HP 6S Scientific Calculator

NOTICE

This manual and any examples contained herein are provided as is and are subject to change without notice. Except to the extent prohibited by law, Hewlett-Packard Company makes no express or implied warranty of any kind with regard to this manual and specifically disclaims the implied warranties and conditions of merchantability and fitness for a particular purpose and Hewlett-Packard Company shall not be liable for any errors or for incidental or consequential damage in connection with the furnishing, performance or use of this manual and the examples herein.

© Hewlett-Packard Company 1999. All rights reserved.

REGULATORY INFORMATION

USA

This calculator has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This calculator generates, uses and can radiate radio frequency energy and may interfere with radio and television reception. In the unlikely event that this equipment does cause interference to radio or television reception, try the following:

- reorient or relocate the receiving antenna
- increase separation between the calculator and the receiver
- consult your dealer or an experienced radio/TV technician for help.

CANADA

This Class B digital apparatus complies with Canadian ICES-003.

Cet appareil numérique de la classe B est conforme à la norme NMB-003.

Contents

1.	Keyboard	5
	General keys	5
	Memory keys	5
	Special keys	5
	Base-n keys	5
	Function keys	6
	Statistical keys	6
2.	The display	7
	Exponent displays	7
3.	Basic functions	8
	Entering numbers	8
	Entering negative numbers	8
	Entering exponential numbers	8
	Arithmetic operator	8
	Equals	8
	Making corrections	9
	Clearing errors	9
	Fixing the number of decimal places displayed	9
	Setting the display to scientific notation	9
4.	Calculations	10
	Precision	10
	Order of operations	10
	Simple calculations	10
	Specifying the order of calculations	10
	Re-using arithmetic operations	11
	Using memory	11
	Fraction arithmetic	11 12
	Percentage calculations	12
5.	Other functions	13
	Converting minutes and seconds to decimal format	13
	Conversion between angles, radians and grads	13
	Trigonometric functions	13
	Hyperbolic functions	14
	Logarithmic functions	14
	Powers and roots	14
	Miscellaneous functions	15 15
	Polar to rectangular coordinates conversions	15
	Rectangular to polar coordinates conversions	10

6.	Binary, octal and hexadecimal values	16
	Binary/octal/decimal/hexadecimal conversions	16
	Binary/octal/decimal/hexadecimal calculations	16
	Logical operations	17
	Radix complement	18
7.	Using statistics	19
	Entering a list of data items to analyse	19
	Using statistical functions on your data	19
8.	Specifications	20
9.	Changing the battery	21

1. Keyboard

General keys

Key	Functions	Page
0 to 9:•	Data entry	8
+-x ÷=	Basic calculation	8
AC	Reset the calculator and clear the memory	9
C/CE	Clear/clear error	9
+/-	Change sign	8

Memory keys

Key	Functions	Page
RM	Retrieve data from the independent memory	11
X→M	Store display data in memory	11
X↔M	Exchange of display data and contents of memory	11
M+	Add displayed data to memory	11

Special keys

Key	Functions	Page
INV	Inverse	7
MODE	Mode	7
	Brackets (parentheses)	10
Exp	Exponent	8
π	Pi	13

Key	Functions	Page
→DEG →DMS	Sexagesimal/decimal notation conversion	13
DRG	Mode of angle DEG→RAD→GRAD→DEG	13
DRG ≯	Angular conversion of data DEG→RAD→GRAD→DEG	13
X↔Y	Register exchange	11
←	Clearing the last entered digit	9
FIX	Fix the number of digits after the decimal point	9
FLO	Floating notation	9
SCI	Scientific notation	9
ENG	Engineering notation	15

Base-n keys

Key	Functions	Page
DEC	Decimal	16
BIN	Binary	16
HEX	Hexadecimal	16
OCT	Octal	16
A to F	Hexadecimal numbers only	16–18
AND	And	17
OR	Or	17
XOR	Exclusive Or	17
XNOR	Exclusive Nor	17
NOT	Not	17
NEG	Negative	18

Function keys

Кеу	Functions	Page
sin	Sine	13
cos	Cosine	13
tan	Tangent	13
sin-1	Arc sine	13
cos	Arc cosine	13
tan-1	Arc tangent	13
HYP	Hyperbolic	14
log	Common logarithm	14
10 ^x	Common antilogarithm	14
<u>In</u>	Natural logarithm	14
e^x	Natural antilogarithm	14
√	Square root	14
x^2	Square	14
ABOD/C	Fraction	12
3√	Cube root	14
<u>[½x]</u>	Reciprocal	12
n!	Factorial	14

