key.
[ETED SelectRoot [IE


The root value is displayed at the bottom of the screen.

Note: If there is more than one root (as in our
 example), the coordinates of the root closest to the current cursor position are displayed.

11 .Find the intersection of the two functions.

12. Choose the linear function whose intersection with the quadratic function you wish to find.

## GR

The coordinates of the intersection point are displayed at the bottom of the screen.

Note: If there is more
 than one intersection (as in our example), the coordinates of the intersection point closest to the current cursor position are displayed.

To find the slope of the quadratic function

## To find the signed area of the two functions

13. Find the slope of the quadratic function at the intersection point.

## [ [iETII [E]

Select Slope
[IE
The slope value is displayed at the bottom of the screen.

14. To find the area between the two functions in the range $-2 \leq x \leq-1$, first move the cursor to $F 1(x)=1-x$ and select the signed area option.
[ [iEETI [ [EED
Select Signed area

## [aE


15. Move the cursor to $x=-2$ by pressing the $\square$ or $\square$ key.

## [IE


16. Press []E to accept using $F 2(x)=(x+3)^{2}-2$ as the other boundary for the integral.
17. Choose the end value for $x$.
[GITH


GI
The cursor jumps to $x=-1$ on the linear function.

18. Display the numerical value of the integral.

## [aE

Note: See "Shading area" on page 3-11 for another method of
 calculating area.

To find the extremum of the quadratic
19. Move the cursor to the quadratic equation and find the extremum of the quadratic.
(4) [

Select Extremum [aE
The coordinates of the extremum are displayed at the bottom of the screen.

HINT The Root and Extremum functions return one value only even if the function has more than one root or extremum. The function finds the value closest to the position of the cursor. You need to re-locate the cursor to find other roots or extrema that may exist.

## Display the numeric view

20. Display the numeric view.

NUM


## Set up the table

## Explore the table

23. Display the table of values.


To navigate around a table

24．Move to $\mathrm{X}=-5.9$ ．
$\square 6$ times


To go directly to a value

To access the zoom options

To change font size

To display the symbolic definition of a column

25．Move directly to $X=10$ ．
10 四

$X$	F1	Fこ	
9． 5	－日． 5	154． 5	
9．$\square^{1}$	－8．6	156．76	
9．7	－日．	159．2	
9． B		161． $\mathrm{B}^{16}$	
9	－日． 7	164．41	
110	－ 9	167	
1 B			
［］T0		E15	［GFF

26．Zoom in on $X=10$ by a factor of 4 ．Note：numzoom has a setting of 4 ．

EDMIT In
［IE

X	F1	F2	
9．875		169．7656	
9． 9.725	－旦． ¢ $^{\text {¢ }}$	164．41 ${ }^{165}$	
9．45	－1．45	165．7025	
9－75	－日． 475	166．350	
10	－9	167	
16			
E］pr		EI6	DEFA

27．Display table numbers in large font． ［国

$x$	$F 1$	$F 2$
9.875	-8.875	163.766
9.9	-9.9	164.41
9.925	-8.925	165.066
9.95	-9.95	165.703
9.95		

28．Display the symbolic definition for the Fl column．
［［E］를

The symbolic definition of F1 is displayed at the bottom of the screen．


## Function aplet interactive analysis

From the Plot view (PLOT), you can use the functions on the FCN menu to find roots, intersections, slopes, and areas for a function defined in the Function aplet (and any Function-based aplets). See "FCN functions" on page 310. The FCN operations act on the currently selected graph.

The results of the FCN functions are saved in the following variables:

- Area
- Extremum
- Isect
- Root
- Slope

For example, if you use the Root function to find the root of a plot, you can use the result in calculations in HOME.


## Access FCN variables

The FCN variables are contained on the VARS menu.
To access FCN variables in HOME:

## 

Select Plot FCN

$\Delta$ or $\nabla$ to choose a
 variable (IX

To access FCN variable in the Function aplet's Symbolic view:

## VARS

## Select Plot FCN

$\square$
$\Delta$ or $\nabla$ to choose a variable
DE

## FCN functions <br> The FCN functions are:

Function	Description
Root	Select Root to find the root of the current function nearest the cursor. If no root is found, but only an extremum, then the result is labeled EXTR: instead of ROOT: : (The root-finder is also used in the Solve aplet. See also "Interpreting results" on page 7-6.) The cursor is moved to the root value on the $x$-axis and the resulting $x$-value is saved in a variable named ROOT.
Extremum	Select Extremum to find the maximum or minimum of the current function nearest the cursor. This displays the coordinate values and moves the cursor to the extremum. The resulting value is saved in a variable named EXTREMUM.
Slope	Select Slope to find the numeric derivative at the current position of the cursor. The result is saved in a variable named SLOPE.
Signed area	Select Signed area to find the numeric integral. (If there are two or more expressions checkmarked, then you will be asked to choose the second expression from a list that includes the $x$-axis.) Select a starting point, then move the cursor to selection ending point. The result is saved in a variable named AREA.


Function	Description（Continued）
Intersection	Select Intersection to find the   intersection of two graphs nearest   the cursor．（You need to have at   least two selected expressions in   Symbolic view．）Displays the   coordinate values and moves the   cursor to the intersection．（Uses   Solve function．）The resulting $x$   value is saved in a variable   named ISECT．

## Shading area

You can shade a selected area between functions．This process also gives you an approximate measurement of the area shaded．

1．Open the Function aplet．The Function aplet opens in the Symbolic view．
2．Select the expressions whose curves you want to study．

3．Press PLOT to plot the functions．
4．Press $\square$ or to position the cursor at the starting point of the area you want to shade．

5．Press［ETETTI
6．Press［［ ［⿴囗⿰丨丨⿱一⿴⿻儿口一⿺𠃊八土刂．
7．Press［IIE，choose the function that will act as the boundary of the shaded area，and press［बE ．

8．Press the $\square$ or key to shade in the area．
9．Press［IE to calculate the area．The area measurement is displayed near the bottom of the screen．

To remove the shading，press PLOT to re－draw the plot．

## Plotting a piecewise－defined function

Suppose you wanted to plot the following piecewise－ defined function．
$f(x)= \begin{cases}x+2 & ; x \leq-1 \\ x^{2} & ;-1<x \leq 1 \\ 4-x & ; x \geq 1\end{cases}$

1．Open the Function aplet．

APLET Select
Function



2．Highlight the line you want to use，and enter the expression．（You can press DEL to delete an existing line，or SHIFT CLEAR to clear all lines．）
（1）폼＋ 2 （ $\div$
（1）근 SHIFT CHARS $\leq$
ME（－） 1 ENTER



SHIFT CHARS $>(-) 1$
SHIFT $A N D$ 略 SHIFT CHARS $\leq 1$ ENTER
（74－좁 $\div 0$区

SHIFT CHARS＞ 1 D
ENTER


Note：You can use the $⿴ 囗 十$ menu key to assist in the entry of equations．It has the same effect as pressing $X, T, \theta$ ．

## Parametric aplet

## About the Parametric aplet

The Parametric aplet allows you to explore parametric equations. These are equations in which both $x$ and $y$ are defined as functions of $t$. They take the forms $x=f(t)$ and $y=g(t)$.

## Getting started with the Parametric aplet

The following example uses the parametric equations

$$
\begin{aligned}
& x(t)=3 \sin t \\
& y(t)=3 \cos t
\end{aligned}
$$

Note: This example will produce a circle. For this example to work, the angle measure must be set to degrees.

## Open the Parametric aplet

1. Open the Parametric aplet.

APLET Select
Parametric
ETAFTT

HPLET LIERin	E-14
Fuпıt. ion	Q1EE
Inferent i.al...	. 5 KB
Farametric	CKE
Polar	QkE
Sequenice	GKE
	E1

## Define the expressions

2. Define the expressions.


Set angle measure
3. Set the angle measure to degrees.

SHIFT MODES
CHOE
Select Degrees DE


Plot the expression
4. Display the graphing options.
SHIFT PLOT


The Plot Setup input form has two fields not included in the Function aplet, TRNG and TSTEP. TRNG specifies the range of $t$ values. TSTEP specifies the step value between $t$ values.
5. Set the TRNG and TSTEP so that $t$ steps from $0^{\circ}$ to $360^{\circ}$ in $5^{\circ}$ steps.

- 360 D ar

5 国

6. Plot the expression.
$\qquad$

7. To see all the circle, press स्रीD twice.
[सEस

## Overlay plot

8. Plot a triangle graph over the existing circle graph.


## VIEWS

Select Overlay Plot

## 0 O

## [सEND [सEND

A triangle is displayed rather than a circle (without changing the equation) because the changed value of TSTEP ensures that points being plotted are $120^{\circ}$ apart instead of nearly continuous.

You are able to explore the graph using trace, zoom, split screen, and scaling functionality available in the Function aplet. See "Exploring the graph" on page 27 for further information.

## Display the numbers

9. Display the table of values.

NUM
You can highlight a $t$-value, type in a replacement value,
 and see the table jump to that value. You can also zoom in or zoom out on any $t$-value in the table.

You are able to explore the table using Eminit, rowal build your own table, and split screen functionality available in the Function aplet. See "Exploring the table of numbers" on page 2-17 for further information.

## 5

## Polar aplet

## Getting started with the Polar aplet

Open the Polar aplet

1. Open the Polar aplet.

APLET Select Polar

Like the Function aplet, the Polar aplet opens in the Symbolic view.


Define the expression

2. Define the polar equation $r=2 \pi \cos (\theta / 2) \cos (\theta)^{2}$.
$2 \mathrm{SHIFT} \pi \mathrm{COS}$

T, $\theta$	$\div$
$\operatorname{COS}$	X,T, $\mathrm{\theta}$

$x^{2}$ ENTER


## Specify plot settings

3. Specify the plot settings. In this example, we will use the default settings, except for the $\theta$ RNG fields.
SHIFT SETUP-PLOT
SHIFT CLEAR
$\rightarrow 4$ SHIFT $\pi$ DET

Plot the expression
4. Plot the expression.

PLOT


## Explore the <br> graph

Display the numbers
5. Display the Plot view menu key labels.

## [

The Plot view options available are the same as those found in the Function aplet. See

"Exploring the graph" on page 2-7 for further information.
6. Display the table of values for $\theta$ and R1.

## NUM

The Numeric view options available are the same as those found in the Function
 aplet. See "Exploring the table of numbers" on page 2-17 for further information.

## Sequence aplet

## About the Sequence aplet

The Sequence aplet allows you to explore sequences.
You can define a sequence named, for example, U1:

- in terms of $n$
- in terms of $\mathrm{Ul}(n-1)$
- in terms of $\mathrm{U} 1(n-2)$
- in terms of another sequence, for example, U2(n)
- in any combination of the above.

The Sequence aplet allows you to create two types of graphs:

- A Stairsteps graph plots $n$ on the horizontal axis and $U_{n}$ on the vertical axis.
- A Cobweb graph plots $U_{n-1}$ on the horizontal axis and $U_{n}$ on the vertical axis.


## Getting started with the Sequence aplet

The following example defines and then plots an expression in the Sequence aplet. The sequence illustrated is the well-known Fibonacci sequence where each term, from the third term on, is the sum of the preceding two terms. In this example, we specify three sequence fields: the first term, the second term and a rule for generating all subsequent terms.
However, you can also define a sequence by specifying just the first term and the rule for generating all subsequent terms. You will, though, have to enter the second term if the hp39gs is unable to calculate it automatically. Typically if the $n$th term in the sequence depends on $n-2$, then you must enter the second term.

Open the Sequence aplet

Define the expression

2．Define the Fibonacci sequence，in which each term （after the first two）is the sum of the preceding two terms：
$U_{1}=1, U_{2}=1, U_{n}=U_{n-1}+U_{n-2}$ for $n>3$ ．
In the Symbolic view of the Sequence aplet，highlight the Ul （ 1 ）field and begin defining your sequence．


Note：You can use the


㽗，and 畂menu keys to assist in the entry of equations．

ENTER


```
W\C1)=1
W1(2)=1
W|(H)=|1(H-1)+|1(H
 |EC1)=
 |ごこ=
EDIT FCHR प OHDN ENFLL
```

Specify plot settings

1．Open the Sequence aplet．
APLET Select
Sequence
ETHETI
The Sequence aplet starts in the Symbolic
 view．

## Plot the sequence

4. Plot the Fibonacci sequence.
PLOT

5. In Plot Setup, set the SEQPLOT option to Cobweb.

SHIFT SETUP-PLOT
choms Select Cobweb
DR
PLOT


Display the table
6. Display the table of values for this example.

NUM


## Solve aplet

## About the Solve aplet

The Solve aplet solves an equation or an expression for its unknown variable．You define an equation or expression in the symbolic view，then supply values for all the variables except one in the numeric view．Solve works only with real numbers．

Note the differences between an equation and an expression：
－An equation contains an equals sign．Its solution is a value for the unknown variable that makes both sides have the same value．
－An expression does not contain an equals sign．Its solution is a root，a value for the unknown variable that makes the expression have a value of zero．

You can use the Solve aplet to solve an equation for any one of its variables．

When the Solve aplet is started，it opens in the Solve Symbolic view．
－In Symbolic view，you specify the expression or equation to solve．You can define up to ten equations （or expressions），named E0 to E9．Each equation can contain up to 27 real variables，named $A$ to $Z$ and $\theta$ ．
－In Numeric view，you specify the values of the known variables，highlight the variable that you want to solve for，and press 要置百．
You can solve the equation as many times as you want， using new values for the knowns and highlighting a different unknown．
Note：It is not possible to solve for more than one variable at once．Simultaneous linear equations，for example， should be solved using the Linear Solver aplet，matrices or graphs in the Function aplet．

## Getting started with the Solve aplet

Suppose you want to find the acceleration needed to increase the speed of a car from $16.67 \mathrm{~m} / \mathrm{sec}(60 \mathrm{kph})$ to $27.78 \mathrm{~m} / \mathrm{sec}(100 \mathrm{kph})$ in a distance of 100 m .

The equation to solve is:
$V^{2}=U^{2}+2 A D$

## Open the Solve aplet

Define the equation

## Enter known variables

1. Open the Solve aplet.
APLET Select Solve

The Solve aplet starts in the symbolic view.

2. Define the equation.
ALPHA $\mathrm{V} x^{2}$
日 ALPHA $\cup x^{2}$
$\pm 2 \times x$
ALPHA $\mathrm{A} x$


ALPHA D ENTER
Note: You can use the menu key to assist in the entry of equations.
3. Display the Solve numeric view screen.

NUM

4. Enter the values for the known variables.


HIN T If the Decimal Mark setting in the Modes input form (SHIFT) MODES) is set to Comma, use $\square$ instead of $\square$.

Solve the unknown variable

## Plot the equation

5. Solve for the unknown variable ( $A$ ).

20IEI


Therefore, the acceleration needed to increase the speed of a car from $16.67 \mathrm{~m} / \mathrm{sec}(60 \mathrm{kph})$ to 27.78 $\mathrm{m} / \mathrm{sec}$
( 100 kph ) in a distance of 100 m is approximately $2.47 \mathrm{~m} / \mathrm{s}^{2}$.

Because the variable $A$ in the equation is linear we know that we need not look for any other solutions.

The Plot view shows one graph for each side of the selected equation. You can choose any of the variables to be the independent variable.
The current equation is $V^{2}=U^{2}+2 A D$.
One of these is $Y=V^{2}$, with $V=27.78$, that is, $Y=771.7284$. This graph will be a horizontal line. The other graph will be $Y=U^{2}+2 A D$, with $U=16.67$ and $D=100$, that is, $Y=200 A+277.8889$. This graph is also a line. The desired solution is the value of $A$ where these two lines intersect.
6. Plot the equation for variable $A$.

VIEWS Select Auto
Scale
DE

7. Trace along the graph representing the left side of the equation until the cursor nears the intersection.

$\Delta \approx 20$ times
Note the value of $A$ displayed near the bottom left corner of the screen.

The Plot view provides a convenient way to find an approximation to a solution instead of using the Numeric view Solve option. See "Plotting to find guesses" on page 7-7 for more information.

## Solve aplet's NUM view keys

The Solve aplet's NUM view keys are:

Key	Meaning
E[T]	Copies the highlighted value to the edit line for editing. Press Wer when done.
[IET]	Displays a message about the solution (see "Interpreting results" on page 7-6).
	Displays other pages of variables, if any.
[][]툴]	Displays the symbolic definition of the current expression. Press [1] when done.
ESIEIE	Finds a solution for the highlighted variable, based on the values of the other variables.


Key	Meaning（Continued）
DEL	Clears highlighted variable to zero or   deletes current character in edit line，   if edit line is active．
SHIFT CLEAR	Resets all variable values to zero or   clears the edit line，if cursor is in edit   line．

## Use an initial guess

You can usually obtain a faster and more accurate solution if you supply an estimated value for the unknown variable before pressing 通置国．Solve starts looking for a solution at the initial guess．

Before plotting，make sure the unknown variable is highlighted in the numeric view．Plot the equation to help you select an initial guess when you don＇t know the range in which to look for the solution．See＂Plotting to find guesses＂on page 7.7 for further information．
HINT An initial guess is especially important in the case of a curve that could have more than one solution．In this case， only the solution closest to the initial guess is returned．

## Number format

You can change the number format for the Solve aplet in the Numeric Setup view．The options are the same as in HOME MODES：Standard，Fixed，Scientific，and Engineering．For the latter three，you also specify how many digits of accuracy you want．See＂Mode settings＂ on page 1－10 for more information．
You might find it handy to set a different number format for the Solve aplet if，for example，you define equations to solve for the value of money．A number format of Fixed 2 would be appropriate in this case．

## Interpreting results

After Solve has returned a solution, press [IEIT] in the Numeric view for more information. You will see one of the following three messages. Press DIE to clear the message.

Message	Condition
Zero	The Solve aplet found a point where   both sides of the equation were   equal, or where the expression was   zero (a root), within the calculator's   12-digit accuracy.
	Solve found two points where the   difference between the two sides of   the equation has opposite signs, but   it cannot find a point in between   where the value is zero. Similarly,   for an expression, where the value   of the expression has different signs   but is not precisely zero. This might   be because either the two points are   neighbours (they differ by one in the   twelfth digit), or the equation is not   real-valued between the two points.   Solve returns the point where the   value or difference is closer to zero.   If the equation or expression is   continuously real, this point is   Solve's best approximation of an   actual solution.
Extremum	
Solve found a point where the value   of the expression approximates a   local minimum (for positive values)   or maximum (for negative values).   This point may or may not be a   solution.   Or: Solve stopped searching at   9.99999999999E499, the largest   number the calculator can   represent.   Note that the value returned is   probably not valid.	

If Solve could not find a solution, you will see one of the following two messages.

Message	Condition
Bad Guess(es)	The initial guess lies outside the   domain of the equation.   Therefore, the solution was not a   real number or it caused an error.
Constant?	The value of the equation is the   same at every point sampled.

HIN T It is important to check the information relating to the solve process. For example, the solution that the Solve aplet finds is not a solution, but the closest that the function gets to zero. Only by checking the information will you know that this is the case.

## The Root-Finder at work

You can watch the process of the root-finder calculating and searching for a root. Immediately after pressing PIEDE日 to start the root-finder, press any key except ON . You will see two intermediate guesses and, to the left, the sign of the expression evaluated at each guess. For example:

+ 22.219330555745
- 121.31111111149

You can watch as the root-finder either finds a sign reversal or converges on a local extrema or does not converge at all. If there is no convergence in process, you might want to cancel the operation (press ON) and start over with a different initial guess.

## Plotting to find guesses

The main reason for plotting in the Solve aplet is to help you find initial guesses and solutions for those equations that have difficult-to-find or multiple solutions.

Consider the equation of motion for an accelerating body:

$$
X=V_{0} T+\frac{A T^{2}}{2}
$$

where $X$ is distance, $V_{0}$ is initial velocity, $T$ is time, and $A$ is acceleration. This is actually two equations, $Y=X$ and $Y=V_{0} T+\left(A T^{2}\right) / 2$.
Since this equation is quadratic for $T$, there can be both a positive and a negative solution. However, we are concerned only with positive solutions, since only positive distance makes sense.

1. Select the Solve aplet and enter the equation.

## 



## $x$ ALPHA $T X^{2} \div 2$ IEA

2. Find the solution for $T$ (time) when $X=30, V=2$, and $A=4$. Enter the values for $X, V$, and $A$; then highlight the independent variable, $T$.

## NUM

30 ENTER
2 ENTER
4 ENTER


V to highlight $T$
3. Use the Plot view to find an initial guess for $T$. First set appropriate $X$ and $Y$ ranges in the Plot Setup. With equation $X=V \times T+A \times T^{2} / 2$, the plot will produce two graphs: one for $Y=X$ and one for $X=V \times T+A \times T^{2} / 2$. Since we have set $X=30$ in this example, one of the graphs will be $Y=30$. Therefore, make the YRNG -5 to 35 . Keep the XRNG default of -6.5 to 6.5.

## SHIFT SETUP-PLOT

$\square(-) 5$ ENTER 35
ENTER

4. Plot the graph.
5. Move the cursor near the positive (right-side) intersection. This cursor value will be an initial guess for $T$.

Press $\square$ until the cursor is at the intersection.

The two points of
 intersection show that there are two solutions for this equation. However, only positive values for $X$ make sense, so we want to find the solution for the intersection on the right side of the $y$-axis.
6. Return to the Numeric view.

NUM


Note: the $T$-value is filled in with the position of the cursor from the Plot view.
7. Ensure that the $T$ value is highlighted, and solve the equation.

EMES


Use this equation to solve for another variable, such as velocity. How fast must a body's initial velocity be in order for it to travel 50 m within 3 seconds? Assume the same acceleration, $4 \mathrm{~m} / \mathrm{s}^{2}$. Leave the last value of $V$ as the initial guess.


50 ENTER

## 

## Using variables in equations

You can use any of the real variable names, $A$ to $Z$ and $\theta$. Do not use variable names defined for other types, such as M1 (a matrix variable).

Home variables

Aplet variables

All home variables (other than those for aplet settings, like Xmin and Ytick) are global, which means they are shared throughout the different aplets of the calculator. A value that is assigned to a home variable anywhere remains with that variable wherever its name is used.

Therefore, if you have defined a value for $T$ (as in the above example) in another aplet or even another Solve equation, that value shows up in the Numeric view for this Solve equation. When you then redefine the value for $T$ in this Solve equation, that value is applied to $T$ in all other contexts (until it is changed again).
This sharing allows you to work on the same problem in different places (such as HOME and the Solve aplet) without having to update the value whenever it is recalculated.
HIN T As the Solve aplet uses existing variable values, be sure to check for existing variable values that may affect the solve process. (You can use SHIFT CLEAR to reset all values to zero in the Solve aplet's Numeric view if you wish.)

Functions defined in other aplets can also be referenced in the Solve aplet. For example, if, in the Function aplet, you define $F 1(X)=X^{2}+10$, you can enter $F 1(X)=50$ in the Solve aplet to solve the equation $X^{2}+10=50$.

## 8

## Linear Solver aplet

## About the Linear Solver aplet

The Linear Solver aplet allows you to solve a set of Linear Equations. The set can contain two or three linear equations.

In a two-equation set, each equation must be in the form $a x+b y=k$. In a three-equation set, each equation must be in the form $a x+b y+c z=k$.

You provide values for $a, b$, and $k$ (and $c$ in threeequation sets) for each equation, and the Linear Solver aplet will attempt to solve for $x$ and $y$ (and $z$ in threeequation sets).
The hp39gs will alert you if no solution can be found, or if there is an infinite number of solutions.

Note that the Linear Solver aplet only has a numeric view.

## Getting started with the Linear Solver aplet

The following example defines a set of three equations and then solves for the unknown variables.

Open the Linear Solver aplet

1. Open the Linear Sequence aplet.

APLET SelectLinear	
Solver	
Solver	
ETmit	Enfinite number of solutions
The Linear Equation	
Solver opens.	

## Choose the equation set

2．If the last time you used the Linear Solver aplet you solved for two equations，the two－ equation input form is displayed（as in the example in the previous step）．To solve a three－equation set，press
E是四I．Now the input form displays three equations． If the three－equation input form is displayed and you want


In this example，we are going to solve the following equation set：

$$
\begin{aligned}
& 6 x+9 y+6 z=5 \\
& 7 x+10 y+8 z=10 \\
& 6 x+4 y=6
\end{aligned}
$$

Hence we need the three－equation input form．

## Define and solve the equations

3．You define the equations you want to solve by entering the co－efficients of each variable in each equation and the constant term．Notice that the cursor is immediately positioned at the co－efficient of $x$ in the first equation．Enter that co－efficient and press ar ENTER．

4．The cursor moves to the next co－efficient．Enter that co－ efficient，press［⿴囗 likewise until you have defined all the equations．

Note：you can enter the name of a variable for any co－efficient or constant．Press ALPHA and begin entering the name．The memz menu key appears． Press that key to lock alphabetic entry mode．Press it again to cancel the lock．
Once you have entered enough values for the solver to be able to generate solutions， those solutions appear on the display．In the
 example at the right， the solver was able to find solutions for $x, y$ ，and $z$ as
soon as the first co-efficient of the last equation was entered.

As you enter each of the remaining known values, the solution changes. The example at the right shows the final solution once all
 the co-efficients and constants are entered for the set of equations we set out to solve.

## 9

## Triangle Solve aplet

## About the Triangle Solver aplet

The Triangle Solver aplet allows you to determine the length of a side of a triangle, or the angle at the vertex of a triangle, from information you supply about the other lengths and/or other angles.

You need to specify at least three of the six possible values-the lengths of the three sides and the size of the three angles-before the solver can calculate the other values. Moreover, at least one value you specify must be a length. For example, you could specify the lengths of two sides and one of the angles; or you could specify two angles and one length; or all three lengths. In each case, the solver will calculate the remaining lengths or angles.

The hp39gs will alert you if no solution can be found, or if you have provided insufficient data.

If you are determining the properties of a right-angled triangle, a simpler input form is available by pressing the EECT menu key.

Note that the Triangle Solver aplet only has a numeric view.

## Getting started with the Triangle Solver aplet

The following example solves for the unknown length of the side of a triangle whose two known sides-of lengths 4 and 6 -meet at an angle of 30 degrees.

Before you begin: You should make sure that your angle measure mode is appropriate. If the angle information you have is in degrees (as in this example) and your current angle measure mode is radians or grads, change the mode to degrees before running the solver. (See "Mode settings" on page 1-10 for instructions.) Because the angle measure mode is associated with the aplet, you should start the aplet first and then change the setting.

Open the Triangle Solver aplet

## Choose the triangle type

## Specify the known values

1. Open the Triangle Solver aplet.

## APLET Select

Triangle Solver
ETBFTT
The Triangle Solver aplet opens.


Note: if you have already used the Triangle Solver, the entries and results from the previous use will still be displayed. To start the Triangle Solver afresh, clear the previous entries and results by pressing SHIFT CLEAR.
2. If the last time you used the Triangle Solver aplet you used the right-angled triangle input form, that input form is displayed
 again (as in the example at the right). If the triangle you are investigating is not a right-angled triangle, or you are not sure what type it is, you should use the general input form (illustrated in the previous step). To switch to the general input form, press EECTL.
If the general input form is displayed and you are investigating a right-angled triangle, press EECT to display the simpler input form.
3. Using the arrow keys, move to a field whose value you know, enter the value and press 타 or ENTER. Repeat for each known value.
Note that the lengths of the sides are labeled $A, B$, and $C$, and the angles are labeled $\alpha$, $\beta$, and $\delta$. It is important that you enter the
 known values in the appropriate fields. In our example, we know the length of two sides and the angle at which those sides meet. Hence if we specify the lengths of sides A and B , we must enter the angle as $\delta$ (since $\delta$ is the angle where $A$ and $B$ meet). If instead we entered the
lengths as B and C, we would need to specify the angle as $\alpha$. The illustration on the display will help you determine where to enter the known values.

Note: if you need to change the angle measure mode, press SHIFT MODES, change the mode, and then press NUM to return to the aplet.
4. Press golue. The solver calculates the values of the unknown variables and displays. As the illustration at the right shows, the length of the unknown side in our example is 3.2296 . (The other two angles have also been calculated.)
Note: if two sides and an adjacent acute angle are entered and there are two solutions, only one will be displayed initially.


In this case, an CALT menu key is displayed (as in this example). You press MITT to display the second solution, and EILT again to return to the first solution.

## Errors

No solution with given data
If you are using the general input form and you enter more than 3 values, the


## Not enough data

If you are using the general input form, you need to specify at least three values for the Triangle Solver to
 be able to calculate the remaining attributes of the triangle. If you specify less than three, Not enough data appears on the screen.
If you are using the simplified input form (for a rightangled triangle), you must specify at least two values.

In addition, you cannot specify only angles and no lengths.

## Statistics aplet

## About the Statistics aplet

The Statistics aplet can store up to ten data sets at one time. It can perform one-variable or two-variable statistical analysis of one or more sets of data.
The Statistics aplet starts with the Numeric view which is used to enter data. The Symbolic view is used to specify which columns contain data and which column contains frequencies.

You can also compute statistics values in HOME and recall the values of specific statistics variables.

The values computed in the Statistics aplet are saved in variables, and many of these variables are listed by the ETHTE function accessible from the Statistics aplet's Numeric view screen.

## Getting started with the Statistics aplet

The following example asks you to enter and analyze the advertising and sales data (in the table below), compute statistics, fit a curve to the data, and predict the effect of more advertising on sales.

Advertising minutes   (independent, $\mathbf{x}$ )	Resulting Sales (\$)   (dependent, $\mathbf{y}$ )
2	1400
1	920
3	1100
5	2265
5	2890
4	2200

## Open the Statistics aplet

## Enter data

3. Enter the data into the columns.

$$
\begin{aligned}
& 2 \text { ENTER } 1 \text { ENTER } \\
& 3 \text { ENTER } 5 \text { ENTER } \\
& 5 \text { ENTER } 4 \text { ENTER }
\end{aligned}
$$


$\square$ to move to the next column
1400 ENTER 920 ENTER
1100 ENTER 2265 ENTER
2890 ENTER 2200 ENTER

## Choose fit and data columns

## Explore statistics

4. Select a fit in the Symbolic setup view.


You can create up to five explorations of two-variable data, named S1 to S5. In this example, we will create just one: S1.
5. Specify the columns that hold the data you want to analyze.

## SYMB

You could have entered your data into columns other than C1 and C2.

6. Find the mean advertising time (MEANX) and the mean sales (MEANY).

## NUM ETHTS

MEANX is 3.3 minutes and MEANY is about \$1796.

7. Scroll down to display the value for the correlation coefficient (CORR). The CORR value indicates how well the linear model fits the data.

## V 9 times

The value is .8995 .

## 010



## Setup plot

Plot the graph

## Draw the regression curve

8. Change the plotting range to ensure all the data points are plotted (and select a different point mark, if you wish).

SHIFT SETUP-PLOT

- 7 ENTER
(-) 100 ENTER
4000 ENTER

9. Plot the graph.

PLOT

10. Draw the regression curve (a curve to fit the data points).

## FEAD FIT

This draws the regression line for the
 best linear fit.

Display the equation for best linear fit
11.Return to the Symbolic view.

SYMB

12. Display the equation for the best linear fit.

T to move to the FIT1 field

## EHWN

The full Fiti

expression is shown.
The slope $(m)$ is 425.875 . The $y$-intercept ( $b$ ) is 376.25 .

## Predict values

13．To find the predicted sales figure if advertising were to go up to 6 minutes：

OE HOME	
MATH S（to highlight Stat－Two）	PREDY（6） 2931.5
$\Delta \Delta$（to highlight   PREDY）	［TITP1
D⿴囗 6 ENTER	

14．Return to the Plot view．

PLOT


15．Jump to the indicated point on the regression line．

## T FITM <br> 6



## 国

Observe the predicted $y$－value in the left bottom corner of the screen．


## Entering and editing statistical data

The Numeric view (NUM) is used to enter data into the Statistics aplet. Each column represents a variable named C0 to C9. After entering the data, you must define the data set in the Symbolic view (SYMB).
H IN T A data column must have at least four data points to provide valid two-variable statistics, or two data points for one-variable statistics.

You can also store statistical data values by copying lists from HOME into Statistics data columns. For example, in HOME, L1 ETOM C1 stores a copy of the list L1 into the data-column variable C1.

## Statistics aplet's NUM view keys

The Statistics aplet's Numeric view keys are:
$\left.\left.\begin{array}{|l|l|}\hline \text { Key } & \text { Meaning } \\ \hline \text { EnIT } & \begin{array}{l}\text { Copies the highlighted item into the } \\ \text { edit line. } \\ \text { Inserts a zero value above the } \\ \text { highlighted cell. } \\ \text { ENFT }\end{array} \\ \text { Sorts the specified independent } \\ \text { data column in ascending or } \\ \text { descending order, and rearranges } \\ \text { a specified dependent (or } \\ \text { frequency) data column } \\ \text { accordingly. }\end{array}\right\} \begin{array}{l}\text { Switches between larger and } \\ \text { smaller font sizes. } \\ \text { A toggle switch to select one- } \\ \text { variable or two-variable statistics. } \\ \text { This setting affects the statistical } \\ \text { calculations and plots. The label } \\ \text { indicates which setting is current. } \\ \text { Computes descriptive statistics for }\end{array}\right\}$

Key	Meaning (Continued)
DEL	Deletes the currently highlighted   value.   SHIFT CLEAR   Clears the current column or all   columns of data. Pregss   SHIFT CLEAR to display a menu list,   then select the current column or all   columns option, and press DE .   SHIFT   Cursor key
Moves to the first or last row, or first   or last column.	

