Errata

Title & Document Type: 3577A Network Analyzer Service Manual

Manual Part Number: 03577-90012

Revision Date: June 1987

HP References in this Manual

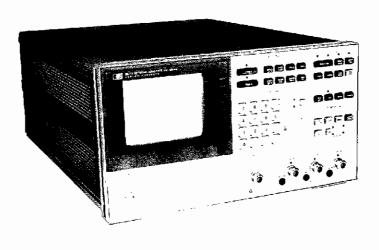
This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:


www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

SERVICE MANUAL

NETWORK ANALYZER 3577A

SERVICE MANUAL

MODEL 3577A NETWORK ANALYZER

Serial Number: 2702A12977

IMPORTANT NOTICE

This manual applies to instruments with the above serial number and greater. As changes are made in the instrument to improve performance and reliability, the appropriate pages will be revised to include this information.

WARNING

To prevent potential fire or shock hazard, do not expose instrument to rain or moisture.

> Manual Part No. 03577-90012 Microfiche Part No. 03577-90212

Copyright ©, 1983, 1985, 1987 Hewlett-Packard Co. 8600 Soper Hill Road, Everett, Washington 98205-1298 U.S.A.

Printed: June 1987

SAFETY SUMMARY

The following general safety precautions must be observed during all phases of operation, service, and repair of this instrument. Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design, manufacture, and intended use of the instrument. Hewlett-Packard Company assumes no liability for the customer's failure to comply with these requirements. This is a Safety Class 1 instrument.

GROUND THE INSTRUMENT

To minimize shock hazard, the instrument chassis and cabinet must be connected to an electrical ground. The instrument is equipped with a three-conductor ac power cable. The power cable must either be plugged into an approved three-contact electrical outlet or used with a three-contact to two-contact adapter with the grounding wire (green) firmly connected to an electrical ground (safety ground) at the power outlet. The power jack and mating plug of the power cable meet International Electrotechnical Commission (IEC) safety standards.

DO NOT OPERATE IN AN EXPLOSIVE ATMOSPHERE

Do not operate the instrument in the presence of flammable gases or fumes. Operation of any electrical instrument in such an environment constitutes a definite safety hazard.

KEEP AWAY FROM LIVE CIRCUITS

Operating personnel must not remove instrument covers. Component replacement and internal adjustments must be made by qualified maintenance personnel. Do not replace components with power cable connected. Under certain conditions, dangerous voltages may exist even with the power cable removed. To avoid injuries, always disconnect power and discharge circuits before touching them.

DO NOT SERVICE OR ADJUST ALONE

Do not attempt internal service or adjustment unless another person, capable of rendering first aid and resuscitation, is present.

DO NOT SUBSTITUTE PARTS OR MODIFY INSTRUMENT

Because of the danger of introducing additional hazards, do not install substitute parts or perform any unauthorized modification to the instrument. Return the instrument to a Hewlett-Packard Sales and Service Office for service and repair to ensure that safety features are maintained.

DANGEROUS PROCEDURE WARNINGS

Warnings, such as the example below, precede potentially dangerous procedures throughout this manual. Instructions contained in the warnings must be followed.

WARNING

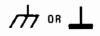
Dangerous voltages, capable of causing death, are present in this instrument. Use extreme caution when handling, testing, and adjusting.

Α

SAFETY SYMBOLS

General Definitions of Safety Symbols Used On Equipment or In Manuals.

Instruction manual symbol: the product will be marked with this symbol when it is necessary for the user to refer to the instruction manual in order to protect against damage to the instrument.


Indicates dangerous voltage (terminals fed from the interior by voltage exceeding 1000 volts must be so marked).

Protective conductor terminal. For protection against electrical shock in case of a fault. Used with field wiring terminals to indicate the terminal which must be connected to ground before operating equipment.

Low-noise or noiseless, clean ground (earth) terminal. Used for a signal common, as well as providing protection against electrical shock in case of a fault. A terminal marked with this symbol must be connected to ground in the manner described in the installation (operating) manual, and before operating the equipment.

Frame or chassis terminal. A connection to the frame (chassis) of the equipment which normally includes all exposed metal structures.

Alternating current (power line).

Direct current (power line).

Alternating or direct current (power line).

WARNING

The WARNING sign denotes a hazard. It calls attention to a procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in injury or death to personnel.

The CAUTION sign denotes a hazard. It calls attention to an operating procedure, practice, condition or the like, which, if not correctly performed or adhered to, could result in damage to or destruction of part or all of the product.

NOTE:

The NOTE sign denotes important information. It calls attention to procedure, practice, condition or the like, which is essential to highlight.

SECTION I GENERAL INFORMATION

Table of Contents

1-1	Introduction	,	1
1-2	Manual/Instrument Identification	1-	3
1-3	Accessories Supplied		
1-4	Description		
1-5	Options		
1-6	Specifications		
1-7	Safety Considerations		
1-8	Grounding		
1-9	Recommended Test Equipment		
1-10	Operator Maintenance		
	List of Tables		
1-1	Specifications	1-	6
1-2	Recommended Test Equipment		
	List of Figures		
1-1	3577A Network Analyzer with Accessories Supplied	1-1	2

SECTION I GENERAL INFORMATION

1-1 INTRODUCTION

This service manual contains all the information required by service personnel to test, adjust, and service the HP 3577A Network Analyzer.

Listed in the title page of this manual is a microfiche part number. This number can be used to order 4 by 6 inch microfilm transparencies of the manual. Each microfiche contains up to 96 photoduplicates of the manual pages. The microfiche package also includes the latest manual change supplements.

The manual is divided into eight sections. Each section and topic is listed below.

Section	Topic	Includes
1	General Information	-Specifications -Test Equipment -Options
II	Fault Isolation	-Power-On Self Tests -Confidence Tests -Isolation to Board Level.
111	Performance Tests	-Verifies Specs in Table 1-1.
1V	Adjustments	-Adjusts to Specs in Table 1-1.
V	Replaceable Parts	-List of all parts in HP 3577A.
VI	Backdating	-Changes which adapts the manual to older units.
VII	Circuit Descriptions	-Explains Theory of Operation.
VIII	Service	-Individual circuit board troubleshooting data.

GENERAL INFORMATION MODEL 3577A

Figure 1-1. 3577A Network Analyzer with accessories supplied.

1-2 MANUAL/INSTRUMENT IDENTIFICATION

The instrument identification serial number is located on the rear panel of the instrument. Hewlett-Packard uses a two-section serial number consisting of a four digit prefix and a five digit suffix separated by a letter designating the country in which the instrument was manufactured (A = U.S.A; G = West Germany; J = Japan; U = United Kingdom.). The prefix is the same for all identical instruments and changes only when a major instrument change is made. The suffix, however, is assigned sequentially and is unique to each instrument.

This manual applies to instruments with serial numbers indicated on the title page. If changes have been made since this manual was printed, a yellow "Manual Change" supplement will define the changes and explain how to adapt the manual to the newer instruments. In addition, backdating information contained in Section VI adapts the manual for instruments with serial numbers lower than those listed on the title page.

1-3 ACCESSORIES SUPPLIED

The following accessories are supplied with the HP 3577A Network Analyzer.

1-4 DESCRIPTION

The HP 3577A measures network performance in the frequency range of 5 Hz to 200 MHz. Each of the three test input ports, R, A and B, provide 100 dB of dynamic range. A front panel "line stretcher" is available with a readout in meters and centimeters. The line stretcher enables the electrical length of the R channel to be changed to match the electrical length of the test port used. This allows compensation for differences in test cable lengths and to measure the electrical length of networks under test.

Each of the three test inputs can be displayed on one or both traces. The traces are labeled Trace 1 and Trace 2. Trace data for each trace is digitally stored as complex data in a trace memory. This results in the ability to display the same data in any of seven display formats. The HP 3577A display has no etched lines. The graticule is drawn as a part of the display operation. No screen overlays are required for polar or Smith charts.

The trace storage capability allows the HP 3577A to perform complex trace arithmetic and one port correction routines. Other features include adjustable receiver bandwidth, complex trace averaging, and automatic plot routines.

The HP 3577A source output frequencies can be swept from 5 Hz to 200 MHz. The same synthesizer drives both the source and input channel tuners, whereby the source and receiver are always tuned to the same frequency. The source and receiver frequencies are coupled, therefore only linear devices can be characterized. The source output level can be set between +15 dBm and -49 dBm. The source amplitude level can also be swept.

The HP 3577A features menu-driven operation, using eight "softkeys." The menus are accessed by pressing the labeled hardkeys, and the appropriate softkeys select the desired parameters for the hardkey function. Marker and sweep parameters are presented on the 3577A display.

1-5 OPTIONS

There are no options for the HP 3577A which alter the electrical specifications. All options are standard exterior hardware options. The available options are:

		-hp- Part Number
Option 907:	Front Handle Kit	5061-9691
Option 908:	Rack Mounting Kit	5061-9679
Option 909:	Front Handle and Rack Mount Kit	5061- 9 685
Option 910:	Additional Operating Manual	03577-90000
	Additional Service Manual	03577-90012

If your instrument has a serial number prefix of 2333A or lower, see the Manual Backdating section for correct kit part numbers.

1-6 SPECIFICATIONS

The 3577A specifications are listed in Table 1-1, Specifications. The specifications describe the instrument's warranted performance. Specifications apply after a warm up period of one hour except as noted otherwise. Supplemental characteristics are intended to provide information useful in applying the instrument by giving typical, but non-warranted, performance specifications. Supplemental characteristics are denoted as "typical", "nominal", or "approximately."

1-7 SAFETY CONSIDERATIONS

The HP 3577A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation.