Key	Functions	Page
y^x	Power	8
$x\sqrt{y}$	Root	14
R→P	Rectangle to polar	15
P→R	Polar to rectangular	15
%	Percent	12

Statistical keys

Key	Functions	Page
SD	Statistical data mode	19
DATA	Data entry	19
DEL	Data delete	19
On	Sample standard deviation	19
On-1	Population standard deviation	19
\overline{x}	Arithmetic mean	19
n	Number of data	19
$\sum x$	Sum of value	19
Σx^2	Sum of square value	19

2. The display

LCD Diagram

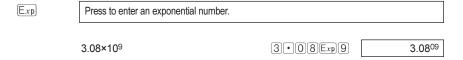
The display shows input data, interim results and answers to calculations. The mantissa section displays up to 10 digits. The exponent section displays up to ± 99 .

Display	Meaning	Page
-E-	Indicates an error	9
INV	[INV] has been pressed to enable inverse key functions	9
M	Indicates that data is stored in the memory	11
HYP	[HYP] has been pressed for hyperbolic functions	14
BIN, OCT, HEX	BASE-N mode has been selected	16
SD	Statistical mode has been selected	19
DEG, RAD, GRAD	DRG has been pressed to switch between the DEG, RAD and GRAD angle types	13
FIX (this does not display)	The number of decimal places of a displayed value has been set	9,15
SCI (this does not display)	Converts a displayed value to exponent display	9
ENG (this does not display)	Converts a displayed value to exponent display of which the exponent is a multiple of 3 and mantissa is between 0 to 999	15
FLO (this does not display)	Convert a SCI or ENG form display to a normal display value	15
45_12	4512/123	11
12.°3'45.6"	Sexagesimal figure 12°3'45.6"	13

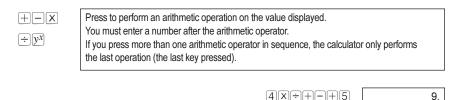
Exponent displays

The display can show calculation results only up to 10 digits long. When an intermediate value or a final result is longer than 10 digits, the calculator automatically switches over to exponential notation. Values greater than 9,999,999 are always displayed exponentially.

3. Basic functions


Entering numbers

1 2 3	Press the number keys to enter numbers.
etc	Press • for a decimal point.
•	- 1000 _ 101 W WOMMEN POWER


Entering negative numbers

+/-	Press after a number to make it negative.	
	5.08+/-	-5.08

Entering exponential numbers

Arithmetic operator

Equals

Press to complete your calculation and display a result. If you press more than once without entering a number, the calculator performs the last arithmetic operation on the value displayed.

4×8

4×8

32.

4 X 8 = =

256.

8 Basic functions

Making corrections

←

Press to delete the last number entered.

C/CE

Press to remove the displayed value, but retain the calculation being performed.

Press after the arithmetic operator to cancel the entire calculation.

5+5+5+6 C/CE $5=$	20.
(5)+(5)+(5)+(0/00)=	0.

Clearing errors

C/CE

Press to clear an error (indicated by "-E-" in the display)—eg, an overflow error—and retain data in the memory.

(AC)

Press to reset the calculator and clear the memory (solar model only).

Fixing the number of decimal places displayed

INV FIX

Press after your arithmetic operation, or after you press (AC), to set the number of decimal places displayed (the number you press is the number of decimal places you want to display). The calculator rounds the number in the display but maintains full precision internally.

INV FIX • Press to reset the floating decimal point.

Setting the display to scientific notation

[NV]

Press to set the display to scientific notation and express the number as a power of 10—eg, .0043 is displayed as $4.3 \cdot ^{0.3}$ to represent 4.3×10^{-3} .

SCI

Press to reset the display to the floating format.

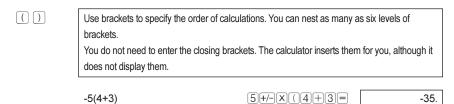
INV FLO

4. Calculations

Precision

The HP 6S scientific calculator calculates answers to 12-digit accuracy, but rounds answers to 10 digits in the display. When it performs a calculation using the result of a previous calculation, it uses the stored 12-digit value and not the 10-digit value displayed.