## Example

You are measuring the height of students in a classroom to find the mean height. The first five students have the following measurements $160 \mathrm{~cm}, 165 \mathrm{~cm}, 170 \mathrm{~cm}$, $175 \mathrm{~cm}, 180 \mathrm{~cm}$.

1. Open the Statistics aplet.

APLET Select
Statistics
BEET WES
ETAFIT
2. Enter the measurement data.

160 ENTER
165 ENTER
170 ENTER
175 ENTER
180 ENTER

3. Find the mean of the sample.

Ensure the [wiris/

reads 1 wifa. Press


E酉雷 to see the
statistics calculated from the sample data in C 1 .

Note that the title of the column of statistics is H1. There are 5 data set definitions available for one-variable
 statistics: H1-H5. If data is entered in $\mathrm{C} 1, \mathrm{H} 1$ is automatically set to use C1 for data, and the frequency of each data point is set to 1 . You can select other columns of data from the Statistics Symbolic setup view.
4. Press to close the statistics window and press SYMB key to see the data set definitions.


The first column indicates the associated column of data for each data set definition, and the second column indicates the constant frequency, or the column that holds the frequencies.

The keys you can use from this window are:

Key	Meaning
ESIT	Copies the column variable (or variable expression) to the edit line for editing. Press when done.
FTHET	Checks/unchecks the current data set. Only the checkmarked data set(s) are computed and plotted.
[ or ${ }^{\text {a }}$	Typing aid for the column variables   (回) or for the Fit expressions (因).
EHEDE	Displays the current variable expression in standard mathematical form. Press when done.
Emal	Evaluates the variables in the highlighted column (C1, etc.) expression.


Key	Meaning (Continued)
VARS	Displays the menu for entering   variable names or contents of   variables.   MATH   Displays the menu for entering math   operations.   DEL   Deletes the highlighted variable or $C L E A R$   the current character in the edit line.   Resets default specifications for the   data sets or clears the edit line (if it   was active).   Note: If SHIFT CLEAR is used the   data sets will need to be selected   again before re-use.

To continue our example, suppose that the heights of the rest of the students in the class are measured, but each one is rounded to the nearest of the five values first recorded. Instead of entering all the new data in C1, we shall simply add another column, C2, that holds the frequencies of our five data points in C1.

Height   (cm)	Frequency
160	5
165	3
170	8
175	2
180	1

5. Move the highlight bar into the right column of the H1 definition and replace the frequency value of 1 with the
 name C 2 .
[ 2
6. Return to the numeric view.

## NUM

7. Enter the frequency data shown in the above table.

- 5 ENTER

3 ENTER
8 ENTER
2 ENTER


1 ENTER
8. Display the computed statistics.

## ETATE

The mean height is approximately
 167.63 cm .
9. Setup a histogram plot for the data.

OEX SHIFT SETUP-PLOT
Enter set up information appropriate to your data.

10. Plot a histogram of the data.
$\qquad$


## Save data

The data that you enter is automatically saved. When you are finished entering data values, you can press a key for another Statistics view (like SYMB) , or you can switch to another aplet or HOME.

Edit a data set

In the Numeric view of the Statistics aplet, highlight the data value to change. Type a new value and press ENTER, or press EOITI to copy the value to the edit line for modification. Press ENTER after modifying the value on the edit line.

## Sort data values

- To delete a single data item, highlight it and press DEL. The values below the deleted cell will scroll up one row.
- To delete a column of data, highlight an entry in that column and press SHIFT CLEAR. Select the column name.
- To delete all columns of data, press SHIFT CLEAR. Select All columns.

Highlight the entry following the point of insertion. Press [IER, then enter a number. It will write over the zero that was inserted.

1. In Numeric view, highlight the column you want to sort, and press EXNTT .
2. Specify the Sort Order. You can choose either Ascending or Descending.
3. Specify the INDEPENDENT and DEPENDENT data columns. Sorting is by the independent column. For instance, if Age is C1 and Income is C2 and you want to sort by Income, then you make C 2 the independent column for the sorting and C 1 the dependent column.

- To sort just one column, choose None for the dependent column.
- For one-variable statistics with two data columns, specify the frequency column as the dependent column.

4. Press 国

## Defining a regression model

The Symbolic view includes an expression (Fit1 through Fit5) that defines the regression model, or "fit", to use for the regression analysis of each two-variable data set.

There are three ways to select a regression model:

- Accept the default option to fit the data to a straight line.
- Select one of the available fit options in Symbolic Setup view.
- Enter your own mathematical expression in Symbolic view. This expression will be plotted, but it will not be fitted to the data points.


## Angle Setting

You can ignore the angle measurement mode unless your Fit definition (in Symbolic view) involves a trigonometric function. In this case, you should specify in the mode screen whether the trigonometric units are to be interpreted in degrees, radians, or grads.

## To choose the fit 1. In Numeric view, make sure enifar is set.

2. Press SHIFT SETUP-SYMB to display the Symbolic Setup view. Highlight the Fit number (S1FIT to S5FIT) you want to define.
 done. The regression formula for the fit is displayed in Symbolic view.

Fit models
Ten fit models are available:

Fit model	Meaning
Linear	(Default.) Fits the data to a   straight line, $y=m x+b$. Uses a   least-squares fit.
Logarithmic	Fits to a logarithmic curve,   $y=m \ln x+b$.   Exponential   Fits to an exponential curve,   $y=b e^{m x}$.
Fower	Fits to a power curve, $y=b x^{m}$.


Fit model	Meaning (Continued)
Quadratic	Fits to a quadratic curve, $y=a x^{2}+b x+c$. Needs at least three points.
Cubic	Fits to a cubic curve, $y=a x^{3}+b x^{2}+c x+d$. Needs at least four points.
Logistic	Fits to a logistic curve, $y=\frac{L}{1+a e^{(-b x)}},$
	where $L$ is the saturation value for growth. You can store a positive real value in $L$, or-if $L=0$-let $L$ be computed automatically.
Exponent	Fits to an exponent curve, $y=a b^{x}$.
Trigonometric	Fits to a trigonometric curve, $y=a \cdot \sin (b x+c)+d$. Needs at least three points.
User Defined	Define your own expression (in Symbolic view.)

## To define your own fit

1. In Numeric view, make sure Emika is set.
2. Display the Symbolic view.
3. Highlight the Fit expression (Fit1, etc.) for the desired data set.
4. Type in an expression and press ENTER. The independent variable must be $X$, and the expression must not contain any unknown variables. Example: $1.5 \times \cos x+0.3 \times \sin x$.

This automatically changes the Fit type (S1FIT, etc.) in the Symbolic Setup view to User Defined.

## Computed statistics

## One-variable

Statistic	Definition
N $\Sigma$	Number of data points.
TOT $\Sigma$	Sum of data values (with their frequencies).
MEAN $\Sigma$	Mean value of data set.
PVARE	Population variance of data set.
SVAR $\Sigma$	Sample variance of data set.
PSDEV	Population standard deviation of data set.
SSDEV	Sample standard deviation of data set.
MIN $\Sigma$	Minimum data value in data set.
Q1	First quartile: median of values to left of median.
MEDIAN	Median value of data set.
Q3	Third quartile: median of values to right of median.
MAX $\Sigma$	Maximum data value in data set.

When the data set contains an odd number of values, the data set's median value is not used when calculating Q1 and Q3 in the table above. For example, for the following data set:
$\{3,5,7,8,15,16,17\}$
only the first three items, 3,5 , and 7 are used to calculate Q1, and only the last three terms, 15,16 , and 17 are used to calculate Q3.

## Two-variable

Statistic	Definition
MEANX	Mean of $x$-(independent) values.
EX	Sum of $x$-values.
EX2	Sum of $x^{2}$-values.
MEANY	Mean of $y$-(dependent) values.
$\Sigma Y$	Sum of $y$-values.
$\Sigma \mathrm{Y} 2$	Sum of $y^{2}$-values.
EXY	Sum of each $x y$.
SCOV	Sample covariance of independent and dependent data columns.
PCOV	Population covariance of independent and dependent data columns
CORR	Correlation coefficient of the independent and dependent data columns for a linear fit only (regardless of the Fit chosen). Returns a value from 0 to 1 , where 1 is the best fit.
RELERR	The relative error for the selected fit. Provides a measure of accuracy for the fit.

## Plotting

You can plot:

- histograms (10मiFa)
- box-and-whisker plots (10nifa)
- scatter plots (ENHED).

Once you have entered your data (NUM), defined your data set ( $\overline{\text { SYMB }}$ ), and defined your Fit model for twovariable statistics (SHIFT SETUP-SYMB), you can plot your data. You can plot up to five scatter or box-and-whisker plots at a time. You can plot only one histogram at a time.

To plot statistical data

1．In Symbolic view（SYMB），select（ （THER）the data sets you want to plot．
2．For one－variable data（ mpirar ），select the plot type in Plot Setup（［SHIFT SETUP－PLOT）．Highlight STATPLOT， press［H008，select either Histogram or BoxWhisker，and press ⿴囗大心．
3．For any plot，but especially for a histogram，adjust the plotting scale and range in the Plot Setup view．If you find histogram bars too fat or too thin，you can adjust them by adjusting the HWIDTH setting．

4．Press PLOT．If you have not adjusted the Plot Setup yourself，you can try VIEWS select Auto Scale成．

Auto Scale can be relied upon to give a good starting scale which can then be adjusted in the Plot Setup view．

## Plot types

## Histogram

Box and Whisker Plot

One－variable statistics．
The numbers below the plot mean that the current bar （where the cursor is）starts at 0 and ends at 2 （not
 including 2），and the frequency for this column，（that is，the number of data elements that fall between 0 and 2）is 1 ．You can see information about the next bar by pressing the $\square$ key．

One－variable statistics．
The left whisker marks the minimum data value．The box marks the first quartile， the median（where the cursor
 is），and the third quartile．
The right whisker marks the maximum data value．The numbers below the plot mean that this column has a median of 13 ．

## Scatter Plot

Two-variable statistics.
The numbers below the plot indicate that the cursor is at the first data point for S2, at $(1,6)$. Press $\square$ to move to the next data point and display information about it.
To connect the data points as they are plotted, checkmark connect in the second page of the Plot Setup. This is not a regression curve.



## Fitting a curve to 2VAR data

In the Plot view, press FITT. This draws a curve to fit the checked two-variable data set(s). See "To choose the fit" on page 10-12.

PLOT
HEFH
FIT

SYMB

EH0id
The expression in Fit2 shows that the slope $=1.98082191781$ and the $y$ -

intercept $=2.2657$. coefficient

Correlation The correlation coefficient is stored in the CORR variable. It is a measure of fit to a linear curve only. Regardless of the Fit model you have chosen, CORR relates to the linear model.

Relative Error | The relative error is a measure of the error between |
| :--- |
| predicted values and actual values based on the specified |
| Fit. A smaller number means a better fit. |
| The relative error is stored in a variable named RELERR. |
| The relative error provides a measure of fit accuracy for |
| all fits, and it does depend on the Fit model you have |
| chosen. |

H I N T | In order to access the CORR and RELERR variables after |
| :--- |
| you plot a set of statistics, you must press NUM to access |
| the numeric view and then ETSTITS to display the |
| correlation values. The values are stored in the variables |
| when you access the Symbolic view. |

## Setting up the plot (Plot setup view)

The Plot Setup view (SHIFT SETUP-PLOT) sets most of the same plotting parameters as it does for the other built-in aplets.
See "About the Plot view" on page 2-5. Settings unique to the Statistics aplet are as follows:

Plot type (IVAR)

Histogram width

Histogram range

Plotting mark
(2VAR)

Connected points (2VAR)

STATPLOT enables you to specify either a histogram or a box-and-whisker plot for one-variable statistics (when IWhifa is set). Press [HOTS to change the highlighted setting

HWIDTH enables you to specify the width of a histogram bar. This determines how many bars will fit in the display, as well as how the data is distributed (how many values each bar represents).

HRNG enables you to specify the range of values for a set of histogram bars. The range runs from the left edge of the leftmost bar to the right edge of the rightmost bar. You can limit the range to exclude any values you suspect are outliers.

S1MARK through S5MARK enables you to specify one of five symbols to use to plot each data set. Press thime to change the highlighted setting.

CONNECT (on the second page), when checkmarked, connects the data points as they are plotted. The resulting line is not the regression curve. The order of plotting is according to the ascending order of independent values.

For instance, the data set $(1,1),(3,9),(4,16),(2,4)$ would be plotted and traced in the order $(1,1),(2,4),(3,9)$, $(4,16)$.

## Trouble-shooting a plot

If you have problems plotting, check that you have the following:

- The correct luifica or emika menu label on (Numeric view).
- The correct fit (regression model), if the data set is two-variable.
- Only the data sets to compute or plot are checkmarked (Symbolic view).
- The correct plotting range. Try using VIEWS Auto Scale (instead of (PLOT), or adjust the plotting parameters (in Plot Setup) for the ranges of the axes and the width of histogram bars (HWIDTH).
In emfika mode, ensure that both paired columns contain data, and that they are the same length.
In Lufira mode, ensure that a paired column of frequency values is the same length as the data column that it refers to.


## Exploring the graph

The Plot view has menu keys for zooming, tracing, and coordinate display. There are also scaling options under VIEWS. These options are described in"Exploring the graph" on page 2-7.

## Statistics aplet's PLOT view keys

Key	Meaning
SHIFT CLEAR	Erases the plot.
VIEWS	Offers additional pre-defined views   for splitting the screen, overlaying   plots, and autoscaling the axes.
SHIFT	Moves cursor to far left or far right.
SHIFT	


Key	Meaning (Continued)
Eximid	Displays ZOOM menu.
тf\%ate	Turns trace mode on/off. The white box appears next to the option when Trace mode is active.
FIT	Turns fit mode on or off. Turning EITT on draws a curve to fit the data points according to the current regression model.
[G0T0 (2var statistics only)	Enables you to specify a value on the line of best fit to jump to or a data point number to jump to.
UEFer	Displays the equation of the regression curve.
[10NN	Hides and displays the menu key labels. When the labels are hidden, any menu key displays the ( $x, y$ ) coordinates. Pressing [सENT redisplays the menu labels.

## Calculating predicted values

The functions PREDX and PREDY estimate (predict) values for $X$ or $Y$ given a hypothetical value for the other. The estimation is made based on the curve that has been calculated to fit the data according to the specified fit.

## Find predicted values

1. In Plot view, draw the regression curve for the data set.
2. Press to move to the regression curve.
3. Press and enter the value of $X$. The cursor jumps to the specified point on the curve and the coordinate display shows $X$ and the predicted value of $Y$.
In HOME:

- Enter PREDX(y-value) ENTER to find the predicted value for the independent variable given a hypothetical dependent value.
- Enter PREDY ( $x$-value) to find the predicted value of the dependent variable given a hypothetical independent variable.

You can type predx and predy into the edit line, or you can copy these function names from the MATH menu under the Stat-Two category.
HINT In cases where more than one fit curve is displayed, the PREDY function uses the most recently calculated curve. In order to avoid errors with this function, uncheck all fits except the one that you want to work with, or use the Plot View method.

## Inference aplet

## About the Inference aplet

The Inference capabilities include calculation of confidence intervals and hypothesis tests based on the Normal Z-distribution or Student's t-distribution.

Based on the statistics from one or two samples, you can test hypotheses and find confidence intervals for the following quantities:

- mean
- proportion
- difference between two means
- difference between two proportions

Example data
When you first access an input form for an Inference test, by default, the input form contains example data. This example data is designed to return meaningful results that relate to the test. It is useful for gaining an understanding of what the test does, and for demonstrating the test. The calculator's on-line help provides a description of what the example data represents.

## Getting started with the Inference aplet

This example describes the Inference aplet's options and functionality by stepping you through an example using the example data for the Z-Test on 1 mean.

Open the Inference aplet

1. Open the Inference aplet.

## APLET

Select Inference

The Inference aplet opens in the Symbolic view.


## Inference aplet's SYMB view keys

The table below summarizes the options available in Symbolic view.
$\left.\begin{array}{|l|l|}\hline \begin{array}{l}\text { Hypothesis } \\ \text { Tests }\end{array} & \text { Confidence Intervals } \\ \hline \begin{array}{l}\text { Z: } 1 \mu, \text { the Z-Test } \\ \text { on } 1 \text { mean }\end{array} & \begin{array}{l}\text { Z-Int: } 1 \mu \text {, the confidence } \\ \text { interval for 1 mean, based on } \\ \text { the Normal distribution }\end{array} \\ \text { Z: } \mu_{1}-\mu_{2} \text {, the } \\ \text { Z-Test on the } \\ \text { difference of two } \\ \text { means }\end{array} \quad \begin{array}{l}\text { Z-Int: } \mu_{1}-\mu_{2} \text {, the confidence } \\ \text { interval for the difference of } \\ \text { two means, based on the } \\ \text { Normal distribution }\end{array}\right\}$

If you choose one of the hypothesis tests, you can choose the alternative hypothesis to test against the null hypothesis. For each test, there are three possible choices for an alternative hypothesis based on a quantitative comparison of two quantities. The null hypothesis is always that the two quantities are equal.Thus, the alternative hypotheses cover the various cases for the two quantities being unequal: $<,>$, and $\neq$.

In this section, we will use the example data for the Z-Test on 1 mean to illustrate how the aplet works and what features the various views present.

Select the inferential method
2. Select the Hypothesis Test inferential method.
[ime
Select HYPOTH TEST
3. Define the type of test.

TIT
rime
Z-Test: $1 \mu$

4. Select an alternative hypothesis.

ME $V$

$\mu<\mu 0$
(IE

5. Enter the sample statistics and population parameters.

```
SHIFT setup-NUM
```



The table below lists the fields in this view for our current $z$-Test: $1 \mu$ example.

Field   name	Definition
$\mu 0$	Assumed population mean
$\sigma$	Population standard deviation
$\overline{\mathrm{x}}$	Sample mean
n	Sample size
$\alpha$	Alpha level for the test

By default, each field already contains a value. These values constitute the example database and are explained in the [1]

Display on-line help

Display test results in numeric format

Plot test results
9. Display a graphic view of the test results.

## PLOT

Horizontal axes are presented for both the distribution variable and the test statistic. A generic bell curve represents the probability distribution function. Vertical lines mark the critical value(s) of the test, as well as the value of the test statistic. The rejection region is marked $<K$ and the test numeric results are displayed between the horizontal axes.

## Importing sample statistics from the Statistics aplet

The Inference aplet supports the calculation of confidence intervals and the testing of hypotheses based on data in the Statistics aplet. Computed statistics for a sample of data in a column in any Statistics-based aplet can be imported for use in the Inference aplet. The following example illustrates the process.

A calculator produces the following 6 random numbers: $0.529,0.295,0.952,0.259,0.925$, and 0.592

## Open the Statistics aplet

1. Open the Statistics aplet and reset the current settings.

APLET Select
Statistics




The Statistics aplet opens in the Numeric view.
2. In the Cl column, enter the random numbers produced by the calculator.
©. 529 ENTER
C. 295 ENTER
[. 952 ENTER

- 259 ENTER

C. 925 ENTER
© 592 ENTER
HIN T If the Decimal Mark setting in the Modes input form (SHIIT) modes) is set to Comma, use $\square$ instead of $\square \cdot$.

3. If necessary, select 1 -variable statistics. Do this by pressing the fifth menu key until Himia is displayed as its menu label.

## Calculate statistics

4. Calculate statistics.

## 陑县

The mean of 0.592 seems a little large compared to the
 expected value of 0.5 . To see if the difference is statistically significant, we will use the statistics computed here to construct a confidence interval for the true mean of the population of random numbers and see whether or not this interval contains 0.5 .
5. Press [IE to close the computed statistics window.

Open Inference
aplet

Select inference method and type

6．Open the Inference aplet and clear current settings．

APLET Select
Inference


 HEThón：HPPDTH TEST THPE：Z－Test： $1 \mu$ ALT HYPOTH：$\mu$ 人 $\mu$ 可
Chobes on inferential．hethod ｜대며영

7．Select an inference method．
Cimime
Select CONF Interval


8．Select a distribution statistic type．
（7）島禀空
Select T－Int： $1 \mu$
ME


Set up the interval calculation

9．Set up the interval calculation．Note：The default values are derived from sample data from the on－line help example．

SHIFT Setup－NUM


```
: 4615EE
5x: .2776
ก: 516
c: . 99
sumple hean
EEDIT HELP ITARTIT
```

Import the data
11.Specify a $90 \%$ confidence interval in the C : field.
 the C: field 0.9 ENTER
10. Import the data from the Statistics aplet. Note: The data from C1 is displayed by default.

## IITIT通

Note: Press []E to see the statistics before importing them into the Numeric Setup view.


```
\: 5-92
5: . 2978442
CoLuHII: [:1
tat iHport dotu coluHn
 [सHDS|
``` Also, if there is more than one aplet based on the Statistics aplet, you are prompted to choose one.

\section*{DE}



Display Numeric view
12. Display the confidence interval in the Numeric view. Note: The interval setting is 0.5 .

\section*{Display Plot view}
13. Display the confidence interval in the Plot view.

PLOT

You can see, from the second text row, that the
 mean is contained within the \(90 \%\) confidence interval (CI) of 0.3469814 to 0.8370186 .

Note: The graph is a simple, generic bell-curve. It is not meant to accurately represent the \(t\)-distribution with 5 degrees of freedom.

\section*{Hypothesis tests}

You use hypothesis tests to test the validity of hypotheses that relate to the statistical parameters of one or two populations. The tests are based on statistics of samples of the populations.
The HP 39gs hypothesis tests use the Normal Z-distribution or Student's \(\ddagger\)-distribution to calculate probabilities.

\section*{One-Sample Z-Test}

Menu name
Z-Test: \(1 \mu\)
On the basis of statistics from a single sample, the One-Sample Z-Test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the population mean equals a specified value \(H_{0}: \mu=\mu_{0}\).
You select one of the following alternative hypotheses against which to test the null hypothesis:
\[
\begin{aligned}
& \mathrm{H}_{1}: \mu_{1}<\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1}>\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|l|l|}
\hline Field name & Definition \\
\hline\(\overline{\mathrm{x}}\) & Sample mean. \\
n & Sample size. \\
\(\mu_{0}\) & Hypothetical population mean. \\
\(\sigma\) & Population standard deviation. \\
\(\alpha\) & Significance level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test Z & \begin{tabular}{l} 
Z-test statistic. \\
Prob \\
Critical Z \\
Crobability associated with the \\
Z-Test statistic.
\end{tabular} \\
\begin{tabular}{l} 
Boundary values of \(Z\) \\
associated with the \(\alpha\) level that \\
you supplied.
\end{tabular} \\
\(\overline{\mathrm{x}}\) & \begin{tabular}{l} 
Boundary values of \(\overline{\mathbf{x}}\) required \\
by the \(\alpha\) value that you \\
supplied.
\end{tabular} \\
\hline
\end{tabular}

\section*{Two-Sample Z-Test}

Menu name
Z-Test: \(\mu 1-\mu 2\)
On the basis of two samples, each from a separate population, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the mean of the two populations are equal ( \(H_{0}: \mu \mathrm{l}=\mu 2\) ).
You select one of the following alternative hypotheses against which to test the null hypothesis:
\[
\begin{aligned}
& \mathrm{H}_{1}: \mu_{1}<\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1}>\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|l|l|}
\hline Field name & Definition \\
\hline\(\overline{\mathrm{x} 1}\) & Sample 1 mean. \\
\(\overline{\mathrm{x}} 2\) & Sample 2 mean. \\
n 1 & Sample 1 size. \\
n 2 & \begin{tabular}{l} 
Sample 2 size. \\
opopulation 1 standard \\
deviation.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Field name & Definition (Continued) \\
\hline\(\sigma 2\) & \begin{tabular}{l} 
Population 2 standard \\
deviation. \\
Significance level.
\end{tabular} \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test Z & Z-Test statistic. \\
Prob & \begin{tabular}{l} 
Probability associated with the \\
Z-Test statistic.
\end{tabular} \\
Critical Z & \begin{tabular}{l} 
Boundary value of Z \\
associated with the \(\alpha\) level that \\
you supplied.
\end{tabular} \\
\hline
\end{tabular}

\section*{One-Proportion Z-Test}

\section*{Menu name}

\section*{Z-Test: \(1 \pi\)}

On the basis of statistics from a single sample, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the proportion of successes in the two populations is equal: \(H_{0}: \pi=\pi_{0}\)

You select one of the following alternative hypotheses against which to test the null hypothesis:
\[
\begin{aligned}
& \mathrm{H}_{1}: \pi<\pi_{0} \\
& \mathrm{H}_{1}: \pi>\pi_{0} \\
& \mathrm{H}_{1}: \pi \neq \pi_{0}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|l|l|}
\hline Field name & Definition \\
\hline\(x\) & Number of successes in the sample. \\
\(n\) & Sample size. \\
\(\pi_{0}\) & Population proportion of successes. \\
\(\alpha\) & Significance level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test P & Proportion of successes in the sample. \\
Test Z & Z-Test statistic. \\
Prob & \begin{tabular}{l} 
Probability associated with the Z-Test \\
statistic.
\end{tabular} \\
Critical Z & \begin{tabular}{l} 
Boundary value of \(Z\) associated with \\
the level you supplied.
\end{tabular} \\
\hline
\end{tabular}

\section*{Two-Proportion Z-Test}

Menu name
Z-Test: \(\pi 1-\pi 2\)
On the basis of statistics from two samples, each from a different population, the Two-Proportion Z-Test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the proportion of successes in the two populations is equal HO: \(\pi_{1}=\pi_{2}\).
You select one of the following alternative hypotheses against which to test the null hypothesis:
\[
\begin{aligned}
& \mathrm{H}_{1}: \pi_{1}<\pi_{2} \\
& \mathrm{H}_{1}: \pi_{1}>\pi_{2} \\
& \mathrm{H}_{1}: \pi_{1} \neq \pi_{2}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|l|l|}
\hline Field name & Definition \\
\hline x 1 & Sample 1 mean. \\
x 2 & Sample 2 mean. \\
n 1 & Sample 1 size. \\
n 2 & Sample 2 size. \\
\(\alpha\) & Significance level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test \(\pi 1-\pi 2\) & \begin{tabular}{l} 
Difference between the \\
proportions of successes in the \\
two samples.
\end{tabular} \\
Test Z & Z-Test statistic. \\
Prob & \begin{tabular}{l} 
Probability associated with the \\
Z-Test statistic.
\end{tabular} \\
\hline
\end{tabular} \begin{tabular}{l} 
Boundary values of \(Z\) \\
associated with the \(\alpha\) level that \\
you supplied.
\end{tabular},

\section*{One-Sample T-Test}

Menu name
T-Test: \(1 \mu\)
The One-sample T-Test is used when the population standard deviation is not known. On the basis of statistics from a single sample, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the sample mean has some assumed value,
\(\mathrm{H}_{0}: \mu=\mu_{0}\)
You select one of the following alternative hypotheses against which to test the null hypothesis:
\[
\begin{aligned}
& \mathrm{H}_{1}: \mu<\mu_{0} \\
& \mathrm{H}_{1}: \mu>\mu_{0} \\
& \mathrm{H}_{1}: \mu \neq \mu_{0}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|l|l|}
\hline Field name & Definition \\
\hline \(\bar{x}\) & Sample mean. \\
Sx & Sample standard deviation. \\
n & Sample size. \\
\(\mu 0\) & Hypothetical population mean. \\
\(\alpha\) & Significance level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test T & T-Test statistic. \\
Prob & \begin{tabular}{l} 
Probability associated with the \\
T-Test statistic.
\end{tabular} \\
Critical \(\bar{x}\) & \begin{tabular}{l} 
Boundary value of \(T\) associated \\
with the \(\alpha\) level that you \\
supplied.
\end{tabular} \\
\hline
\end{tabular}

\section*{Two-Sample T-Test}

\section*{Menu name}

T-Test: \(\mu 1-\mu 2\)
The Two-sample T-Test is used when the population standard deviation is not known. On the basis of statistics from two samples, each sample from a different population, this test measures the strength of the evidence for a selected hypothesis against the null hypothesis. The null hypothesis is that the two populations means are equal \(H_{0}: \mu_{1}=\mu_{2}\).
You select one of the following alternative hypotheses against which to test the null hypothesis
\[
\begin{aligned}
& \mathrm{H}_{1}: \mu_{1}<\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1}>\mu_{2} \\
& \mathrm{H}_{1}: \mu_{1} \neq \mu_{2}
\end{aligned}
\]

\section*{Inputs}

The inputs are:
\begin{tabular}{|c|c|}
\hline Field name & Definition \\
\hline ¢ 1 & Sample 1 mean. \\
\hline \(\overline{\mathrm{x}} 2\) & Sample 2 mean. \\
\hline S1 & Sample 1 standard deviation. \\
\hline S2 & Sample 2 standard deviation. \\
\hline n1 & Sample 1 size. \\
\hline n2 & Sample 2 size. \\
\hline \(\alpha\) & Significance level. \\
\hline _Pooled? & Check this option to pool samples based on their standard deviations. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Test T & T-Test statistic. \\
Prob & \begin{tabular}{l} 
Probability associated with the T-Test \\
statistic.
\end{tabular} \\
Critical T & \begin{tabular}{l} 
Boundary values of T associated with \\
the \(\alpha\) level that you supplied.
\end{tabular} \\
\hline
\end{tabular}

\section*{Confidence intervals}

The confidence interval calculations that the HP 39gs can perform are based on the Normal Z-distribution or Student's t-distribution.

\section*{One-Sample Z-Interval}

Z-INT: \(\mu 1\)
This option uses the Normal Z-distribution to calculate a confidence interval for m , the true mean of a population, when the true population standard deviation, s , is known.

Inputs
The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline \(\bar{x}\) & Sample mean. \\
\(\sigma\) & Population standard deviation. \\
n & Sample size. \\
C & Confidence level. \\
\hline
\end{tabular}

Results The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical Z & Critical value for \(Z\). \\
\(\mu\) min & Lower bound for \(\mu\). \\
\(\mu\) max & Upper bound for \(\mu\). \\
\hline
\end{tabular}

\section*{Two-Sample Z-Interval}

Menu name

Inputs
Z-INT: \(\mu 1-\mu_{2}\)
This option uses the Normal Z-distribution to calculate a confidence interval for the difference between the means of two populations, \(\mu_{1}-\mu_{2}\), when the population standard deviations, \(\sigma_{1}\) and \(\sigma_{2}\), are known.

The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline\(\overline{\mathrm{x}} 1\) & Sample 1 mean. \\
\(\overline{\mathrm{x}} 2\) & Sample 2 mean. \\
n 1 & Sample 1 size. \\
n 2 & Sample 2 size. \\
\(\sigma 1\) & Population 1 standard deviation. \\
\(\sigma 2\) & Population 2 standard deviation. \\
C & Confidence level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical Z & Critical value for Z. \\
\(\Delta \mu\) Min & Lower bound for \(\mu_{1}-\mu_{2}\). \\
\(\Delta \mu\) Max & Upper bound for \(\mu_{1}-\mu_{2}\). \\
\hline
\end{tabular}

\section*{One-Proportion Z-Interval}

\author{
Menu name
}

Inputs
The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline x & Sample success count. \\
n & Sample size. \\
c & Confidence level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical Z & Critical value for \(Z\). \\
\(\pi\) Min & Lower bound for \(\pi\). \\
\(\pi\) Max & Upper bound for \(\pi\). \\
\hline
\end{tabular}

\section*{Two-Proportion Z-Interval}

Menu name
Z-INT: \(\pi 1-\pi 2\)
This option uses the Normal Z-distribution to calculate a confidence interval for the difference between the proportions of successes in two populations.

Inputs
The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline \(\bar{x} 1\) & Sample 1 success count. \\
\(\bar{x} 2\) & Sample 2 success count. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition (Continued) \\
\hline n1 & Sample 1 size. \\
n2 & Sample 2 size. \\
C & Confidence level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical Z & Critical value for Z. \\
\(\Delta \pi\) Min & \begin{tabular}{l} 
Lower bound for the difference between \\
the proportions of successes.
\end{tabular} \\
\(\Delta \pi\) Max & \begin{tabular}{l} 
Upper bound for the difference between \\
the proportions of successes.
\end{tabular} \\
\hline
\end{tabular}

\section*{One-Sample T-Interval}

Menu name

Inputs

T-INT: \(1 \mu\)
This option uses the Student's t-distribution to calculate a confidence interval for \(m\), the true mean of a population, for the case in which the true population standard deviation, \(s\), is unknown.