1-8 GROUNDING

The following connections on the HP-IB connector are tied to Protective Earth Ground: pins 12 and 18 through 24 of the edge connector, and the HP-IB cable shield. The instrument frame, chassis, covers, and all exposed metal surfaces are connected to the protective earth terminal. The output and receiver N-connector outer conductors are at earth ground. The maximum safe float voltage for these terminals is 25 Volts peak.

WARNING

DO NOT interrupt the protective earth ground or "float" the HP 3577A. This action could expose the operator to potentially hazardous voltages!

1-9 RECOMMENDED TEST EQUIPMENT

The equipment required to maintain the HP 3577A is listed in Table 1-2, Recommended Test Equipment. Other equipment may be substituted for the recommended model if it meets or exceeds the listed critical specifications. When substitutions are made, the user may have to modify the performance and adjustment procedures to accommodate the different operating characteristics.

1-10 OPERATOR MAINTENANCE

Operator maintenance is limited to replacing the line fuse, and cleaning the fan filter. There are no operator controls inside the HP 3577A.

WARNING

To avoid serious injury, be sure that the ac line power cord is disconnected before removing or installing the ac line fuse.

Only service trained personnel should perform any instrument repair.

WARNING

Under no circumstances should an operator remove any covers, screws, shields, or in any other way enter the HP 3577A. There are no operator controls inside the HP 3577A Network Analyzer.

Refer to the Safety Symbol chart in the preface section for all applicable instrument and manual safety symbols.

Table 1-1. Specifications

SOURCE CHARACTERISTICS

Frequency Characteristics

Frequency Range: 5 Hz to 200 MHz. Frequency Resolution: 0.001 Hz. Stability: $\pm 5 \times 10^{-8}$ /day, 0 to 55°C

Output Characteristics

Level Range: +15 dBm to -49 dBm (1.26 Vrms to 793 μ Vrms; 2 dBV to -62 dBV) into a 50 Ω load.

Resolution: 0 1 dB. Entry Units: dBm, dBV, V

Accuracy: ±1 dB at +15 dBm and 100 kHz. Below +15 dBm, add the greater of ± 0.02 dB/dB or 0.2 dB

Flatness: 1.5 dBp-p from 5 Hz to 200 MHz. Impedance: 50Ω; >20 dB return loss at all

RF Output Connector: 50 Ω Type N female Spectral Purity:

Phase Noise (in 1 Hz Bandwidth): < - 70 dBc at offset frequencies from carrier of 100 Hz to 20 kHz.

Harmonics: < - 30 dBc Non-Harmonic Spurious Signals: < -50 dBc or -70 dBm whichever is

greater.

Reverse Power Protection: Output is automatically opened at a signal level of approximately $+22 \text{ dBm } (50\Omega)$, or $\pm 4 \text{ Vdc}$, or greater applied to the source output. Source output is reconnected with the Clear Trip function.

Sweep Characteristics

Linear Frequency:

Range: 5 Hz to 200 MHz. Entry: Start/stop or center/span

frequencies

Span: O Hz or 0.01 Hz to 200 MHz, phase continuous.

Sweep Time: 100 ms/span to 6553 s/span Direction: Increasing or decreasing

frequency

Log Frequency (segmented linear approximation):

Range: 5 Hz to 200 MHz. Entry: Start/stop frequencies. Span: 0.01 Hz to 200 MHz, phase

continuous.

Log Accuracy: 2%. Sweep Time: 200 ms/span to 6553 s/span. Sweep Direction: Increasing frequency. Alternate Frequency: Sweep alternates between two separate start/stop frequencies using linear sweep only.

CW: Frequency is fixed. Data is updated with a selectable sample time from 1ms to 16 s.

Log Amplitude (fixed frequency):

Range: +15 dBm to -49 dBm Entry: Start/stop level in dBm or dBV Sweep Time: 1 ms/step to 16 s/step Total sweep time/span depends upon total number of steps and time/step

Sweep Modes: Continuous, single, manual

Trigger Modes: Free run, immediate, line,

RECEIVER CHARACTERISTICS

Input Characteristics

Frequency Range: 5 Hz to 200 MHz. Inputs: Three receiver inputs (A, B and R) Input Impedance: Selectable 50 Ω with >25 dB return loss, or 1 M Ω in parallel with approximately 30 pF.

Full Scale Input Level:

Input	Input Attenuation	
Impedance	O dB	20 dB
50 Ω	– 20 d8m	0 dBm
1 ΜΩ	-33 dBV (22.4 mV)	– 13 dBV (224 mV)

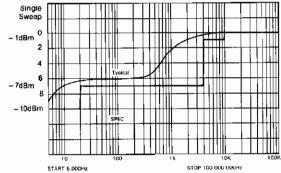
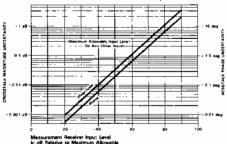


Table 1-1. Specifications (Cont)

Input Damage Level (approximate): 50 Ω . +30 dBm or 25 Vdc. 1 M Ω : +16.9 dBV(7 Vrms) or 25 Vdc The 50 Ω input impedance automatically switches to 1 MO at approximately +20 dBm, and can be reset with the clear trip function.

Input Connectors: 50 Ω Type N female. Resolution Bandwidth: Selectable 1 kHz. 100 Hz, 10 Hz, or 1 Hz.


Sensitivity(Due to noise and internal crosstalk between source and receiver inputs):

Resolution	Minimum	Minimum Fre	eq 30 kHz	30 kHz - 20 30 kHz - 20	
Bandwidth	Freq.	Full Scale Input		Full Scale Input	
		0 dBm - 13 dBV (20 dB atten)	- 20 dBm - 33 dBV (0 dB atten)	0 dBm - 13 dBV (20 dB attent	20 dBm - 33 dBV (0 dB atten)
1 Hz 10 Hz 100 Hz 1 kHz	100 Hz 100 Hz 500 Hz 5 kHz	- 110 dBm - 100 dBm - 90 dBm - 80 dBm	- 130 dBm 120 dBm 110 dBm 100 dBm	- 110 dBm - 110 dBm - 105 dBm - 95 dBm	- 130 dBm - 130 dBm - 125 dBm - 115 dBm

Residual Responses: > 100 dB below full scale input, except for crosstalk error limits, L.O. feedthrough, and ac line and fan related spurious signals.

Crosstalk Error Limits:

(>100 dB isolation between inputs)

L.O. Feedthrough: < -33 dB below maximum input level.

AC Line and Fan Related Spurious Signals: < - 100 dBm below 1 kHz input frequency.

Electrical Length/Reference Plane

Extension: Provides equivalent electrical line length, or delay at inputs A, B and R. Range: -3×10^8 m to $+3 \times 10^8$ m, or +1 s to -1 s.

Resolution: 5 digits or 0.1 cm (3.3 ps)

whichever is greater.

Accuracy: ± 0.1 cm or $\pm 0.02\%$

whichever is greater.

Magnitude Characteristics

Range: Full Scale Input to Sensitivity. Resolution:

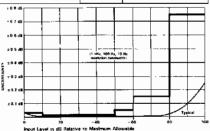
Marker: 0 001 dB (log); 5 digits (linear) Display: 0.01 dB/div to 20 dB/div (log

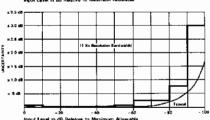
absolute);

0.01 dB/div to 200 dB/div (log ratio),

0 1 nV/div to 10 V/div (linear absolute); 10 -10/div to 10²⁰/div (linear ratio).

Display Units: dB, dBm, dBV, V, and linear ratio.


Accuracy (at 100 kHz, 25° C, and Full


Scale Input):
Absolute (A,B,R): ±0.2 dB.
Ratio (A/R,B/R,A/B): ±0.15 dB (50 Ω); \pm 0.2 dB (1 M Ω).

Accuracy and frequency response errors, and effects of different input attenuation can be calibrated out with normalization.

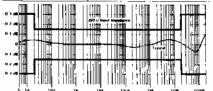
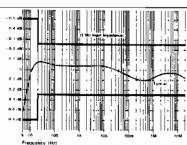
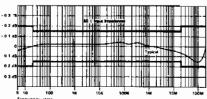
Dynamic Accuracy:

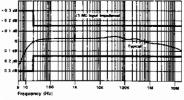
Error		Input Level Relative to	
Resolution Bandwidth		Full Scale	
1 kHz, 100 Hz, 10 Hz	1 Hz	Input	
±.04 dB	± .04 dB	0 dB to	-10 dB
±.02 dB	±.02 dB	10 dB to	-50 dB
±.05 dB	± 05 dB	-50 dB to	-60 dB
± 15 dB	± 25 dB	-60 dB to	-80 dB
±.75 dB	±.75 dB	-80 dB to	-90 dB
±.75 dB	±3.00 dB	-90 dB to	- 100 dB

Frequency Response: Specifications apply when inputs are driven from a 50 \Omega source impedance

Absolute (A,B,R):

Frequency	Error	
	50 Ω Input	1 MΩ Input
20 Hz to 20 MHz	.3 dB pp	.5 dB pp
5 Hz to 200 MHz 5 Hz to 20 MHz	.6 dB pp	1 dB pp
	TTITO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	


Table 1-1. Specifications (Cont)

Ratio (A/R,B/R,A/B):

Frequency	Err	or*
, ,	50 Ω Input	1 MΩ Input
20 Hz to 20 MHz 5 Hz to 200 MHz 5 Hz to 20 MHz	.3 dB pp .4 dB pp	.3 dB pp .6 dB pp

*For unequal 50 Ω input attenuation add 0.15 dB pp (20 Hz to 20 MHz), 0.3 dB pp (5 Hz to 200 MHz). For unequal 1 M Ω input attenuation add 0.2 dB pp (20 Hz to 20 MHz), 0.4 dB pp (5 Hz to 20 MHz), 0.4 dB pp (5 Hz to 20 MHz).