Order of operations


The HP 6S scientific calculator performs operations in the following order:

Simple calculations

Perform calculations in the same way that you write them on paper.

Specifying the order of calculations

10 Calculations

Re-using arithmetic operations

+	
or	
XX	
etc	

Press the arithmetic operator key twice to re-use an arithmetic operation on a new number. The calculator stores the operation and applies it when you enter another number and press =. Store a calculation for re-use by enclosing it in brackets. Clear the stored arithmetic operation by pressing C/CE.

3+2.3	3++2•3=	5.3
6+2.3	6=	8.3
9+2.3	9=	11.3
4(3×6)	4XX((3X6=	72.
-5(3×6)	5+/-=	-90.

Using memory

The HP 6S scientific calculator has one independent memory.

M is displayed when there is a value in memory.

X↔M

Press C/CE to clear the display or cancel the current calculation without clearing the memory.

(C/CE)

Press X-M to store the displayed value in memory.

AC

Press M+ to add the displayed value to the memory.

OFF ON

Press RM to retrieve the contents of memory—to determine its value or include it in your calculation.

Press INV X+M to display the contents of memory and replace it with the value that was displayed before the keys were pressed.

Press (AC) to clear the display and the memory (solar model).

Press OFF ON to clear the display and the memory (battery model).

Fraction arithmetic

Press to enter fractions.

Press (A) after (=) to display the fraction as a decimal.

In the display, a fraction is reduced to its lowest terms when you press a function command key (x,÷,+,-) or =.

2_61_71. AB_C 2 86

$$(1.5 \times 10^{7}) - [(2.5 \times 10^{6}) \times {}^{3}/_{100}] = \\ 1 \cdot 5 \mathbb{E}_{xp} 7 - 2 \cdot 5 \mathbb{E}_{xp} 6 \times 3 \mathbb{A}_{2} 100 = \\ 3^{456}/_{78} = 8^{11}/_{13}$$

$$3 \mathbb{A}_{2} 4 5 6 \mathbb{A}_{7} 7 8 = \\ 8_{11} 13.$$

(INV)(D/C)

Press these keys to switch between proper and improper fractions.

The answer to a calculation involving both fractions and decimals is displayed as a decimal.

 $41/52 \times 78.9$ $41/8052 \times 78.9 = 62.20961538$

Percentage calculations

INV %	Press to perform percentage calculations.		
	12% of 1500	1500×12INV%=[180.
	660 as a percentage of 880	660÷880NV%=[75.
	2500 plus 15%	2500+15INV%[375.
			2875.
	25% discount on 3500	3500-25INV%[875.
			2625.
	26% of 2200; 26% of 3300; 26%	of 3800;	
	(2200xx26mv%=[572.
		3300=[858.
		3800=	988.
	\$80 last week; \$100 this week: what % is the new value of the old value?		d value?
		$100 \div 80 \text{INV} \% = [$	125.
	What % is 138gm to 150gm and 129gm to 150gm?		
	(138÷÷150(NV%)=[92.
		129=	86.

12 Calculations

5. Other functions

Converting minutes and seconds to decimal format

→ DEG

Press to convert minutes and seconds (sexagesimal figure) to decimal format. When you enter the sexagesimal figure, enter the degrees to the left of the decimal point, and minutes and seconds to the right—the first and second digits to the left of decimal point are minutes and the third and subsequent digits seconds.

[INV] →DMS

Press to convert decimal format to sexagesimal format.

 14°25′36″
 14.42666667

 INV -DMS
 14°25′36″

Conversion between angles, radians and grads

Trigonometric functions

2 • sin 45° x cos 65° = DEG 2 X 4 5 sin X 6 5 cos = DEG 0.597672477

 $\sec (\pi/3 \text{ rad}) = \cos \frac{1}{(\pi/3 \text{ rad})} \qquad \text{RAD } \boxed{\text{INV}} \boxed{\pi} \div \boxed{3} = \cos \boxed{\text{W}} \boxed{\text{RAD}} \qquad 2.$

 $\cos c 30^{\circ} = \frac{1}{\sin 30^{\circ}}$ 30 sin 1/2 DEG 2.