The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline\(\overline{\mathrm{x} 1}\) & Sample mean. \\
Sx & Sample standard deviation. \\
n & Sample size. \\
C & Confidence level. \\
\hline
\end{tabular}

\section*{Results}

The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical T & Critical value for T. \\
\(\mu\) Min & Lower bound for \(\mu\). \\
\(\mu\) Max & Upper bound for \(\mu\). \\
\hline
\end{tabular}

\section*{Two-Sample T-Interval}

Menu name

Inputs

T-INT: \(\mu \mathrm{l}-\mu 2\)
This option uses the Student's \(t\)-distribution to calculate a confidence interval for the difference between the means of two populations, \(\mu 1-\mu 2\), when the population standard deviations, sland s2, are unknown.

The inputs are:
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
Field \\
name
\end{tabular} & Definition \\
\hline \(\bar{x} 1\) & Sample 1 mean. \\
s1 & Sample 2 mean. \\
s2 & \begin{tabular}{l} 
Sample 1 standard deviation. \\
n1
\end{tabular} \\
n2 Sample 2 standard deviation. 1 size. \\
C & \begin{tabular}{l} 
Sample 2 size. \\
Confidence level. \\
Pooled
\end{tabular} \\
\begin{tabular}{l} 
Whether or not to pool the samples \\
based on their standard deviations.
\end{tabular} \\
\hline
\end{tabular}

Results
The results are:
\begin{tabular}{|l|l|}
\hline Result & Description \\
\hline Critical T & Critical value for T. \\
\(\Delta \mu\) Min & Lower bound for \(\mu_{1}-\mu_{2}\). \\
\(\Delta \mu\) Max & Upper bound for \(\mu_{1}-\mu_{2}\). \\
\hline
\end{tabular}

\section*{Using the Finance Solver}

The Finance Solver, or Finance aplet, is available by using the APLET key in your calculator. Use the up and down arrow keys to select the Finance aplet. Your screen should look as follows:
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline Pol.sF & [188 \\
\hline  & 918 \\
\hline Salve & C1k \\
\hline Firamice & 8SkE \\
\hline Statictirs & [16E \\
\hline \multicolumn{2}{|l|}{} \\
\hline
\end{tabular}

Press the ENTER key or the 唔ificiil soft menu key to activate the aplet. The resulting screen shows the different elements involved in the solution of financial problems with your HP 39gs calculator.


Background information on and applications of financial calculations are provided next.

\section*{Background}

The Finance Solver application provides you with the ability of solving time-value-of-money (TVM) and amortization problems. These problems can be used for calculations involving compound interest applications as well as amortization tables.

Compound interest is the process by which earned interest on a given principal amount is added to the principal at specified compounding periods, and then the
combined amount earns interest at a certain rate. Financial calculations involving compound interest include savings accounts, mortgages, pension funds, leases, and annuities.

Time Value of Money (TVM) calculations, as the name implies, make use of the notion that a dollar today will be worth more than a dollar sometime in the future. A dollar today can be invested at a certain interest rate and generate a return that the same dollar in the future cannot. This TVM principle underlies the notion of interest rates, compound interest and rates of return.

TVM transactions can be represented by using cash flow diagrams. A cash flow diagram is a time line divided into equal segments representing the compounding periods. Arrows represent the cash flows, which could be positive (upward arrows) or negative (downward arrows), depending on the point of view of the lender or borrower. The following cash flow diagram shows a loan from a borrower's point of view:


On the other hand, the following cash flow diagram shows a load from the lender's point of view:


In addition, cash flow diagrams specify when payments occur relative to the compounding periods: at the beginning of each period or at the end. The Finance Solver application provides both of these payment modes: Begin mode and End mode. The following cash
flow diagram shows lease payments at the beginning of each period.


The following cash flow diagram shows deposits into an account at the end of each period.


As these cash-flow diagrams imply, there are five TVM variables:
\begin{tabular}{|l|l|}
\hline N & \begin{tabular}{l} 
The total number of compounding periods \\
or payments.
\end{tabular} \\
I\%YR & \begin{tabular}{l} 
The nominal annual interest rate (or \\
investment rate). This rate is divided by \\
the number of payments per year (P/YR) \\
to compute the nominal interest rate per \\
compounding period - which is the \\
interest rate actually used in TVM \\
calculations.
\end{tabular} \\
PV & \begin{tabular}{l} 
The present value of the initial cash flow. \\
To a lender or borrower, PV is the amount \\
of the loan; to an investor, PV is the initial \\
investment. PV always occurs at the \\
beginning of the first period.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline PMT & \begin{tabular}{l} 
The periodic payment amount．The \\
payments are the same amount each \\
period and the TVM calculation assumes \\
that no payments are skipped．Payments \\
can occur at the beginning or the end of \\
each compounding period－－an option \\
you control by setting the Payment mode \\
to Beg or End． \\
The future value of the transaction：the \\
amount of the final cash flow or the \\
compounded value of the series of \\
previous cash flows．For a loan，this is the \\
size of the final balloon payment（beyond \\
any regular payment due）．For an \\
investment this is the cash value of an \\
investment at the end of the investment \\
period．
\end{tabular} \\
\hline
\end{tabular}

\section*{Performing TVM calculations}

1．Launch the Financial Solver as indicated at the beginning of this section．
2．Use the arrow keys to highlight the different fields and enter the known variables in the TVM calculations， pressing the［⿴囗玉Es soft－menu key after entering each known value．Be sure that values are entered for at least four of the five TVM variables（namely， \(\mathrm{N}, \mathrm{I} \% \mathrm{YR}\) ， PV，PMT，and FV）．
3．If necessary，enter a different value for \(\mathrm{P} / \mathrm{YR}\)（default value is 12 ，i．e．，monthly payments）．

4．Press the key \(\square\) to change the Payment mode（Beg or End）as required．
5．Use the arrow keys to highlight the TVM variable you wish to solve for and press the 覀置四 soft－menu key．

\section*{Example 1 - Loan calculations}

Suppose you finance the purchase of a car with a 5 -year loan at \(5.5 \%\) annual interest, compounded monthly. The purchase price of the car is \(\$ 19,500\), and the down payment is \(\$ 3,000\). What are the required monthly payments? What is the largest loan you can afford if your maximum monthly payment is \(\$ 300\) ? Assume that the payments start at the end of the first period.

Solution. The following cash flow diagram illustrates the loan calculations:


Start the Finance Solver, selecting \(P / Y R=12\) and End payment option.
- Enter the known TVM variables as shown in the diagram above. Your input form should look as follows:
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|c|}{time value af haner} \\
\hline & 6 & \\
\hline & ], 짐 & \\
\hline & [1] & 1 \\
\hline & . 610 & En \\
\hline Enter & Patment amaunt & af solv \\
\hline Egit & MMIDIT: & \\
\hline
\end{tabular}
- Highlighting the PMT field, press the 酸期 soft menu key to obtain a payment of -315.17 (i.e., PMT \(=-\$ 315.17\) ).
- To determine the maximum loan possible if the monthly payments are only \(\$ 300\), type the value -300 in the PMT field, highlight the PV field, and press the Peller soft menu key. The resulting value is \(P V=\$ 15,705.85\).

\section*{Example 2 －Mortgage with balloon payment}

Suppose you have taken out a 30 －year，\(\$ 150,000\) house mortgage at \(6.5 \%\) annual interest．You expect to sell the house in 10 years，repaying the loan in a balloon payment．Find the size of the balloon payment，the value of the mortgage after 10 years of payment．

Solution．The following cash flow diagram illustrates the case of the mortgage with balloon payment：

－Start the Finance Solver，selecting \(\mathrm{P} / \mathrm{YR}=12\) and End payment option．
－Enter the known TVM variables as shown in the diagram above．Your input form，for calculating monthly payments for the \(30-\mathrm{yr}\) mortgage，should look as follows：

－Highlighting the PMT field，press the 閳思国 soft menu key to obtain a payment of－948．10（i．e．，PMT \(=-\$ 948.10\) ）
－To determine the balloon payment or future value（FV） for the mortgage after 10 years，use \(N=120\) ， highlight the FV field，and press the cimeme soft menu key．The resulting value is \(\mathrm{FV}=-\$ 127,164.19\) ．The negative value indicates a payment from the homeowner．Check that the required balloon payments at the end of 20 years（ \(\mathrm{N}=240\) ）and 25 years（ \(\mathrm{N}=300\) ）are－\(\$ 83,497.92\) and －\(\$ 48,456.24\) ，respectively．

\section*{Calculating Amortizations}

Amortization calculations, which also use the TVM variables, determine the amounts applied towards principal and interest in a payment or series of payments.

\section*{To calculate amortizations:}
1. Start the Finance Solver as indicated at the beginning of this section.
2. Set the following TVM variables:
a Number of payments per year ( \(\mathrm{P} / \mathrm{YR}\) )
b Payment at beginning or end of periods
3. Store values for the TVM variables I\%YR, PV, PMT, and FV, which define the payment schedule.
4. Press the AMDETT soft menu key and enter the number of payments to amortize in this batch.
5. Press the [AMIT soft menu key to amortize a batch of payments. The calculator will provide for you the amount applied to interest, to principal, and the remaining balance after this set of payments have been amortized.

\section*{Example 3-Amortization for home mortgage}

For the data of Example 2 above, find the amortization of the loan after the first 10 years ( \(12 \times 10=120\) payments). Pressing the AMDETI soft menu key produces the screen to the left. Enter 120 in the PAYMENTS field, and press the CM 国 soft menu key to produce the results shown to the right.


\section*{To continue amortizing the loan:}
1. Press the [ \(\boldsymbol{+} \boldsymbol{+} \boldsymbol{P}\) soft menu key to store the new balance after the previous amortization as PV.
2. Enter the number of payments to amortize in the new batch.
3. Press the [AMTIT soft menu key to amortize the new batch of payments. Repeat steps 1 through 3 as often as needed.

\section*{Example 4-Amortization for home mortgage}

For the results of Example 3, show the amortization of the next 10 years of the mortgage loan. First, press the E; \(\boldsymbol{F P}\) soft menu key. Then, keeping 120 in the PAYMENTS field, press the [imid soft menu key to produce the results shown below.


\section*{To amortize a series of future payments starting at payment \(\boldsymbol{p}\) :}
1. Calculate the balance of the loan at payment \(p-1\).
2. Store the new balance in PV using the \(\mathbf{E} \mathbf{F} \mathbf{P} \mathbf{P}\) soft menu key.
3. Amortize the series of payments starting at the new PV.
The amortization operation reads the values from the TVM variables, rounds the numbers it gets from PV and PMT to the current display mode, then calculates the amortization rounded to the same setting. The original variables are not changed, except for PV, which is updated after each amortization.

\section*{Using mathematical functions}

\section*{Math functions}

The HP 39gs contains many math functions. The functions are grouped in categories. For example, the Matrix category contains functions for manipulating matrices. The Probability category (shown as Prob. on the MATH menu) contains functions for working with probability.
To use a math function, you enter the function onto the command line, and include the arguments in parentheses after the function. You can also select a math function from the MATH menu.

\section*{The MATH menu}

The MATH menu provides access to math functions, physical constants, and programming constants.
The MATH menu is organized by category. For each category of functions on the left, there is a list of function names on the right. The highlighted category is the current category.

- When you press MATH, you see the menu list of Math categories in the left column and the corresponding functions of the highlighted category in the right column. The menu key [1THE indicates that the MATH FUNCTIONS menu list is active.

To select a function 1. Press MATH to display the MATH menu. The categories appear in alphabetical order. Press \(\nabla\) or \(\Delta\) to scroll through the categories. To skip directly to a category, press the first letter of the category's name. Note: You do not need to press ALPHA first.
2. The list of functions (on the right) applies to the currently highlighted category (on the left). Use \(\square\) and to switch between the category list and the function list.
3. Highlight the name of the function you want and press 国. This copies the function name (and an initial parenthesis, if appropriate) to the edit line.

\section*{Function categories}
- Calculus • Loop • Symbolic
- Complex • Matrix • Tests
numbers - Polynomial - Trigonometry
- Constant
- Probability
(Trig)
- Convert
- Hyperbolic
- Real numbers (Real) trigonometry (Hyperb.)
- Lists
- Two-variable statistics (Stat-Two)

\section*{Math functions by category}

Syntax
Each function's definition includes its syntax, that is, the exact order and spelling of a function's name, its delimiters (punctuation), and its arguments. Note that the syntax for a function does not require spaces.

\section*{Functions common to keyboard and menus}

These functions are common to the keyboard and MATH menu.

SHIFT \(\pi\)

SHIFT \(A R G\)

SHIFT \(A N D\)

For a description, see " \(\pi\) " on page 13-8.

For a description, see "ARG" on page 13-7.

For a description, see " \(\partial\) " on page 11-7.

For a description, see "AND" on page 13-19.
\begin{tabular}{|c|c|}
\hline SHIFT! & For a description, see \\
\hline & " \(\operatorname{COMB}(5,2)\) returns 10 . That is, there are ten different ways that five things can be combined two at a time.!" on page 13-12. \\
\hline SHIFT \(\Sigma\) & For a description, see " \(\Sigma\) " on page 13-11. \\
\hline SHIFT EEX & For a description, see "Scientific notation (powers of 10)" on page 1-20. \\
\hline SHIFT 1 & For a description, see " \(\int\) " on page 11-7. \\
\hline SHIFT \(x^{-1}\) & The multiplicative inverse function finds the inverse of a square matrix, and the multiplicative inverse of a real or complex number. Also works on a list containing only these object types. \\
\hline
\end{tabular}

\section*{Keyboard functions}

The most frequently used functions are available directly from the keyboard. Many of the keyboard functions also accept complex numbers as arguments.


SHIFT \(e^{x}\)

Add, Subtract, Multiply, Divide. Also accepts complex numbers, lists and matrices.
value \(1+\) value2, etc.
Natural exponential. Also accepts complex numbers.
\(e^{\wedge}\) value

\section*{Example}
\(e^{\wedge} 5\) returns 148.413159103
Natural logarithm. Also accepts complex numbers.
LN(value)

\section*{Example}

LN (1) returns 0

Exponential (antilogarithm). Also accepts complex numbers.
\(10^{\wedge}\) value

\section*{Example}
```

10^3 returns 1000

```

Common logarithm. Also accepts complex numbers.
LOG(value)

\section*{Example}

LOG (100) returns 2

Sine, cosine, tangent. Inputs and outputs depend on the current angle format (Degrees, Radians, or Grads).

SIN(value)
cos(value)
TAN(value)

\section*{Example}

TAN (45) returns 1 (Degrees mode).
Arc sine: \(\sin ^{-1} x\). Output range is from \(-90^{\circ}\) to \(90^{\circ},-\pi / 2\) to \(\pi / 2\), or -100 to 100 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers.

\section*{AS In(value)}

\section*{Example}

ASIN(1) returns 90 (Degrees mode).
Arc cosine: \(\cos ^{-1} x\). Output range is from \(0^{\circ}\) to \(180^{\circ}, 0\) to \(\pi\), or 0 to 200 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers. Output will be complex for values outside the normal \(\operatorname{COS}\) domain of \(-1 \leq x \leq 1\).

ACos(value)

\section*{Example}

ACOS (1) returns 0 (Degrees mode).

Arc tangent: \(\tan ^{-1} x\). Output range is from \(-90^{\circ}\) to \(90^{\circ}\), \(2 \pi / 2\) to \(\pi / 2\), or -100 to 100 grads. Inputs and outputs depend on the current angle format. Also accepts complex numbers.

Atan(value)

\section*{Example}

ATAN (1) returns 45 (Degrees mode).
Square. Also accepts complex numbers.
value \({ }^{2}\)

\section*{Example}
\(18^{2}\) returns 324
Square root. Also accepts complex numbers. \(\checkmark\) value

\section*{Example}
\(\sqrt{324}\) returns 18
Negation. Also accepts complex numbers.
-value

\section*{Example}
\(-(1,2)\) returns \((-1,-2)\)
Power ( \(x\) raised to \(y\) ). Also accepts complex numbers.
value^power

\section*{Example}

2^8 returns 256
Absolute value. For a complex number, this is \(\sqrt{x^{2}+y^{2}}\).
ABS(value)
ABS( \((x, y))\)

\section*{Example}

ABS (-1) returns 1
ABS ( \((1,2)\) ) returns 2.2360679775

\section*{Example}

3 NTHROOT 8 returns 2

\section*{Calculus functions}

The symbols for differentiation and integration are available directly form the keyboard- \(\mathrm{d} / \mathrm{dx}\) and S respectively-as well as from the MATH menu.

Differentiates expression with respect to the variable of differentiation. From the command line, use a formal name ( S 1 , etc.) for a non-numeric result. See "Finding derivatives" on page 13-21.
\(\partial\) variable(expression)

\section*{Example}
\[
\partial \mathrm{s} 1\left(\mathrm{~s} 1^{2}+3 * s 1\right) \text { returns } 2 * s 1+3
\]

Integrates expression from lower to upper limits with respect to the variable of integration. To find the definite integral, both limits must have numeric values (that is, be numbers or real variables). To find the indefinite integral, one of the limits must be a formal variable (sl, etc).
\(\int\) (lower, upper, expression, variable)
See "Using formal variables" on page 13-20 for further details.

\section*{Example}
\(\int(0, \mathrm{~s} 1,2 * \mathrm{X}+3, \mathrm{x})\) ENTER \(\triangle\) EXFPT ENTER
finds the indefinite result \(3 * s 1+2^{\star}\left(s 1^{\wedge} 2 / 2\right)\)
See "To find the indefinite integral using formal variables" on page 13-23 for more information on finding indefinite integrals.

\section*{Example}

TAYLOR \(\left(1+\sin (s 1)^{2}, s 1,5\right)\) with Radians angle measure and Fraction number format (set in MODES) returns \(1+s 1^{\wedge} 2-1 / 3 * s 1^{\wedge} 4\).

\section*{Complex number functions}

These functions are for complex numbers only. You can also use complex numbers with all trigonometric and hyperbolic functions, and with some real-number and keyboard functions. Enter complex numbers in the form \((x, y)\), where \(x\) is the real part and \(y\) is the imaginary part.

ARG

CONJ

IM

RE

Argument. Finds the angle defined by a complex number. Inputs and outputs use the current angle format set in Modes.
\[
\operatorname{ARG}((x, y))
\]

\section*{Example}
\[
\operatorname{ARG}((3,3)) \text { returns } 45 \text { (Degrees mode) }
\]

Complex conjugate. Conjugation is the negation (sign reversal) of the imaginary part of a complex number.
\[
\operatorname{CONJ}((x, y))
\]

\section*{Example}
\[
\operatorname{CONJ}((3,4)) \text { returns }(3,-4)
\]

Imaginary part, \(y\), of a complex number, \((x, y)\).
\[
\operatorname{IM}((x, y))
\]

\section*{Example}
\[
\text { IM }((3,4)) \text { returns } 4
\]

Real part \(x\), of a complex number, \((x, y)\).
\(\operatorname{RE}((x, y))\)

\section*{Example}
```

RE((3,4)) returns 3

```

\section*{Constants}
e
i

MAXREAL

MINREAL
\(\pi\)

\section*{Conversions}

The constants available from the MATH FUNCTIONS menu are mathematical constants. These are described in this section. The hp 39gs has two other menus of constants: program constants and physical constants. These are described in "Program constants and physical constants" on page 13-24.

Natural logarithm base. Internally represented as 2.71828182846 .
e

Imaginary value for \(\sqrt{-1}\), the complex number \((0,1)\).
i
Maximum real number. Internally represented as \(9.99999999999 \times 10^{499}\).

MAXREAL

Minimum real number. Internally represented as \(1 \times 10^{-499}\)

MINREAL
Internally represented as 3.14159265359 .
\(\pi\)

The conversion functions are found on the Convert menu. They enable you to make the following conversions.

Convert from Fahrenheit to Celcius.

\section*{Example}
\(\rightarrow\) C (212) returns 100
Convert from Celcius to Fahrenheit.
Example
\(\rightarrow \mathrm{F}(0)\) returns 32
Convert from inches to centimeters.
\begin{tabular}{ll}
\(\rightarrow \mathbf{I N}\) & Convert from centimeters to inches. \\
\(\rightarrow \mathbf{L}\) & Convert from US gallons to liters. \\
\(\rightarrow\) LGAL & Convert from liters to US gallons. \\
\(\rightarrow \mathbf{K G}\) & Convert from pounds to kilograms. \\
\(\rightarrow \mathbf{L B S}\) & Convert from kilograms to pounds. \\
\(\rightarrow \mathbf{K M}\) & Convert from miles to kilometers. \\
\(\rightarrow \mathbf{D E G}\) & Convert from kilometers to miles. \\
\(\rightarrow \mathbf{R A D}\) & Convert from radians to degrees.
\end{tabular}

\section*{Hyperbolic trigonometry}

The hyperbolic trigonometry functions can also take complex numbers as arguments.

ACOSH

ASINH

ATANH

COSH

SINH

TANH

ALOG

Inverse hyperbolic cosine : \(\cosh ^{-1} x\).
ACOSH(value)
Inverse hyperbolic sine : \(\sinh ^{-1} x\). AS INH(value)

Inverse hyperbolic tangent : \(\tanh ^{-1} x\). ATANH(value)

Hyperbolic cosine
COSH(value)
Hyperbolic sine.
SINH(value)
Hyperbolic tangent.
TANH(value)
Antilogarithm (exponential). This is more accurate than \(10^{\wedge} \mathrm{x}\) due to limitations of the power function.

ALOG(value)

Exponent minus 1: \(e^{x}-1\). This is more accurate than EXP when \(x\) is close to zero.

EXPM1(value)
Natural \(\log\) plus 1: \(\ln (x+1)\). This is more accurate than the natural logarithm function when \(x\) is close to zero.

LNP1 (value)

\section*{List functions}

These functions work on list data. See "List functions" on page 16-6.

\section*{Loop functions}

The loop functions display a result after evaluating an expression a given number of times.

\section*{ITERATE}

Repeatedly for \#times evaluates an expression in terms of variable. The value for variable is updated each time, starting with initialvalue.

> ITERATE ( expression, variable, initialvalue, \#times)

\section*{Example}

ITERATE ( \(\mathrm{X}^{2}, \mathrm{X}, 2,3\) ) returns 256
Provides a method of defining a sequence without using the Symbolic view of the Sequence aplet. If used with | ("where"), RECURSE will step through the evaluation.

RECURSE ( sequencename, term \(_{n}\), term \({ }_{1}\), term \(_{2}\) )

\section*{Example}

RECURSE ( \(\mathrm{U}, \mathrm{U}(\mathrm{N}-1) * \mathrm{~N}, 1,2\) ) ETSH U1 ( N )
Stores a factorial-calculating function named U1.
When you enter U1 (5), for example, the function calculates 5! (120).

Summation. Finds the sum of expression with respect to variable from initialvalue to finalvalue.
\(\Sigma\) (variable=initialvalue, finalvalue, expression)

\section*{Example}
```

\Sigma(C=1,5, C2}) returns 55

```

\section*{Matrix functions}

These functions are for matrix data stored in matrix variables. See "Matrix functions and commands" on page 15-10.

\section*{Polynomial functions}

Polynomials are products of constants (coefficients) and variables raised to powers (terms).

\section*{POLYCOEF}

Polynomial coefficients. Returns the coefficients of the polynomial with the specified roots.

POLYCOEF ([roots])

\section*{Example}

To find the polynomial with roots \(2,-3,4,-5\) :
POLYCOEF ([2, \(-3,4,-5])\) returns [1, 2, -25 , \(-26,120]\), representing \(x^{4}+2 x^{3}-25 x^{2}-26 x+120\).

POLYEVAL

POLYFORM
Polynomial evaluation. Evaluates a polynomial with the specified coefficients for the value of \(x\).

POLYEVAL ([coefficients], value)

\section*{Example}

> For \(x^{4}+2 x^{3}-25 x^{2}-26 x+120\) :
> POLYEVAL \(([1,2,-25,-26,120], 8)\) returns 3432 .

Polynomial form. Creates a polynomial in variable 1 from expression.

POLYFORM(expression, variable 1)

\section*{Example}
\(\operatorname{POLYFORM}\left((X+1)^{\wedge} 2+1, X\right)\) returns \(X^{\wedge} 2+2^{*} X+2\).

Polynomial roots. Returns the roots for the \(n\) th-order polynomial with the specified \(n+1\) coefficients.

POLYROOT([coefficients])

\section*{Example}
\[
\begin{aligned}
& \text { For } x^{4}+2 x^{3}-25 x^{2}-26 x+120 \text { : } \\
& \text { POLYROOT }([1,2,-25,-26,120]) \text { returns } \\
& {[2,-3,4,-5] \text {. }}
\end{aligned}
\]

HIN T The results of POLYROOT will often not be easily seen in HOME due to the number of decimal places, especially if they are complex numbers. It is better to store the results of POLYROOT to a matrix.

For example, POLYROOT ( \([1,0,0,-8]\) ETMM M1 will store the three complex cube roots of 8 to matrix M1 as a complex vector. Then you can see them easily by going to the Matrix Catalog. and access them individually in calculations by referring to \(M 1(1), M 1(2)\) etc.

\section*{Probability functions}

\section*{COMB}

Number of combinations (without regard to order) of \(n\) things taken \(r\) at a time: \(n!/(r!(n-r))\).
\[
\operatorname{COMB}(n, r)
\]

\section*{Example}
\(\operatorname{COMB}(5,2)\) returns 10 . That is, there are ten different ways that five things can be combined two at a time.!

Factorial of a positive integer. For non-integers, \(!=\Gamma(x+\) 1). This calculates the gamma function.
value!

\section*{PERM}

Number of permutations (with regard to order) of \(n\) things taken \(r\) at a time: \(n!/(r!(n-r)!\)

PERM ( \(n, r\) )

\section*{Example}
\(\operatorname{PERM}(5,2)\) returns 20 . That is, there are 20
different permutations of five things taken two at a time.
\begin{tabular}{cl} 
RANDOM & \begin{tabular}{l} 
Random number (between zero and 1). Produced by a \\
pseudo-random number sequence. The algorithm used in \\
the RANDOM function uses a seed number to begin its \\
sequence. To ensure that two calculators must produce \\
different results for the RANDOM function, use the \\
RANDSEED function to seed different starting values \\
before using RANDOM to produce the numbers.
\end{tabular} \\
RANDOM
\end{tabular}\(\quad\)\begin{tabular}{l} 
The setting of Time will be different for each calculator, so \\
using RANDSEED(Time) is guaranteed to produce a set of \\
numbers which are as close to random as possible. You \\
can set the seed using the command RANDSEED.
\end{tabular}

\section*{Real-number functions}

Some real-number functions can also take complex arguments.

\section*{CEILING} Smallest integer greater than or equal to value.

> CEILING(value)

\section*{Examples}

CEILING (3.2) returns 4
CEILING (-3.2) returns -3
DEG \(\rightarrow\) RAD
Degrees to radians. Converts value from Degrees angle format to Radians angle format.

DEG \(\rightarrow\) RAD(value)

\section*{Example}

DEG \(\rightarrow\) RAD (180) returns 3.14159265359 , the value of \(\pi\).
\(\rightarrow\) HMS

FLOOR

FNROOT

HMS \(\rightarrow\)
Greatest integer less than or equal to value.
FLOOR(value)

\section*{Example}

FLOOR (-3.2) returns -4
Function root-finder (like the Solve aplet). Finds the value for the given variable at which expression most nearly evaluates to zero. Uses guess as initial estimate.

FNROOT(expression, variable, guess)

\section*{Example}

FNROOT (M*9.8/600-1, M, 1) returns 61.2244897959.

FRAC
Fractional part.
FRAC(value)

\section*{Example}

FRAC (23.2) returns . 2
Hours-minutes-seconds to decimal. Converts a number or expression in H.MMSSs format (time or angle that can include fractions of a second) to \(x . x\) format (number of hours or degrees with a decimal fraction). HMS \(\rightarrow\) (H.MMSSs)

\section*{Example}
\[
\text { HMS } \rightarrow \text { (8.30) returns } 8.5
\]

Decimal to hours-minutes-seconds. Converts a number or expression in \(x . x\) format (number of hours or degrees
with a decimal fraction) to H.MMSSs format (time or angle up to fractions of a second).
\[
\rightarrow \text { HMS(x.x) }
\]

\section*{Example}
\(\rightarrow\) HMS (8.5) returns 8.3

INT

MANT

MAX

MIN

MOD
\%
\%CHANGE

Integer part. INT(value)

\section*{Example}

INT (23.2) returns 23
Mantissa (significant digits) of value.
MANT(value)

\section*{Example}

MANT (21.2E34) returns 2.12
Maximum. The greater of two values.
\(\operatorname{MAX}(\) value 1, value2)

\section*{Example}

MAX \((210,25)\) returns 210
Minimum. The lesser of two values.
min(value 1, value 2)

\section*{Example}

MIN \((210,25)\) returns 25
Modulo. The remainder of value \(1 /\) value2. value 1 MOD value 2

\section*{Example}

9 MOD 4 returns 1
\(x\) percent of \(y\); that is, \(x / 100^{*} y\).
\% ( \(x, y\) )

\section*{Example}
\(\%(20,50)\) returns 10
Percent change from \(x\) to \(y\), that is, \(100(y-x) / x\).
\%change \((x, y)\)

\section*{Example}
\%TOTAL

RAD \(\rightarrow\) DEG

ROUND

\section*{TRUNCATE}
\%CHANGE \((20,50)\) returns 150
Percent total : (100) \(y / x\). What percentage of \(x\), is \(y\). \%total \((x, y)\)

\section*{Example}
```

%TOTAL (20,50) returns 250

```

Radians to degrees. Converts value from radians to degrees.

RAD \(\rightarrow\) DEG (value)

\section*{Example}
\(\operatorname{RAD} \rightarrow \operatorname{DEG}(\pi)\) returns 180
Rounds value to decimal places. Accepts complex numbers.

ROUND(value, places)
Round can also round to a number of significant digits as showed in example 2.

\section*{Examples}
```

ROUND (7.8676,2) returns 7.87
ROUND (0.0036757,-3) returns 0.00368

```

Sign of value. If positive, the result is 1 . If negative, -1 . If zero, result is zero. For a complex number, this is the unit vector in the direction of the number.

SIGN(value)
\(\operatorname{SIGN}((x, y))\)

\section*{Examples}

SIGN (-2) returns -1
SIGN((3,4)) returns (.6,.8)
Truncates value to decimal places. Accepts complex numbers.

TRUNCATE(value, places)

\section*{Example}

TRUNCATE (2.3678,2) returns 2.36

\section*{Example}
```

XPON(123.4) returns 2

```

\section*{Two-variable statistics}

These are functions for use with two-variable statistics. See "Two-variable" on page 10-15.

\section*{Symbolic functions}

The symbolic functions are used for symbolic manipulations of expressions. The variables can be formal or numeric, but the result is usually in symbolic form (not a number). You will find the symbols for the symbolic functions = and | (where) in the CHARS menu (SHIFT CHARS) as well as the MATH menu.
= (equals)

ISOLATE
Sets an equality for an equation. This is not a logical operator and does not store values. (See "Test functions" on page 13-18.)
expression \(1=\) expression 2
Isolates the first occurrence of variable in expression=0 and returns a new expression, where variable=newexpression. The result is a general solution that represents multiple solutions by including the (formal) variables \(S 7\) to represent any sign and \(n 7\) to represent any integer.

ISOLATE (expression, variable)

\section*{Examples}

ISOLATE ( \(2 * \mathrm{X}+8, \mathrm{X}\) ) returns -4
ISOLATE \((A+B * X / C, X)\) returns \(-(A * C / B)\)
LINEAR?
Tests whether expression is linear for the specified variable. Returns 0 (false) or 1 (true).

LINEAR? (expression, variable)

\section*{Example}

LINEAR? ( ( \(\left.\left.\mathrm{X}^{\wedge} 2-1\right) /(\mathrm{X}+1), \mathrm{X}\right)\) returns 0

QUAD

\section*{QUOTE}
| (where)

Solves quadratic expression=0 for variable and returns a new expression, where variable=newexpression. The result is a general solution that represents both positive and negative solutions by including the formal variable S 1 to represent any sign: + or - .

QUAD (expression, variable)

\section*{Example}

QUAD ( \(\left.(\mathrm{X}-1)^{2}-7, \mathrm{X}\right)\) returns
\((2+s 1 * 5.29150262213) / 2\)

Encloses an expression that should not be evaluated numerically.

QUOTE (expression)

\section*{Examples}

QUOTE (SIN (45)) ETMF F1 (X) stores the expression \(\operatorname{SIN}(45)\) rather than the value of \(\operatorname{SIN}(45)\).
Another method is to enclose the expression in single quotes.

For example, \(X^{\wedge} 3+2 * X\) ETME \(F 1(X)\) puts the expression \(X^{\wedge} 3+2 * X\) into \(F 1(X)\) in the Function aplet.

Evaluates expression where each given variable is set to the given value. Defines numeric evaluation of a symbolic expression.
expression | (variable \(1=\) value 1, variable2=value2,...)