Reference Level:

Range: -207 dBm to +33 dBm (-220 dBV to +20 dBV) (log absolute), - 400 dB to + 400 dB (log ratio); 0 V to 10 V (linear absolute); 0 to 10²⁰ (linear ratio). Resolution: 0.001 dB (log);

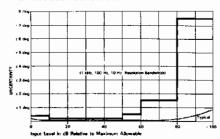
5 digits (linear).

Stability:

Temperature: Typically $< \pm 0.02 \text{ dB/°C}$. Time: Typically $< \pm 0.05 dB/hour$ at

Phase Characteristics (A/R,B/R,A/B):

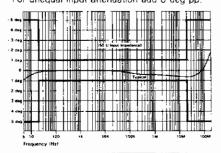
Range: ± 180 deg. Resolution:

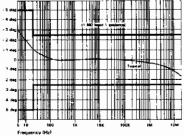

Marker: 0.005 deg (0.0001 rad) Display: 0.01 deg/div to 200 deg/div (0.00018 rad/div to 3.49 rad/div). Display Units: degrees, radians.

Accuracy (at 100 kHz, 25° C, and Full Scale Input): \pm 2.0 deg

Accuracy and frequency response errors, and effects of different input attenuation can be calibrated out with normalization. Dynamic Accuracy:

Error*	Input Level Relative to Full Scale Input
±.4 deg ±.2 deg ±.5 deg	0 dB to -10 dB -10 dB to -50 dB -50 dB to -60 dB
±1.5 deg ±1.5 deg ±7.5 deg	- 60 dB to - 80 dB - 80 dB to - 100 dB


*Specifications do not apply below - 60 dB in a 1 Hz Resolution Bandwidth.



Frequency Response: Specifications apply when inputs are driven from a 50 \Omega source impedance.

Frequency	Erri	or *
	50 Ω Input	1 MΩ Input
20 Hz to 20 MHz 5 Hz to 200 MHz 5 Hz to 20 MHz	2 deg pp 10 deg pp	5 deg pp

*For unequal input attenuation add 8 deg pp.

Table 1-1. Specifications (Cont)

Crosstalk: Specified under Input Characteristics.

Reference Level:

Range: -500 deg to +500 deg (-8.7 rad to +8.7 rad)

Resolution: 0.01 deg.

Stability:

Temperature: Typically $<\pm 0.05$ deg/°C. Time: Typically $<\pm 0.05$ deg/hour at 25°C.

Polar

Characteristics

Range, Resolution, Display Units, Dynamic Accuracy, Frequency Response, Uncertainty, Crosstalk, Reference Level, and Stability specifications are the same as the corresponding magnitude and phase characteristics.

Full Scale Magnitude Range: Absolute (A,B,R): 0.1 nV to 10 V. Ratio (A/R,B/R,A/B): 10⁻¹⁰ to 10²⁰.

Real/Imaginary Characteristics

> Range, Dynamic Accuracy, Frequency Response, Uncertainty, Crosstalk, Stability specifications are the same as the corresponding magnitude and phase characteristics.

Resolution:

Marker: 5 digits. Display: 0.1 nV/div to 10 V/div for absolute; 10⁻¹⁰ to 10²⁰ for ratio. Display Units: V and linear ratio.

Reference Level:

Range: \pm 10 V for absolute; \pm 10²⁰ for ratio.

Resolution: 5 digits.

Delay Characteristics

(Linear Frequency Sweep; A/R, B/R, A/B; 50 Ω input impedance)

> Range: Group delay is a computed parameter, defined by the equation

> > $t_{g} = -\frac{\Delta \phi}{2\pi \Delta f}$

Minimum: The minimum delay time is given by the expression

 1.4×10^{-5}

Aperture [Hz]

Maximum: The maximum delay is given by the expression

> N-12 × Span [Hz]

where N = number of points per sweep

(51,101,201,401).

Effective Range: 1 ps to 20,000 s.

Resolution:

Marker: Same as minimum delay time or 5

digits, whichever is greater.

Display: 0.01 ns/div to 1000 s/div

Aperture: Selectable 0.5%, 1%, 2%, 4%,

8%, 16% of frequency span.

Display Units: s.

Accuracy:

.13 s ±2 ns (freq [Hz])2

or

Dynamic Phase Accuracy ±2 пs

360 × Aperture [Hz]

whichever is greater. The $\frac{.13 \text{ s}}{(\text{freq [Hz]})^2}$

±2 ns term can be

calibrated out with normalization.

Crosstelk: Determined by the expression

Phase Crosstalk

360 × Aperture [Hz]

Reference Level:

Range: ± 10³ s. Resolution: 5 digits.

Stability:

Temperature: Determined by the expression

Phase Temperature Stability

360 × Aperture [Hz]

Time: Determined by the expression

Phase Time Stability 360 × Aperture [Hz]

DISPLAY CHARACTERISTICS

Annotation: Start/stop, center/span or CW frequency, source level, scale/div, reference level, delay aperture, marker data, and soft key functions.

Graticules: Rectangular logarithmic and linear, polar, and Smith. All graticules are

electronically generated.

Traces: Two simultaneous traces may be present with a rectangular graticule One trace with polar or Smith graticules

Markers: Each trace has one main marker and an offset marker. Markers indicate data at corresponding trace coordinates in the same units as used to set the Reference Level. Markers can be used to modify certain display parameters. Marker resolution is the same as horizontal display resolution Reference Line Position:

Rectangular Graticule: 0% to 100% full scale deflection in 0.05% increments. Polar/Smith Chart Graticule: ±500 deg in

0.001 deg increments.

Data Storage: Measured data can be stored in vector format in non-volatile storage registers D1,D2,D3,D4. Stored data can be redisplayed later or operated on with Vector Math.

Table 1-1. Specifications (Cont)

Vector Math: Input Magnitude and Phase Data, Stored Data, and User Defined Constants and Functions can be mathematically combined into expressions which define displayed or stored data. Mathematical operations are: add, subtract, multiply, and

Calibration:

Normalization: Both traces can be normalized to measured data with full accuracy, and resolution. Scale factors can be changed after normalization without affecting calibration. Normalize(Short): Compensates for frequency response errors Requires a short termination.

One Port Part Cal: Compensates for directivity errors and frequency response errors. Requires open and load terminations. One Port Full Cal: Compensates for directivity, frequency response and source match errors. Requires open, short, and load terminations.

Noise Averaging:

Type: Exponentially weighted vector averaging Factor: Selectable 1(off), 4,8,16,32,64,128,256. The current trace An is always displayed and updated at the sweep rate according to the expression $A_n = S_n/F + (F-1)(A_n-1)/F$, where $S_n =$ current input signal, F = averaging factor, A_{n-1} = previously averaged trace.

Averaging Factor is fixed at 1 in alternate

sweep.
Linear Phase Slope Compensation: Provides linear phase slope offset in deg/span. Range: -72,000 deg./span to +72,000 deg./span (- 1256 rad/span to

+ 1256 rad/span).

Resolution: 5 digits or 0.001 deg whichever is greater.

Accuracy: 0.02%

Autoscale: Automatically adjusts the reference level and scale/div. of the displayed measurement

Measured No. of Points per Sweep: Logarithmic frequency, 401; linear frequency, 51,101,201,401; CW frequency, 1. Measure No. of Steps per Sweep: Logarithmic Amplitude Sweep, 5,10,20,

50,100,200,400

Display Resolution: Horizontal and vertical. Rectangular: 1600 points. Polar: 1200 points.

PROGRAMMING CHARACTERISTICS

Capability: Remote programming is via the Hewlett-Packard Interface Bus (HP-IB)* for all 3577A front panel control functions, except the ac line switch, display intensity, entry knob, HP-IB address and talk-only on/off. The 35677A/B S-Parameter Test Sets are programmable through the 3577A interface only

Interface Functions: SH1,AH1,T5,TEØ,L4, LEØ,SR1,RL1,PP1,DC1,DT1,CØ,E1. Output Data Transfer Time: 401 data points (single parameter) can be transferred directly to an HP 200 series computer in

Basic language as follows: ASCII Mode: Typically 1500 ms. Binary Floating Point Mode: Typically

Graphics Capabilities:

Alphanumeric Characters: 12 lines of text with 40 characters per line can be displayed. Character set includes alphanumerics special characters and line vectors.

Vector Display: Trace lines can be drawn on the display between any two points with a resolution of 2048 points along the horizontal and vertical axes.

*HP-IB is Hewlett-Packard's implementation of IEEE Standard 488-1978.

Table 1-1. Specifications (Cont)

GENERAL CHARACTERISTICS

External Reference Frequency Input: Frequency: 10 MHz/N (N is an

integer from 1 to 100) **Level:** 0 dBm \pm 10 dB, nominal. **Impedance:** 50 Ω , nominal.

Connector: BNC female, rear panel.
Reference Frequency Output:

Frequency: 10 MHz.
Level: Typically 0 dBm.
Impedance: 50 Ω, nominal.
Connector: BNC female, rear panel.

External Trigger: Triggers on negative TTL transition or contact closure to ground.

Minimum Pulse Width: Typically 1 μ s. Impedance: 50 Ω , nominal. Connector: BNC female, rear panel Plotter Control: Directly compatible with

HP-IB graphics plotters that use Hewlett-Packard Graphics Language (HP-GL) with listen only capability. Plotter may be controlled by the 3577A through the HP-IB connector without an external computer Plotted data includes trace 1, trace 2, graticule, are annotation. Additional markers can be plotted, and pen numbers, pen speed, and line type can also be

selected.