 $\frac{-\sqrt{2}}{2}$ RAD 2 INV $\sqrt{+/-}$ ÷ 2 = \cos RAD 0.760244597

tan -10.6104 = DEG •6 1 0 4 INV tan bes 31.39989118
INV DMS DEG 31°23′59.6″

Hyperbolic functions

Logarithmic functions

$$\log 1.23 \ (= \log_{10} 1.23) =$$
 1 0.089905111

solve
$$4^x = 64 \frac{\log 64}{x} = \frac{\log 64}{64 \log \div 4 \log} = 3$$
.

$$5.6^{2.3} =$$
 $5 \cdot 6 \text{ y}^{3} \text{ 2} \cdot 3 =$ 52.58143837

$$123^{1}/7 \ (=^{7}\sqrt{123}) =$$
 1.988647795 $(78-23)^{-12} =$ $(78-23)^{-12} =$ 1.305111829^{-21}

$$3^{12} + e^{10} =$$
 $3^{12} + 10^{11} =$ 553467.4658

Powers and roots

$$\sqrt[3]{5} + \sqrt[3]{-27} = \sqrt{5 \cdot 10^{3} \cdot 1.290024053}$$

 $(1)(2)(3) + (3)(0)(x^2) =$

1023.

14 Otherfunctions

 $123 + 30^2 =$

Download from Www.Somanuals.com. All Manuals Search And Download.

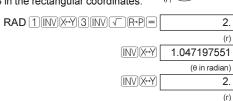
Miscellaneous functions

1.234 + 1.234 =	INV FIX 2 1 • 2 3 4 +	1.23
	1.234=	2.47
	INV FIX •	2.468
1 ÷ 3 + 1 ÷ 3 =	INVFIX21÷3+	0.33
	(INV) SCI	3.33-01
	1÷3=	6.67-01
	[INV] FLO	0.67

Polar to rectangular coordinates conversions

Formula: $x = r \cdot \cos\theta$ $y = r \cdot \sin\theta$ eg, find the value of x and y when the point P is shown as θ =60 and the length r=2 in the polar coordinates

0.66666666


DEG 2 (NV) X+Y 6 (0 (NV) P-R (1.
	(x)
	1.732050808
_	(y)
	1.
	(x)

INV FIX •

Rectangular to polar coordinates conversions

Formula: $r = \sqrt{x^2 + y^2}$ $\theta = \tan^4 \frac{y}{x} (-180^\circ < \theta \ge 180^\circ)$ eg, find the length r and the angle θ in radian when the point P is shown as x=1 and $y=\sqrt{3}$ in the rectangular coordinates.

6. Binary, octal and hexadecimal values

(MODE)

HEX OCT

Use the MODE key to set the number base. When you use bases other than 10, you can only enter numbers valid for the base—eq. in binary mode you can only enter $\boxed{1}$ and $\boxed{0}$.

MODE HEX sets the mode to hexadecimal. In hexadecimal mode, (A) to (F) keys are enabled. Note that b and d in hexadecimal mode are shown in lower case to distinguish them from numbers.

MODE OCT sets the mode to octal.

MODE BIN sets the mode to binary.

MODE DEC sets the mode to decimal.

Note: When using a number base other than 10, any fractional part is truncated.

Binary/octal/decimal/hexadecimal conversions

Conversion of 513₁₀ to binary.

22 MODE BIN BIN 10110.

MODE OCT 26.

5 1 3 MODE BIN E BIN 0.

Conversion to binary mode generates an error if the result is greater than 10 digits.

Conversion of 7FFFFFFF₁₆ to decimal.

MODE HEX 7 F F F F F F MODE DEC 2147483647.

Conversion of 123456₁₀ to octal.

123456 MODE OCT oct 361100.

Conversion of 11001102 to decimal.

MODE BIN 1 1 0 0 1 1 0 MODE DEC 102.

Binary/octal/decimal/hexadecimal calculations

 $\boxed{\text{MODE}} \qquad \qquad 10111_2 + 11010_2 = 110001_2$

HEX OCT MODE BIN 1 0 1 1 + 1 1 0 1 = BIN 11000.

BIN DEC 123₈ x ABC₁₆

=37AF4₁₆ MODE OCT 1 2 3 X MODE HEX A B C = HEX 37AF4. =228084₁₀ MODE DEC 228084.

16 Binary, octal and hexadecimal values

Download from Www.Somanuals.com. All Manuals Search And Download.

Fractional parts of calculation results are truncated.