\section*{Example}
\[
3 *(X+1) \mid(X=3) \text { returns } 12
\]

\section*{Test functions}
\(<\)
Less than. Returns 1 if true, 0 if false.
value 1 <value 2
Less than or equal to. Returns 1 if true, 0 if false.
value \(1 \leq\) value 2
The test functions are logical operators that always return either a 1 (true) or a 0 (false).
\(\leq\)
\(==\)

\section*{Trigonometry functions}

ACOT

Exclusive OR. Returns 1 if either value 1 or value2-but not both of them-is non-zero, otherwise returns 0 .
value 1 XOR value 2

The trigonometry functions can also take complex numbers as arguments. For SIN, COS, TAN, ASIN, ACOS, and ATAN, see the Keyboard category.
Equals (logical test). Returns 1 if true, 0 if false. value \(1==\) value 2

Not equal to. Returns 1 if true, 0 if false. value \(1 \neq\) value 2

Greater than. Returns 1 if true, 0 if false.
value 1> value 2
Greater than or equal to. Returns 1 if true, 0 if false.
value \(1 \geq\) value 2
Compares value 1 and value 2 . Returns 1 if they are both non-zero, otherwise returns 0 .
value 1 AND value2
If expression is true, do the trueclause; if not, do the falseclause.

IFTE (expression, trueclause, falseclause)

\section*{Example}
\(\operatorname{IFTE}\left(X>0, X^{2}, X^{3}\right)\)
Returns 1 if value is zero, otherwise returns 0 .
NOT value
Returns 1 if either value 1 or value 2 is non-zero, otherwise returns 0 .
value 1 OR value2 Arc cotangent.

АСот(value)
\begin{tabular}{lc} 
ACSC & Arc cosecant. \\
ACSC(value) \\
ASEC & Arc secant. \\
ASEC(value) \\
COT & Cotangent: \(\cos x / \sin x\). \\
& \(\operatorname{CoT}(\) value) \\
CSC & Cosecant: \(1 / \sin x\) \\
SEC & CSC(value) \\
& Secant: \(1 / \cos x\). \\
& \(\operatorname{SEC(value)}\)
\end{tabular}

\section*{Symbolic calculations}

The HP 39gs has the ability to perform symbolic calculations, for example, symbolic integration and differentiation. You can perform symbolic calculations in HOME and in the Function aplet.

When you perform calculations that contain normal variables, the calculator substitutes values for any variables. For example, if you enter \(\mathrm{A}+\mathrm{B}\) on the command line and press ENTER, the calculator retrieves the values for \(A\) and \(B\) from memory and substitutes them in the calculation.

Using formal variables

To perform symbolic calculations, for example symbolic differentiations and integrations, you need to use formal names. The HP 39gs has six formal names available for use in symbolic calculations. These are S 0 to S 5 . When you perform a calculation that contains a formal name, the HP 39gs does not carry out any substitutions.

You can mix formal names and real variables. Evaluating \((A+B+S l)^{2}\) will evaluate \(\mathrm{A}+\mathrm{B}\), but not S 1 .

If you need to evaluate an expression that contains formal names numerically, you use the | (where) command, listed in the Math menu under the Symbolic category.
For example to evaluate \((S 1 * S 2)^{2}\) when \(S 1=2\) and \(S 2=4\), you would enter the calculation as follows:

(The \(\mid\) symbol is in the CHARS menu: press SHIFT chars. The = sign is listed in the MATH menu under Symbolic functions.)

\section*{Symbolic calculations in the Function aplet}

You can perform symbolic operations in the Function aplet's Symbolic view. For example, to find the derivative of a function in the Function aplet's Symbolic view, you define two functions and define the second function as a derivative of the first function. You then evaluate the second function. See "To find derivatives in the Function aplet's Symbolic view" on page 13-22 for an example.

\section*{Finding derivatives}

The HP 39gs can perform symbolic differentiation on some functions. There are two ways of using the HP 39gs to find derivatives.
- You can perform differentiations in HOME by using the formal variables, S 1 to S 5 .
- You can perform differentiations of functions of \(X\) in the Function aplet.

\section*{To find derivatives in HOME}

To find the derivative of the function in HOME , use a formal variable in place of \(X\). If you use \(X\), the differentiation function substitutes the value that X holds, and returns a numeric result.

For example, consider the function:
\(d x\left(\sin \left(x^{2}\right)+2 \cos (x)\right)\)
1. Enter the differentiation function onto the command line, substituting S 1 in place of X .


\section*{COS ALPHA S 1}

2. Evaluate the function.

ENTER

3. Show the result.
\(\Delta\) BHix.


To find derivatives in the Function aplet's Symbolic view

To find the derivative of the function in the Function aplet's Symbolic view, you define two functions and define the second function as a derivative of the first function. For example, to differentiate \(\sin \left(x^{2}\right)+2 \cos x\) :
1. Access the Function aplet's Symbolic view and define Fl.

2. Define F2(X) as the derivative of \(F(1)\).


F1 \(0 x^{2}\) D

[0]
3. Select F2 (X) and evaluate it.
( \(\Delta\) EMHL

FINNCTIUN SYMEDLIC VIEWシ \(-F_{1}(X)=S I N(X 2)+2 * \mathrm{CO}_{\ldots}\) \(F F 2(x)=\operatorname{COS}(x 2) *\left(2 * x_{m}\right.\) \(F 3(X)=\) \(F 4(x)=\) \(F 5(x)=\)

4. Press EHBD: to display the result. Note: Use the arrow keys to view the entire function.

\section*{EHOM}


You could also just define
\[
F 1(x)=d x\left(\sin \left(x^{2}\right)+2 \cos (x)\right) .
\]

To find the indefinite integral using formal variables

For example, to find the indefinite integral of
\(\int 3 x^{2}-5 d x\) use:
\(\int\left(0, S 1,3 X^{2}-5, X\right)\)
1. Enter the function.
\begin{tabular}{|c|c|c|}
\hline T & d/dx & 0 \\
\hline ALPHA & & \(3 \times\) \\
\hline ALPHA & X & - 5 \\
\hline ALPHA & X (1) & ENTER \\
\hline
\end{tabular}
2. Show the result format.

\section*{\(\Delta\)}

EHOR
3. Press to close the show window.
4. Copy the result and evaluate.

EXPM ENTER


Thus, substituting \(X\) for \(S\) 1, it can be seen that:
\[
\int 3 x^{2}-5 d x=-5 x+3\left(\frac{\frac{x^{3}}{3}}{\frac{\partial}{\partial X}(X)}\right)
\]

This result is derived from substituting \(X=S 1\) and \(X=0\) into the original expression found in step 1 . However, substituting \(X=0\) will not always evaluate to zero and may result in an unwanted constant.
To see this, consider: \(\int(x-2)^{4} d x=\frac{(x-2)^{5}}{5}\)
The 'extra' constant of 6.4 results from the substitution of \(x=0\) into \((x-2)^{5} / 5\), and should be disregarded if an indefinite integral is required.

\section*{Program constants and physical constants}

When you press MATH, three menus of functions and constants become available:
- the math functions menu (which appears by default)
- the program constants menu, and
- the physical constants menu.

The math functions menu is described extensively earlier in this chapter.

\section*{Program constants}

The program constants are numbers that have been assigned to various calculator settings to enable you to test for or specify such a setting in a program. For example, the various display formats are assigned the following numbers:
1 Standard
2 Fixed
3 Scientific
4 Engineering
5 Fraction
6 Mixed fraction
In a program, you could store the constant number of a particular format into a variable and then subsequently test for that particular format.

To access the menu of program constants:
1. Press MATH.
2. Press [CNSS.
3. Use the arrow keys to navigate through the options.
4. Click ITE and then ENTER to display the number assigned to the option you selected in the previous step.
The use of program constants is illustrated in more detail in "Programming" on page 18-1

\section*{Physical constants}

There are 29 physical constants-from the fields of chemistry, physics and quantum mechanics-that you can use in calculations. A list of all these constants can be found in "Physical Constants" on page R-16.
To access the menu of physical constants:
1. Press MATH.
2. Press \(\boldsymbol{F H}\).

3. Use the arrow keys to navigate through the options.
4. To see the symbol and value of a selected constant, press IEETI. (Click [ER to close the information window that appears.)
The following example shows the information available about the speed of light (one of the physics constants).

5. To use the selected constant in a calculation, press [IET . The constant appears at the position of the cursor on the edit line.

\section*{Example}

Suppose you want to know the potential energy of a mass of 5 units according to the equation \(E=m c^{2}\) ．

1．Enter 5 区


2．Press MATH and then press IEHYS


3．Select light s．．．from the Physics menu．


4．Press［IEX．The menu closes and the value of the selected constant is copied to the edit line．


5．Complete the equation as you would normally and press ENTER to get the result．
\begin{tabular}{|c|}
\hline 相的 \\
\hline － 299 \\
\hline \\
\hline ETILI \\
\hline
\end{tabular}

\section*{Variables and memory management}

\section*{Introduction}

The HP 39gs has approximately 200K of user memory. The calculator uses this memory to store variables, perform computations, and store history.
A variable is an object that you create in memory to hold data. The hp 39 gs has two types of variables, home variables and aplet variables.
- Home variables are available in all aplets. For example, you can store real numbers in variables \(A\) to \(Z\) and complex numbers in variables \(Z 0\) to \(Z 9\). These can be numbers you have entered, or the results of calculations. These variables are available within all aplets and within any programs.
- Aplet variables apply only to a single aplet. Aplets have specific variables allocated to them which vary from aplet to aplet.
You use the calculator's memory to store the following objects:
- copies of aplets with specific configurations
- new aplets that you download
- aplet variables
- home variables
- variables created through a catalog or editor, for example a matrix or a text note
- programs that you create.

You can use the Memory Manager (SHIFT MEMORY) to view the amount of memory available. The catalog views, which are accessible via the Memory Manager, can be used to transfer variables such as lists or matrices between calculators.

\section*{Storing and recalling variables}

You can store numbers or expressions from a previous input or result into variables.

Numeric Precision

To store a value

To store the results of a calculation

A number stored in a variable is always stored as a 12 digit mantissa with a 3 -digit exponent. Numeric precision in the display, however, depends on the display mode (Standard, Fixed, Scientific, Engineering, or Fraction). A displayed number has only the precision that is displayed. If you copy it from the HOME view display history, you obtain only the precision displayed, not the full internal precision. On the other hand, the variable Ans always contains the most recent result to full precision.
1. On the command line, enter the value or the calculation for the result you wish to store.
2. Press \(\overline{\text { Bind }}\)
3. Enter a name for the variable.
4. Press ENTER.


If the value you want to store is in the HOME view display history, for example the results of a previous calculation, you need to copy it to the command line, then store it.
1. Perform the calculation for the result you want to store.

2. Move the highlight to the result you wish to store.
3. Press 可霍 to copy the result to the command line.

5. Enter a name for the variable.

ALPHA
A

6. Press ENTER to store the result.

The results of a calculation can also be stored directly to a variable. For example:


To recall a value
To recall a variable's value, type the name of the variable and press ENTER.
ALPHA A ENTER


To use variables in calculations

You can use variables in calculations. The calculator substitutes the variable's value in the calculation:
\[
65 \text { A ALPHA A ENTER }
\]


To clear a variable
You can use the CLRVAR command to clear a specified variable. For example, if you have stored \(\{1,2,3,4\}\) in variable
 L1, entering CLRVAR L1 ENTER will clear L1. (You can find the clrvar command by pressing SHIIT MATH and choosing the PROMPT category of commands.)

\section*{The VARS menu}

You use the VARS menu to access all variables in the calculator. The VARS menu is organised by category. For each variable category in the left column, there is a list of variables in the right column. You select a variable category and then select a variable in the category.
1. Open the VARS menu. VARS

2. Use the arrow keys or press the alpha key of the first letter in the category to select a variable category.
For example, to select the Matrix category, press \(\mathbb{\square}\).
Note: In this instance,
 there is no need to press the ALPHA key.
3. Move the highlight to the variables column.
4. Use the arrow keys to select the variable that you want. For example, to select \(M 2\), press \(\nabla\).

5. Choose whether to place the variable name or the variable value on the command line.
- Press milime to indicate that you want the variable's contents to appear on the command line.
- Press ETitide to indicate that you want the variable's name to appear on the command line.
6. Press [⿴囗 the place the value or name on the command line. The selected object appears on the command line.
[IE


Note: The VARS menu can also be used to enter the names or values of variables into programs.

\section*{Example}

This example demonstrates how to use the VARS menu to add the contents of two list variables, and to store the result in another list variable.
1. Display the List Catalog.

\section*{SHIFT LIST}
to select L1
EDTIT

2. Enter the data for L1 .

88 [ax 90 [बE 89 [ax
65 [बE 70 [ब]

3. Return to the List Catalog to create L2.
```

SHIFT LIST
v to select L2
EDT]

```

4. Enter data for L2.
 90 지제 77

5. Press HOME to access HOME.
6. Open the variable menu and select LI .

7. Copy it to the command line. Note: Because the Emint option is highlighted, the variable's name, rather than its contents, is copied to the command line.
[0]

8. Insert the + operator and select the \(L 2\) variable from the List variables.

9. Store the answer in the List catalog L3 variable.

ENTER
Note: You can also type list names directly
 from the keyboard.

It is not possible to store data of one type in a variable of another type．For example，you use the Marrix catalog to create matrices．You can create up to ten matrices，and you can store these in variables M0 to M9．You cannot store matrices in variables other than \(M 0\) to \(M 9\) ．
\begin{tabular}{|c|c|}
\hline Cate－ gory & Available names \\
\hline Complex & \begin{tabular}{l}
Z0 to Z9 \\
For example，（ 1,2 ）逜再 ZO or \(2+3 i\)唒远 Z1．You can enter a complex number by typing（ \(r, i\) ），where \(r\) represents the real part，and \(i\) represents the imaginary part．
\end{tabular} \\
\hline Graphic & \begin{tabular}{l}
G0 to G9 \\
See＂Graphic commands＂on page 18－21 for more information on storing graphic objects via programming commands．See ＂To store into a graphics variable＂on page 17－5 for more information on storing graphic object via the sketch view．
\end{tabular} \\
\hline Library & Aplet library variables can store aplets that you have created，either by saving a copy of a standard aplet，or downloading an aplet from another source． \\
\hline List & \begin{tabular}{l}
LO to L9 \\

\end{tabular} \\
\hline Matrix & \begin{tabular}{l}
M0 to M9 can store matrices or vectors． \\

\end{tabular} \\
\hline Modes & Modes variables store the modes settings that you can configure using SHIFT MODES． \\
\hline Notepad & Notepad variables store notes． \\
\hline Program & Program variables store programs． \\
\hline Real & \begin{tabular}{l}
\(A\) to \(Z\) and \(\theta\) ． \\
For example， 7.45 险蒠 A ．
\end{tabular} \\
\hline
\end{tabular}

Aplet variables
Most aplet variables store values that are unique to a particular aplet. These include symbolic expressions and equations (see below), settings for the Plot and Numeric views, and the results of some calculations such as roots and intersections.
See the Reference Information chapter for more information about aplet variables.
\begin{tabular}{|l|l|}
\hline Category & Available names \\
\hline Function & \begin{tabular}{l} 
FO to F9 (Symbolic view). See "Function \\
aplet variables" on page R-7.
\end{tabular} \\
Parametric & \begin{tabular}{l} 
X0, Y0 to X9, Y9 (Symbolic view). See \\
"Parametric aplet variables" on page \\
R-8. \\
Polar \\
S0 to R9 (Symbolic view). See "Polar \\
aplet variables" on page R-9.
\end{tabular} \\
Solve & \begin{tabular}{l} 
U0 to U9 (Symbolic view). See \\
"Sequence aplet variables" on page \\
R-10. \\
E0 to E9 (Symbolic view). See "Solve \\
aplet variables" on page R-1 1. \\
C0 to C9 (Numeric view). See
\end{tabular} \\
Statistics & \begin{tabular}{l} 
"Statistics aplet variables" on page \\
R-12.
\end{tabular} \\
\hline
\end{tabular}

To access an aplet variable
1. Open the aplet that contains the variable you want to recall.
2. Press VARS to display the VARS menu.
3. Use the arrow keys to select a variable category in the left column, then press \(\Delta\) to access the variables in the right column.
4. Use the arrow keys to select a variable in the right column.
5. To copy the name of the variable onto the edit line,

6. To copy the value of the variable into the edit line, press wilitil and



\section*{Memory Manager}

You can use the Memory Manager to determine the amount of available memory on the calculator. You can also use Memory Manager to organize memory. For example, if the available memory is low, you can use the Memory Manager to determine which aplets or variables consume large amounts of memory. You can make deletions to free up memory.

\section*{Example}
1. Start the Memory Manager. A list of variable categories is displayed.

\section*{SHIFT MEMORY}

Free memory is displayed in the top right corner and the
 body of the screen lists each category, the memory it uses, and the percentage of the total memory it uses.
2. Select the category with which you want to work and press IIIEE: Memory Manager displays memory details of variables within the category.


3. To delete variables in a category:
- Press DEL to delete the selected variable.
- Press SHIFT CLEAR to delete all variables in the selected category.

\section*{Matrices}

\section*{Introduction}
\begin{tabular}{ll} 
Vectors & \begin{tabular}{l} 
Vectors are one-dimensional arrays. They are composed \\
of just one row. A vector is represented with single \\
brackets; for example, \([1,2,3]\). A vector can be a real \\
number vector or a complex number vector, for example \\
{\([(1,2),(7,3)]\).}
\end{tabular} \\
Matrices & \begin{tabular}{l} 
Matrices are two-dimensional arrays. They are composed \\
of more than one row and more than one column. \\
Two-dimensional matrices are represented with nested \\
brackets; for example, \([[1,2,3],[4,5,6]]\). You can create \\
complex matrices, for example, \([[(1,2),(3,4)],[(4,5)\), \\
(6,7)]].
\end{tabular} \\
Matrix Variables \(\quad\)\begin{tabular}{l} 
There are ten matrix variables available, named MO to \\
M9. You can use them in calculations in HOME or in a \\
program. You can retrieve the matrix names from the \\
VARS menu, or just type their names from the keyboard.
\end{tabular}
\end{tabular}

\section*{Creating and storing matrices}

You can create, edit, delete, send, and receive matrices in the Matrix catalog.


To open the Matrix catalog, press SHIFT MATRIX.
You can also create and store matrices-named or unnamed-in HOME. For example, the command:
```

POLYROOT ([1,0,-1,0]) DM1

```
stores the root of the complex vector of length 3 into the \(M 1\) variable. M1 now contains the three roots of \(x^{3}-x=0\)

Matrix Catalog keys

The table below lists the operations of the menu keys in the Matrix Catalog, as well as the use of Delete (DEL) and Clear (SHIFT CLEAR).
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline EEIT & Opens the highlighted matrix for editing. \\
\hline EEED & Prompts for a matrix type, then opens an empty matrix with the highlighted name. \\
\hline EENTI & Transmits the highlighted matrix to another hp 39gs or a disk drive. See "Sending and receiving aplets" on page 19-4. \\
\hline SECD & Receives a matrix from another hp 39gs or a disk drive. See "Sending and receiving aplets" on page 19-4. \\
\hline DEL & Clears the highlighted matrix. \\
\hline SHIFT CLEAR & Clears all matrices. \\
\hline \[
\begin{aligned}
& \text { SHIFT } \\
& \Delta
\end{aligned}
\] & Moves to the end or the beginning of the catalog. \\
\hline
\end{tabular}

\section*{To create a matrix in the Matrix Catalog}
1. Press SHIFT matrix to open the Matrix Catalog. The Matrix catalog lists the 10 available matrix variables, MO to M9.
2. Highlight the matrix variable name you want to use and press ExE:
3. Select the type of matrix to create.
- For a vector (one-dimensional array), select Real vector or Complex vector. Certain operations (,,+- CROSS) do not recognize a one-dimensional matrix as a vector, so this selection is important.
- For a matrix (two-dimensional array), select Real matrix or Complex matrix.
4. For each element in the matrix, type a number or an expression, and press ENTER. (The expression may not contain symbolic variable names.)
For complex numbers, enter each number in complex form; that is, \((a, b)\), where \(a\) is the real part and \(b\) is the imaginary part. You must include the parentheses and the comma.
5. Use the cursor keys to move to a different row or column. You can change the direction of the highlight bar by pressing . The menu key toggles between the following three options:
below the current cell when you press ENTER.
- [5073 specifies that the cursor moves to the cell to the right of the current cell when you press ENTER.
- specifies that the cursor stays in the current cell when you press ENTER.
6. When done, press SHIFT MATRIX to see the Matrix catalog, or press HOME to return to HOME. The matrix entries are automatically stored.



A matrix is listed with two dimensions, even if it is \(3 \times 1\). A vector is listed with the number of elements, such as 3 .

To transmit a matrix

You can send matrices between calculators just as you can send aplets, programs, lists, and notes.
1. Align the HP 39gs calculators' infrared ports (or connect the calculators using an appropriate cable).
2. Open the Matrix catalogs on both calculators.
3. Highlight the matrix to send.
4. Press \(\operatorname{BENTO}\) and choose the method of sending (infrared or cable).
5. Press \(\operatorname{EECDD}\) on the receiving calculator and choose the method of receiving (infrared or cable).
For more information on sending and receiving files, see "Sending and receiving aplets" on page 19-4.

\section*{Working with matrices}

To edit a matrix

Matrix edit keys
The following table lists the matrix edit key operations.
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline E[JT & Copies the highlighted element to the edit line. \\
\hline 땆ํ & Inserts a row of zeros above, or a column of zeros to the left, of the highlighted cell. (You are prompted to choose row or column.) \\
\hline 國 & \begin{tabular}{l}
A three-way toggle for cursor advancement in the Matrix editor. \\
 advances downward, and does not advance at all.
\end{tabular} \\
\hline S10 & Switches between larger and smaller font sizes. \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Key & Meaning (Continued) \\
\hline DEL & \begin{tabular}{l} 
Deletes the highlighted cells, row, \\
or column (you are prompted to \\
make a choice).
\end{tabular} \\
SHIFT CLEAR & Clears all elements from the matrix. \\
SHIFT \(\Delta\) & \begin{tabular}{l} 
Moves to the first row, last row, first \\
column, or last column respectively.
\end{tabular} \\
\hline\(\square\)
\end{tabular}

To display a matrix
- In the Matrix catalog (SHIFT MATRLX), highlight the matrix name and press EDIT.
- In HOME, enter the name of the matrix variable and press ENTER.

In HOME, enter matrixname(row, column). For example, if M 2 is \([[3,4],[5,6]]\), then \(\mathrm{M} 2(1,2)\) ENTER returns 4.
1. Enter the matrix in the edit line. Start and end the matrix and each row with square brackets (the shifted 5 and 6 keys).
2. Separate each element and each row with a comma. Example: [ \([1,2],[3,4]]\).
3. Press ENTER to enter and display the matrix.

The left screen below shows the matrix
\([[2.5,729],[16,2]]\) being stored into M5. The screen on the right shows the vector [ \(66,33,11\) ] being stored into M6. Note that you can enter an expression (like \(5 / 2\) ) for an element of the matrix, and it will be evaluated.


To store one element

In HOME, enter, value ETint matrixname(row, column). For example, to change the element in the first row and second column of M5 to 728, then display the resulting matrix:


ENTER.


An attempt to store an element to a row or column beyond the size of the matrix results in an error message.

\section*{Matrix arithmetic}

You can use the arithmetic functions (,,\(+- \times, /\) and powers) with matrix arguments. Division left-multiplies by the inverse of the divisor. You can enter the matrices themselves or enter the names of stored matrix variables. The matrices can be real or complex.
For the next examples, store [[1,2],[3,4]] into M1 and [[5,6],[7,8]] into M2.

\section*{Example}
1. Create the first matrix.

\section*{}

DF: 1 ENTER 2 ENTER
(V) ENTER 4


\section*{ENTER}
2. Create the second matrix.
SHIFT MATRIX \(\nabla\)

ENE: DE 5 ENTER 6


8 ENTER
3. Add the matrices that you created.


To multiply and divide by a scalar

For division by a scalar, enter the matrix first, then the operator, then the scalar. For multiplication, the order of the operands does not matter.

The matrix and the scalar can be real or complex. For example, to divide the result of the previous example by 2 , press the following keys:


To multiply the two matrices M1 and M2 that you created for the previous example, press the following keys:
 number of elements in the vector must equal the number of columns in the matrix.

To raise a matrix to a power

You can raise a matrix to any power as long as the power is an integer. The following example shows the result of raising matrix \(M 1\), created earlier, to the power of 5 .
\[
\text { ALPHA M1 } \overline{X^{r}} 5 \text { ENTER }
\]

Note: You can also raise a matrix to a power without first storing it as a variable.


Matrices can be raised to negative powers. In this case, the result is equivalent to \(1 /[\) matrix]^ABS(power). In the following example, \(M 1\) is raised to the power of -2 .


To divide by a square matrix

For division of a matrix or a vector by a square matrix, the number of rows of the dividend (or the number of elements, if it is a vector) must equal the number of rows in the divisor.

This operation is not a mathematical division: it is a leftmultiplication by the inverse of the divisor. \(\mathrm{M} 1 / \mathrm{M} 2\) is equivalent to \(M 2^{-1} * M 1\).

To divide the two matrices M1 and M2 that you created for the previous example, press the following keys:
\begin{tabular}{l} 
ALPHA M1 \(\div\) \\
\hline ALPHA M2 ENTER
\end{tabular}


To invert a matrix

To negate each element

You can invert a square matrix in HOME by typing the matrix (or its variable name) and pressing SHIIFT \(x^{-1}\) ENTER. Or you can use the matrix INVERSE command. Enter INVERSE (matrixname) in HOME and press
ENTER.
You can change the sign of each element in a matrix by pressing \((-)\) before the matrix name.

\section*{Solving systems of linear equations}

Example
Solve the following linear system:
\[
\begin{array}{r}
2 x+3 y+4 z=5 \\
x+y-z=7 \\
4 x-y+2 z=1
\end{array}
\]
1. Open the Matrix catalog and create a vector.


SHIFT MATRIX WER:
ENTER
2. Create the vector of the constants in the linear system.

5 ENTER 7 ENTER
1 ENTER
3. Return to the Matrix Catalog.
SHIFT MATRIX

In this example, the vector you created is
 listed as M1.
4. Create a new matrix.

\section*{타락}

Select Real matrix

\section*{Dir}

5. Enter the equation coefficients.

2 ENTER 3 ENTER
4 ENTER \(\nabla\)


1 ENTER 1 ENTER
(-) 1 ENTER 4 ENTER
(-) 1 ENTER 2 ENTER
In this example, the matrix you created is listed as M2.
6. Return to HOME and enter the calculation to left-multiply the constants vector by the inverse of the coefficients matrix.
HOME ALPHA M2
SHIFT \(x^{-1} \times\)
ALPHA M1 ENTER

The result is a vector of the

solutions \(x=2, y=3\) and \(z=-2\).
An alternative method, is to use the RREF function. See "RREF" on page 15-12.

\section*{Matrix functions and commands}

\author{
About functions
}

About commands
- Functions can be used in any aplet or in HOME. They are listed in the MATH menu under the Matrix category. They can be used in mathematical expressions - primarily in HOME—as well as in programs.
- Functions always produce and display a result. They do not change any stored variables, such as a matrix variable.
- Functions have arguments that are enclosed in parentheses and separated by commas; for example, CROSS(vector 1, vector2). The matrix input can be either a matrix variable name (such as M1) or the actual matrix data inside brackets. For example, CROSS (M1, [1,2]).

Matrix commands are listed in the CMDS menu (SHIFT) CMDS), in the matrix category.

See "Matrix commands" on page 18-24 for details of the matrix commands available for use in programming.
Functions differ from commands in that a function can be used in an expression. Commands cannot be used in an expression.

\section*{Argument conventions}
- For row\# or column\#, supply the number of the row (counting from the top, starting with 1) or the number of the column (counting from the left, starting with 1).
- The argument matrix can refer to either a vector or a matrix.

\section*{Matrix functions}

COLNORM
Column Norm. Finds the maximum value (over all columns) of the sums of the absolute values of all elements in a column.

COLNORM(matrix) square matrix.

COND (matrix)

CROSS
Cross Product of vector 1 with vector2.
CROSS (vector1, vector2)
Determinant of a square matrix.
DET (matrix)
Dot Product of two arrays, matrix 1 matrix 2 .
Dот(matrix 1, matrix2)
Displays the eigenvalues in vector form for matrix.
EIGENVAL (matrix)
Eigenvectors and Eigenvalues for a square matrix. Displays a list of two arrays. The first contains the eigenvectors and the second contains the eigenvalues.
```

EIGENVV(matrix)

```

Identity matrix. Creates a square matrix of dimension size \(\times\) size whose diagonal elements are 1 and offdiagonal elements are zero.

IDENMAT(size)
Inverts a square matrix (real or complex).
INVERSE (matrix)
LQ Factorization. Factors an \(m \times n\) matrix into three matrices:
\{[[ \(m \times n\) lowertrapezoida \(]],[[n \times n\) orthogonal \(]]\), [ \([m \times m\) permutation \(]]\}\).

LQ (matrix)
Least Squares. Displays the minimum norm least squares matrix (or vector).

LSQ(matrix 1, matrix2)

LU

MAKEMAT

QR

RANK

ROWNORM
QR Factorization. Factors an \(m \times n\) matrix into three matrices: \(\{[[m \times m\) orthogonal \(]],[[m \times n\) uppertrapezoidal]],[[n×n permutation]]]\}.

QR(matrix)
Rank of a rectangular matrix.
RANK (matrix)
Row Norm. Finds the maximum value (over all rows) for the sums of the absolute values of all elements in a row.

ROWNORM (matrix)
RREF

SCHUR
Reduced-Row Echelon Form. Changes a rectangular matrix to its reduced row-echelon form.
```

RREF (matrix)

```

Schur Decomposition. Factors a square matrix into two matrices. If matrix is real, then the result is \{[[orthogonal]],[[upper-quasi triangular]]\}. If matrix is complex, then the result is \(\{[[\) unitary \(]\),[[upper-triangular]]\}.

SCHUR (matrix)
SIZE Dimensions of matrix. Returned as a list: \{rows,columns\}.
SIZE (matrix)

SPECNORM

SPECRAD

SVD

SVL

TRACE

TRN

Spectral Norm of matrix.
SPECNORM(matrix)
Spectral Radius of a square matrix.
SPECRAD (matrix)
Singular Value Decomposition. Factors an \(m \times n\) matrix into two matrices and a vector:
\(\{[[m \times m\) square orthogonal \(]],[[n \times n\) square orthogonal \(]]\), [real]\}.

SVD(matrix)
Singular Values. Returns a vector containing the singular values of matrix.
```

SVL(matrix)

```

Finds the trace of a square matrix. The trace is equal to the sum of the diagonal elements. (It is also equal to the sum of the eigenvalues.)

TRACE (matrix)
Transposes matrix. For a complex matrix, TRN finds the conjugate transpose.
TRN(matrix)

\section*{Examples}

Identity Matrix
You can create an identity matrix with the IDENMAT function. For example, IDENMAT(2) creates the \(2 \times 2\) identity matrix \([[1,0],[0,1]]\).

You can also create an identity matrix using the MAKEMAT (make matrix) function. For example, entering \(\operatorname{MAKEMAT}(1 / 4], 4,4)\) creates a \(4 \times 4\) matrix showing the numeral 1 for all elements except zeros on the diagonal. The logical operator \(1 / 4\) returns 0 when I (the row number) and J (the column number) are equal, and returns 1 when they are not equal.

Transposing a Matrix

The TRN function swaps the row-column and column-row elements of a matrix. For instance, element 1,2 (row 1, column 2 ) is swapped with element 2,1 ; element 2,3 is swapped with element 3,2 ; and so on.
For example, \(\operatorname{TRN}([[1,2],[3,4]])\) creates the matrix [ \([1,3],[2,4]]\).

Reduced-Row Echelon Form

The following set of equations \(x-2 y+3 z=14\)
\[
2 x+y-z=-3
\]
\[
4 x-2 y+2 z=14
\]
can be written as the augmented matrix
\[
\left[\begin{array}{ccc|c}
1 & -2 & 3 & 14 \\
2 & 1 & -1 & -3 \\
4 & -2 & 2 & 14
\end{array}\right]
\]
which can then stored as a \(3 \times 4\) real matrix in any matrix variable. M1 is used in this example.


You can use the RREF function to change this to reduced row echelon form, storing it in any matrix variable. \(M 2\) is used in this
 example.
The reduced row echelon matrix gives the solution to the linear equation in the fourth column.
An advantage of using the
 RREF function is that it will also work with inconsistent matrices resulting from systems of equations which have no solution or infinite solutions.
For example, the following set of equations has an infinite number of solutions:
\[
\begin{aligned}
& x+y-z=5 \\
& 2 x-y=7 \\
& x-2 y+z=2
\end{aligned}
\]

The final row of zeros in the reduced-row echelon form of the augmented matrix indicates an inconsistent system with infinite
 solutions.