Display Adjustments: Astigmatism, x-axis position, y-axis position, alignment, focus,

Save/Recall: Front panel setups can be stored in non-volatile memory locations 1 through 5. Last state is saved when power is removed.

Operating Conditions:

Temperature: 0°C to +55°C.
Relative Humidity: <95% at 40°C. Altitude: <4,572 m (15,000 ft). Non-Operating Conditions:

Temperature: -40°C to +75°C.
Altitude: <15,240 m (50,000 ft).
Accessories included:

4ea Type N male to BNC female Adapter. (HP Part No. 1250-0780.) 1 ea. Operating Manual. (HP Part No. 03577-90000).

03577-900007. 1 ea. Service Manual. (HP Part No. 03577-90012) **Power:** 115V +10%, -25% (47 Hz to 440 Hz), or 230 V +10%, -15% (47 Hz to 66 Hz), 450 VA maximum.

Weight: 31 kg (67 lbs) net. 41 kg (90 lbs)

shipping.

Dimensions: 222 mm H \times 426 mm W \times 578 mm D (8.75 in \times 16.75 in \times 22.75 in). Add 1 1/8 inch to depth to include front par al

controls and connectors.

Table 1-2 Recommended Test Equipment

Instrument	Critical Specifications	Recommended Model	Use*
Ratio Transformer	\pm 0.5 ppm Terminal Linearity worst case \pm 0.01 ppm for 10 ppm ratio	ESI DT72A‡	Р
Spectrum Analyzer	Frequency Range: 10 Hz - 300 MHz Amplitude Measurement Range: -134 dBm to +30 dBm Dynamic Range: 70 dB	HP 8568B	F,P,A,O
Oscilloscope	Vertical Bandwidth: DC - 100 MHz Vertical Sensitivity: 10 mV/div Horizontal Sweep Rate: 0.01 μs/div Input Coupling: AC, DC, 50 Ω Waveform Math: A-B Trigger: Ext, Int, Chop	HP 1980B Alternative HP 54201A/D	F,P,A
Digital Voltmeter	AC Range: 0 - 700 mVrms, 20 Hz - 250 kHz DC Range: 0 - 1000 V Accuracy: ± 1% at 100 kHz, 1 Vrms	HP 3456A	F,P,A,O
Signal Generator	Frequency Range: 100 kHz - 300 MHz Power Range: -30 dBm to +10 dBm	HP 8660C HP 86602B	P,A
Synthesizer	Amplitude Accuracy: ±0.15 dB at 100 kHz	HP 3335A	A
Synthesizer	Frequency Range: 100 kHz Amplitude Range: -30 dBm to 0 dBm	HP 3325A	O,P
Milliwatt Power Meter	Frequency Range: 10 Hz - 300 MHz Power Range: 0 dBm to -10 dBm Accuracy: ±0.05 dB at 200 MHz	W&G EPM-1	O,Pt
Power Meter	Input Range: -10 to +20 dBm HP-IB compatible	HP 436A Opt. 022	F,O,A,Pt
Power Sensor Thermal Converter	Flatness: ±0.2 dB to 200 MHz Input Impedance: 50 Ω Input Voltage: 0.5 Vrms Frequency Response from DC to 20 MHz: ± 0.05 dB	HP 8482A HP 11051A Alternative 1395A-0.4§ with cable	O,F,A,Pt Pt
Controller	HP 9000 Series 200 computer Basic 3.0 or later version	(12257A opt. 10	A,Pt
Printer (optional)	HP 9000 Series 200 compatible		P†

^{*}P = Performance Tests; A = Adjustments; F = Fault Isolation O = Operational Verification
† Alternate procedures which do not require the W&C EPM-1 power meter are included in this manual.
The series 200 controller, optional printer, thermal converter, and HP-IB option on the HP 436 power meter are required for the alternate tests.

[‡] Electro Scientific Industries 13900 N.W. Science Park Drive Portland, Oregon 97229

[§] Ballantine Laboratories, Inc. P.O. Box 97 Boonton, NJ 07005

Table 1-2 Recommended Test Equipment (Cont'd)

Critical Specifications	Recommended Model	Use*
Setup Time: 15 ns Maximum Clock: 25 MHz	HP 5006A	F
0 to 15 V, 500 mA	HP 6235A	Р
Frequency: 10 MHz The 10 MHz Frequency Standard may be derived from the National Bureau of Standards station WWVB using a Spectracom 8160A NBS Frequency Standard Receiver, an HP 105B Quartz Oscillator, and an HP 5087A Distribution Amplifier (with options to provide 10 MHz output) or equivalent		P,A
Frequency Range: DC - 200 MHz Impedance: 50 Ω Type N female connector	HP 11850A Alternative HP 11850C	P,O,A
Frequency Range: 100 kHz - 200 MHz Directivity: > 40 dB	НР 35677-63502	P,A
Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical	HP 8491A Opt. 003	P,A
Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical	HP 8491A Opt. 020	P,O,A
Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical	HP 8491A Opt. 010	P,A
Impedance: 50 Ω Return Loss: > 52 dB, DC - 200 MHz Connector: N male Connector: N female	HP 909C Opt. 200, 012 Opt. 200, 013	P,A,O
Impedance: 50 Ω BNC male 10 dB Return Loss	HP 11048C	P,O,A
Two 24 inch, 50 Ω cables	HP 35679A Alternative HP 11851A	F,P,O, A
24 inch, 50 Ω	HP 8120-2292	P,O
12 inch, 50 Ω	HP 8120-1838	Р
	Maximum Clock: 25 MHz 0 to 15 V, 500 mA Frequency: 10 MHz The 10 MHz Frequency Standard may be derived from the National Bureau of Standards station WWVB using a Spectracom 8160A NBS Frequency Standard Receiver, an HP 105B Quartz Oscillator, and an HP 5087A Distribution Amplifier (with options to provide 10 MHz output) or equivalent Frequency Range: DC - 200 MHz Impedance: 50 Ω Type N female connector Frequency Range: 100 kHz - 200 MHz Directivity: > 40 dB Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Impedance: 50 Ω Return Loss: > 52 dB, DC - 200 MHz Connector: N male Connector: N female Impedance: 50 Ω BNC male 10 dB Return Loss Two 24 inch, 50 Ω cables	Maximum Clock: 25 MHz 0 to 15 V, 500 mA Frequency: 10 MHz The 10 MHz Frequency Standard may be derived from the National Bureau of Standards station WWVB using a Spectracom 8160A NBS Frequency Standard Receiver, an HP 105B Quartz Oscillator, and an HP 5087A Distribution Amplifier (with options to provide 10 MHz output) or equivalent Frequency Range: DC - 200 MHz Impedance: 50 Ω Type N female connector Frequency Range: 100 kHz - 200 MHz Directivity: > 40 dB Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical HP 8491A Opt. 020 Frequency Range: DC - 200 MHz Port Return Loss > 30 dB typical HP 909C Return Loss: > 52 dB, DC - 200 MHz Connector: N male Connector: N male Connector: N female Opt. 200, 012 Opt. 200, 013 Impedance: 50 Ω BNC male 10 dB Return Loss Two 24 inch, 50 Ω cables HP 35679A Alternative HP 11851A

 $^{^{\}star}P$ = Performance Tests; A = Adjustments; F = Fault Isolation O = Operational Verification

Table 1-2 Recommended Test Equipment (Cont'd)

MODEL 3577A

Instrument	Critical Specifications	Recommended Model	Use*
BNC Cable (3 required)	24 inch, 50 Ω	HP 8120-1839	P,O,A
BNC Cable (3 required)	48 inch, 50 Ω	HP 8120-1840	P,O,A
1:1 Probe	DC - 200 MHz	HP 10021A	A,F
10:1 Probe	DC - 200 MHz	HP 10040A	A,F
Adapter (7 required)	N male to BNC female, 50 Ω	HP 1250-0780	P,O,A
Adapter	N female to N female, 50 Ω	HP 1250-1472	P,O,A
Adapter (2 required)	BNC female to Banana male	HP 1251-2277	P,O
Adapter	BNC female to alligator	Pomona 2631	Р
Adapter	BNC Tee	HP 1250-0781	Р
Adapter (2 required)	SMA male to BNC female	HP 1250-1200	P,A
Adapter	N male to N male	HP 1250-0778	P,A
Adapter	N male to N male	HP 1250-1475	P
Adapter	BNC female to BNC female	HP 1250-0080	Р
Jumper	alligator to alligator	Pomona 3781-8	Α
Resistor	1 Meg Ω, 1 %	HP 0698-7332	Α
Capacitor	300 pF	HP 0160-5350	Α
Error Correction Cable		HP 03577-61640	P,O
Buffer Amplifier	HP 3577A Performance Test Kit Kit Contents:	HP 03577-84403	P
Kit	OP Amp (NE5534) Capacitor, 22 μF (2 each)	HP 1826-0715 HP 0180-0228	
	Resistor, 475kΩ 1kΩ	HP 0757-0481 HP 0757-0280	
	499Ω	HP 0698-4123	
	100 Ω (4 each) BNC Connector (2 each)	HP 0757-0401 HP 1250-0083	
	IC Socket	HP 1200-0564	
	Board	HP 5020-6893	
	Edge Connector	HP 1251-0159	
	Lug (2 each) Nut(2 each)	HP 0360-1190	
	Washer(2 each)	HP 2950-0043 HP 2190-0016	
	Balun	HP 03577-84404	

^{*}P = Performance Tests; A = Adjustments; F = Fault Isolation O = Operational Verification

Table 1-2 Recommended Test Equipment (Cont'd)