Multiplication and division are given priority over addition and subtraction in mixed calculations.

$$\begin{array}{c} BC_{16} \times (14_{10} + 69_{10} \\ = 15604_{10} \\ = 3CF4_{16} \\ \\ \boxed{\text{MODE}} \text{HEX B C} \times (\boxed{\text{MODE}} \text{DEC} 14 + 69) = \boxed{15604.} \\ \\ \boxed{\text{MODE}} \text{HEX} \end{array}$$

Logical operations

NOT

You can use the following logical operations to compare two numbers. When performing logical operations, keep the following points in mind:

- You cannot use decimal-base numbers in logical operations.
- The calculator compares the binary versions of the numbers you enter. If the number is
 less than 10 digits long, the calculator fills values to the left of the number with 0s—eg, if
 you compare hexadecimal F1 to octal 4, the calculator compares 0000010001 to
 000000100.
- If you use one number with a logical operation, the calculator compares it to 0000000000.

The logical operators work in the following way:

- 1. The operation compares the binary digits in the corresponding positions in each of the
- 2. The operation returns a binary digit corresponding to each position.
- If you are using a base other than binary, the result is shown in the base of the last number you entered.

The following logical operators are available:

- [AND] returns a 1 for every position where there is a 1 in both numbers.
- OR returns a 1 for every position where there is a 1 in either number.
- XOR returns a 1 for every position where there is a 1 in either number, but not both numbers.
- (XNOR) returns a 1 for every position where there is the same digit in both numbers.
- NOT returns the diminished radix complement.

Press these keys to perform the respective binary, octal, decimal and hexadecimal logical operations.

19₁₆AND 1A₁₆ = 18₁₆ MODE HEX 1 9 AND 1 A = 18. 120₁₆OR 1101₂ = 12D₁₆ MODE (HEX) 1) (2) (0) (OR (MODE (BIN) (1) (1) (0) (1) (=) 100101101. MODE (HEX) 12d. $5_{16}XOR 3_{16} = 6_{16}$ MODE (HEX) (5) (XNOR) (3) (=) 6. 2A₁₆XNOR 5D₁₆ = FFFFFFF88₁₆ MODE (HEX) 2 A (XNOR) 5 D = HEX FFFFFFF88. 1A₁₆ AND 2F₁₆ = A₁₆ MODE (HEX) 1 (A) (AND) (AND) (2) (F) (=) NOT of 1010₂ MODE BIN 1 0 1 1 0 NOT BIN 1111101001.

Radix complement

(INV) (NEG)

Press to calculate and display the radix complement of the hexadecimal, octal or binary number currently displayed—ie, 1000000000-the binary version of the number.

18 Binary, octal and hexadecimal values

7. Using statistics

MODE SD

Press to use statistics mode. Statistics mode allows you to enter data and apply the statistics functions to analyse the data.

Entering a list of data items to analyse

DATA

Press after each data element. When you press DATA, the calculator displays the number of data elements entered.

For example, to enter a list of data consisting of 5, 8 and -3, use the following keystrokes:

[5] DATA [8] DATA [3] +/- DATA

To enter the results of a calculation as a data item, perform the calculation as you would normally, then press DATA when the answer is displayed.

You can amend the data entered into the calculator:

To cancel the last entry you made, press \(\tilde{\mathcal{CCE}}\) before you press \(\tilde{\mathcal{DATA}}\). Note that when you press \(\tilde{\mathcal{CCE}}\), \(\mathcal{O}\) is displayed. Press \(\tilde{\mathcal{INV}} \)\(\mathcal{D}\) to display the number of data elements stored in the calculator. To delete a data item you entered previously, enter the value again, then press \(\tilde{\mathcal{INV}}\)\(\tilde{\mathcal{DEL}}\).

Using statistical functions on your data

[NV][n]

 σ_{n-1}

 $\overline{x} \Sigma x$ Σx^2

Once you enter a list of data values you can use the following statistical functions:

 $\overline{|NV|}$ The number of data elements entered

Sample standard deviation

[NV] On Population standard deviation

 $\overline{\text{INV}}$ $\overline{\overline{x}}$ Arithmetic mean

 $[INV]\Sigma x$ The sum of each data element

 $(INV)(\Sigma x^2)$ The sum of the data elements squared

DATA Find the sample standard deviation of the data 5, 9 13 and 6.