\section*{Lists}

You can do list operations in HOME and in programs. A list consists of comma-separated real or complex numbers, expressions, or matrices, all enclosed in braces. A list may, for example, contain a sequence of real numbers such as \(\{1,2,3\}\). (If the Decimal Mark mode is set to Comma, then the separators are periods.) Lists represent a convenient way to group related objects.
There are ten list variables available, named LO to L9. You can use them in calculations or expressions in HOME or in a program. Retrieve the list names from the VARS menu, or just type their names from the keyboard.
You can create, edit, delete, send, and receive named lists in the List catalog ([SHIFT LIST). You can also create and store lists-named or unnnamed-in HOME lists

List variables are identical in behaviour to the columns C1.C0 in the Statistics aplet. You can store a statistics column to a list (or vice versa) and use any of the list functions on the statistics columns, or the statistics functions, on the list variables.

\section*{Create a list in the List Catalog}
1. Open the List catalog. SHIFT LIST.

2. Highlight the list name you want to assign to the new list (L1, etc.) and press EDTII to display the List editor.


EXTII
3. Enter the values you want in the list, pressing ENTER after each one.
Values can be real or complex numbers (or an expression). If you enter a calculation, it is evaluated and the
 result is inserted in the list.
4. When done, press SHIFT LIST to see the List catalog, or press HOME to return to HOME.

List catalog keys
The list catalog keys are:
\begin{tabular}{|l|l|}
\hline Key & Meaning \\
\hline EEDIII & \begin{tabular}{l} 
Opens the highlighted list for \\
editing.
\end{tabular} \\
EEETI & \begin{tabular}{l} 
Transmits the highlighted list to \\
another hp 39gs or a PC. See \\
"Sending and receiving aplets" on \\
page 19-4 for further information. \\
Receives a list from another \\
hp 39gs or a PC. See "Sending and \\
receiving aples" on page 19-4 for \\
further information.
\end{tabular} \\
DEL & \begin{tabular}{l} 
Clears the highlighted list. \\
Clears all lists.
\end{tabular} \\
SHIFT CLEAR & \begin{tabular}{l} 
Moves to the end or the beginning \\
of the catalog.
\end{tabular} \\
SHIFT D or
\end{tabular}

\section*{List edit keys}

When you press EDiti to create or change a list, the following keys are available to you:
\begin{tabular}{|l|l|}
\hline Key & Meaning \\
\hline EEDIII & \begin{tabular}{l} 
Copies the highlighted list item into \\
the edit line. \\
Inserts a new value before the \\
highlighted item.
\end{tabular} \\
DEL & \begin{tabular}{l} 
Deletes the highlighted item from \\
the list.
\end{tabular} \\
SHIFT CLEAR & \begin{tabular}{l} 
Clears all elements from the list. \\
SHIFT \\
\(\triangle\)
\end{tabular} \\
\hline
\end{tabular}

Create a list in HOME
1. Enter the list on the edit line. Start and end the list with braces (the shifted 8 and 9 keys) and separate each element with a comma.
2. Press ENTER to evaluate and display the list. Immediately after typing in the list, you can store it in a variable by pressing Einis listname ENTER. The list variable names are LO through L9.

This example stores the list \(\{25,147,8\}\) in L1. Note: You can omit the final brace when entering a list.


\section*{Displaying and editing lists}

To display a list
- In the List catalog, highlight the list name and press EDTIT.
- In HOME, enter the name of the list and press ENTER.

To display one element

To edit a list
In HOME, enter listname(element\#). For example, if L 2 is \(\{3,4,5,6\}\), then \(\mathrm{L} 2(2)\) ENTER returns 4.
1. Open the List catalog.

SHIFT LIST.

2. Press \(\Delta\) or \(\square\) to highlight the name of the list you want to edit (L1, etc.) and press ECTIT to display the list contents.

EDTIT

3. Press \(\Delta\) or to highlight the element you want to edit. In this example, edit the third element so that it has a value of 5 .

4. Press IIE


\section*{To insert an element in a list}
1. Open the List catalog.

SHIFT LIST.

2. Press \(\boldsymbol{\Delta}\) or to highlight the name of the list you want to edit (L1, etc.) and press EITIT to display the list
 contents.

New elements are inserted above the highlighted position. In this example, an element, with the value of 9, is inserted between the first and second elements in the list.
3. Press \(\nabla\) to the insertion position, then press [IEP , and press 9.

4. Press MET


\section*{To store one element}
 example, to store 148 as the second element in L1, type


\section*{Deleting lists}

To delete a list

To delete all lists
In the List catalog, highlight the list name and press DEL. You are prompted to confirm that you want to delete the contents of the highlighted list variable. Press ENTER to delete the contents.

In the List catalog, press SHIFT CLEAR.

\section*{Transmitting lists}

You can send lists to calculators or PCs just as you can aplets, programs, matrices, and notes.
1. Align the HP 39 gs calculators' infrared ports (or connect the calculators using an appropriate cable).
2. Open the List catalogs on both calculators.
3. Highlight the list to send.
4. Press 푶III and choose the method of sending (infrared or cable).
 the method of receiving (infrared or cable).
For more information on sending and receiving files, see "Sending and receiving aplets" on page 19-4.

\section*{List functions}

List functions are found in the MATH menu. You can use them in HOME, as well as in programs.
You can type in the name of the function, or you can copy the name of the function from the List category of the MATH menu. Press MATH (the
 alpha L character key). This highlights the List category in the left column. Press \(\square\) to move the cursor to the right column which contain the List functions, select a function, and press []ET .
List functions have the following syntax:
- Functions have arguments that are enclosed in parentheses and separated by commas. Example:

CONCAT (L1, L2 ). An argument can be either a list variable name (such as L1) or the actual list. For example, \(\operatorname{REVERSE}(\{1,2,3\})\).
- If Decimal Mark in Modes is set to Comma, use periods to separate arguments. For example, CONCAT (L1.L2).

Common operators like,,\(+- \times\), and / can take lists as arguments. If there are two arguments and both are lists, then the lists must have the same length, since the calculation pairs the elements. If there are two arguments and one is a real number, then the calculation pairs the number with each element of the list.

\section*{Example}

5* \(\{1,2,3\}\) returns \(\{5,10,15\}\).
Besides the common operators that can take numbers, matrices, or lists as arguments, there are commands that can only operate on lists.

\section*{CONCAT}

Concatenates two lists into a new list.
CONCAT (list1, list2)

\section*{Example}
\(\operatorname{CONCAT}(\{1,2,3\},\{4\})\) returns \(\{1,2,3,4\}\).

Creates a new list composed of the first differences, that is, the differences between the sequential elements in listl. The new list has one fewer elements than listl. The first differences for \(\left\{x_{1} x_{2} \ldots x_{n}\right\}\) are \(\left\{x_{2}-x_{1} \ldots x_{n}-x_{n-1}\right\}\).
\(\Delta\) LIST (list1)

\section*{Example}

In HOME, store \(\{3,5,8,12,17,23\}\) in L 5 and find the first differences for the list.
\begin{tabular}{|c|c|}
\hline HOME SHIFT &  \\
\hline \{3,5,8, 12, 17,23 &  \\
\hline SHIFT \} & (2,3,4,5,6) \\
\hline 5 ENTER & \\
\hline
\end{tabular}

MATH L

\section*{Select LLIST DE}
ALPHA L5 ENTER

\section*{MAKELIST}

ПLIST

POS

Calculates the product of all elements in list.
ПLIST (list)

\section*{Example}

ПLIST (\{2, 3, 4\}) returns 24.
Calculates a sequence of elements for a new list. Evaluates expression with variable from begin to end values, taken at increment steps.

MAKELIST ( expression, variable, begin, end, increment)

The MAKELIST function generates a series by automatically producing a list from the repeated evaluation of an expression.

\section*{Example}

In HOME, generate a series of squares from 23 to 27 .


Returns the position of an element wihhin a list. The element can be a value, a variable, or an expression. If there is more than one instance of the element, the
position of the first occurrence is returned. A value of 0 is returned if there is no occurrence of the specified element.

POS ( list, element)

\section*{Example}
\(\operatorname{POS}(\{3,7,12,19\}, 12)\) returns 3
Creates a list by reversing the order of the elements in a list.

REVERSE ( list)

\section*{SIZE}

Calculates the number of elements in a list.
SIZE (list)
Also works with matrices.
Calculates the sum of all elements in list.
ELIST (list)

\section*{Example}
\(\operatorname{LLIST}(\{2,3,4\})\) returns 9.
SORT
Sorts elements in ascending order.
SORT (list)

\section*{Finding statistical values for list elements}

To find values such as the mean, median, maximum, and minimum values of the elements in a list, use the Statistics aplet.

Example

In this example, use the Statistics aplet to find the mean, median, maximum, and minimum values of the elements in the list, L1.
1. Create L1 with values \(88,90,89,65,70\), and 89 .


2．In HOME，store LI into C1．You will then be
 able to see the list data in the Numeric view of the Statistics aplet．


3．Start the Statistics aplet，and select 1 －variable mode （press Emin，if necessary，to display minal）．

APLET Select
Statistics
自直相


Note：Your list values are now in column 1 （C1）．
4．In the Symbolic view，define H 1 （for example）as Cl （sample）and 1 （frequency）．

SYMB


5．Go to the Numeric view to display calculated statistics．

NUM 焐晋是


See＂One－variable＂on page 10－14 for the meaning of each computed statistic．

\section*{Notes and sketches}

\section*{Introduction}

The HP 39gs has text and picture editors for entering notes and sketches.
- Each aplet has its own independent Note view and Sketch view. Notes and sketches that you create in these views are associated with the aplet. When you save the aplet, or send it to another calculator, the notes and sketches are saved or sent as well.
- The Notepad is a collection of notes independent of all aplets. These notes can also be sent to another calculator via the Notepad Catalog.

\section*{Aplet note view}

You can attach text to an aplet in its Note view.

To write a note in Note view
1. In an aplet, press SHIIFT NOTE for the Note view.
2. Use the note editing keys shown in the table in the following section.
3. Set Alpha lock ( .....z) for quick entry of letters. For lowercase Alpha lock, press SHIFT i.....
4. While Alpha lock is on:
- To type a single letter of the opposite case, press SHIFT letter.
- To type a single non-alpha character (such as 5 or [ ), press ALPHA first. (This turns off Alpha lock for one character.)
Your work is automatically saved. Press any view key (NUM, SYMB , PLOT, VIEWS) or HOME to exit the Notes view.

Note edit keys
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline EFrice & Space key for text entry. \\
\hline Fitine & Displays next page of a multi-page note. \\
\hline H... \({ }^{\text {a }}\) & Alpha-lock for letter entry. \\
\hline SHIFT Hi... \({ }^{\text {B }}\) & Lower-case alpha-lock for letter entry. \\
\hline EFEFP & Backspaces cursor and deletes character. \\
\hline DEL & Deletes current character. \\
\hline ENTER & Starts a new line. \\
\hline SHIFT CLEAR & Erases the entire note. \\
\hline VARS & Menu for entering variable names, and contents of variables. \\
\hline MATH & Menu for entering math operations, and constants. \\
\hline SHIFT CMDS & Menu for entering program commands. \\
\hline SHIFT CHARS & Displays special characters. To type one, highlight it and press DE: To copy a character without closing the CHARS screen, press ECHOD. \\
\hline
\end{tabular}

\section*{Aplet sketch view}

You can attach pictures to an aplet in its Sketch view (SHIFT SKETCH). Your work is automatically saved with the aplet. Press any other view key or HOME to exit the Sketch view

\section*{Sketch keys}
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline ETmut & Stores the specified portion of the current sketch to a graphics variable ( G 1 through G 0 ). \\
\hline EEEP & Adds a new, blank page to the current sketch set. \\
\hline FHEET & Displays next sketch in the sketch set. Animates if held down. \\
\hline TERT & Opens the edit line to type a text label. \\
\hline  & Displays the menu-key labels for drawing. \\
\hline DEL & Deletes the current sketch. \\
\hline SHIFT CLEAR & Erases the entire sketch set. \\
\hline \(\square\) & Toggles menu key labels on and off. If menu key labels are hidden, \(\square\) or any menu key, redisplays the menu key labels. \\
\hline
\end{tabular}

\section*{To draw a line}
1. In an aplet, press SHIFT SKETCH for the Sketch view.
2. In Sketch view, press \(\square\) [ifilal and move the cursor to where you want to start the line
3. Press LIETE. This turns on line-drawing.
4. Move the cursor in any direction to the end point of the line by pressing the \(\Delta, \square, \square, \square\) keys.
5. Press 国 to finish the line.

To draw a box

To draw a circle

1．In Sketch view，press andila and move the cursor to where you want any corner of the box to be．
2．Press x W．
3．Move the cursor to mark the opposite corner for the box．You can adjust the size of the box by moving the cursor．

4．Press to finish the box．
1．In Sketch view，press［⿴囗十inila and move the cursor to where you want the center of the circle to be．
2．Press CIIFEL This turns on circle drawing．
3．Move the cursor the distance of the radius．
4．Press ax to draw the circle．

\section*{DRAW keys}
\(\left.\begin{array}{|l|l|}\hline \text { Key } & \text { Meaning } \\ \hline \text {［mit } & \begin{array}{l}\text { Dot on．Turns pixels on as the cursor } \\ \text { moves．} \\ \text { Dot off．Turns pixels off as the cursor } \\ \text { moves．} \\ \text { Draws a line from the cursor＇s starting } \\ \text { position to the cursor＇s current position．} \\ \text { Press when you have finished．You } \\ \text { can draw a line at any angle．}\end{array} \\ \text { Draws a box from the cursor＇s starting } \\ \text { position to the cursor＇s current position．} \\ \text { Press wat when you have finished．} \\ \text { Draws a circle with the cursor＇s starting } \\ \text { position as the center．The radius is the } \\ \text { distance between the cursor＇s starting } \\ \text { and ending position．Press dit to draw } \\ \text { the circle．}\end{array}\right\}\)

\section*{To label parts of a sketch}

1．Press TIEXT and type the text on the edit line．To lock the Alpha shift on，press \(1 . . . \mathrm{J}\)（for uppercase）or SHIFT Hi．．．（for lowercase）．
To make the label a smaller character size，turn off
 between small and large font size）．The smaller character size cannot display lowercase letters．

2．Press and
3．Position the label where you want it by pressing the \(\Delta, \nabla, \square, \square\) keys．

4．Press again to affix the label．
5．Press［afik to continue drawing，or press HOME to exit the Sketch view．


You can create a set of up to ten sketches．This allows for simple animation．
－After making a sketch，press EEERTR to add a new， blank page．You can now make a new sketch，which becomes part of the current set of sketches．
－To view the next sketch in an existing set，press Prigen ．Hold Fing down for animation．
－To remove the current page in the current sketch series，press DEL．

You can define a portion of a sketch inside a box，and then store that graphic into a graphics variable．

1．In the Sketch view，display the sketch you want to copy（store into a variable）．

3．Highlight the variable name you want to use and press ⿴囗大
4．Draw a box around the portion you want to copy： move the cursor to one corner，press 国，then move the cursor to the opposite corner，and press 国．

\section*{To import a graphics variable}

You can copy the contents of a graphics variable into the Sketch view of an aplet.
1. Open the Sketch view of the aplet (SHIFT SKETCH). The graphic will be copied here.
2. Press vars, Howis.
3. Highlight Graphic, then press \(\square\) and highlight the name of the variable (G1, etc.).
4. Press Wilite 0 to recall the contents of the graphics variable.
5. Move the box to where you would like to copy the graphic, then press 잔

\section*{The notepad}

Subject to available memory, you can store as many notes as you want in the Notepad (SHIFT NOTEPAD). These notes are independent of any aplet. The Notepad catalog lists the existing entries by name. It does not include notes that were created in aplets' Note views, but these can be imported. See "To import a note" on page 17-8.

To create a note in 1. Display the Notepad catalog.

SHIFT NOTEPAD

2. Create a new note. [EED

3. Enter a name for your note.

Hi... MYNOTE 国

4. Write your note.

See "Note edit keys" on page 17-2 for more information on the entry and editing of
 notes.
5. When you are finished, press HOME or an aplet key to exit Notepad. Your work is automatically saved.

\section*{Notepad Catalog keys}
\begin{tabular}{|l|l|}
\hline Key & Meaning \\
\hline EIIT & \begin{tabular}{l} 
Opens the selected note for \\
editing. \\
Begins a new note, and asks \\
for a name. \\
Transmits the selected note to \\
another HP 39gs or PC. \\
Receives a note being \\
transmitted from another HP \\
39gs or PC. \\
Deletes the selected note. \\
Deletes all notes in the \\
Catalog.
\end{tabular} \\
SHIFT CLEAR & \\
\hline
\end{tabular}

To import a note
You can import a note from the Notepad into an aplet's Note view, and vice versa. Suppose you want to copy a note named "Assignments" from the Notepad into the Function Note view:
1. In the Function aplet, display the Note view (SHIFT NOTE).
2. Press VARS H0IFI, highlight Notepad in the left column, then highlight the name "Assignments" in the right column.
3. Press WiLDE DR to copy the contents of "Assignments" to the Function Note view.
Note: To recall the name instead of the contents, press H01FTE instead of WhLDE.
Suppose you want to copy the Note view from the current aplet into the note, Assignments, in the Notepad.
1. In the Notepad (SHIFT NOTEPAD), open the note, "Assignments".
2. Press VARS HFLET, highlight Note in the left column, then press \(\square\) and highlight NoteText in the right column.
 view into the note "Assignments".

\section*{Programming}

\section*{Introduction}

This chapter describes how to program using the hp 39gs. In this chapter you'll learn about:
- using the Program catalog to create and edit programs
- programming commands
- storing and retrieving variables in programs
- programming variables.

HINT More information on programming, including examples and special tools, can be found at HP's calculators web site:

\section*{http://www.hp.com/calculators}

The Contents of a
Program

Structured
Programming

An HP 39gs program contains a sequence of numbers, mathematical expressions, and commands that execute automatically to perform a task.
These items are separated by a colon ( : ). Commands that take multiple arguments have those arguments separated by a semicolon ( ; ). For example,

PIXON xposition; yposition:
Inside a program you can use branching structures to control the execution flow. You can take advantage of structured programming by creating building-block programs. Each building-block program stands alone-and it can be called from other programs. Note: If a program has a space in its name then you have to put quotes around it when you want to run it.

\section*{Example}
```

RUN GETVALUE: RUN CALCULATE: RUN "SHOW ANSWER":

```

This program is separated into three main tasks, each an individual program. Within each program, the task can be simple-or it can be divided further into other programs that perform smaller tasks.

\section*{Program catalog}

The Program catalog is where you create, edit, delete, send, receive, or run programs. This section describes how to
- open the Program catalog
- create a new program
- enter commands from the program commands menu
- enter functions from the MATH menu
- edit a program
- run and debug a program
- stop a program
- copy a program
- send and receive a program
- delete a program or its contents
- customize an aplet.

\section*{Open Program Catalog}
1. Press SHIFT PROGRM.

The Program Catalog displays a list of program names. The Program Catalog contains a built-in entry called Editline.

Editline contains the last expression that you entered from the edit line in HOME, or the last data you entered in an input form. (If you press ENTER from HOME without entering any data, the HP 39gs runs the contents of Editline.)

Before starting to work with programs, you should take a few minutes to become familiar with the Program catalog menu keys. You can use any of the following keys (both menu and keyboard), to perform tasks in the Program catalog.

\section*{Program catalog keys}

The program catalog keys are:
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline E[GI & Opens the highlighted program for editing. \\
\hline  & Prompts for a new program name, then opens an empty program. \\
\hline EETET0 & Transmits the highlighted program to another HP 39gs or to a disk drive. \\
\hline  & Receives the highlighted program from another HP 39gs or from a disk drive. \\
\hline []IIT] & Runs the highlighted program. \\
\hline SHIFT \(\Delta\) or \(\nabla\) & Moves to the beginning or end of the Program catalog. \\
\hline DEL & Deletes the highlighted program. \\
\hline SHIFT CLEAR & Deletes all programs in the program catalog. \\
\hline
\end{tabular}

\section*{Creating and editing programs}

\author{
Create a new program
}
1. Press SHIFT PROGRM to open the Program catalog.
2. Press iE요

The HP 39gs prompts you for a name.


A program name can contain special characters, such as a space. However, if you use special characters and then run the program by typing it in HOME, you must enclose the program name in double quotes (" "). Don't use the " symbol within your program name.
3. Type your program name, then press [18. When you press []E, the Program Editor opens.

4. Enter your program. When done, start any other activity. Your work is saved automatically.

Enter commands Until you become familiar with the HP 39gs commands, the easiest way to enter commands is to select them from the Commands menu from the Program editor. You can also type in commands using alpha characters.
1. From the Program editor, press SHIFT CMDS to open the Program Commands menu.

\footnotetext{
SHIFT CMDS
}

2. On the left, use \(\Delta\) or highlight a command category, then press \(\Delta\) to access the commands in the category. Select the command that you want.

3. Press \(\mathbf{W I Z}\) to paste the command into the program editor.

\section*{[1]}

\section*{Edit a program}
1. Press SHIFT PROGRM to open the Program catalog.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{WYPRETG , E} \\
\hline Edi & 1 i & . 03 & KB \\
\hline
\end{tabular}
2. Use the arrow keys to highlight the program you want to edit, and press E[iTi. The HP 39 gs opens the Program Editor. The name of your program appears in the title bar of the display. You can use the following keys to edit your program.
\begin{tabular}{|c|c|}
\hline Key & Meaning \\
\hline Biciel & Inserts the Fing character at the editing point. \\
\hline  & Inserts space into text. \\
\hline ETinice & Displays previous page of the program. \\
\hline [17][] & Displays next page of the program. \\
\hline - \(\nabla^{\text {a }}\) & Moves up or down one line. \\
\hline \(\square \square\) & Moves right or left one character. \\
\hline H... & Alpha-lock for letter entry. Press SHIFT A...Z to lock lower case. \\
\hline [1] & Backspaces cursor and deletes character. \\
\hline DEL & Deletes current character. \\
\hline ENTER & Starts a new line. \\
\hline SHIFT CLEAR & Erases the entire program. \\
\hline VARS & Displays menus for selecting variable names, contents of variables, math functions, and program constants. \\
\hline SHIFT CMDS & Displays menus for selecting program conmmands. \\
\hline SHIFT CHARS & Displays all characters. To type one, highlight it and press []IE . \\
\hline & To enter several characters in a row, use the EEHOM menu key while in the CHARS menu. \\
\hline
\end{tabular}

\section*{Using programs}

Run a program From HOME, type RUN program_name.
or
From the Program catalog, highlight the program you want to run and press [aIII]
Regardless of where you start the program, all programs run in HOME. What you see will differ slightly depending on where you started the program. If you start the program from HOME, the HP 39gs displays the contents of Ans (Home variable containing the last result), when the program has finished. If you start the program from the Program catalog, the hp39gs returns you to the Program catalog when the program ends.

\section*{Debug a program}

If you run a program that contains errors, the program will stop and you will see an error message.


To debug the program:
1. Press 패ㄴㅛㅛ to edit the program.

The insert cursor appears in the program at the point where the error occurred.
2. Edit the program to fix the error.
3. Run the program.
4. Repeat the process until you correct all errors.

Stop a program
You can stop the running of a program at any time by pressing CANCEL (the ON key). Note: You may have to press it a couple of times.

Copy a program You can use the following procedure if you want to make a copy of your work before editing-or if you want to use one program as a template for another.
1. Press SHIFT PROGRM to open the Program catalog.
2. Press [EIEID
3. Type a new file name, then choose [DE .

The Program Editor opens with a new program.
4. Press VARS to open the variables menu.
5. Press 7 to quickly scroll to Program.
6. Press \(\Delta\), then highlight the program you want to copy.

The contents of the highlighted program are copied into the current program at the cursor location.
HINT If you use a programming routine often, save the routine under a different program name, then use the above method to copy it into your programs.

\section*{Transmit a program}

You can send programs to, and receive programs from, other calculators just as you can send and receive aplets, matrices, lists, and notes.

After aligning the calculators' infrared ports, open the Program catalogs on both calculators. Highlight the program to send, then press Exicil on the sending calculator and [iEG on the receiving calculator.

You can also send programs to, and receive programs from, a remote storage device (aplet disk drive or computer). This takes place via a cable connection and requires an aplet disk drive or specialized soffware running on a PC (such as a connectivity kit).

\author{
Delete a program
}

\author{
Delete all programs
}

\section*{Delete the contents of a program}

To delete a program:
1. Press SHIFT PROGRM to open the Program catalog.
2. Highlight a program to delete, then press DEL.

You can delete all programs at once.
1. In the Program catalog, press SHIFT CLEAR.
2. Press 죠영.

You can clear the contents of a program without deleting the program name.
1. Press SHIFT PROGRM to open the Program catalog.
2. Highlight a program, then press E[TiTi.
3. Press SHIIT CLEAR, then press 패쿄요
4. The contents of the program are deleted, but the program name remains.

\section*{Customizing an aplet}

You can customize an aplet and develop a set of programs to work with the aplet.

Use the SETVIEWS command to create a custom VIEWS menu which links specially written programs to the new aplet.

A useful method for customizing an aplet is illustrated below:
1. Decide on the built-in aplet that you want to customize. For example you could customize the Function aplet or the Statistics aplet. The customized aplet inherits all the properties of the built-in aplet. Save the customized aplet with a unique name.
2. Customize the new aplet if you need to, for example by presetting axes or angle measures.
3. Develop the programs to work with your customized aplet. When you develop the aplet's programs, use the standard aplet naming convention. This allows you to keep track of the programs in the Program catalog that belong to each aplet. See "Aplet naming convention" on page 18-10.
4. Develop a program that uses the SETVIEWS command to modify the aplet's VIEWS menu. The menu options provide links to associated programs. You can specify any other programs that you want transferred with the aplet. See "SETVIEWS" on page 18-14 for information on the command.
5. Ensure that the customized aplet is selected, then run the menu configuration program to configure the aplet's VIEWS menu.
6. Test the customized aplet and debug the associated programs. (Refer to "Debug a program" on page 16-7).

\section*{Aplet naming convention}

To assist users in keeping track of aplets and associated programs, use the following naming convention when setting up an aplet's programs:
- Start all program names with an abbreviation of the aplet name. We will use APL in this example.
- Name programs called by menu entries in the VIEWS menu number, after the entry, for example:
- APL.ME 1 for the program called by menu option 1
- APL.ME2 for the program called by menu option 2
- Name the program that configures the new VIEWS menu option APL.SV where SV stands for SETVIEWS.

For example, a customized aplet called "Differentiation" might call programs called DIFF.ME1, DIFF.ME2, and DIFF.SV.

\section*{Example}

This example aplet is designed to demonstrate the process of customizing an aplet. The new aplet is based on the Function aplet. Note: This aplet is not intended to serve a serious use, merely to illustrate the process.
1. Open the Function aplet and save it as "EXPERIMENT". The new aplet appears in the Aplet library.
APLET Select

Function FIIIE
ALPHA EXPERIMENT

GE
\begin{tabular}{|c|c|}
\hline APLET &  \\
\hline EXPERIMENT & 55 KB \\
\hline Function & OKB \\
\hline Inference & OKB \\
\hline Parametric & OKB \\
\hline Polar & OKB \\
\hline  &  \\
\hline
\end{tabular}
2. Create a program called EXP.ME1 with contents as shown. This program configures the plot ranges, then runs a
 program that allows you to set the angle format.
3. Create a program called EXP.ME2 with contents as shown. This program sets the numeric view options
 for the aplet, and runs the program that you can use to configure the angle mode.
4. Create a program called EXP.ANG which the previous two programs call.

5. Create a program called EXP.S which runs when you start the aplet, as shown. This program sets the angle
 mode to degrees, and sets up the initial function that the aplet plots.

\title{
Configuring the Setviews menu option programs
}

In this section we will begin by configuring the VIEWS menu by using the SETVIEWS command. We will then create the "helper" programs called by the VIEWS menu which will do the actual work.
6. Open the Program catalog and create a program named "EXP.SV". Include the following code in the program.
Each entry line after the command SETVIEWS is a trio that consists of a VIEWS menu text line (a space indicates none), a program name, and a number that defines the view to go to after the program has run its course. All programs listed here will transfer with an aplet when the aplet is transferred.

SETVIEWS " "'; "';18;
Sets the first menu option to be "Auto scale". This is the fourth standard Function aplet view menu option and the 18 "Auto scale", specifies that it is to be included in the new menu. The empty quotes will ensure that the old name of "Auto scale" appears on the new menu. See "SETVIEWS" on page 18-14.
```

''My Entry1';''EXP.ME1'';1;

```

Sets the second menu option. This option runs program EXP.ME 1, then returns to view 1, Plot view.
''My Entry2';''EXP.ME2'; 3;
Sets the third menu option. This option runs the program EXP.ME2, then returns to view 3, the NUM view.
" '"; \({ }^{\prime}\) EXP.SV'; \(0 ;\)
This line specifies that the program to set the View menu (this program) is transferred with the aplet. The space character between the first set of quotes in the trio specifies that no menu option appears for the entry. You do not need to transfer this program with the aplet, but it allows users to modify the aplet's menu if they want to.
```

"'';"EXP.ANG";0;

```

The program EXP.ANG is a small routine that is called by other programs that the aplet uses. This entry specifies that the program EXP. ANG is transferred when the aplet is transferred, but the space in the first quotes ensures that no entry appears on the menu.
```

''Start'';'EXP.S'';7:

```

This specifies the Start menu option. The program that is associated with this entry, EXP.S, runs automatically when you start the aplet. Because this menu option specifies view 7 , the VIEWS menu opens when you start the aplet.

You only need to run this program once to configure your aplet's VIEWS menu. Once the aplet's VIEWS menu is configured, it remains that way until you run SETVIEWS again.
You do not need to include this program for your aplet to work, but it is useful to specify that the program is attached to the aplet, and transmitted when the aplet is transmitted.
7. Return to the program catalog. The programs that you created should appear as follows:
8. You must now [antid the
 program EXP.SV to execute the SETVIEWS command and create the modified VIEWS menu. Check that the name of the new aplet is highlighted in the Aplet view.
9. You can now return to the Aplet library and press


\section*{Programming commands}

This section describes the commands for programming with hp 39GS. You can enter these commands in your program by typing them or by accessing them from the Commands menu.

\section*{Aplet commands}

Checks (selects) the corresponding function in the current aplet. For example, Check 3 would check F3 if the current aplet is Function. Then a checkmark would appear next to F3 in Symbolic view, F3 would be plotted in Plot view, and evaluated in Numeric view.

CHECK \(n\) :
Selects the named aplet and makes it the current aplet. Note: Quotes are needed if the name contains spaces or other special characters.

SELECT apletname:
The SETVIEWS command is used to define entries in the VIEWS menu for aplets that you customize. See "Customizing an aplet" on page \(18-9\) for an example of using the SETVIEWS command.
When you use the SETVIEWS command, the aplet's standard VIEWS menu is deleted and the customized menu is used in its place. You only need to apply the command to an aplet once. The VIEWS menu changes remain unless you apply the command again.
Typically, you develop a program that uses the SETVIEWS command only. The command contains a trio of arguments for each menu option to create, or program to attach. Keep the following points in mind when using this command:
- The SETVIEWS command deletes an aplet's standard Views menu options. If you want to use any of the standard options on your reconfigured VIEWS menu, you must include them in the configuration.
- When you invoke the SETVIEWS command, the changes to an aplet's VIEWS menu remain with the aplet. You need to invoke the command on the aplet again to change the VIEWS menu.
- All the programs that are called from the VIEWS menu are transferred when the aplet is transferred, for example to another calculator or to a PC.
- As part of the VIEWS menu configuration, you can specify programs that you want transferred with the aplet, but are not called as menu options. For example, these can be sub-programs that menu
options use，or the program that defines the aplet＇s VIEWS menu．
－You can include a＂Start＂option in the VIEWS menu to specify a program that you want to run automatically when the aplet starts．This program typically sets up the aplet＇s initial configuration．The START option on the menu is also useful for resetting the aplet．

\section*{Command syntax}

The syntax for the command is as follows：
SETVIEWS
＂Prompt1＂；＂ProgramName1＂；ViewNumber1；
＂Prompt2＂；＂ProgramName2＂；ViewNumber2：
（You can repeat as many Prompt／ProgramName／ ViewNumber trios of arguments as you like．）
Within each Prompt／ProgramName／ViewNumber trio， you separate each item with a semi－colon．

\section*{Prompt}

Prompt is the text that is displayed for the corresponding entry in the Views menu．Enclose the prompt text in double quotes．

\section*{Associating programs with your aplet}

If Prompt consists of a single space，then no entry appears in the view menu．The program specified in the ProgramName item is associated with the aplet and transferred whenever the aplet is transmitted．Typically， you do this if you want to transfer the Setviews program with the aplet，or you want to transfer a sub－program that other menu programs use．

\section*{Auto－run programs}

If the Prompt item is＂Start＂，then the ProgramName program runs whenever you start the aplet．This is useful for setting up a program to configure the aplet．Users can select the Start item from the VIEWS menu to reset the aplet if they change configurations．
You can also define a menu item called＂Reset＂which is auto－run if the user chooses the［票且酉 button in the APLET view．

\section*{ProgramName}

ProgramName is the name of the program that runs when the corresponding menu entry is selected. All programs that are identified in the aplet's SETVIEWS command are transferred when the aplet is transmitted.