Instrument	Critical Specifications	Recommended Model	Use*
Service Accessory Kit	HP 3577A Service Kit	HP 03577-84401	F,A
	Kit Contents:		
	Cable Assembly Extender (7 each)	HP 03585-61601	
	Cable Assembly Adapter (2 each)	HP 03585-61616	
	Jack to Jack Adapter	HP 1250-0669	
	PC Extender Boards: (Dual 36/25 pin)	HP 03577-66541	
	22-pin (2 each)	HP 03577-66542	

^{*}P = Performance Tests; A = Adjustments; F = Fault Isolation O = Operational Verification

SECTION II FAULT ISOLATION

Table of Contents

2-1	Introduction	. 2 -1
2-2	Safety Considerations	<i></i> 2-1
2-3	Recommended Test Equipment	2-2
2-4	Troubleshooting Hints	2-2
2-5	Getting Started	2-2
2-6	Overall Instrument Description	2-2
2-7	Power-on Self Tests	. 2 -5
2-8	Continuously Monitored Diagnostics	2-8
2-9	Confidence Tests	2-12
2-10	Service Diagnostics	2-16
2-11	Covers Off Board Level Fault Isolation	2-18
	List of Tables	
2-1	Power-on Self Tests	2-5
2-2	Continuously Monitored Diagnostics	
2-3	Confidence Tests	
2-4	Service Diagnostics	2-16
2-5	Board Turn-On Hierarchy	2-18
2-6	Main Power Supply	2-19
2-7	Fault Isolation Test Signals	2-20
	List of Figures	
2-1	Fault Isolation Test Signal Locations	2-21/2-22
2-2	Fault Isolation Test Flow Diagram	2-23/2-24
2-3	3577A Overall Block Diagram	· ·
2-4	3577A Functional Block Diagram,	2-27/2-28
	Analog Frequency Generation: A5, A6, A7, and A31	
2-5	3577A Functional Block Diagram,	2-2 9 /2-30
	Analog Input/Output and Power Supply: A1, A4, A8, and A21	
2-6	3577A Functional Block Diagram,	2-31/2-32
	Digital: A11, A12, A13, A15, A16, and 1345A	

MODEL 3577A FAULT ISOLATION

SECTION II FAULT ISOLATION

2-1 INTRODUCTION

The fault isolation procedures found in this section are designed to assist the experienced service technician. Each assembly in these procedures is referred to as a functional block, since they serve a single electrical function. Component groups within each functional block are referred to as functional sub-blocks, since they also serve a single electrical function. The goal of these procedures is to determine which functional block has failed within the HP 3577A under test. Once the faulty functional block has been found, the schematics provide sample waveforms and voltages which allow isolation to the sub-block level. The technician's experience is then used to isolate the components which have failed within the functional sub-block.

These procedures assume that all power supplies in the instrument are good. Before excessive time is spent in troubleshooting, it is strongly recommended that all power supplies be checked for correct voltage and ripple. A listing of the power supplies in the HP 3577A is shown in Table 2-6.

The first tests performed in this procedure do not require inside access to the HP 3577A. Numerous self tests are performed at power-on. Additional diagnostics can be called from the self test menu under the hardkey labeled "SPCL FCTN" (SPECIAL FUNCTION). The first step should always be to run these self tests as they will isolate a majority of the problems encountered.

NOTE

When executing the diagnostics, refer to Figures 2-3 through 2-6 (3577A Overall and Functional Block Diagrams).

2-2 SAFETY CONSIDERATIONS

Some of the fault isolation procedures require access to the interior of the HP 3577A while power is supplied to the instrument. Extreme care should be exercised when servicing the instrument.

WARNING

Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed by service-trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power cord should be removed.

2-3 RECOMMENDED TEST EQUIPMENT

The test equipment required for the fault isolation procedures is listed in Table 1-2. Any equipment which meets the critical specifications may be substituted for the recommended model. These procedures are designed to be performed with a minimum amount of equipment.

2-4 TROUBLESHOOTING HINTS

When troubleshooting the HP 3577A, keep the following hints in mind:

- Intermittant cables can appear to be hardware failures.
- Noise or spikes on the dc power supplies can cause instrument failure.
- Interpret front panel symptoms before extensive troubleshooting.
- It is possible that one circuit board can load another circuit board resulting in an apparent failure in the first circuit board.
- Whenever possible, divide the circuit under test in half.
- Measurements made in the Fault Isolation section are approximate values unless otherwise specified. Some tests are as simple as GO/NO GO.

2-5 GETTING STARTED

Fault isolation in the HP 3577A is basically split into two separate sections; analog and digital. Digital failures quite often will prevent the HP 3577A from turning on correctly. The Fault Isolation Flow Diagram found in Figure 2-2 illustrates a procedure to determine the faulty functional block if an instrument does not power up correctly. Each of the tests indicated in the procedure are described in detail in sections 2-7 through 2-11. If any of these tests fail, refer to the individual description for that test and the critical parameters checked for.

Analog failures usually will not effect the digital portions of the instrument and will show up as dead inputs or outputs, or specification failures. Fault isolation for these problems is best approached by running the Confidence Tests listed under the SPCL FCTN (SPECIAL FUNCTION) hardkey and described in Section 2-9. After running these tests, the Covers Off Board Level Fault Isolation explanation listed in section 2-11 should be performed.

2-6 OVERALL INSTRUMENT DESCRIPTION

An overview of the entire instrument operation is given here to illustrate to the service technician the interaction of the 3577A's individual boards and functional blocks. The information in this section should be used in conjunction with the fault isolation and self test information. Since many of the functional blocks interact heavily, the more information known about the interaction, the easier troubleshooting becomes. Study the following section before any work is done on the instrument. By interpreting the self test data and knowing the instrument operation, many problems can be isolated to the board level quite readily.

MODEL 3577A FAULT ISOLATION

Refer to Figures 2-3 through 2-6 when reading the overall circuit description. Refer to Section VII (Circuit Descriptions) for more detailed descriptions of each board's operation.

The HP 3577A can be basically split into two sections; a signal source and a tuned receiver. There is only one area that the two overlap, and that is the source frequency is the same as the receiver tune frequency. Since the frequency generation section is common to both the source and the input, it will be explained first.

The "heart" of the frequency generation section is the frequency reference. The HP 3577A can be run from an external frequency reference by using the rear panel external reference input. The frequency reference board (A6) can be driven by either the oven board (A31) or an external reference. When an external reference is sensed by the external reference detector, the shutdown line on the oven board is toggled and the oven signal is switched off using the oven board switchable filter. The threshold detector on the oven board senses whether the oven has warmed up. If the oven is cold, the threshold detector switches the oven signal off. The reference signal, either the oven or external signal, is used to lock a 10 MHz phase-locked loop. When the oven is cold and no external reference is connected, the HP 3577A free runs on the uncorrected 10 MHz phase-locked loop signal. The 10 MHz phase-locked loop signal is used for two purposes. First, it is divided by 100 to form the 100 kHz signal used by the synthesizer board (A7). Second, it is used to drive a 300 MHz phase-locked loop. The 300 MHz signal is mixed and divided to form all the reference frequencies used in the HP 3577A.

The oven board (A31) provides a stable 10 MHz frequency reference signal. This signal is controlled by the frequency reference board (A6). When an external reference signal is used on the HP 3577A, the frequency reference board forces the control line SHUTDOWN to go low which turns off the 10 MHz oven output signal.

The synthesizer board (A7) produces frequencies from 300.25 to 500.25 MHz. The reference frequency for the synthesizer is 100 kHz obtained from the frequency reference board (A6). The synthesis method used in the HP 3577A is called Fractional-N synthesis. The synthesizer board has two synthesized outputs, one for the output board (A8) and one for the local oscillator board (A4).

The 250 kHz offset board (A5) takes the 300 MHz frequency reference board (A6) signal and creates a phase-locked 300.25 MHz signal. Note that the first IF used on the input board (A1) is the 250 kHz offset frequency. The 300.25 MHz signal is used by the output board (A8). The 300.25 MHz signal is mixed with the synthesizer board (A7) 300.25 to 500.25 MHz signal to create the source output frequencies of 5 Hz to 200 MHz. This mixing scheme minimizes the number of mixings done and keeps phase noise products as low as possible.

The local oscillator board (A4) combines the 300.25 to 500.25 MHz synthesizer board (A7) signal and the 300 MHz reference board (A6) signal to produce a 0.25 to 200.25 MHz signal. This signal is used to drive the first IF mixer. Note that the local oscillator output signal and the source output (A8) signal are always 250 kHz apart, even when the source is swept. This allows for a tuned input with fixed frequency IF sections.

The output board (A8) mixes the 300.25 to 500.25 synthesizer board (A7) and the 300.25 MHz offset board (A5) signals to produce a 5 Hz to 200 MHz source signal. The 300.25 MHz signal is passed through a diode limiter before the mixing to allow leveling. After mixing, the 5 Hz to 200 MHz signal is filtered and amplified. The signal level at the input to the attenuator is variable between +11 and +15 dBm in

0.1 dB increments. The increments are set using a DAC in the Amplitude Reference. The leveling circuits correct for high frequency and low frequency source flatness errors. The low frequency errors are corrected by adjusting the gain of the first 20 dB amplifier after the mixer. The high frequency errors are corrected by the Amplitude Leveling. The attenuator is capable of attenuating between 4 and 60 dB in 4 dB steps. The 60 dB Step Attenuator also has a reverse power protection circuit. Whenever the peak voltage at the output connector is greater than 4 volts, the protection circuit disconnects the attenuator from the output connector.