MODE SD 5 DATA 9 DATA 1 3 DATA 6 DATA (INV On-1 sd 3.593976442

4, 1, 82, 59, 2, and 103 were entered, but 59 was entered by mistake. It should have been 58. To fix the mistake, enter the wrong number, 59, and INV DEL, then enter the right number, 58, and DATA.

8. Specifications

Scientific functions/input range

(-25x10 ⁷ πrad,<5x10 ¹⁰ grad	sinx / cosx / tanx	x <4.5x10 ¹⁰ degrees	
sin¹x / cos⁻¹x x ≥1 tam¹x x <10¹¹00 sinhx / coshx x ≥230.2585092 tanhx x <10¹¹00 sinh⁻¹x x <5x10³9 cosh⁻¹x x ≥x<5x10³9 tanh⁻¹x x <1 logx / lnx 10⁻³9≥x<10¹00 ex -10¹00 <x≥230.2585092< th=""> 10x -10¹00<x<200< th=""> y² →30 y² y² y² y² y² y² x√y y² y² y² <tr< td=""><td></td><td></td></tr<></x<200<></x≥230.2585092<>			
tan ⁻¹ x	sin-1x / cos-1x	,	
sinhx / coshx x ≥230.2585092 tanhx x <10100 sinh-1x x <5x1099 cosh-1x x ≥x<5x1099 tanh-1x x <1 logx / lnx 10-99≥x<10100 ex -10100 <x≥230.2585092< th=""> 10x -10100<x<100< th=""> yx y>0→10100<x<0gy<100< th=""> y=0→x>0 y<0→x y<0→x 100 x√y y>0→x≠0:-10100 x√y y>0→x≠0:-10100 y<0→x: odd number or ¹/₂n +1 (n: integer) x√y y>0→x≠0:-10100 x² x <10100 x² x <10100 x² x <10100 x² x <10100 x x <10100 x x <10100 REC→POL x x POL→REC y x x x x x x x x x x x x x x x x </x<0gy<100<></x<100<></x≥230.2585092<>			
tanhx	sinhx / coshx		
sinh-1x x <5x1099 cosh-1x x ≥x<5x1099	tanhx		
cosh-1x x ≥x<5x1099 tanh-1x x <1 logx / Inx 10-99≥x<10100 ex -10100 <x≥230.2585092< th=""> 10x -10100<x<100< th=""> yx y>0→10100<x<enclose< th=""> y>0→x>0 y=0→x>0 y<0→x 1 (n : integer) x√y y>0→x≠0: -10100 y>0→x 1 (n : integer) y>0→x 0 = 0 y<0→x: odd number or 1/n (n : integer) y y<0→x: odd number or 1/n (n : integer) x² x <10100 x² x <10100 x² x <10100 1/x x <10100 1/x x <10100 1/x x <10100 REC→POL x <2 + y<2 < 10100 POL→REC 9 <4.5x1010 degrees (<25x107rad, <5x1010grad) 0≥x≥10100 DEG→DMS x ≥107 π 10 digits Binary Positive: 0≥x≥1111111111 Negative: 0>0000000000000000000000000000000000</x<enclose<></x<100<></x≥230.2585092<>	sinh-1x	* *	
tanh-1x	cosh-1x	x ≥x<5x10 ⁹⁹	
logx / lnx 10-99≥x<10 ¹⁰⁰ e ^x -10 ¹⁰⁰ <x≥230.2585092< th=""> 10x -10¹⁰⁰<x<100< th=""> yx y>0→10¹⁰⁰<x<•logy<100< th=""> y=0→x>0 y<0→x+0: -10¹⁰⁰<1/x•logy<230.2582092 x√y y>0→x≠0: -10¹⁰⁰<1/x•logy<230.2582092 y=0→x>0 y<0→x: odd number or ¹/n (n: integer) √x 0≥x<10¹⁰⁰ x² x <10¹⁰⁰ ³√x x <10¹⁰⁰ 1/x x <10¹⁰⁰ 1/x x <10¹⁰⁰ REC→POL √x² + y²<10¹⁰⁰ POL→REC θ <4.5x10¹⁰ degrees (<25x10⁷rad, <5x10¹⁰grad) 0≥r≥10¹⁰⁰ DMS→DEG x ≥10⁷ π 10 digits Binary Positive: 0≥x≥11111111111 Negative: 1000000000≥x≥1111111111 Negative: 0≥x≥999999999 Negative: 0≥x≥999999999 Negative: 0≥x≥999999999 Negative: 0≥x≥2540BE3FF</x<•logy<100<></x<100<></x≥230.2585092<>	tanh-1x		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	logx / lnx		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	e ^x	-10 ¹⁰⁰ <x≥230.2585092< td=""></x≥230.2585092<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10x		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	yx	y>0→10 ¹⁰⁰ <x•logy<100< td=""></x•logy<100<>	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		y=0→x>0	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	x√y	y>0→x≠0:-10 ¹⁰⁰ <1/x•logy<230.2582092	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		y=0→x>0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1 ***		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