\section*{ViewNumber}

ViewNumber is the number of a view to start after the program finishes running. For example, if you want the menu option to display the Plot view when the associated program finishes, you would specify 1 as the ViewNumber value.

\section*{Including standard menv options}

To include one of an aplet's standard VIEWS menu options in your customized menu, set up the arguments trio as follows:
- The first argument specifies the menu item name:
- Leave the argument empty to use the standard Views menu name for the item, or
- Enter a menu item name to replace the standard name.
- The second argument specifies the program to run:
- Leave the argument empty to run the standard menu option.
- Insert a program name to run the program before the standard menu option is executed.
- The third argument specifies the view and the menu number for the item. Determine the menu number from the View numbers table below.

Note: SETVIEWS with no arguments resets the views to default of the base aplet.

\section*{View numbers}

The Function aplet views are numbered as follows:
\begin{tabular}{llll}
0 & HOME & 11 & List Catalog \\
1 & Plot & 12 & Matrix Catalog \\
2 & Symbolic & 13 & Notepad Catalog \\
3 & Numeric & 14 & Program Catalog \\
4 & Plot-Setup & 15 & Plot-Detail \\
5 & Symbolic-Setup & 16 & Plot-Table \\
6 & Numeric-Setup & 17 & Overlay Plot \\
7 & Views & 18 & Auto scale \\
8 & Note & 19 & Decimal \\
9 & Sketch view & 20 & Integer \\
10 & Aplet Catalog & 21 & Trig
\end{tabular}

View numbers from 15 on will vary according to the parent aplet. The list shown above is for the Function aplet. Whatever the normal VIEWS menu for the parent aplet, the first entry will become number 15 , the second number 16 and so on.

Unchecks (unselects) the corresponding function in the current aplet. For example, Uncheck 3 would uncheck F3 if the current aplet is Function.

UNCHECK \(n\) :

\section*{Branch commands}

Branch commands let a program make a decision based on the result of one or more tests. Unlike the other programming commands, the branch commands work in logical groups. Therefore, the commands are described together rather than each independently.

\author{
IF...THEN...END Executes a sequence of commands in the true-clause only if the test-clause evaluates to true. Its syntax is: \\ IF test-clause \\ THEN true-clause END
}

\section*{Example}
```

1-A :
IF A==1
THEN MSGBOX " A EQUALS 1" :
END:

```

IF... THEN... ELSE... Executes the true-clause sequence of commands if the testEND clause is true, or the false-clause sequence of commands if the test-clause is false.

IF test-clause
THEN true-clause ELSE false-clause END

\section*{Example}
```

1\A:
IF A==1 THEN
MSGBOX "A EQUALS 1" :
ELSE
MSGBOX "A IS NOT EQUAL TO 1" :
END:

```

CASE..END Executes a series of test-clause commands that execute the appropriate true-clause sequence of commands. Its syntax is:

CASE
IF test-clause \({ }_{1}\) THEN true-clause \({ }_{1}\) END
IF test-clause 2 THEN true-clause 2 END

IF test-clause \({ }_{\mathrm{n}}\) THEN true-clause \(\mathrm{n}_{\mathrm{n}}\) END
END:
When CASE is executed, test-clause \({ }_{1}\) is evaluated. If the test is true, true-clause \({ }_{1}\) is executed, and execution skips to END. If test-clause \({ }_{1}\) if false, execution proceeds to testclause \(_{2}\). Execution with the CASE structure continues until a true-clause is executed (or until all the test-clauses evaluate to false).

Many conditions are automatically recognized by the HP THEN...
ELSE... 39 gs as error conditions and are automatically treated as END... errors in programs.

IFERR...THEN...ELSE...END allows a program to intercept error conditions that otherwise would cause the program to abort. Its syntax is:

\section*{IFERR trap-clause}

THEN clause_1
ELSE clause_2
END :

\section*{Example}
```

IFERR
60/X Y :
THEN
MSGBOX "Error: X is zero.":
ELSE
MSGBOX "Value is "Y:
END:

```

Runs the named program. If your program name contains special characters, such as a space, then you must enclose the file name in double quotes (" ").

RUN "program name" : or RUN programname :
Stops the current program.
STOP :

\section*{Drawing commands}

The drawing commands act on the display. The scale of the display depends on the current aplet's Xmin, Xmax, Ymin, and Ymax values. The following examples assume the hp 39gs default settings with the Function aplet as the current aplet.

ARC
Draws a circular arc, of given radius, whose centre is at \((x, y)\) The arc is drawn from start_angle_measurement, to end_angle_measurement.

ARC \(x ; y\); radius;start_angle_measurement; end_angle_measurement:

\section*{Example}

ARC 0; 0; 2; 0; \(2 \pi\) :
FREEZE:
Draws a circle centered at \((0,0)\) of radius 2 . The FREEZE command
 causes the circle to remain displayed on the screen until you press a key.

FREEZE

LINE

TLINE

Clears the display
ERASE:
Draws a box with diagonally opposite corners ( \(x 1, y 1\) ) and ( \(x 2, y 2\) ).

BOX \(x 1 ; y 1 ; x 2 ; y 2\) :

\section*{Example}

BOX -1;-1;1;1:
FREEZE:
Draws a box, lower
corner at \((-1,-1)\), upper corner at \((1,1)\)


Halts the program, freezing the current display. Execution resumes when any key is pressed.

Draws a line from \((x 1, y 1)\) to \((x 2, y 2)\).
LINE \(x 1 ; y 1 ; x 2 ; y 2\) :
Turns off the pixel at the specified coordinates \((x, y)\).
PIXOFF \(x ; y\) :
Turns on the pixel at the specified coordinates \((x, y)\).
PIXON \(x ; y\) :
Toggles the pixels along the line from ( \(x 1, y 1\) ) to ( \(x 2, y 2\) ) on and off. Any pixel that was turned off, is turned on; any pixel that was turned on, is turned off. TLINE can be used to erase a line.

TLINE \(x 1 ; y 1 ; x 2 ; y 2\) :

\section*{Example}

TLINE 0;0;3;3:
Erases previously drawn 45 degree line from \((0,0)\) to \((3,3)\), or draws that line if it doesn't already exist.

\section*{Graphic commands}

The graphic commands use the graphics variables G0 through G9-or the Page variable from Sketch-as graphicname arguments. The position argument takes the form \((x, y)\). Position coordinates depend on the current aplet's scale, which is specified by \(X_{m i n}, X_{m a x}, Y_{m i n}\), and Ymax. The upper left corner of the target graphic (graphic2) is at (Xmin, Ymax).
You can capture the current display and store it in GO by simultaneously pressing ON + PLOT.

\section*{GROBOR}

Stores the current display in graphicname.
DISPLAY \(\rightarrow\) graphicname:
Displays graphic from graphicname in the display.
\(\rightarrow\) DISPLAY graphicname:
Creates a graphic from expression, using font_size, and stores the resulting graphic in graphicname. Font sizes are 1,2 , or 3 . If the fontsize argument is 0 , the HP 39gs creates a graphic display like that created by the show operation.
\(\rightarrow\) GROB graphicname; expression; fontsize:
Replaces graphic in graphicname with bitwise-inverted graphic.

GROBNOT graphicname:
Using the logical OR, superimposes graphicname2 onto graphicname 1. The upper left corner of graphicname2 is placed at position.

GROBOR graphicname ; (position); graphicname2:

\section*{Example}

GROBOR G0; \((1,1) ; ~ G 1:\)
will superimpose G 1 onto G 0 starting a position \((1,1)\), where the position is given in terms of the current axes settings, not as a pixel position.

\section*{GROBXOR}

MAKEGROB

PLOT \(\rightarrow\)

REPLACE

Using the logical XOR, superimposes graphicname2 onto graphicname 1. The upper left corner of graphicname 2 is placed at position.

GROBXOR
graphicname1; (position) ; graphicname2:
Creates graphic with given width, height, and hexadecimal data, and stores it in graphicname.

MAKEGROB graphicname; width; height; hexdata:
Stores the Plot view display as a graphic in graphicname.
PLOT \(\rightarrow\) graphicname:
PLOT \(\rightarrow\) and DISPLAY \(\rightarrow\) can be used to transfer a copy of the current PLOT view into the sketch view of the aplet for later use and editing.

\section*{Example}
```

1 PageNum:

```
PLOT \(\rightarrow\) Page:
\(\rightarrow\) DISPLAY Page:
FREEZE:

This program stores the current PLOT view to the first page in the sketch view of the current aplet and then displays the sketch as a graphic object until any key is pressed.

Puts graph from graphicname into the Plot view display.
\(\rightarrow\) PLOT graphicname:
Replaces portion of graphic in graphicname 1 with graphicname2, starting at position. REPLACE also works for lists and matrices.

REPLACE
graphicname1; (position) ; graphicname2:
SUB

Extracts a portion of the named graphic (or list or matrix), and stores it in a new variable, name. The portion is specified by position and positions.

SUB name; graphicname; (position) ; (positions) :

Creates a blank graphic with given width and height, and stores it in graphicname.

ZEROGROB graphicname; width; height:

\section*{Loop commands}

Loop hp allow a program to execute a routine repeatedly. The HP 39gs has three loop structures. The example programs below illustrate each of these structures incrementing the variable A from 1 to 12.

DO...UNTIL ...END Do ... Until ... End is a loop command that executes the loop-clause repeatedly until test-clause returns a true (nonzero) result. Because the test is executed after the loop-clause, the loop-clause is always executed at least once. Its syntax is:
```

DO loop-clause UNTIL test-clause END
1 A:
DO
A + 1 A
DISP 3;A:
UNTIL A == 12 END:

```
WHILE...
repeat...
END

While ... Repeat ... End is a loop command that repeatedly evaluates test-clause and executes loop-clause sequence if the test is true. Because the test-clause is executed before the loop-clause, the loop-clause is not executed if the test is initially false. Its syntax is:

WHILE test-clause REPEAT loop-clause END
1 A:
WHILE A < 12 REPEAT
A+1 A
DISP 3;A:
END:
FOR...TO...STEP ...END

FOR name=start-expression TO end-expression [STEP increment];
loop-clause END
```

FOR A=1 TO 12 STEP 1;

```
    DISP 3;A:
END:

Note that the STEP parameter is optional. If it is omitted, a step value of 1 is assumed.

\section*{BREAK Terminates loop. \\ BREAK:}

\section*{Matrix commands}

The matrix commands take variables \(\mathrm{MO}-\mathrm{M} 9\) as arguments.

ADDCOL

ADDROW

DELCOL

DELROW

EDITMAT

Add Column. Inserts values into a column before column_number in the specified matrix. You enter the values as a vector. The values must be separated by commas and the number of values must be the same as the number of rows in the matrix name.

ADDCOL
name ; value \(_{7}, \ldots\), value \(_{n}\) ] ; column_number :
Add Row. Inserts values into a row before row_number in the specified matrix. You enter the values as a vector. The values must be separated by commas and the number of values must be the same as the number of columns in the matrix name.

ADDROW name; \(\left[\right.\) value \(_{1, \ldots}\), value \(_{n}\); row_number:
Delete Column. Deletes the specified column from the specified matrix.

DELCOL name; column_number:
Delete Row. Deletes the specified row from the specified matrix.

DELROW name; row_number:
Starts the Matrix Editor and displays the specified matrix. If used in programming, returns to the program when user presses []E

EDITMAT name:

SWAPCOL

SWAPROW

Extracts a sub-object-a portion of a list, matrix, or graphic from object-and stores it into name. start and end are each specified using a list with two numbers for a matrix, a number for vector or lists, or an ordered pair, ( \(\mathrm{X}, \mathrm{Y}\) ), for graphics.

SUB name; object; start; end:
Creates random matrix with a specified number of rows and columns and stores the result in name (name must be m0 . . .m9). The entries will be integers ranging from -9 to 9 .

RANDMAT name; rows; columns:
Redimensions the specified matrix or vector to size. For a matrix, size is a list of two integers \(\{n 1, n 2\}\). For a vector, size is a list containing one integer \(\{n\}\).

REDIM name; size:
Replaces portion of a matrix or vector stored in name with an object starting at position start. start for a matrix is a list containing two numbers; for a vector, it is a single number. Replace also works with lists and graphics.

REPLACE name; start; object:
Multiplies the specified row_number of the specified matrix by value.

SCALE name; value; rownumber:
Multiplies the row of the matrix name by value, then adds this result to the second specified row.

SCALEADD name; value; row1; row2:

Swaps Columns. Exchanges column 1 and column2 of the specified matrix.

SWAPCOL name; column 1; column2:
Swap Rows. Exchanges row 1 and row 2 in the specified matrix.

SWAPROW name; row 1 ; row2:

\section*{Print commands}

These commands print to an HP infrared printer, for example the HP 82240 B printer.

PRDISPLAY Prints the contents of the display.
PRDISPLAY:
PRHISTORY
Prints all objects in the history. PRHISTORY:

PRVAR
Prints name and contents of variablename.
PRVAR variablename:
You can also use the PRVAR command to print the contents of a program or a note.

PRVAR programname; PROG:
PRVAR notename; NOTE:

\section*{Prompt commands}

BEEP
Beeps at the frequency and for the time you specify.
BEEP frequency; seconds:

\section*{CHOOSE}

Creates a choose box, which is a box containing a list of options from which the user chooses one. Each option is numbered, 1 through \(n\). The result of the choose command is to store the number of the option chosen in a variable. The syntax is

ChOOSE variable_name; title; option \({ }_{1}\); option \(_{2}\); ...option \({ }_{n}\) :
where variable_name is the number of the option that will be highlighted by default whenever the choose box is displayed, title is the text displayed in the title bar of the choose box, and option \({ }_{1} \ldots\) option \(_{n}\) are the options listed in the choose box.

\section*{Example}
```

3 A:CHOOSE A;
"COMIC STRIPS";
"DILBERT";
"CALVIN\&HOBBES";
"BLONDIE":

```


\section*{CLRVAR}

Clears the specified variable. The syntax is:
CLRVAR variable :

\section*{Example}

If you have stored \(\{1,2,3,4\}\) in variable L 1 , entering CLVAR L1 ENTER will clear L1.


Displays textitem in a row of the display at the line_number. A text item consists of any number of expressions and quoted strings of text. The expressions are evaluated and turned into strings. Lines are numbered from the top of the screen, 1 being the top and 7 being the bottom.

DISP line_number; textitem:

\section*{Example}


Displays object at position (x_pos, y_pos) in size font. The syntax is:

DISPXY x_pos;y_pos;font;object:
The value of object can be a text string, a variable, or a combination of both. x_pos and y_pos are relative to the current settings of \(X \min , X\) max, \(Y\) min and \(Y\) max (which you set in the PLOT SETUP view). The value of font is either 1 (small) or 2 (large).

\section*{Example}

DISPXY
-3.5;1.5;2;"HELLO
WORLD":

HELLO WORLD

Displays the current date and time.

\section*{DISPTIME}

To set the date and time, simply store the correct settings in the date and time variables. Use the following formats: M. DDYYYY for the date and H.MMSS for the time.

\section*{Examples}
5.152000 DATE (sets the date to May 15, 2000).
10.1500 TIME (sets the time to \(10: 15 \mathrm{am}\) ).

Matrix Editor. Opens the Matrix editor for the specified matrix. Returns to the program when user presses [IE

EDITMAT matrixname:
The EDITMAT command can also be used to create matrices.
1. Press SHIFT CMDS \(\square \square S I N\) DE
2. Press ALPHA \(M 1\), and then press ENTER.

The Matrix catalog opens with M1 available for editing.

EDITMAT matrixname is an alternative to opening the matrix editor with matrixname.

\section*{FREEZE}

This command prevents the display from being updated after the program runs. This allows you to view the graphics created by the program. Cancel FREEZE by pressing any key.

FREEZE:

\section*{GETKEY}

Waits for a key, then stores the keycode rc.p in name, where \(r\) is row number, \(c\) is column number, and \(p\) is keyplane number. The key-planes numbers are: 1 for unshifted; 2 for shifted; 4 for alpha-shifted; and 5 for both alpha-shifted and shifted.

GETKEY name :
Creates an input form with a title bar and one field. The field has a label and a default value. There is text help at the bottom of the form. The user enters a value and presses the menu key. The value that the user enters is stored in the variable name. The title, label, and help items are text strings and need to be enclosed in double quotes.
Use SHIIFT CHARS to type the quote marks " ".
INPUT name; title, label; help; default:

\section*{Example}
```

INPUT R; "Circular Area";
"Radius";
"Enter Number";1:

```

MSGBOX
Displays a message box containing textitem. A text item consists of any number of expressions and quoted strings of text. The expressions are evaluated and turned into strings of text.

For example, "AREA IS:" \(2+2\) becomes AREA IS: 4 . Use SHIFT CHARS to type the quote marks " ".

MSGBOX textitem :

\section*{Example}

1 A:
MSGBOX "AREA IS: " \(\pi \star\) A^2:
You can also use the NoteText variable to provide text arguments. This can be used to insert line breaks. For example, press SHIFT NOTE and type AREA IS ENTER.
The position line
```

MSGBOX NoteText " " }\mp@subsup{\pi}{}{\starA^^2:

```
will display the same message box as the previous example.

Displays an input box with name as the title, and prompts for a value for name. name can be a variable such as A...Z, \(\theta, \mathrm{L}\)...I9, C1 ...C9 or Z1...Z9.

PROMPT name:

\section*{WAIT}

Halts program execution for the specified number of seconds.

WAIT seconds:

\section*{Stat-One and Stat-Two commands}

The following commands are used for analyzing onevariable and two-variable statistical data.

\section*{Stat-One commands}

DOIVSTATS

SETFREQ

SETSAMPLE

Calculates STATS using datasetname and stores the results in the corresponding variables: \(\mathrm{N} \Sigma\), \(\operatorname{Tot} \Sigma, \mathrm{Mean} \mathrm{\Sigma}\), PVarइ, SVarइ, PSDev, SSDev, Minइ, Q1, Median, Q3, and Max£. Datasetname can be \(\mathrm{H} 1, \mathrm{H} 2, \ldots\), or H 5 . Datasetname must include at least two data points.

D01VSTATS datasetname:
Sets datasetname frequency according to column or value. Datasetname can be H1, H2, ..., or H5, column can be C0-C9 and value can be any positive integer.

SETFREQ datasetname; column :
or
SETFREQ definition; value :
Sets datasetname sample according to column. Datasetname can be \(\mathrm{H1}-\mathrm{H} 5\), and column can be CO-C9.

SETSAMPLE datasetname; column :

\section*{Stat-Two commands}

DO2VSTATS
Calculates STATS using datasetname and stores the results in corresponding variables: MeanX, \(\Sigma \mathrm{X}, \Sigma \mathrm{X} 2\), MeanY, \(\Sigma \mathrm{Y}, \Sigma \mathrm{Y} 2, \Sigma \mathrm{XY}\), Corr, PCov, SCov, and RELERR.

Datasetname can be SI, S2,..., or S5. Datasetname must include at least two pairs of data points.

DO2VSTATS datasetname:

SETDEPEND

SETINDEP

Sets datasetname dependent column. Datasetname can be \(\mathrm{S} 1, \mathrm{~S} 2, \ldots\), or S 5 and column can be C0-C9.

SETDEPEND datasetname; column :
Sets datasetname independent column. Datasetname can be \(\mathrm{S} 1, \mathrm{~S} 2, \ldots\), or S 5 and column can be C0-C9.

SETINDEP datasetname; column:

\section*{Storing and retrieving variables in programs}

The hp 39gs has both Home variables and Aplet variables. Home variables are used for real numbers, complex numbers, graphics, lists, and matrices. Home variables keep the same values in HOME and in aplets.
Aplet variables are those whose values depend on the current aplet. The aplet variables are used in programming to emulate the definitions and settings you make when working with aplets interactively.

You use the Variable menu (VARS) to retrieve either Home variables or aplet variables. See "The VARS menu" on page 14-4. Not all variables are available in every aplet. S1 fit-S5fit, for example, are only available in the Statistics aplet. Under each variable name is a list of the aplets where the variable can be used.

\section*{Plot-view variables}

Area
Function
Axes
All Aplets

Connect
Function
Parametric
Polar
Solve
Statistics

\section*{Coord}

Function
Parametric
Polar
Sequence
Solve
Statistics

\section*{Extremum}

Function

\section*{FastRes}

Function
Solve

Contains the last value found by the Area function in PlotFCN menu.

Turns axes on or off.
From Plot Setup, check (or uncheck) _AXES.
or
In a program, type:
1 Axes - to turn axes on (default).
0 - Axes - to turn axes off.
Draws lines between successively plotted points.
From Plot Setup, check (or uncheck) _CONNECT.
or
In a program, type
1 - Connect - to connect plotted points (default, except in Statistics where the default is off).
0 - Connect - not to connect plotted points.
Turns the coordinate-display mode in Plot view on or off.
From Plot view, use the Menu mean key to toggle coordinate display on an off.
In a program, type
1 Coord-to turn coordinate display on (default).
0 Coord-to turn coordinate display off.
Contains the last value found by the Extremum operation in the Plot-FCN menu.

Toggles resolution between plotting in every other column (faster), or plotting in every column (more detail).
From Plot Setup, choose Faster or More Detail.
or
In a program, type
1 FastRes - for faster.
0 FastRes - for more detail (default).
\begin{tabular}{|c|c|}
\hline Grid All Aplets & Turns the background grid in Plot view on or off. From Plot setup, check (or uncheck) \(\qquad\) GRID. \\
\hline & or \\
\hline & In a program, type \\
\hline & \[
\begin{aligned}
& 1 \text { Grid to turn the grid on. } \\
& 0 \text { Grid to turn the grid off (default). }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Hmin/Hmax \\
Statistics
\end{tabular} & Defines minimum and maximum values for histogram bars. \\
\hline & From Plot Setup for one-variable statistics, set values for HRNG. \\
\hline & or \\
\hline & In a program, type \\
\hline & \(n_{1}\) Hmin \\
\hline & \(n_{2}\) Hmax where \(n_{2}>n_{1}\) \\
\hline Hwidth & Sets the width of histogram bars. \\
\hline Statistics & From Plot Setup in IVAR stats set a value for Hwidth or \\
\hline & In a program, type \\
\hline & \(n\) - Hwidth \\
\hline Indep All Aplets & Defines the value of the independent variable used in tracing mode. \\
\hline & In a program, type \\
\hline & \(n\) - Indep \\
\hline \begin{tabular}{l}
InvCross \\
All Aplets
\end{tabular} & Toggles between solid crosshairs or inverted crosshairs. (Inverted is useful if the background is solid). \\
\hline & From Plot Setup, check (or uncheck) \(\qquad\) InvCross or \\
\hline & In a program, type: \\
\hline & \begin{tabular}{l}
1 InvCross-to invert the crosshairs. \\
0 InvCross - for solid crosshairs (default).
\end{tabular} \\
\hline
\end{tabular}

Isect
Function
Labels
All Aplets
\(N \min / N_{\text {max }}\)
Sequence

Recenter
All Aplets

Contains the last value found by the Intersection function in the Plot-FCN menu.

Draws labels in Plot view showing \(X\) and \(Y\) ranges.
From Plot Setup, check (or uncheck) _Labels
or
In a program, type
1 Labels-to łurn labels on.
0 Labels - to turn labels off (default).
Defines the minimum and maximum independent variable values. Appears as the NRNG fields in the Plot Setup input form.

From Plot Setup, enter values for NRng.
or
In a program, type
```

n
n}\mathrm{ -Nmax

```
where \(n_{2}>n_{1}\)

Recenters at the crosshairs locations when zooming.
From Plot-Zoom-Set Factors, check (or uncheck) _ _
Recenter
or
In a program, type
1 Recenter - to turn recenter on (default).
0 Recenter-to turn recenter off.
Contains the last value found by the Root function in the Plot-FCN menu.

\section*{Root}

Function

S1mark-S5mark
Statistics

SeqPlot
Sequence

Simult
Function
Parametric
Polar
Sequence

Slope
Function
StatPlot
Statistics

Sets the mark to use for scatter plots.
From Plot Setup for two-variable statistics, S1markS5mark, then choose a mark.
or
In a program, type
\(n\) S1mark
where n is \(1,2,3, \ldots 5\)
Enables you to choose types of sequence plot: Stairstep or Cobweb.

From Plot Setup, select SeqPlot, then choose Stairstep or Cobweb.
or
In a program, type
1 SeqPlot-for Stairstep.
2 SeqPlot-for Cobweb.
Enables you to choose between simultaneous and sequential graphing of all selected expressions.
From Plot Setup, check (or uncheck) _SImULT
or
In a program, type
1 Simult-for simultaneous graphing (default).
0 - Simult-for sequential graphing.
Contains the last value found by the Slope function in the Plot-FCN menu.

Enables you to choose types of 1 -variable statistics plot between Histogram or Box-and-Whisker.

From Plot Setup, select StatPlot, then choose
Histogram or BoxWhisker.
or
In a program, type
1 StatPlot-for Histogram.
2 StatPlot-for Box-and-Whisker.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{Umin/Umax Polar} & Sets the minimum and maximum independent values. Appears as the URNG field in the Plot Setup input form. \\
\hline & From the Plot Setup input form, enter values for URNG. or \\
\hline & In a program, type \\
\hline & \(n_{1}\) - Umin \\
\hline & \(n_{2}\) - Umax \\
\hline & where \(n_{2}>n_{1}\) \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Ustep \\
Polar
\end{tabular}} & Sets the step size for an independent variable. \\
\hline & From the Plot Setup input form, enter values for USTEP. or \\
\hline & In a program, type \\
\hline & \(n\) - Ustep \\
\hline & where \(n>0\) \\
\hline \multirow[t]{5}{*}{\begin{tabular}{l}
Tmin / Tmax \\
Parametric
\end{tabular}} & Sets the minimum and maximum independent variable values. Appears as the TRNG field in the Plot Setup input form. \\
\hline & From Plot Setup, enter values for TRNG. or \\
\hline & In a program, type \\
\hline & \[
\begin{aligned}
& n_{1} \bullet \operatorname{Tmin} \\
& n_{2} \curvearrowright \operatorname{Tmax}
\end{aligned}
\] \\
\hline & where \(n_{2}>n_{1}\) \\
\hline \multirow[t]{2}{*}{Tracing All Aplets} & Turns the tracing mode on or off in Plot view. In a program, type \\
\hline & \begin{tabular}{l}
1 Tracing-to turn Tracing mode on (default). \\
0 Tracing-to turn Tracing mode off.
\end{tabular} \\
\hline
\end{tabular}

Tracing
All Aplets

Sets the minimum and maximum independent variable values. Appears as the TRNG field in the Plot Setup input form.

From Plot Setup, enter values for TRNG.
or
In a program, type
\(n_{1} \bullet\) Tmin
\(n_{2} \bullet \operatorname{Tmax}\)
where \(n_{2}>n_{1}\)
Turns the tracing mode on or off in Plot view.
In a program, type
1 Tracing-to turn Tracing mode on (default).
0 Tracing-to turn Tracing mode off.
\begin{tabular}{|c|c|}
\hline Tstep Parametric & \begin{tabular}{l}
Sets the step size for the independent variable. \\
From the Plot Setup input form, enter values for TSTEP. or \\
In a program, type \\
\(n\) - Tstep \\
where \(n>0\)
\end{tabular} \\
\hline \begin{tabular}{l}
Xcross \\
All Aplets
\end{tabular} & \begin{tabular}{l}
Sets the horizontal coordinate of the crosshairs. Only works with TRACE off. \\
In a program, type \\
\(n\) - Xcross
\end{tabular} \\
\hline Ycross All Aplets & \begin{tabular}{l}
Sets the vertical coordinate of the crosshairs. Only works with TRACE off. \\
In a program, type \\
\(n\) - Ycross
\end{tabular} \\
\hline Xtick All Aplets & \begin{tabular}{l}
Sets the distance between tick marks for the horizontal axis. \\
From the Plot Setup input form, enter a value for Xtick. or \\
In a program, type \\
Xtick where \(n>0\)
\end{tabular} \\
\hline Ytick All Aplets & \begin{tabular}{l}
Sets the distance between tick marks for the vertical axis. From the Plot Setup input form, enter a value for Ytick. or In a program, type \\
\(n\) Ytick where \(n>0\)
\end{tabular} \\
\hline Xmin / Xmax All Aplets & \begin{tabular}{l}
Sets the minimum and maximum horizontal values of the plot screen. Appears as the XRNG fields (horizontal range) in the Plot Setup input form. \\
From Plot Setup, enter values for XRNG. or \\
In a program, type
\end{tabular} \\
\hline
\end{tabular}
```

n
n}\ \ma
where }\mp@subsup{n}{2}{}>\mp@subsup{n}{1}{

```


The default value is 4 .

\section*{Symbolic-view variables}
\begin{tabular}{|c|c|}
\hline Angle & Sets the angle mode. \\
\hline \multirow[t]{6}{*}{All Aplets} & From Symbolic Setup, choose Degrees, Radians, or Grads for angle measure. \\
\hline & or \\
\hline & In a program, type \\
\hline & 1 Angle - for Degrees. \\
\hline & 2 Angle - for Radians. \\
\hline & 3 Angle-for Grads. \\
\hline \multirow[t]{4}{*}{\begin{tabular}{l}
F1...F9, FO \\
Function
\end{tabular}} & Can contain any expression. Independent variable is \(X\). \\
\hline & Example \\
\hline & 'SIN (X)' \({ }^{\text {' }}\) ( \({ }^{(X)}\) \\
\hline & You must put single quotes around an expression to keep it from being evaluated before it is stored. Use SHIFT CHARS to type the single quote mark. \\
\hline \multirow[t]{3}{*}{\[
\begin{aligned}
& \text { X1, Y1...X9,Y9 } \\
& \text { X0,Y0 } \\
& \text { Parametric }
\end{aligned}
\]} & Can contain any expression. Independent variable is \(T\). \\
\hline & Example \\
\hline & \[
\begin{aligned}
& \text { 'SIN }(4 * T) \text { Y1 } T \text { ):'2*SIN }(6 * T) \text { ' } \\
& \text { X1(T) }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
R1...R9, R0 \\
Polar
\end{tabular}} & Can contain any expression. Independent variable is \(\theta\). \\
\hline & Example \\
\hline & '2*SIN (2* \()^{\prime}\) ' \(\mathrm{RI}^{(\theta)}\) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
U1...U9, U0 \\
Sequence
\end{tabular}} & Can contain any expression. Independent variable is N . \\
\hline & Example \\
\hline & RECURSE ( \(\mathrm{U}, \mathrm{U}(\mathrm{N}-1) * \mathrm{~N}, 1,2)\) U1 (N) \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
E1...E9, EO \\
Solve
\end{tabular}} & Can contain any equation or expression. Independent variable is selected by highlighting it in Numeric View. \\
\hline & Example \\
\hline & \(' \mathrm{X}+\mathrm{Y} * \mathrm{X}-2=\mathrm{Y}\) ' \(\mathrm{E}^{\text {1 }}\) \\
\hline
\end{tabular}

S1fit...S5fit
Statistics

Sets the type of fit to be used by the FIT operation in drawing the regression line.
From Symbolic Setup view, specify the fit in the field for S1FIT, S2FIT, etc.
or
In a program, store one of the following constant numbers or names into a variable S1fit, S2fit, etc.

1 Linear
2 LogFit
3 ExpFit
4 Power
5 QuadFit
6 Cubic
7 Logist
8 ExpFit
9 TrigFit
10 User Defined
Example
Cubic \(>\) S2fit
or
6 S2fit

\section*{Numeric-view variables}

The following aplet variables control the Numeric view. The value of the variable applies to the current aplet only.
\begin{tabular}{|c|c|}
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
C1...C9, C0 \\
Statistics
\end{tabular}} & c0 through c9, for columns of data. Can contain lists. \\
\hline & Enter data in the Numeric view \\
\hline & or \\
\hline & In a program, type \\
\hline & LIST \(\mathrm{Cn}^{\text {n }}\) \\
\hline & where \(n=0,1,2,3 \ldots 9\) \\
\hline \multirow[t]{6}{*}{\begin{tabular}{l}
Digits \\
All Aplets
\end{tabular}} & Number of decimal places to use for Number format in the HOME view and for labeling axes in the Plot view. \\
\hline & From the Modes view, enter a value in the second field of Number Format. \\
\hline & or \\
\hline & In a program, type \\
\hline & \(n\) Digits \\
\hline & where \(0<n<11\) \\
\hline \multirow[t]{2}{*}{Format All Aplets} & Defines the number display format to use for numeric format in the HOME view and for labeling axes in the Plot view. \\
\hline & From the Modes view, choose Standard, Fixed, Scientific, Engineering, Fraction or Mixed Fraction in the Number Format field. \\
\hline
\end{tabular}
or
In a program, store the constant number (or its name) into the variable Format.