The HP 3577A input board (A1) is a switchable 1M/50 ohm input. Relay K1 selects the input impedance of each channel. Note that only one input channel is shown in the block diagram. This is because all three input channels are electrically identical. The physical location in the instrument is the only distinguishable characteristic. Relays K2 and K3 set the input attenuation for each channel. Note that the two channel impedence paths have separate 20 dB attenuators. The signal is then mixed with the 0.25 to 200.25 MHz local oscillator (A4) signal in the first IF section. The output of the first IF is a constant 250 kHz signal whose instantaneous amplitude and phase are the same as the input signal. The 250 kHz signal is then converted to a 10 kHz signal by the second IF section and the 240 kHz frequency reference board (A6) signal. The 10 kHz signal, with the same amplitude and phase as the input signal, is then sampled at an 8 kHz rate with a sample and hold. This creates a 2 kHz "stairstep" third IF. The 2 kHz stairstep signal undergoes two Analog to Digital conversions. The first conversion is used to set the gain on the variable gain amplifier. This conversion is an 8-bit conversion. The gain of the variable gain amplifier is then set so the A to D is as near to its full scale input as possible. The A to D then undergoes a 12-bit conversion which is passed on to the digital filters. This A to D conversion technique allows for a 20-bit dynamic range with 12-bits of resolution. Note that this A to D sequence takes place during one stairstep level. The digital quadrature filters then process the data from the A to D converters. The quadrature filters separate the "real" and "imaginary" components of the A to D converter output. The resolution bandwidths are digitally implemented here.

The central intelligence of the HP 3577A Network Analyzer is the main processor-controller board (A13). The "heart" of the main processor is a 16-bit microprocessor. This board contains its own firmware (ROM) and RAM. The main processor bus of this board provides all the communication ports.

The keyboard (A15) is constantly being monitored by the main processor-controller via the keyboard data bus. If a key is stuck for a period longer than 10 seconds, an error message will then be displayed on the CRT.

The HP 1345A Digital Display is a 16-bit TTL data bus (positive logic) display. The display provides its own test pattern. This diagnostic is accessible under the SPCL FCTN (SPECIAL FUNCTION) hardkey. This function disconnects the 3577A digital section (main processor-controller) from the HP 1345A. When disconnected, the display module turns on its own resident test pattern which tests most of its display functions. This test pattern can also be shown by disconnecting the ribbon cable from the main processor-controller board (A13) to the display.

The HP-IB board (A16) provides an isolated link between the instrument's main processor-controller board (A13) and the "outside world." An HP-IB connector is provided at the rear panel of the instrument. This connector is used to connect the instrument to other instruments and controllers which have HP-IB (IEEE 488) capability.

MODEL 3577A FAUL™ ISOLATION

The fast processor board (A11) performs floating point and fast numerical calculations (number crunching). This is done by taking data from the input boards (A1; Receivers R, A, B) and controlling the sweep timing of the HP 3577A. This board contains its own firmware (Micro Program ROMs), Micro Program Sequencer, and a Bit/Slice ALU (Arithmetric Logic Unit). The fast processor controls the accessibility of the Fast Data Bus. For example, the fast processor must grant the bus in order for the trace memory board (A12) to communicate with the main processor-controller board (A13).

The trace memory board (A12) provide the non-volatile storage capabilities. This board provides additional firmware (ROM) and RAM for the instrument. At turn-on, a ROM checksum and a marching ones test for the RAM section is performed.

2-7 POWER-ON SELF TESTS

The tests the HP 3577A performs when power is first applied are listed in Table 2-1.

As with any microprocessor based instrument, the "kernel" or microprocessor, ROM, RAM, clock, and common bus and buffers must be working for the instrument to turn on at all. At power-on, the HP 3577A tries to test its "kernel" and then gradually expands and tests the other branches of communication open to it. Please note that if the "kernel" is not functional, the HP 3577A will most likely not be able to run the self tests. On the other hand, if the HP 3577A passes the power-on self tests, there is an extremely high probability that the digital core of the instrument is functioning perfectly. The only digital sections not checked are the outermost I/O ports and buffers to the instrument measurement and control sections.

Table 2-1. Power-on Self Tests

Self Test Number	Test Description	Test Location
1	LED Test	Front Panel
2	Main Processor-Controller ROM Test	A13U12,U19 - U30 A13U73 - U76
3	Main Processor-Controller RAM Test	A13U9,U10,U15- U17,U71,U72
4	Total Main Processor-Controller RAM Test (Optional)	A13U9,U10,U15- U17,U71,U72,U81 U82
5	Keyboard Cable Test	A13U42,A15J1(8)
6	Timer Interrupt Test	A13U48,U49,U60, U78,U79
7	Trace Memory Test	A13U33 - U36 A12 all circuits
8	One MegaHertz Test	A13U77(8)
9	Eight kiloHertz Test	A13U47(2)
10	Fast Processor Self Test	A13U31 and A13U32

Self Test Number 1, LED Test

Immediately after the microprocessor (A13U1) starts its program, all front panel LEDs are turned on. The LEDs are left on until Power-On Self Test number 2 is completed.

Self Test Number 2, Main Processor-Controller ROM Test

The main processor-controller (A13) computes a checksum for each ROM and compares it to a known value. Please note that if the ROMs are bad, the main processor-controller will most likely not operate. The checksums and the test code reside on blocks 1 and 2 of ROM. At the beginning of this test, the main processor will clear the display's memory by writing a NOP instruction to all the display's memory locations. The POP (Power On Preset) signal to the main processor-controller turns on the ROM and RAM test LEDs (A13CR6 and A13CR5, respectively). The checksums are then calculated for ROM, and if an error is found, a message will be written to the display. If all tests pass, the ROM test LED (A13CR6) will be extinguished, and the next test will be performed. If a failure occurs, the ROM test LED will be left on, the main processor-controller will pause for approximately 5 seconds, and the next test will be performed.

Self Test Number 3, Main Processor-Controller RAM Test

The main processor-controller (A13) performs tests on the areas of its RAM that do not have non-volatile requirements (i.e., the dynamic stack). First, a checksum is computed for the non-volatile sections. Then a marching ones test is performed on the stack area of RAM. A marching ones test pushes zeros, ones, HEX 55's and HEX AA's through RAM. Each block of RAM as labeled on the A13 board is tested and errors are reported by these block numbers. Data is written to one block and other blocks are read to determine block interaction errors. Block interaction errors generally indicate failed decoders or chip select lines. If an error occurs, an error message will be displayed for approximately 5 seconds before the next test is performed. If the RAM test passes, the RAM test LED (A13CR5) will be extinguished.

Self Test Number 4, Total Main Processor-Controller RAM Test

This test is invoked by pressing the SAVE and RECALL hardkeys on the front panel simultaneously after a power-on and holding them down until the RAM test is complete. All RAM memory locations are checked during this test, even memory with non-volatile requirements. All saved instrument states and trace data is lost during this test. The test procedure is the same as the procedure in SELF TEST NUMBER 3.

Self Test Number 5, Keyboard Cable Test

The main processor-controller (A13) tests to see if the keyboard cable is connected to the motherboard. The main processor-controller looks for the keyboard MSB (Most Significant Bit) to be pulled low through A13U42. The keyboard pulls this line low at A15J1(8). If this test fails, the keyboard interconnection should be suspect.

Self Test Number 6, Timer Interrupt Test

The main processor-controller (A13) will check to see that the timer interrupt occurs, which is a divided down version of the 16 MHz from the phase-locked loop circuit (A13U48). The 16 MHz clock is divided by A13U49, U60, and U78 so that the main

MODEL 3577A FAULT ISOLATION

processor-controller can sense its presence. The timer interrupts are necessary for scanning the keyboard.

Self Test Number 7, Trace Memory Test

The main processor-controller tests the volatile portion of the trace memory board (A12). A marching ones test is then performed to the RAM section of trace memory. The marching ones test is described under SELF TEST NUMBER 3, MAIN PROCESSOR-CONTROLLER RAM TEST. This test checks blocks 1, 2, 3 and 4 of the trace memory RAM which corresponds to A12U5,U12,U6, and U13 respectively. A more exhaustive trace memory test is available using the SPCL FCTN (SPECIAL FUNCTIONS) menu and selecting the TRACE MEMORY test.

Self Test Number 8, 1 MHz Test

This test checks to see if a divided down version of the 1 MHz clock is present. A13U44 monitors U77(6) and waits for a transition to occur. This signal is generated on the frequency reference board (A6), and should be suspect if the test fails.

Self Test Number 9, 8 kHz Test

This test checks to see if the 8 kHz signal to the input board (A1) is present. This signal is generated on the frequency reference board (A6), and should be suspect if the test fails.

Self Test Number 10, Fast Processor Self Test

The fast processor board (A11) first tests its own logic for errors. It then tests its ability to access the trace memory board (A12) and the counter/receiver board interface. The following error messages are generated by this test:

1. NO REPONSE FROM FP

This indicates that the main processor-controller board (A13) cannot access the fast processor board (A11). This usually indicates a serious fast processor failure.

2. FP LOGIC FAILURE

This indicates the fast processor's associated logic circuitry is not operating correctly.

3. FP CNTR/RCVR FAILURE

This indicates that the sweep timer counter and receiver board (A1) interface is not operating correctly.

4. FP CANNOT ACCESS TRACE MEMORY

This indicates that the fast processor (A11) wrote data to trace memory (A12) and read the data back and the two were not the same.

5. FP-MP COMMUNICATION ERROR

This indicates that the main processor-controller wrote data to the fast procesor, and read the data back and the two were not the same.

2-8 CONTINUOUSLY MONITORED DIAGNOSTICS

The tests listed in Table 2-2 are performed continuously while the HP 3577A is operating. The tests listed in Table 2-4 are obtainable from the 3577A front panel via the SPCL FCTN (SPECIAL FUNCTION) hardkey. For each of these tests, a test explanation is given and the suspect board identified for test failures. The continuously monitored tests are listed by the error message that is displayed on the HP 3577A.