n! 0≥x<69 (x: integer) REC→POL $√x^2 + y^2 < 10^{100}$ POL→REC $ θ < 4.5x10^{10} $ degrees ($<25x10^7 $ rad, $<5x10^{10} $ grad) DMS→DEG $ x ≥ 10^{100}$ DEG→DMS $ x ≥ 10^7$ $π$ 10 digits Binary Positive: $0 ≥ x ≥ 1111111111$ Negative: $1000000000 ≥ x ≥ 1111111111$ Octal Positive: $0 ≥ x ≥ 3777777777$ Negative: $4000000000 ≥ x ≥ 7777777777$ Negative: $0 ≥ x ≥ 9999999999$ Negative: $-99999999999 ≥ x < 0$ Hexadecimal Positive: $0 ≥ x ≥ 2540BE3FF$		x <10 ¹⁰⁰	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/x	x <10 ¹⁰⁰ (x≠0)	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	n!		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	REC→POL	•	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	POL→REC	θ <4.5x10 ¹⁰ degrees	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			
π 10 digits Binary Positive: 0≥x≥1111111111 Negative: 1000000000≥x≥1111111111 Octal Positive: 0≥x≥377777777 Negative: 4000000000≥x≥777777777 Decimal Positive: 0≥x≥9999999999 Negative: -999999999≥x<0		1.1	
Binary Positive: 0≥x≥1111111111 Negative: 100000000≥x≥1111111111 Octal Positive: 0≥x≥3777777777 Negative: 400000000≥x≥777777777 Decimal Positive: 0≥x≥999999999 Negative: -999999999≥x<0	DEG→DMS		
Negative: 1000000000≥x≥1111111111 Octal Positive: 0≥x≥3777777777 Negative: 4000000000≥x≥777777777 Decimal Positive: 0≥x≥9999999999 Negative: -9999999999≥x<0		<u> </u>	
Octal Positive: 0≥x≥377777777 Negative: 4000000000≥x≥777777777 Decimal Positive: 0≥x≥9999999999 Negative: -999999999≥x<0	Binary		
Negative: 400000000≥x≥7777777777 Decimal Positive: 0≥x≥9999999999 Negative: -999999999≥x<0		- C	
Decimal Positive: 0≥x≥999999999 Negative: -999999999≥x<0	Octal		
Negative: -9999999999≥x<0		<u> </u>	
Hexadecimal Positive: 0≥x≥2540BE3FF	Decimal		
		Negative: -9999999999≥x<0	
Negative: FDABF41C01≥x≥FFFFFFFF	Hexadecimal	Positive: 0≥x≥2540BE3FF	
		Negative: FDABF41C01≥x≥FFFFFFFFF	

20 Specifications

Read-out

Liquid crystal display suppressing unnecessary 0s (zeros).

Power source

- Silicon solar cell (solar model only)
- Alkaline manganese battery (LR43)—1 battery for the solar model; 2 batteries for the non-solar model.

Ambient Temperature range

0°C-40°C (32°F-104°F).

Dimensions

127mmH x 72mmW x 8.5mmD (not including the wallet).

Net weight

91g (including wallet).

9. Changing the battery

Replace the battery when:

Replace the battery (alkaline manganese battery (LR43)—1 in the solar model and 2 in the non-solar model) when the display darkens under poor light condition, or disappears, and cannot be restored by pressing AC.

- To replace the battery:
 - Remove the four screws at the back of the calculator. Don't loose the screws.
 - Remove the back panel.
 - 3. Remove the old battery. Lever it out with a sharp object like a pen.
 - Install the new battery with the + sign at the uppermost.
 - 5. Replace the back panel and the screws.
 - 6. Check the display to make sure it is showing **0** in DEG mode.

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com