1 Standard
2 Fixed
3 Sci
4 Eng
5 Fraction
6 MixFraction

Note that if Fraction or Mixed Fraction is chosen, the setting will be ignored when labeling axes in Plot view. A setting of Scientific will be used instead.

\section*{Example}
```

Scientific\ Format
or
3 Format

```

NumCol
All Aplets except
Statistics aplet

NumFont
Function
Parametric
Polar
Sequence
Statistics

NumIndep
Function
Parametric
Polar
Sequence
NumRow
All Aplets except
Statistics aplet

NumStart
Function
Parametric
Polar
Sequence

Sets the column to be highlighted in Numeric view.
In a program, type
```

n}
mathrm{ NumCol

```
where \(n\) can be \(0,1,2,3,4,5,6,7,8,9\).
Enables you to choose the font size in Numeric view.
Does not appear in the Num Setup input form.
Corresponds to the 国国 key in Numeric view.
In a program, type
0 NumFont for small (default).
1 NumFont for big.
Specifies the list of independent values to be used by Build Your Own Table.

In a program, type
LIST NumIndep
Sets the row to be highlighted in Numeric view.
In a program, type
\(n\) - NumRow
where \(n>0\)
Sets the starting value for a table in Numeric view.
From Num Setup, enter a value for numstart.
or
In a program, type
\(n\) NumStart

NumStep
Function
Parametric
Polar
Sequence

NumType
Function
Parametric
Polar
Sequence

NumZoom
Function
Parametric
Polar
Sequence

StatMode
Statistics

Sets the step size (increment value) for an independent variable in Numeric view.

From Num Setup, enter a value for nuMStep.
or
In a program, type
\(n\) NumStep
where \(n>0\)
Sets the table format.
From Num Setup, choose Automatic or Build Your Own.
or
In a program, type
0 NumType for Build Your Own.
1 NumType for Automatic (default).
Sets the zoom factor in the Numeric view.
From Num Setup, type in a value for numzoom.
or
In a program, type
\(n\) - NumZoom
where \(n>0\)
Enables you to choose between 1-variable and 2-variable statistics in the Statistics aplet. Does not appear in the Plot Setup input form. Corresponds to the twine and emirio menu keys in Numeric View.
In a program, store the constant name (or its number) into the variable StatMode. \(1 \mathrm{VAR}=1,2 \mathrm{VAR}=2\).

\section*{Example}

1VAR StatMode
or
1 StatMode

\section*{Note variables}

The following aplet variable is available in Note view.

NoteText
All Aplets

Use NoteText to recall text previously entered in Note view.

\section*{Sketch variables}

The following aplet variables are available in Sketch view.

Page
All Aplets

PageNum
All Aplets

Sets a page in a sketch set. The graphics can be viewed one at a time using the Eritias and ritily keys.

The Page variable refers to the currently displayed page of a sketch set.

In a program, type
graphicname Page
Sets a number for referring to a particular page of the sketch set (in Sketch view).

In a program, type the page that is shown when
SHIFT SKETCH is pressed.
\(n \bullet\) PageNum

\section*{Extending aplets}

Aplets are the application environments where you explore different classes of mathematical operations.
You can extend the capability of the HP 39gs in the following ways:
- Create new aplets, based on existing aplets, with specific configurations such as angle measure, graphical or tabular settings, and annotations.
- Transmit aplets between HP 39gs calculators via an infra red link.
- Download e-lessons (teaching aplets) from Hewlett-Packard's Calculator web site.
- Program new aplets. See chapter 18, "Programming", for further details.

\section*{Creating new aplets based on existing aplets}

You can create a new aplet based on an existing aplet. To create a new aplet, save an existing aplet under a new name, then modify the aplet to add the configurations and the functionality that you want.

Information that defines an aplet is saved automatically as it is entered into the calculator.

To keep as much memory available for storage as possible, delete any aplets you no longer need.

\section*{Example}

This example demonstrates how to create a new aplet by saving a copy of the built-in Solve aplet. The new aplet is saved under the name "TRIANGLES" contains the formulas commonly used in calculations involving right-angled triangles.

1．Open the Solve aplet and save it under the new name．
APLET Solve
EHIDI，ALPHA
TRIAN GLES
ENTER ETHFAT
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
wew whrle solue \\
TRIANGLES4
\end{tabular}}} \\
\hline & \\
\hline
\end{tabular}

2．Enter the four formulas：


TAN ALPHA \(\theta\) 日
ALPHA O ALPHA A ENTER
ALPHA A \(x^{2} \pm\) ALPHA B \(x^{2}\)

日 ALPHA C X XNTER
3．Decide whether you want the aplet to operate in Degrees，Radians，or Grads．

\section*{SHIFT MODES LHDIS}

Degrees
四


4．View the Aplet Library．The＂TRIANGLES＂aplet is listed in the Aplet Library．
\begin{tabular}{|c|c|}
\hline APLET &  \\
\hline & \\
\hline be reset and used for & \\
\hline & Infe \\
\hline other problems． & \\
\hline
\end{tabular}

\section*{Using a customized aplet}

To use the＂Triangles＂aplet，simply select the appropriate formula，change to the Numeric view and solve for the missing variable．

Find the length of a ladder leaning against a vertical wall if it forms an angle of \(35^{\circ}\) with the horizontal and extends 5 metres up the wall．
1．Select the aplet．
APLET TRIANGLES
ETAFTT


2．Choose the sine formula in E1．


3．Change to the Numeric view and enter the known values．

\section*{NUM}


35 ENTER
5 ENTER
4．Solve for the missing value．

\section*{EOLDE}

The length of the ladder


\section*{Resetting an aplet}

Resetting an aplet clears all data and resets all default settings．
To reset an aplet，open the Library，select the aplet and press［途国等．
You can only reset an aplet that is based on a built－in aplet if the programmer who created it has provided a Reset option．

\section*{Annotating an aplet with notes}

The Note view (SHIFT) NOTE) attaches a note to the current aplet. See Chapter 17, "Notes and sketches".

\section*{Annotating an aplet with sketches}

The Sketch view (SHIFT SKETCH) attaches a picture to the current aplet. See chapter 17, "Notes and sketches".
\[
\begin{array}{ll}
\text { H I N T } & \begin{array}{l}
\text { Notes and sketches that you attach to an aplet become } \\
\text { part of the aplet. When you transfer the aplet to another } \\
\text { calculator, the associated note and sketch are transferred } \\
\text { as well. }
\end{array}
\end{array}
\]

\section*{Downloading e-lessons from the web}

In addition to the standard aplets that come with the calculator, you can download aplets from the world wide web. For example, Hewlett-Packard's Calculators web site contains aplets that demonstrate certain mathematical concepts. Note that you need the Graphing Calculator Connectivity Kit in order to load aplets from a PC.
Hewlett-Packard's Calculators web site can be found at:
http://www.hp.com/calculators

\section*{Sending and receiving aplets}

A convenient way to distribute or share problems in class and to turn in homework is to transmit (copy) aplets directly from one HP 39gs to another. This can take place via the infrared port or via a suitable cable. (You can use a serial cable with a 4 -pin mini-USB connector, which plugs into the RS232 port on the calculator. The serial cable is available as a separate accessory.)

You can also send aplets to, and receive aplets from, a PC. This requires special soffware running on the PC (such as the PC Connectivity Kit). A USB cable with a 5 -pin miniUSB connector is provided with the hp39gs for connecting with a PC. It plugs into the USB port on the calculator.

To transmit an aplet

1．Connect the PC or aplet disk drive to the calculator by cable
or
align the two calculators＇infrared ports by matching up the triangle marks on the rims of the calculators． Place the calculators no more than 4 inches（ 10 cm ） apart．

2．Sending calculator：Open the Library，highlight the aplet to send，and press［⿴囗玉ENT．
－The send to menu appears with the following options：

HP39G（RDAA）\(=\) to send via high－speed infrared
HP39／40（USB）\(=\) to send via the USB port
HP39／40（SER）\(=\) to send via the RS232 serial port
usb disk drive＝to send to a disk drive via the USB port
ser．disk drive＝to send to a disk drive via the RS232 serial port

Note：choose a disk drive option if you are using the hp39gs connectivity kit to transfer the aplet．
Highlight your selection and press 国．
－If transmitting to a disk drive，you have the options of sending to the current（default） directory or to another directory．

3．Receiving calculator：Open the aplet library and press fixill
－The receive from menu appears with the following options：

HP39G（IRDA）\(=\) to receive via high－speed infrared
HP39G \(=\) to receive via low－speed infrared
нP39／40（USB）＝to receive via the USB port
HP3940（SER）＝to receive via the RS232 serial port
usb disk drive＝to receive from a disk drive via the USB port

SER．disk drive＝to receive from a disk drive via the RS232 serial port

Note: choose a disk drive option if you are using the hp39gs connectivity kit to transfer the aplet.

Highlight your selection and press 0.
The Transmit annunciator-э-is displayed until transmission is complete.

If you are using the PC Connectivity Kit to download aplets from a PC, you will see a list of aplets in the PC's current directory. Check as many items as you would like to receive.

\section*{Sorting items in the aplet library menu list}

Once you have entered information into an aplet, you have defined a new version of an aplet. The information is automatically saved under the current aplet name, such as "Function." To create additional aplets of the same type, you must give the current aplet a new name.

The advantage of storing an aplet is to allow you to keep a copy of a working environment for later use.

The aplet library is where you go to manage your aplets. Press APLET. Highlight (using the arrow keys) the name of the aplet you want to act on.

\section*{To sort the aplet list}

In the aplet library, press masir . Select the sorting scheme and press ENTER.
- Chronologically produces a chronological order based on the date an aplet was last used. (The lastused aplet appears first, and so on.)
- Alphabetically produces an alphabetical order by aplet name.

To delete an aplet

You cannot delete a built-in aplet. You can only clear its data and reset its default settings.

To delete a customized aplet, open the aplet library, highlight the aplet to be deleted, and press DEL. To delete all custom aplets, press SHIFT CLEAR.

\section*{Reference information}

\section*{Glossary}
\begin{tabular}{ll} 
aplet & A small application, limited to one \\
topic. The built-in aplet types are \\
& Function, Parametric, Polar, \\
& Sequence, Solve, Statistics, \\
& Inference, Finance, Trig Explorer, \\
& Quad Explorer, Linear Solver and \\
& Triangle Solve. An aplet can be filled \\
& with the data and solutions for a \\
& specific problem. It is reusable (like a \\
& program, but easier to use) and it \\
records all your settings and \\
definitions.
\end{tabular}
\(\left.\begin{array}{ll}\text { list } & \begin{array}{l}\text { A set of values separated by commas } \\ \text { (periods if the Decimal Mark mode is } \\ \text { set to Comma) and enclosed in } \\ \text { braces. Lists are commonly used to } \\ \text { enter statistical data and to evaluate }\end{array} \\ \text { a function with multiple values. } \\ \text { Created and manipulated by the List } \\ \text { editor and catalog. }\end{array}\right\}\)

The possible contexts for an aplet: Plot, Plot Setup, Numeric, Numeric Setup, Symbolic, Symbolic Setup, Sketch, Note, and special views like split screens.

\section*{Resetting the HP 39gs}

If the calculator "locks up" and seems to be stuck, you must reset it. This is much like resetting a PC. It cancels certain operations, restores certain conditions, and clears temporary memory locations. However, it does not clear stored data (variables, aplet databases, programs) unless you use the procedure, "To erase all memory and reset defaults".

Press and hold the \(O N\) key and the third menu key simultaneously, then release them.
If the calculator does not respond to the above key sequence, then:
1. Turn the calculator over and locate the small hole in the back of the calculator.
2. Insert the end of a straightened metal paper clip into the hole as far as it will go. Hold it there for 1 second, then remove it.
3. Press \(O \mathbb{O}\) If necessary, press \(O N\) and the first and last menu keys simultaneously. (Note: This will erase your calculator memory.)

\section*{To erase all memory and reset defaults}

If the calculator does not respond to the above resetting procedures, you might need to restart it by erasing all of memory. You will lose everything you have stored. All factory-default settings are restored.
1. Press and hold the \(O \mathbb{O N}\) key, the first menu key, and the last menu key simultaneously.
2. Release all keys in the reverse order.

Note: To cancel this process, release only the top-row keys, then press the third menu key.

\section*{If the calculator does not turn on}

If the HP 39gs does not turn on follow the steps below until the calculator turns on. You may find that the calculator turns on before you have completed the procedure. If the calculator still does not turn on, please contact Customer Support for further information.
1. Press and hold the \(O N\) key for 10 seconds.
2. Press and hold the \(O N\) key and the third menu key simultaneously. Release the third menu key, then release the \(O N\) key.
3. Press and hold the \(O \mathbb{O}\) key, the first menu key, and the sixth menu key simultaneously. Release the sixth menu key, then release the first menu key, and then release the ON key.
4. Locate the small hole in the back of the calculator. Insert the end of a straightened metal paper clip into the hole as far as it will go. Hold it there for 1 second, then remove it. Press the \(O \mathbb{O N}\) key.
5. Remove the batteries (see "Batteries" on page R-4), press and hold the \(O N\) key for 10 seconds, and then put the batteries back in. Press the \(O \mathbb{O N}\) key.

\section*{Operating details}

Operating temperature: \(0^{\circ}\) to \(45^{\circ} \mathrm{C}\left(32^{\circ}\right.\) to \(\left.113^{\circ} \mathrm{F}\right)\).
Storage temperature: \(-20^{\circ}\) to \(65^{\circ} \mathrm{C}\left(-4^{\circ}\right.\) to \(\left.149^{\circ} \mathrm{F}\right)\).
Operating and storage humidity: \(90 \%\) relative humidity at \(40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)\) maximum. Avoid getting the calculator wet.

Battery operates at 6.0 V dc, 80 mA maximum.

\section*{Batteries}

The calculator uses \(4 \mathrm{AAA}(\) LRO3 ) batteries as main power and a CR2032 lithium battery for memory backup.

Before using the calculator, please install the batteries according to the following procedure.

To install the main batteries
a. Slide up the battery compartment cover as illustrated.
b. Insert 4 new AAA (LRO3) batteries into the main compartment. Make sure each battery is inserted in the indicated direction.

a. Press down the holder. Push the plate to the shown direction and lift it.

b. Insert a new CR2032 lithium battery. Make sure its positive (+) side is facing up.
c. Replace the plate and push it to the original place.

After installing the batteries, press \(O \mathbb{O N}\) to turn the power on.

Warning: It is recommended that you replace this battery every 5 years. When the low battery icon is displayed, you need to replace the batteries as soon as possible. However, avoid removing the backup battery and main batteries at the same time to avoid data lost.

\section*{Variables}

\section*{Home variables}

The home variables are:
\begin{tabular}{|c|c|}
\hline Category & Available name \\
\hline Complex & Z1...Z9, z0 \\
\hline Graphic & G1...G9, G0 \\
\hline Library & \begin{tabular}{l}
Function \\
Parametric \\
Polar \\
Sequence \\
Solve \\
Statistics \\
User-named
\end{tabular} \\
\hline List & L1...L9, L0 \\
\hline Matrix & M1...M9, M0 \\
\hline Modes & \begin{tabular}{l}
Ans \\
Date \\
HAngle \\
HDigits \\
HFormat \\
Ierr \\
Time
\end{tabular} \\
\hline Notepad & User-named \\
\hline Program & \begin{tabular}{l}
Editline \\
User-named
\end{tabular} \\
\hline Real & A. . Z , \(\quad \theta\) \\
\hline
\end{tabular}

\section*{Function aplet variables}

The function aplet variables are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available name} \\
\hline \multirow[t]{11}{*}{Plot} & Axes & Xcross \\
\hline & Connect & Ycross \\
\hline & Coord & Xtick \\
\hline & FastRes & Ytick \\
\hline & Grid & Xmin \\
\hline & Indep & Xmax \\
\hline & InvCross & Ymin \\
\hline & Labels & Ymax \\
\hline & Recenter & Xzoom \\
\hline & Simult & Yxoom \\
\hline & Tracing & \\
\hline \multirow[t]{2}{*}{Plot-FCN} & Area & Root \\
\hline & Extremum Isect & Slope \\
\hline \multirow[t]{6}{*}{Symbolic} & Angle & F6 \\
\hline & F1 & F7 \\
\hline & F2 & F8 \\
\hline & F3 & F9 \\
\hline & F4 & F0 \\
\hline & F5 & \\
\hline \multirow[t]{5}{*}{Numeric} & Digits & NumRow \\
\hline & Format & NumStart \\
\hline & NumCol & NumStep \\
\hline & NumFont & NumType \\
\hline & NumIndep & NumZoom \\
\hline Note & NoteText & \\
\hline Sketch & Page & PageNum \\
\hline
\end{tabular}

\section*{Parametric aplet variables}

The parametric aplet variables are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available name} \\
\hline \multirow[t]{11}{*}{Plot} & Axes & Tracing \\
\hline & Connect & Tstep \\
\hline & Coord & Xcross \\
\hline & Grid & Ycross \\
\hline & Indep & Xtick \\
\hline & InvCross & Ytick \\
\hline & Labels & Xmin \\
\hline & Recenter & Xmax \\
\hline & Simult & Ymin \\
\hline & Tmin & Ymax \\
\hline & Tmax & \begin{tabular}{l}
Xzoom \\
Yzoom
\end{tabular} \\
\hline & & \\
\hline \multirow[t]{11}{*}{Symbolic} & Angle & Y5 \\
\hline & X1 & X6 \\
\hline & Y1 & Y6 \\
\hline & X2 & X7 \\
\hline & & Y7 \\
\hline & X3 & X8 \\
\hline & Y 3 & Y8 \\
\hline & X4 & X9 \\
\hline & & Y9 \\
\hline & X5 & X0 \\
\hline & & YO \\
\hline \multirow[t]{5}{*}{Numeric} & Digits & NumRow \\
\hline & Format & NumStart \\
\hline & NumCol & NumStep \\
\hline & NumFont & NumType \\
\hline & NumIndep & NumZoom \\
\hline Note & NoteText & \\
\hline Sketch & Page & PageNum \\
\hline
\end{tabular}

\section*{Polar aplet variables}

The polar aplet variables are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available names} \\
\hline \multirow[t]{13}{*}{Plot} & \multicolumn{2}{|l|}{Axes} \\
\hline & Connect & Xcross \\
\hline & Coord & Ycross \\
\hline & Grid & Xtick \\
\hline & Indep & Ytick \\
\hline & InvCross & Xmin \\
\hline & Labels & Xmax \\
\hline & Recenter & Ymin \\
\hline & Simult & Ymax \\
\hline & Umin & Xzoom \\
\hline & Umax & Yxoom \\
\hline & Ostep & \\
\hline & Tracing & \\
\hline \multirow[t]{6}{*}{Symbolic} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Angle \\
R6
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{\(\begin{array}{ll}\text { R1 } & \text { R7 }\end{array}\)} \\
\hline & \multicolumn{2}{|l|}{R2 R8} \\
\hline & \multirow[t]{2}{*}{} & R9 \\
\hline & & R0 \\
\hline & \multicolumn{2}{|l|}{R5} \\
\hline \multirow[t]{5}{*}{Numeric} & Digits & NumRow \\
\hline & Format & NumStart \\
\hline & NumCol & NumStep \\
\hline & NumFont & NumType \\
\hline & NumIndep & NumZoom \\
\hline Note & \multicolumn{2}{|l|}{NoteText} \\
\hline Sketch & Page & PageNum \\
\hline
\end{tabular}

\section*{Sequence aplet variables}

The sequence aplet variables are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available name} \\
\hline \multirow[t]{11}{*}{Plot} & Axes & Tracing \\
\hline & Coord & Xcross \\
\hline & Grid & Ycross \\
\hline & Indep & Xtick \\
\hline & InvCross & Ytick \\
\hline & Labels & Xmin \\
\hline & Nmin & Xmax \\
\hline & Nmax & Ymin \\
\hline & Recenter & Ymax \\
\hline & SeqPlot & Xzoom \\
\hline & Simult & Yzoom \\
\hline \multirow[t]{6}{*}{Symbolic} & Angle & U6 \\
\hline & U1 & U7 \\
\hline & U2 & U8 \\
\hline & U3 & U9 \\
\hline & U4 & U0 \\
\hline & U5 & \\
\hline \multirow[t]{5}{*}{Numeric} & Digits & NumRow \\
\hline & Format & NumStart \\
\hline & NumCol & NumStep \\
\hline & NumFont & NumType \\
\hline & NumIndep & NumZoom \\
\hline Note & NoteText & \\
\hline Sketch & Page & PageNum \\
\hline
\end{tabular}

\section*{Solve aplet variables}

The solve aplet variables are:
\begin{tabular}{|l|ll|}
\hline Category & Available name & \\
\hline Plot & Axes & Xcross \\
& Connect & Ycross \\
& Coord & Xtick \\
& FastRes & Ytick \\
& Grid & Xmin \\
& Indep & Xmax \\
& InvCross & Ymin \\
& Labels & Ymax \\
& Recenter & Xzoom \\
& Tracing & Yxoom \\
& Angle & E6 \\
Symbolic & E1 & E7 \\
& E2 & E8 \\
& E3 & E9 \\
& E4 & E0 \\
& E5 & \\
Nomeric & Digits & NumCol \\
& Format & NumRow \\
Sketch & NoteText & \\
& Page & PageNum \\
\hline
\end{tabular}

\section*{Statistics aplet variables}

The statistics aplet variables are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available name} \\
\hline \multirow[t]{14}{*}{Plot} & Axes & S4mark \\
\hline & Connect & S5mark \\
\hline & Coord & StatPlot \\
\hline & Grid & Tracing \\
\hline & Hmin & Xcross \\
\hline & Hmax & Ycross \\
\hline & Hwidth & Xtick \\
\hline & Indep & Ytick \\
\hline & InvCross & Xmin \\
\hline & Labels & Xmax \\
\hline & Recenter & Ymin \\
\hline & S1mark & Ymax \\
\hline & S2mark & Xzoom \\
\hline & S3mark & \\
\hline \multirow[t]{3}{*}{Symbolic} & Angle & S3fit \\
\hline & S1fit & S4fit \\
\hline & & S5fit \\
\hline \multirow[t]{3}{*}{Numeric} & C0, ...C9 & \\
\hline & Digits & NumRow \\
\hline & \begin{tabular}{l}
Format \\
NumCol
\end{tabular} & StatMode \\
\hline \multirow[t]{6}{*}{Stat-One} & Max \(\Sigma\) & Q3 \\
\hline & Mean \(\Sigma\) & PSDev \\
\hline & Median & SSDev \\
\hline & Min \(\Sigma\) & PVar \(\Sigma\) \\
\hline & N \(\Sigma\) & SVar \(\Sigma\) \\
\hline & Q1 & Tot \(\Sigma\) \\
\hline \multirow[t]{5}{*}{Stat-Two} & Corr & £ X \\
\hline & Cov & EX2 \\
\hline & Fit & \(\Sigma \mathrm{XY}\) \\
\hline & MeanX & \(\Sigma \mathrm{Y}\) \\
\hline & \begin{tabular}{l}
MeanY \\
RelErr
\end{tabular} & इY2 \\
\hline Note & NoteText & \\
\hline Sketch & Page & PageNum \\
\hline
\end{tabular}

\section*{MATH menu categories}

\section*{Math functions}

The math functions are:


\begin{tabular}{|l|ll|}
\hline Category & \multicolumn{2}{|l|}{ Available name } \\
\hline \multirow{1}{*}{ (Continued) } \\
\hline \multirow{6}{*}{} & \(<\) & AND \\
& \(\leq\) & IFTE \\
& \(==\) & NOT \\
& \(\neq\) & OR \\
& \(>\) & XOR \\
& \(\geq\) & \\
& & \\
& ACOT & COT \\
& ACSC & CSC \\
& ASEC & SEC \\
\hline
\end{tabular}

\section*{Program constants}

The program constants are:
\begin{tabular}{|c|c|c|}
\hline Category & \multicolumn{2}{|l|}{Available name} \\
\hline Angle & \begin{tabular}{l}
Degrees \\
Grads \\
Radians
\end{tabular} & \\
\hline Format & Standard Fixed & \begin{tabular}{l}
Sci \\
Eng \\
Fraction
\end{tabular} \\
\hline SeqPlot & Cobweb Stairstep & \\
\hline S 1...5fit & \begin{tabular}{l}
Linear \\
LogFit \\
ExpFit \\
Power \\
Trigonometric
\end{tabular} & \begin{tabular}{l}
QuadFit \\
Cubic \\
Logist \\
User \\
Exponent
\end{tabular} \\
\hline StatMode & \begin{tabular}{l}
Stat1Var \\
Stat2Var
\end{tabular} & \\
\hline StatPlot & \[
\begin{aligned}
& \text { Hist } \\
& \text { BoxW }
\end{aligned}
\] & \\
\hline
\end{tabular}

\section*{Physical Constants}

The physical constants are:
\begin{tabular}{|c|c|}
\hline Category & Available Name \\
\hline Chemist & \begin{tabular}{l}
- Avogadro (Avogadro's Number, NA) \\
- Boltz. (Boltmann, k) \\
- mol. vo... (molar volume, Vm) \\
- univ gas (universal gas, R) \\
- std temp (standard temperature, St dT) \\
- std pres (standard pressure, St dP)
\end{tabular} \\
\hline Phyics & \begin{tabular}{l}
- StefBolt (Stefan-Bolitzmann, \(\sigma\) ) \\
- light s... (speed of light, c) \\
- permitti (permittivity, \(\varepsilon 0\) ) \\
- permeab (permeability, \(\mu 0\) ) \\
- acce gr... (acceleration of gravity, g) \\
- gravita... (gravitation, G)
\end{tabular} \\
\hline Quantum & \begin{tabular}{l}
- Plank's (Plank's constant, h) \\
- Dirac's (Dirac's, hbar) \\
- e charge (electronic charge, q) \\
- e mass (electron mass, me) \\
- \(q /\) me ra... ( \(q /\) me ratio, qme) \\
- proton m (proton mass, mp) \\
- mp/me r... (mp/me ratio, mpme) \\
- fine str (fine structure, \(\alpha\) ) \\
- mag flux (magnetic flux, \(\phi\) ) \\
- Faraday (Faraday, F) \\
- Rydberg (Rydberg, R \(\infty\) ) \\
- Bohr rad (Bohr radius, a0) \\
- Bohr mag (Bohr magneton, \(\mu \mathrm{B}\) ) \\
- nuc. mag (nuclear magneton, \(\mu \mathrm{N}\) ) \\
- photon... (photon wavelength,入) \\
photon... (photon frequency, f0) \\
- Compt w. . . (Compton wavelength, \(\lambda \mathrm{c}\) )
\end{tabular} \\
\hline
\end{tabular}

\section*{Program commands}

The program commands are:
\begin{tabular}{|c|c|c|}
\hline Category & Command & \\
\hline Aplet & \begin{tabular}{l}
CHECK \\
SELECT \\
SETVIEWS \\
UNCHECK
\end{tabular} & \\
\hline Branch & \begin{tabular}{l}
IF \\
THEN \\
ELSE \\
END
\end{tabular} & \[
\begin{aligned}
& \text { CASE } \\
& \text { IFERR } \\
& \text { RUN } \\
& \text { STOP }
\end{aligned}
\] \\
\hline Drawing & \begin{tabular}{l}
ARC \\
BOX \\
ERASE \\
FREEZE
\end{tabular} & \[
\begin{aligned}
& \text { LINE } \\
& \text { PIXOFF } \\
& \text { PIXON } \\
& \text { TLINE }
\end{aligned}
\] \\
\hline Graphic & \begin{tabular}{l}
DISPLAY \(\rightarrow\) \\
\(\rightarrow\) DISPLAY \\
\(\rightarrow\) GROB \\
GROBNOT \\
GROBOR \\
GROBXOR
\end{tabular} & \begin{tabular}{l}
MAKEGROB \\
PLOT \(\rightarrow\) \\
\(\rightarrow\) PLOT \\
REPLACE SUB \\
ZEROGROB
\end{tabular} \\
\hline Loop & \[
\begin{aligned}
& \text { FOR } \\
& = \\
& \text { TO } \\
& \text { STEP } \\
& \text { END } \\
& \text { DO }
\end{aligned}
\] & \begin{tabular}{l}
UNTIL \\
END \\
WHILE \\
REPEAT \\
END \\
BREAK
\end{tabular} \\
\hline Matrix & \begin{tabular}{l}
ADDCOL \\
ADDROW \\
DELCOL \\
DELROW \\
EDITMAT \\
RANDMAT
\end{tabular} & \begin{tabular}{l}
REDIM \\
REPLACE \\
SCALE \\
SCALEADD \\
SUB \\
SWAPCOL \\
SWAPROW
\end{tabular} \\
\hline Print & \begin{tabular}{l}
PRDISPLAY \\
PRHISTORY PRVAR
\end{tabular} & \\
\hline Prompt & \begin{tabular}{l}
BEEP \\
CHOOSE \\
CLRVAR \\
DISP \\
DISPXY \\
DISPTIME \\
EDITMAT
\end{tabular} & \begin{tabular}{l}
FREEZE \\
GETKEY \\
INPUT \\
MSGBOX \\
PROMPT \\
WAIT
\end{tabular} \\
\hline Stat-One & \begin{tabular}{l}
D01VSTATS \\
RANDSEED
\end{tabular} & SETFREQ SETSAMPLE \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline Category & Command (Continued) \\
\hline Stat-Two & DO2VSTATS \\
& SETDEPEND \\
& SETINDEP \\
\hline
\end{tabular}

\section*{Status messages}
\begin{tabular}{|l|l|}
\hline Message & Meaning \\
\hline Bad Argument & \begin{tabular}{l} 
Incorrect input for this \\
operation.
\end{tabular} \\
Type \\
Bad Argument & \begin{tabular}{l} 
The value is out of range for this \\
operation.
\end{tabular} \\
Infinite Result & \begin{tabular}{l} 
Math exception, such as 1/0. \\
You must recover some memory \\
Insufficient continue operation. Delete \\
one or more matrices, lists, \\
notes, or programs (using \\
catalogs), or custom (not built- \\
in) appests (using SHIFT \\
MEMORY).
\end{tabular} \\
Insufficient & \begin{tabular}{l} 
Not enough data points for the \\
calculation. For two-variable \\
statistics there must be two \\
columns of data, and each \\
column must have at least four \\
numbers.
\end{tabular} \\
Invalid Dimension & \begin{tabular}{l} 
Array argument had wrong \\
dimensions.
\end{tabular} \\
Invalid Statistics & \begin{tabular}{l} 
Need two columns with equal \\
Dumbers of data values.
\end{tabular} \\
Data
\end{tabular}
\begin{tabular}{|c|c|}
\hline Message & Meaning (Continued) \\
\hline Invalid Syntax & The function or command you entered does not include the proper arguments or order of arguments. The delimiters (parentheses, commas, periods, and semi-colons) must also be correct. Look up the function name in the index to find its proper syntax. \\
\hline Name Conflict & The \| (where) function attempted to assign a value to the variable of integration or summation index. \\
\hline No Equations Checked & You must enter and check an equation (Symbolic view) before evaluating this function. \\
\hline (OFF SCREEN) & Function value, root, extremum, or intersection is not visible in the current screen. \\
\hline Receive Error & Problem with data reception from another calculator. Resend the data. \\
\hline Too Few Arguments & The command requires more arguments than you supplied. \\
\hline Undefined Name & The global variable named does not exist. \\
\hline Undefined Result & The calculation has a mathematically undefined result (such as 0/0). \\
\hline Out of Memory & You must recover a lot of memory to continue operation. Delete one or more matrices, lists, notes, or programs (using catalogs), or custom (not builtin) aplets (using MEMORY). \\
\hline
\end{tabular}

\section*{Limited Warranty}

HP 39gs Graphing Calculator; Warranty period: 12 months
1. HP warrants to you, the end-user customer, that HP hardware, accessories and supplies will be free from defects in materials and workmanship after the date of purchase, for the period specified above. If HP receives notice of such defects during the warranty period, HP will, at its option, either repair or replace products which prove to be defective. Replacement products may be either new or like-new.
2. HP warrants to you that HP software will not fail to execute its programming instructions after the date of purchase, for the period specified above, due to defects in material and workmanship when properly installed and used. If HP receives notice of such defects during the warranty period, HP will replace software media which does not execute its programming instructions due to such defects.
3. HP does not warrant that the operation of HP products will be uninterrupted or error free. If HP is unable, within a reasonable time, to repair or replace any product to a condition as warranted, you will be entitled to a refund of the purchase price upon prompt return of the product with proof of purchase.
4. HP products may contain remanufactured parts equivalent to new in performance or may have been subject to incidental use.
5. Warranty does not apply to defects resulting from (a) improper or inadequate maintenance or calibration, (b) software, interfacing, parts or supplies not supplied by HP, (c) unauthorized modification or misuse, (d) operation outside of the published environmental specifications for the product, or (e) improper site preparation or maintenance.
6. HP MAKES NO OTHER EXPRESS WARRANTY OR CONDITION WHETHER WRITTEN OR ORAL. TO THE EXTENT ALLOWED BY LOCAL LAW, ANY IMPLIED WARRANTY OR CONDITION OF MERCHANTABILTY, SATISFACTORY QUALITY, OR FITNESS FOR A PARTICULAR PURPOSE IS LIMITED TO THE DURATION OF THE EXPRESS WARRANTY SET FORTH ABOVE. Some countries, states or provinces do not allow limitations on the duration of an implied warranty, so the above limitation or exclusion might not apply to you. This warranty gives you specific legal rights and you might also have other rights that vary from country to country, state to state, or province to province.
7. TO THE EXTENT ALLOWED BY LOCAL LAW, THE REMEDIES IN THIS WARRANTY STATEMENT ARE YOUR SOLE AND EXCLUSIVE REMEDIES. EXCEPT AS INDICATED ABOVE, IN NO EVENT WILL HP OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA OR FOR DIRECT, SPECIAL, INCIDENTAL, CONSEQUENTIAL (INCLUDING LOST PROFIT OR DATA), OR OTHER DAMAGE, WHETHER BASED IN CONTRACT, TORT, OR OTHERWISE. Some countries, States or provinces do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to you.
8. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. HP shall not be liable for technical or editorial errors or omissions contained herein.