Table 2-2. Continuously Monitored Diagnostics

Error Message	Test Name	Test Location	Suspect Board
Oscillator Unlocked Assembly A5,A6 or A7	Phase-Locked Loop Unlocked	A6U9(6) A5U50(4) A7U6(6)	Reference (A6) Offset (A5) Synthesizer (A7)
Reference Unlocked	10 MHz Reference Unlocked	A6U2(1)	Reference (A6)
Bus Error	Main Processor Hardware Error	A13U1(22)	Main Processor- Controller (A13)
Stack Overflow *Integer Overflow *Divide By Zero Real Math Overflow Real Math Underflow	Main Processor Hardware Error	A13U1 Internal	Main Processor- Controller (A13)
Spurious Interrupt Interrupt 1	*Note: These error mess	ages could be caused by	
Interrupt 2		D1, D2, D3, or D4.	
Illegal Instruction			
Escape Code x			
System Error #x	Fast Processor/ System Errors	Software limit tests	Fast Processor (A11)
Front Panel Key Stuck	Keyboard	A15J1(8)	Keyboard (A15)

Each of the continuously monitored diagnostics in Table 2-2 is listed below by test name. This information along with the schematics in Section VIII (Service) gives the service technician insight into the failure conditions.

Oscillator Unlocked, Assembly A5, A6 or A7

Each of the phase-locked loops in the HP 3577A is monitored by a loop unlock detector.

MODEL 3577A FAULT ISOLATION

The frequency reference board (A6) is monitored by A6U10. If the output of A6U9 has an ac component, A6U10 detects the ac and pulls its output low. This causes an internal LED to turn-on and signals the main processor-controller (A13).

The synthesizer board (A7) phase-locked loop is monitored by A7U42. The output of the sample and hold is monitored. When the detector (A7U42) senses an out-of-range dc control voltage, it will then cause an internal LED to turn-on and interrupts the main processor-controller (A13). It is normal for the sythesizer to lose phase lock between sweeps due to the retrace.

The 250 kHz offset board (A5) phase-locked loop is monitored by U51. The output of the phase detector and loop filter is monitored. If an ac signal or a positive dc signal is present U51 pulls its output low. This causes an internal LED to turn-on and interrupts the main processor-controller (A13).

10 MHz Reference Unlock

The 10 MHz phase-locked loop has its own unlock detector and error message. This is because external signals can cause this loop to unlock. The 10 MHz phase-locked loop is monitored by A6CR3, CR4, and U2b. The diodes monitor the phase detector output. When an ac signal occurs at A6U2(1), the output of A6U2b runs to the positive supply voltage. This turns on an internal LED (A6CR20) and interrupts the main processor-controller (A13) through the inverter A6U1c.

Main Processor Hardware Error

The main processor-controller (A13) has error detection routines which are an integral part of the chip. Generally all these errors say is that something is wrong with the Address or Data Bus. Any components connected to the bus should be suspect.

The BUS ERROR message is generated when the processor writes to ROMs, writes outside the address space available, etc. A13U1(22) is the trigger for this error. When pin 22 is low, the main processor-controller trips. The following components are involved with the BUS ERROR decoding: A13U61, U64 through U67. It should be noted, however, that this error will occur for almost all failures on the address or data bus, therefore all components connected to either bus should be suspect.

All other main processor-controller hardware errors are detected by numerical soft-ware traps within the HP 3577A operating system. These errors cannot be used to isolate hardware problems easily and indicate a fault within the 3577A digital system.

Fast Processor/System Errors

The HP 3577A system errors are reported by the main processor-controller (A13). When the operating system senses an invalid instrument state or operation in the digital sections, a system error is generated. Since these errors are generated during a control or calculation operation, as opposed to a self test mode, the actual cause for an error cannot be exactly known. This information may be useful, along with other fault isolation data already received, for narrowing down digital failures. Each of the system errors are listed below, along with an explanation of what causes an error trip. Most of these errors indicate a problem with the fast processor (A11) and/or main processor-controller (A13) communication.

DATA ERROR #1

This error occurs when the main processor-controller gets a bad number after converting the fast processor's data from 32-bit floating point to 64-bit floating point format. Refer to the Proposed Floating Point Standard* for information as to which bits are invalid.

DATA ERROR #2

This error occurs after a bad 64-bit to 32-bit conversion in the main processor-controller resulting in a "Not A Number" error as outlined in the Proposed Floating Point Standard*. Refer to the standard for information as to which bits are invalid.

DATA ERROR #3

This error occurs after a bad 64-bit to 32-bit conversion in the main processor-controller resulting in an Underflow. Refer to the Proposed Floating Point Standard* for information as to which bits are invalid.

DATA ERROR #4

This error occurs after a bad 64-bit to 32-bit conversion in the main processor-controller resulting in an Overflow. Refer to the Propose Floating Point Standard* for information as to which bits are invalid.

DATA ERROR #5

This error occurs after a bad 64-bit to 32-bit conversion in the main processor-controller resulting in Infinity. Refer to the Proposed Floating Point Standard* for information as to which bits are invalid.

DATA ERROR #6

This error occurs after a bad 32-bit to 64-bit conversion resulting in an Invalid Zero. Refer to the Proposed Floating Point Standard* for information as to which bits are invalid.

SYSTEM ERROR #7

This error occurs when a status interrupt occurs during the processing of a data interrupt. Possible failures include the main processor-controller interrupt decoding or the fast processor interface.

SYSTEM ERROR #8

This occurs when the fast processor interrupts the main processor-controller but the data given to define the interrupt does not match the valid table. The interrupt defines an overload condition at one of the receiver ports.

SYSTEM ERROR #9

This error occurs if the main processor-controller told the fast processor to start or to abort and the fast processor did not understand the command. This means the fast processor did not get the right data. This error occurs when the fast processor is in its main loop.

^{*}This Proposed Floating Point Standard is explained in Chapter 4 of the Basic Programming Techniques with Extension 2.0 for the 200 Series Computers Documentation Manual. The -hp- part number for this manual is 09826-90011.

MODEL 3577A FAULT ISOLATION

SYSTEM ERROR #10

This error occurs if the main processor-controller told the fast processor to start or abort and the fast processor did not understand the command. This error occurs when the fast processor is in its trigger loop.

SYSTEM ERROR #11

This error occurs if the main processor-controller told the fast processor to start or abort and the fast processor did not understand the command. This error occurs when the fast processor is in its process loop.

SYSTEM ERROR #12

This error occurs if the main processor-controller told the fast processor to start or abort and the fast processor did not understand the command. This error occurs when the fast processor is in its settling loop.

SYSTEM ERROR #13

This error occurs when the fast processor tries to execute a trace arithmetic instruction, passed it through buffers into trace memory and the data instruction received was bad.

SYSTEM ERROR #14

The fast processor is not reading the fast processor/main processor-controller interface after a command was written to the interface by the main processor-controller. Check to see if the 30 MHz fast processor clock is present.

SYSTEM ERROR #15

This error occurs when the fast processor does not acknowledge the receipt of an ABORT command from the main processor-controller. This occurs when U44(6) is still low.

SYSTEM ERROR #16

This error occurs when the main processor-controller has tried to send a HALT command to the fast processor and the fast processor echoed back a bit pattern which is not an appropriate response.

SYSTEM ERROR #17

This error occurs when the fast processor data and instructions create an overflow condition. This error usually indicates a fast processor communication problem.

SYSTEM ERROR #18

This error occurs when the fast processor data and instructions create an underflow condition. This error usually indicates a fast processor communication problem.

SYSTEM ERROR #19

This error occurs when the main processor-controller has tried to send a HALT command to the fast processor and the fast processor echoed back a bit pattern which is a valid reply but not the HALTED reply.

SYSTEM ERROR #20

This command occurs when the fast processor does not allow the main processorcontroller to access the interconnecting bus between fast and main processors. The BUSGNT line did not go active low.

SYSTEM ERROR #21

This error occurs when the main processor-controller encounters a software error and usually indicates a main processor-controller failure.

SYSTEM ERROR #22

This error occurs when the main processor-controller encounters a software error and usually indicates a main processor-controller failure.

SYSTEM ERROR #23

This error occurs when the main processor-controller encounters a software terminator error in its commands. This error usually indicates a main processor-controller failure.

SYSTEM ERROR #24

This error occurs if at the end of a log sweep segment the Frac N limit line, A13U45(13), was not toggled high. This usually indicates a fault in the synthesizer board (A7) or an error in the control bus and associated control lines.

KEYBOARD

The main processor-controller (A13) scans the keyboard constantly for any inputs. If a key is held down for more than 10 seconds, the microprocessor sends an error message to the display. A pressed key is sensed through A15J1(8) by a TTL low. Due to decoding uncertainties, the keyboard ignores all inputs when it senses a key is stuck.

2-9 CONFIDENCE TESTS

The HP 3577A has the ability to run an analog self test on its input channels and its source. These tests essentially check to see if the source and input channel agree. As many single channel specifications as possible are checked in these tests. This self test does not check to the instrument specifications since a cable is required to connect the source and input channel and the characteristics of the cable can affect the measured results. Table 2-3 lists the Confidence Tests.

These tests are available under the SPCL FCTN (SPECIAL FUNCTION) hardkey on the 3577A front panel. To run these tests, first press the SPCL FCTN hardkey and select the CONF TEST softkey.