FOR CONSUMER TRANSACTIONS IN AUSTRALIA AND NEW ZEALAND: THE WARRANTY TERMS CONTAINED IN THIS STATEMENT, EXCEPT TO THE EXTENT LAWFULLY PERMITTED, DO NOT EXCLUDE, RESTRICT OR MODIFY AND ARE IN ADDITION TO THE MANDATORY STATUTORY RIGHTS APPLICABLE TO THE SALE OF THIS PRODUCT TO YOU.

\section*{Service}
\begin{tabular}{|c|c|c|}
\hline Europe & Country: & Telephone numbers \\
\hline & Austria & +43-1-3602771203 \\
\hline & Belgium & +32-2-7126219 \\
\hline & Denmark & +45-8-2332844 \\
\hline & Eastern Europe countries & \[
+420-5-41422523
\] \\
\hline & Finland & +35-89640009 \\
\hline & France & +33-1-49939006 \\
\hline & Germany & +49-69-95307103 \\
\hline & Greece & +420-5-41422523 \\
\hline & Holland & +31-2-06545301 \\
\hline & Italy & +39-02-75419782 \\
\hline & Norway & +47-63849309 \\
\hline & Portugal & +351-229570200 \\
\hline & Spain & +34-915-642095 \\
\hline & Sweden & +46-851992065 \\
\hline & Switzerland & \begin{tabular}{l}
\[
+41-1-4395358
\] \\
(German)
\[
+41-22-8278780
\] \\
(French)
\[
+39-02-75419782
\] \\
(Italian)
\end{tabular} \\
\hline & Turkey & +420-5-41422523 \\
\hline & UK & +44-207-4580161 \\
\hline & Czech Republic & +420-5-41422523 \\
\hline & South Africa & +27-1 1-2376200 \\
\hline & Luxembourg & +32-2-7126219 \\
\hline & Other European countries & +420-5-41422523 \\
\hline \multirow[t]{3}{*}{Asia Pacific} & Country : & Telephone numbers \\
\hline & Australia & +61-3-9841-5211 \\
\hline & Singapore & \[
+61-3-9841-5211
\] \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\cline { 2 - 3 } L.America & Country: \\
Telephone numbers \\
\cline { 2 - 3 } & Argentina \\
Brazil & 0-810-555-5520 \\
Sao Paulo 3747-7799; \\
ROTC 0-800-157751 \\
Venezuela & \begin{tabular}{l} 
Mx City 5258-9922; \\
ROTC 01-800-472-6684 \\
\(0800-4746-8368 ~\)
\end{tabular} \\
Chile & \(800-360999\) \\
Columbia & \(9-800-114726\) \\
Peru & \(0-800-10111\) \\
Central & \(1-800-711-2884\) \\
America \& & \\
Caribbean & \(1-800-999-5105\) \\
Guatemala & \(1-877-232-0589\) \\
Puerto Rico & \(0-800-011-0524\) \\
Costa Rica & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{N.America} & Country : & Telephone numbers \\
\hline & U.S. & 1800-HP INVENT \\
\hline & Canada & (905) 206-4663 or 800- HP INVENT \\
\hline & ROTC = & he country \\
\hline
\end{tabular}

Please logon to http://www.hp.com for the latest service and support information.h

\section*{Regulatory information}

Federal
Communications
Commission Notice

Modifications

Cables

Declaration of
Conformity for Products Marked with FCC Logo, United States Only

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:
- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and the receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio or television technician for help.

The FCC requires the user to be notified that any changes or modifications made to this device that are not expressly approved by Hewlett-Packard Company may void the user's authority to operate the equipment.

Connections to this device must be made with shielded cables with metallic RFI/EMI connector hoods to maintain compliance with FCC rules and regulations.

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.
For questions regarding your product, contact:
Hewlett-Packard Company
P. O. Box 692000, Mail Stop 530113
\begin{tabular}{|c|c|c|}
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
Houston，Texas 77269－2000 \\
Or，call \\
1－800－474－6836 \\
For questions regarding this FCC declaration，contact： \\
Hewlett－Packard Company \\
P．O．Box 692000，Mail Stop 510101 \\
Houston，Texas 77269－2000 \\
Or，call \\
1－281－514－3333 \\
To identify this product，refer to the part，series，or model number found on the product．
\end{tabular}} \\
\hline Canadian Notice & \multicolumn{2}{|l|}{This Class B digital apparatus meets all requirements of the Canadian Interference－Causing Equipment Regulations．} \\
\hline Avis Canadien & \multicolumn{2}{|l|}{Cet appareil numérique de la classe \(B\) respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada．} \\
\hline European Union Regulatory Notice & \multicolumn{2}{|l|}{\begin{tabular}{l}
This product complies with the following EU Directives： \\
－Low Voltage Directive 73／23／EEC \\
－EMC Directive 89／336／EEC \\
Compliance with these directives implies conformity to applicable harmonized European standards（European Norms）which are listed on the EU Declaration of Conformity issued by Hewlett－Packard for this product or product family．
\end{tabular}} \\
\hline & \multicolumn{2}{|l|}{This compliance is indicated by the following conformity marking placed on the product：} \\
\hline & \begin{tabular}{l}
\[
C \in
\] \\
This marking is valid for non－Tele－ com prodcts and EU harmonized Telecom products（e．g．Bluetooth）
\end{tabular} & \begin{tabular}{l}
\(\mathcal{C} \epsilon_{x x x^{*}}\)（1） \\
This marking is valid for EU non－harmonized Telecom products． ＊Notified body number（used only if applicable－refer to the product label）
\end{tabular} \\
\hline Japanese Notice & \multicolumn{2}{|l|}{\begin{tabular}{l}
この装置は，情報処理装置等電波障害自主規制協議会 （ VCCI ）の基準に基づくクラス B 情報技術装置です。この装置は，家庭環境で使用することを目的としていますが，この装置がラジオやテレビジョン受信機に近接して使用されると，受信障害を引き起こすことがあります。 \\
取り扱い説明書に従って正しい取り扱いをしてください。
\end{tabular}} \\
\hline
\end{tabular}

\footnotetext{
この装置は，情報処理装置等電波障害自主規制協議会 （VCCI）の基準に基づくクラス B 情報技術装置です。この装置は，家庭環境で使用することを目的としていますが，この装置がラジオやテレビジョン受信機に近接して使用されると，受信障害を引き起こすことがあります。
取り扱い説明書に従って正しい取り扱いをしてください。
}

\section*{Korean Notice}

> B급 기기 (가정용 정보통신기기)
> 이 기기ㄴㅡㅡㄴ가정용을로 전자파파ㅅㅓㅏㄴ한등록은 한 기기롤서석 서 있습니다. 주거지역에슨

\author{
Disposal of Waste Equipment by Users in Private Household in the European Union
}


This symbol on the product or on its packaging indicates that this product must not be disposed of with your other household waste. Instead, it is your responsibility to dispose of your waste equipment by handing it over to a designated collection point for the recycling of waste electrical and electronic equipment. The separate collection and recycling of your waste equipment at the time of disposal will help to conserve natural resources and ensure that it is recycled in a manner that protects human health and the environment. For more information about where you can drop off your waste equipment for recycling, please contact your local city office, your household waste disposal service or the shop where you purchased the product.

\section*{Index}

\section*{A}
absolute value 13-5
add 13-3
algebraic entry 1-19
alpha characters
typing 1-6
alphabetical sorting 19-6
angle measure 1-10
in statistics 10-12
setting \(1-11\)
animation 17-5
creating 17-5
annunciators 1-3
Ans (last answer) 1-24
antilogarithm 13-4, 13-9
aplet
attaching notes 19-4
clearing 19-3
copying 19-4
definition of \(R-1\)
deleting 19-6
Function 13-21
Inference 11-1
key 1-4
library 19-6
Linear Solver 8-1
opening 1-16
Parametric 4-1
Polar 5-1
receiving 19-5
resetting 19-3
sending 19-4, 19-5
Sketch view 17-1
Solve 7-1
sorting 19-6
statistics 10-1
transmitting 19-5
Triangle Solver 9-1
aplet commands
CHECK 18-14
SELECT 18-14
SETVIEWS 18-17
UNCHECK 18-17
aplet variables
definition 14-1, 14-8
in Plot view 18-32
new 14-1
aplet views
canceling operations in 1-1
changing 1-19
note 1-18
Numeric view 1-17
Plot view 1-16
sketch 1-18
split-screen 1-17
Symbolic view 1-16
arc cosecant 13-20
arc cosine 13-4
arc cotangent 13-19
arc secant 13-20
arc sine 13-4
arc tangent 13-5
area
graphical 3-10
interactive 3-10
variable 18-32
arguments
with matrices 15-10
attaching
a note to an aplet 17-1
a sketch to an aplet 17-3
auto scale 2-14
axes
plotting 2-7
variable 18-32

\section*{B}
bad argument R-18
bad guesses error message 7-7
batteries R-4
box-and-whisker plot 10-16
branch commands
CASE...END 18-18
IF...THEN...ELSE...END 18-18
IFERR...THEN...ELSE 18-18
branch structures 18-17
build your own table 2-19

C
calculus
operations 13-7
catalogs 1-30
chronological sorting 19-6
circle drawing 17-4
clearing aplet 19-3
characters 1-22
display 1-22
display history 1-25
edit line 1-22
lists \(16-6\)
plot 2-7
cobweb graph 6-1
coefficients
polynomial 13-11
columns
changing position 18-25
combinations 13-12
commands
aplet 18-14
branch 18-17
definition of \(R\) - 1
drawing 18-19
graphic 18-21
loop 18-23
print 18-26
program 18-4, R-17
stat-one 18-30
stat-two 18-30
with matrices 15-10
complex number functions 13-5, 13-16
conjugate 13-7
imaginary part 13-7
real part 13-7
complex numbers 1-29
entering 1-29
math functions 13-7
storing 1-29
confidence intervals 11-15
conjugate 13-7
connecting
data points 10-19
variable 18-32
via infrared 19-5
via serial cable 19-5
via USB cable 19-5
connectivity kit 19-4
constant? error message 7-7
constants
e 13-8
i 13-8
maximum real number 13-8
minimum real number 13-8
physical 1-8, 13-25, R-16
program R-15, R-16
contrast
decreasing display 1-2
increasing display 1-2
conversions 13-8
coordinate display 2-9
copying
display 1-22
graphics 17-6
notes 17-8
programs 18-8
correlation
coefficient 10-17
CORR 10-17
statistical 10-15
cosecant 13-20
cosine 13-4
inverse hyperbolic 13-9
cotangent 13-20
covariance
statistical 10-15
creating
aplet 19-1
lists 16-1
matrices 15-3
notes in Notepad 17-6
programs 18-4
sketches 17-3
critical value(s) displayed 11-4
cross product
vector 15-11
curve fitting 10-12, 10-17

\section*{D}
data set definition 10-8
date, setting 18-28
debugging programs 18-7
decimal
changing format 1-10
scaling 2-14, 2-15
decreasing display contrast 1-2
definite integral 13-6
deleting
aplet 19-6
lists 16-6
matrices 15-5
programs 18-9
statistical data 10-11
delimiters, programming 18-1
derivatives
definition of 13-6
in Function aplet 13-22
in Home 13-21
determinant
square matrix 15-11
differentiation 13-6
display 18-21
adjusting contrast 1-2
annunciator line 1-2
capture 18-21
clearing 1-2
date and time 18-28
element 15-5
elements 16-4
engineering 1-10
fixed 1-10
fraction 1-10
history 1-22
line 1-23
matrices 15-5
parts of 1-2
printing contents 18-26
rescaling 2-13
scientific 1-10
scrolling through history 1-25
soff key labels 1-2
standard 1-10
divide 13-3
drawing
circles 17-4
keys 17-4
lines and boxes 17-3
drawing commands
ARC 18-19
BOX 18-20
ERASE 18-20
FREEZE 18-20
LINE 18-20
PIXOFF 18-20
PIXON 18-20
TLINE 18-20

\section*{E}
e 13-8
edit line 1-2
editing
matrices 15-4
notes 17-2
programs 18-5
Editine
Program catalog 18-2
editors 1-30
eigenvalues 15-11
eigenvectors 15-11
element
storing 15-6
E-lessons 1-12
engineering number format 1-11
equals
for equations 13-17
logical test 13-19
equations
solving 7-1
erasing a line in Sketch view 18-20
error messages
bad guesses 7-7
constant? 7-7
exclusive OR 13-19
exiting views 1-19
exponent
fit 10-13
minus 1 13-10
of value 13-17
raising to \(13-5\)
expression
defining \(2-1, R-1\)
entering in HOME 1-19
evaluating in aplets 2-3
literal 13-18
plot 3-3
extremum 3-10

\section*{F}
factorial 13-12
FastRes variable 18-32
fit
a curve to 2VAR data 10-17
choosing 10-12
defining your own 10-13
fixed number format 1-10
font size
change 3-8, 17-5
forecasting 10-20
fraction number format 1-11
full-precision display 1-10
function
analyze graph with FCN tools 3-4
definition 2-2, \(\mathrm{R}-1\)
entering 1-19
gamma 13-12
intersection point 3-5
math menu R-13
slope 3-5
syntax 13-2
tracing 2-8
Function aplet 2-20, 3-1
function variables
area 18-32
axes \(18-32\)
connect 18-32
fastres 18-32
grid 18-33
in menu map R-7
indep 18-33
isect 18-34
labels 18-34
Recenter 18-34
root 18-34
ycross 18-37

\section*{G}
glossary R-1
graph
analyzing statistical data in 10-19
auto scale 2-14
box-and-whisker 10-16
capture current display 18-21
cobweb 6-1
comparing 2-5
connected points 10-17
defining the independent variable 18-36
drawing axes 2-7
expressions 3-3
grid points 2-7
histogram 10-15
in Solve aplet 7-7
one-variable statistics 10-18
overlaying 2-15
scatter 10-15, 10-17
split-screen view 2-14
splitting into plot and close-up
2-13
splitting into plot and table 2-13
stairsteps 6-1
statistical data 10-15
\(t\) values 2-6
tickmarks 2-6
tracing 2-8
two-variable statistics 10-18
Graphic commands
\(\rightarrow\) GROB 18-21
DISPLAY \(\rightarrow\) 18-21
GROBNOT 18-21
GROBOR 18-21
GROBXOR 18-22
MAKEGROB 18-22
PLOT \(\rightarrow\) 18-22
REPLACE 18-22
SUB 18-22
ZEROGROB 18-23
graphics
copying 17-6
copying into Sketch view 17-6
storing and recalling 17-6, 18-21

\section*{H}
histogram 10-15
adjusting 10-16
range \(10-18\)
setting min/max values for bars
18-33
width 10-18
history 1-2, 18-26
Home 1-1
calculating in 1-19
display 1-2
evaluating expressions 2-4
reusing lines 1-23
variables 14-1, 14-7, R-6
horizontal zoom 18-38
hyperbolic
maths functions 13-10
hyperbolic trigonometry
ACOSH 13-9
ALOG 13-9
ASINH 13-9
ATANH 13-9
COSH 13-9
EXP 13-10

EXPM1 13-10
LNP1 13-10
SINH 13-9
TANH 13-9
hypothesis
alternative 11-2
inference tests 11-8
null 11-2
tests 11-2

\section*{I}

\section*{i 13-8}
implied multiplication 1-20
importing
graphics 17-6
notes 17-8
increasing display contrast 1-2
indefinite integral
using symbolic variables 13-23
independent values
adding to table 2-18
independent variable
defined for Tracing mode 18-33
inference
confidence intervals 11-15
hypothesis tests 11-8
One-Proportion Z-Interval 11-17
One-Sample Z-Interval 11-15
One-Sample Z-Test 11-8
Two-Proportion Z-Interval 11-17
Two-Proportion Z-Test 11-11
Two-Sample T-Interval 11-19
Two-Sample Z-Interval 11-16
infinite result R-18
infrared
transmission of aplets 19-5
initial guess 7-5
input forms
resetting default values 1-9
setting Modes 1-11
insufficient memory R-18
insufficient statistics data R-18
integer rank
matrix 15-12
integer scaling 2-14, 2-15
integral
definite 13-6
indefinite 13-23
integration 13-6
interpreting
intermediate guesses 7-7
intersection 3-11
invalid
dimension R-18
statistics data R-18
syntax R-19
inverse hyperbolic cosine 13-9
inverse hyperbolic functions 13-10
inverse hyperbolic sine 13-9
inverse hyperbolic tangent 13-9
inverting matrices 15-8
isect variable 18-34

\section*{K}
keyboard
editing keys 1-5
entry keys 1-5
inactive keys 1-8
list keys 16-2
math functions 1-7
menu keys 1-4
Notepad keys 17-8
shifted keystrokes 1-6

\section*{L}
labeling
axes 2-7
parts of a sketch 17-5
letters, typing 1-6
library, managing aplets in 19-6
linear fit 10-13
Linear Solver aplet 8-1
list
arithmetic with 16-7
calculate sequence of elements
16-8
calculating product of \(16-8\)
composed from differences 16-7
concatenating 16-7
counting elements in 16-9
creating 16-1, 16-3, 16-4, 16-5
deleting 16-6
deleting list items 16-3
displaying 16-4
displaying list elements 16-4
editing 16-3
finding statistical values in list ele-
ments 16-9
generate a series 16-8
list function syntax 16-6
list variables 16-1
returning position of element in
16-8
reversing order in 16-9
sending and receiving 16-6
sorting elements 16-9
storing elements 16-1, 16-4, 16-5
storing one element 16-6
logarithm 13-4
logarithmic
fit 10-13
functions 13-3
logical operators
AND 13-19
equals (logical test) 13-19
greater than 13-19
greater than or equal to 13-19
IFTE 13-19
less than 13-18
less than or equal to 13-18
NOT 13-19
not equal to 13-19
OR 13-19
XOR 13-19
logistic fit 10-13
loop commands
BREAK 18-24
DO...UNTIL...END 18-23
FOR I= 18-24
WHILE...REPEAT...END 18-23
loop functions
ITERATE 13-10
RECURSE 13-10
summation 13-11
low battery 1-1
lowercase letters 1-6

\section*{M}
mantissa 13-15
math functions
complex number 13-7
hyperbolic 13-10
in menu map R-13
keyboard 13-3
logical operators 13-18
menu 1-7
polynomial 13-11
probability 13-12
real-number 13-13
symbolic 13-17
trigonometry 13-19
MATH menu 13-1
math operations 1-19
enclosing arguments 1-21
in scientific notation 1-20
negative numbers in 1-20
matrices
adding rows 18-24
addition and subtraction 15-6
arguments 15-10
arithmetic operations in 15-6
assembly from vectors 15-1
changing row position 18-25
column norm 15-10
comma 16-7
commands 15-10
condition number 15-11
create identity 15-13
creating 15-3
creating in Home 15-5
deleting 15-5
deleting columns 18-24
deleting rows 18-24
determinant 15-11
display eigenvalues 15-11
displaying 15-5
displaying matrix elements 15-5
dividing by a square matrix 15-8
dot product 15-11
editing 15-4
extracting a portion 18-25
finding the trace of a square matrix 15-13
inverting 15-8
matrix calculations 15-1
multiplying and dividing by scalar 15-7
multiplying by vector 15-7
multiplying row by value and adding result to second row 18-25
multiplying row number by value 18-25
negating elements 15-8
opening Matrix Editor 18-28
raised to a power 15-7
redimension 18-25
replacing portion of matrix or vec-
tor 18-25
sending or receiving 15-4
singular value decomposition 15-13
singular values 15-13
size 15-12
spectral norm 15-13
spectral radius 15-13
start Matrix Editor 18-24
storing elements 15-3, 15-5
storing matrix elements 15-6
swap column 18-25
swap row 18-25
transposing 15-13, 15-14
variables 15-1
matrix functions 15-10
COLNORM 15-10
COND 15-11
CROSS 15-11
DET 15-11
DOT 15-11
EIGENVAL 15-11
EIGENVV 15-11
IDENMAT 15-11
INVERSE 15-11
LQ 15-11
LSQ 15-11
LU 15-12
MAKEMAT 15-12
QR 15-12
RANK 15-12
ROWNORM 15-12
RREF 15-12
SCHUR 15-12
SIZE 15-12
SPECNORM 15-13
SPECRAD 15-13
SVD 15-13
SVL 15-13
TRACE 15-13
TRN 15-13
maximum real number 1-22, 13-8
memory R-18
clearing all R-3
organizing 14-9
out of R-19
saving 1-25, 19-1
viewing 14-1
menu lists
searching 1-8
minimum real number 13-8
mixed fraction format 1-11
modes
angle measure 1-10
decimal mark 1-11
number format 1-10
multiple solutions
plotting to find 7-7
multiplication 13-3
implied 1-20

\section*{N}
name conflict R-19
naming programs 18-4
natural exponential 13-3, 13-10
natural log plus 1 13-10
natural logarithm 13-3
negation 13-5
negative numbers 1-20
no equations checked R-19
Normal Z-distribution, confidence in-
tervals 11-15
note
copying 17-8
editing 17-2
importing 17-8
printing 18-26
viewing 17-1
writing 17-1
Notepad 17-1
catalog keys 17-7
creating notes 17-6
writing in 17-6
nrng 2-6
\(n\)th root 13-6
null hypothesis 11-2
number format
engineering 1-11
fixed 1-10
fraction 1-11
in Solve aplet 7-5
mixed fraction 1-11
scientific 1-10
Standard 1-10
numeric precision 14-9
Numeric view
adding values \(2-18\)
automatic 2-16
build your own table 2-19
display defining function for col-
umn 2-17
recalculating \(2-18\)
setup 2-16, 2-19

\section*{0}
off
automatic 1-1
power 1-1
on/cancel 1-1
One-Proportion Z-Interval 11-17
One-Sample T-Interval 11-18
One-Sample T-Test 11-12
One-Sample Z-Interval 11-15
One-Sample Z-Test 11-8
order of precedence 1-21
overlaying plots 2-15, 4-3

\section*{P}
\(\pi\) 13-8
paired columns 10-11
parametric variables
axes 18-32
connect 18-32
grid 18-33
in menu map R-8
indep 18-33
labels 18-34
recenter 18-34
ycross 18-37
parentheses
to close arguments 1-21
to specify order of operation 1-21
pause 18-30
permutations 13-12
pictures
attaching in Sketch view 17-3
plot
analyzing statistical data in 10-19
auto scale 2-14
box-and-whisker 10-16
cobweb 6-1
comparing 2-5
connected points 10-17, 10-19
decimal scaling 2-14
defining the independent variable 18-36
drawing axes 2-7
expressions 3-3
grid points 2-7
histogram 10-15
in Solve aplet 7-7
integer scaling 2-14
one-variable statistics 10-18
overlay plot 2-13
overlaying 2-15, 4-3
scaling 2-13
scatter 10-15, 10-17
sequence 2-6
setting up 2-5, 3-2
split-screen view 2-14
splitting 2-14
splitting into plot and close-up
2-13
splitting into plot and table 2-13
stairsteps 6-1
statistical data 10-15
statistics parameters 10-18
\(t\) values 2-6
tickmarks 2-6
to capture current display 18-21
tracing 2-8
trigonometric scaling 2-14
two-variable statistics 10-18
plotting resolution
and tracing 2-8
plot-view variables
area 18-32
connect 18-32
fastres 18-32
function 18-32
grid 18-33
hmin/hmax 18-33
hwidth 18-33
isect 18-34
labels 18-34
recenter 18-34
root 18-34
slmark-s5mark 18-35
statplot 18-35
tracing 18-33
umin/umax 18-36
ustep 18-36
polar variables
axes 18-32
connect 18-32
grid 18-33
in menu map R -9
indep 18-33
labels 18-34
recenter 18-34
ycross 18-37
polynomial
coefficients 13-11
evaluation 13-11
form 13-11
roots 13-12
Taylor 13-7
polynomial functions
POLYCOEF 13-1
POLYEVAL 13-11
POLYFORM 13-11
POLYROOT 13-12
ports 19-5
position argument 18-21
power (x raised to y) 13-5
precedence 1-22
predicted values
statistical 10-20
print
contents of display 18-26
name and contents of variable 18-26
object in history 18-26
variables 18-26
probability functions
! 13-12
COMB 13-12
RANDOM 13-13
UTPC 13-13
UTPF 13-13
UTPN 13-13
UTPT 13-13
program
commands 18-4
copying 18-8
creating 18-4
debugging 18-7
deleting 18-9
delimiters 18-1
editing \(18-5\)
naming 18-4
pausing 18-30
printing 18-26
sending and receiving 18-8
structured 18-1
prompt commands
beep 18-26
create choose box 18-26
create input form 18-29
display item 18-27
display message box 18-29
halt program execution 18-30
insert line breaks 18-29
prevent screen display being updated 18-28
set date and time 18-28
store keycode 18-29

\section*{Q}
quadratic
extremum 3-6
fit \(10-13\)
function 3-4
quotes
in program names \(18-4\)

\section*{R}
random numbers 13-13
real number
maximum 13-8
minimum 13-8
real part 13-7
real-number functions 13-13
\% 13-15
\%CHANGE 13-15
\%TOTAL \(13-16\)
CEILING 13-13
DEGtoRAD 13-14
FNROOT 13-14
HMSto 13-14
INT 13-15
MANT 13-15
MAX 13-15
MIN 13-15
MOD 13-15
RADtoDEG 13-16
ROUND 13-16
SIGN 13-16
TRUNCATE 13-16
XPON 13-17
recalculation for table 2-18
receive error R-19
receiving
aplet 19-5
lists 16-6
matrices 15-4
programs 18-8
redrawing
table of numbers 2-17
reduced row echelon 15-12
regression
analysis 10-17
fit models 10-13
formula 10-12
user-defined fit 10-13
relative error
statistical 10-18
resetting
aplet 19-3
calculator R-3
memory R-3
result
copying to edit line 1-22
reusing 1-22
root
interactive 3-10
nth 13-6
variable 18-34
root-finding
displaying 7-7
interactive 3-9
operations 3-10
variables 3-10

\section*{S}

S1mark-S5mark variables 18-35
scaling
automatic 2-14
decimal 2-10, 2-14
integer 2-10, 2-14, 2-15
options 2-13
resetting 2-13
trigonometric 2-14
scatter plot 10-15, 10-17
connected 10-17, 10-19
SCHUR decomposition 15-12
scientific number format 1-10, 1-20
scrolling
in Trace mode 2-8
searching
menu lists 1-8
speed searches 1-8
secant 13-20
sending
aplets 19-4
lists 16-6
programs 18-8
sequence
definition 2-2
sequence variables
Axes 18-32
Grid 18-33
in menu map R-10
Indep 18-33
Labels 18-34
Recenter 18-34
Ycross 18-37
serial port connectivity 19-5
setting
date 18-28
time 18-28
sign reversal 7-6
sine 13-4
inverse hyperbolic 13-9
singular value decomposition
matrix 15-13
singular values
matrix 15-13
sketches
creating 17-5
creating a blank graphic 18-23
creating a set of 17-5
erasing a line 18-20
labeling 17-5
opening view 17-3
sets 17-5
storing in graphics variable 17-5
slope 3-10
soft key labels 1-2
solve
error messages 7-7
initial guesses 7-5
interpreting intermediate guesses
7-7
interpreting results 7-6
plotting to find guesses 7-7
setting number format 7-5
solve variables
axes 18-32
connect 18-32
fastres 18-32
grid 18-33
in menu map R-11
indep 18-33
labels 18-34
recenter 18-34
ycross 18-37
sorting 19-6
aplets in alphabetic order 19-6
aplets in chronological order 19-6
elements in a list 16-9
spectral norm 15-13
spectral radius 15-13
square root 13-5
stack history
printing 18-26
stairsteps graph 6-1
standard number format 1-10
statistics
analysis 10-1
analyzing plots 10-19
angle mode 10-12
calculate one-variable 18-30
calculate two-variable 18-30
data set variables 18-41
data structure 18-41
define one-variable sample 18-30
define two-variable data set's de-
pendent column 18-31
define two-variable data set's in-
dependent column 18-31
defining a fit 10-12
defining a regression model 10-12
deleting data 10-11
editing data 10-10
frequency 18-30
inserting data 10-1 1
plot type 10-18
plotting data 10-15
predicted values 10-20
regression curve (fit) models 10-12
saving data \(10-10\)
sorting data 10-11
specifying angle setting 10-12
toggling between one-variable
and two-variable 10-12
tracing plots 10-19
troubleshooting with plots 10-19
zooming in plots 10-19
statistics variables
Axes 18-32
Connect 18-32
Grid 18-33
Hmin/Hmax 18-33
Hwidth 18-33
in menu map R-12
Indep 18-33

Labels 18-34
Recenter 18-34
S1mark-S5mark 18-35
Ycross 18-37
step size of independent variable 18-37
storing
list elements 16-1, 16-4, 16-5, 16-6
matrix elements \(15-3,15-5,15-6\)
results of calculation 14-2
value 14-2
strings
literal in symbolic operations
13-18
subtract 13-3
summation function 13-11
symbolic
calculations in Function aplet 13-21
defining expressions 2-1
differentiation 13-21
displaying definitions 3-8
evaluating variables in view 2-3
setup view for statistics 10-12
symbolic functions
| (where) 13-18
equals 13-17
ISOLATE 13-17
LINEAR? 13-17
QUAD 13-18
QUOTE 13-18
Symbolic view
defining expressions 3-2
syntax 13-2
syntax errors 18-7

\section*{T}
table
navigate around 3-8
numeric values 3-7
numeric view setup 2-16
tangent 13-4
inverse hyperbolic 13-9
Taylor polynomial 13-7
Orng 2-6
0 step 2-6
tickmarks for plotting 2-6
time 13-14
setting 18-28
time, converting 13-14
times sign 1-20
tmax 18-36
tmin 18-36
too few arguments R-19
tracing
functions 2-8
more than one curve \(2-8\)
not matching plot 2-8
plots 2-8
transmitting
lists 16-6
matrices 15-4
programs 18-8
transposing a matrix 15-13
Triangle Solver aplet 9-1
trigonometric
fit 10-13
functions 13-19
scaling 2-10, 2-14, 2-15
trigonometry functions
ACOT 13-19
ACSC 13-20
ASEC 13-20
COT 13-20
CSC 13-20
SEC 13-20
trng 2-6
truncating values to decimal places
13-16
tstep 2-6, 18-37
Two-Proportion Z-Interval 11-17
Two-Proportion Z-Test 11-11
Two-Sample T-Interval 11-19
Two-Sample T-test 11-14
Two-Sample Z-Interval 11-16 typing letters 1-6

\section*{U}
undefined
name R-19
result R-19
un-zoom 2-11
upper-tail chi-squared probability 13-13
upper-tail normal probability 13-13
upper-tail Snedecor's F 13-13
upper-tail student's t-probability 13-13
USB connectivity 19-5
user defined
regression fit 10-13

\section*{V}
value
recall 14-3
storing 14-2
variables
aplet 14-1
categories 14-7
clearing 14-3
definition 14-1, 14-7, R-2
in equations 7-10
in Symbolic view 2-3
independent 18-36
local 14-1
previous result (Ans) 1-23
printing 18-26
root 18-34
root-finding 3-10
step size of independent 18-37
types 14-1, 14-7
use in calculations 14-3
VARS menu 14-4, 14-5
vectors
column 15-1
cross product 15-11
definition of \(\mathrm{R}-2\)
views 1-18
configuration 1-18
definition of R-3

\section*{W}
warning symbol 1-8
where command (|) 13-18

\section*{X}

Xcross variable 18-37
xrng 2-6
Y
Ycross variable 18-37
yrng 2-6

Z
Z-Interval 11-15
zoom 2-17
axes 2-12
box 2-9
center 2-9
examples of 2-11
factors 2-13
in 2-9
options 2-9, 3-8
options within a table 2-17
out 2-9
redrawing table of numbers op-
tions 2-17
square 2-10
un-zoom 2-11
within Numeric view 2-17
X-zoom 2-9
Y-zoom 2-10
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com```