Test **Test Name** Error Message Number LOG SWEEP FLATNESS TEST Is cable connected? Failed: Log Sweep signal level test Failed: Log Sweep flatness test 2 LINEAR SWEEP FLATNESS TEST Failed: Linear Sweep signal level test Failed: Linear Sweep flatness test Failed: Synthesizer and L.O. test 3 SYNTHESIZER AND L.O. TEST 4 SOURCE AMPLITUDE TEST Failed: Amplitude sweep accuracy test **OUTPUT LIMITER TEST** Failed: Output Limiter linearity test 5 6 IMPEDANCE AND Failed: Receiver Impedance test ATTENUATOR TEST Failed: Receiver Attenuator test

Table 2-3. Confidence Tests

MODEL 3577A FAULT ISOLATION

Each of the Confidence Tests is described below. The description should be valuable in order to isolate any failures which occur with these tests. It is quite easy to isolate if a failure occurs on the input or output since the Confidence Tests can be run separately on each input channel. If a Confidence Test passes on one or two inputs, the problem is probably in the receiver.

The 3577A instrument state is also listed for each test. By repeating a test manually and varying the instrument setup, the faulty board can often be found. If repeating these tests manually, INSTR PRESET should be pressed between each test setup. If a Confidence Test fails, the test sequence stops, leaving the instrument in the failed test setup.

Due to the interactions mentioned previously, faulty boards for these tests cannot be determined in advance. The Confidence Tests are valuable when used with the overall block diagram and the overall circuit description. By running the tests manually, and varying the instrument state for each test slightly, faulty blocks can be isolated from the front panel.

Confidence Test Number 1, Log Sweep Flatness Test

Instrument State:

Sweep Type	Log
Display Function	Log Magnitude
Resolution Bandwidth	Auto BW On
Start Frequency	400 Hz
Stop Frequency	
Source Amplitude	— 9.1 dBm
Sweep Time	3 seconds

Test Procedure:

Trigger for a single sweep

Test Requirements:

1-(Maximum Amplitude) - (-9.1 dB) < 3.642 dB and (-9.1 dB)

- (Minimum Amplitude) < 3.642 dB

Error message: Failed: Log Sweep signal level test

2-(Maximum Amplitude) — (Minimum Amplitude) ≤ 2.16 dB Error message: Failed: Log Sweep Magnitude flatness test

3-(Maximum Amplitude) ≥ -60 dBm Error message: Is cable connected?

Confidence Test Number 2, Linear Sweep Flatness Test

Instrument State:

Sweep Type	Linear
Display FunctionsLog	
Resolution Bandwidth	1 kHz
Start Frequency	2 MHz
Stop Frequency	.200 MHz
Source Amplitude	-9.1 dBm
Sweep Time	

Test Procedure:

Trigger for a single sweep.

Test Requirements:

1-(Maximum Amplitude) - (-9.1 dBm) < 3.642 dB and (-9.1 dB)

- (Minimum Amplitude) < 3.642 dB

Error message: Failed: Linear Sweep signal level test

2-(Maximum Amplitude) - (Minimum Amplitude) < 2.16 dB

Error message: Failed: Sweep magnitude flatness test

Confidence Test Number 3, Synthesizer and L.O. Test

Instrument State:

Sweep TypeLinear
Display FunctionsLog Magnitude
Resolution Bandwidth
Start Frequency 0 Hz
Stop Frequency
Source Amplitude
Sweep Time

Test Procedure:

Trigger for a single sweep.

Test Requirements:

1-(0 Hz Marker Value) < -33 dBm or Absolute Value of (50 MHz Marker Value - (-9.1 dBm)) < 3.642 dBm

Error message: Failed: Synthesizer and L.O. test

Confidence Test Number 4, Source Amplitude Test

Instrument State:

Sweep Type
Display Function Log Magnitude
Source Frequency
Start Amplitude49 dBm
Stop Amplitude
Steps per Sweep
Time per Step
Resolution Bandwidth

Test Procedure:

Trigger for a single sweep.

MODEL 3577A FAULT ISOLATION

Test Requirements:

1-Absolute Value of ((X Marker Value) - (Y axis Amplitude))

< 3.642 dB and Absolute Value of (bin N+1 value - bin N value - 0.878

dB)

< 1.28 dB

Error Message: Failed: Amplitude Sweep accuracy test

Confidence Test Number 5, Output Limiter Test

Instrument State:

Sweep Type Amplitude
Display FunctionLog Magnitude
Source Frequency90 kHz
Start Amplitude9 dBm
Stop Amplitude 5.1 dBm
Steps Per Sweep
Time Per Step
Resolution Bandwidth

Test Procedure:

Trigger for a single sweep.

Test Requirements and Suspect Block:

1-Absolute Value of (bin N+1 - bin N - 0.195 dB) < 0.2 dB Error Message: Failed: Output Limiter linearity test

Confidence Test Number 6, Impedance and Attenuator Tests

Instrument State:

Sweep Type	CW
Display Function	.og Magnitude
Source Frequency	90 kHz
Source Amplitude	30 dBm
Resolution Bandwidth	1 kHz

Test Procedure:

Take a data point on 50 ohm impedance, 20 dB input attenuation

Record measured value.

Switch impedance to 1 M ohm, 20 dB input attenuation.

Record measured value.

Switch impedance to 50 ohm, 0 dB input attenuation.

Record measured value.

FAULT ISOLATION MODEL 3577A

Test Requirements:

1- Absolute Value of ((1 M ohm, 20 dB attenuation value) — (50 ohm, 20 dB attenuation value — 6 dB)) < 0.2 dB Error Message: Failed: Receiver impedance test

2- (50 ohm, 20 dB value) — (50 ohm, 0 dB value) < 0.1 dB. Error Message: Failed: Receiver attenuator test

2-10 SERVICE DIAGNOSTICS

The HP 3577A has the ability to run several diagnostic and service routines on itself. Some of these tests are a more complete version of the power-on self tests described in Section 2-6, others are servicing aides such as Signature Analysis (SA) pattern routines.

The diagnostics are accessible under the SPCL FCTN (SPECIAL FUNCTION) hardkey. To enter the diagnostic routines, press the SPCL FCTN hardkey and select the Service Diag (Diagnostics) softkey. Softkeys available under the Service Diagnostics are listed in Table 2-4.

Softkey Diagnostic Tests Comments Number Name Location 1 LEVELING A8U20(10) Breaks source leveling loop for troubleshooting. ON/OFF 2 SETTLING Turns off dwell time before None ON/OFF each sweep. SYN DIAG 3 None Changes source frequency. ON/OFF Readout to read synthesizer (A7) frequency (300.25 to 500.25 MHz) TEST Display Turns on the display module **PATTERN** Module test pattern. 5 TRC MEM A13U33 -Tests all trace memory board TEST U36, A12 all (A12) ROM and RAM locations. FASTPROC A13U31 -6 Tests fast processor board TEST U36, U62 (A11) logic and interfacing. 7 FAST BUS A13U31 -Tests bidirectional main (A13) INT TEST U36 and fast processor (A11) port. 8 MORE None Selects menu listed below. Tests display module memory. 1 DISP MEM A13U39, U40 new menu TEST Will destroy all data in memory. 2 DISP A16 all Reads state of HP-IB connector HP-IB pins through HP-IB IC (U21). circuits 3 HP-IB A16 all Runs signature analysis routine SA circuits on HP-IB circuits.

Table 2-4. Service Diagnostics

Leveling On/Off

This function sets the output of A8U20(10) low and turns the high frequency source leveling loop off. This feature will aid in source output board (A8) troubleshooting.

MODEL 3577A FAULT ISOLATION

Settling On/Off

This function turns off the settling time function implemented at the beginning of each sweep by the HP 3577A.

Syn Diag On/Off

This function allows programming of the HP 3577A in direct synthesizer frequencies (300.25 to 500.25 MHz). This feature will aid in synthesizer troubleshooting by offering simpler instrument programming.

Test Pattern

This function disconnects the 3577A digital section from the display module inside. When disconnected, the display module turns on its own resident test pattern which tests most display functions. Refer to the HP 1345A Digital Display Operating and Service Manual accompanying this manual.

TRC Mem Test

This function performs a checksum on the trace memory (A12). ROMs and a marching ones test on the trace memory RAMs. For explanation of marching ones and checksum tests, refer to the Power-On Self Test Number 3 in Section 2-7.

Fastsproc Test

This function performs the fast processor self test. This self test is described in detail in the Power-On Self Test Number 10 in Section 2-7.

Fast Bus Int (Interface) Test

This function tests the bidirectional port between the fast processor (A11) and the main processor-controller (A13). This test is performed by the main processor-controller. The main processor-controller writes information to the port, and then reads back the echoed data. The test is then repeated with the fast processor writing and reading.

Disp Mem Test

This function thoroughly tests the memory resident in the display module in the HP 3577A. The test is about 10 seconds long, with the display blank during this time. The instrument returns from the test in an INSTrument PRESET state. The test performed is a marching ones test as described in the Power-ON Self Test in Section 2-7.

Disp HP-IB Test

This function draws an HP-IB connector facsimile on the 3577A display. All connector pins are labeled. A dot is printed on the connector when the main processor-controller (A13) senses the pin pulled low. This connector is accessible from the rear panel of the HP 3577A. In order to display a dot on the appropriate control line, the line must be tied to logic ground (Ignd - pin 24). This diagnostic is used to test the communication port to and from the main processor-controller board (A13) via the HP-IB board (A16).

FAULT ISOLATION MODEL 3577A

HP-IB SA

This function turns on a signature analysis routine for the HP-IB (A16) circuit board. Refer to the HP-IB service section in Section VIII for valid signatures and test points.

2-11 COVERS OFF BOARD LEVEL FAULT

This section includes fault isolation tests where the instrument covers are removed. Since hazardous signals are present in the HP 3577A with the covers removed, be sure to take all necessary safety precautions.

WARNING

Maintenance described herein is performed with power supplied to the instrument and protective covers removed. Such maintenance should be performed by service trained personnel who are aware of the hazards involved (for example, fire and electrical shock). Where maintenance can be performed without power applied, the power cord should be removed.

This section describes a procedure much like the factory procedure for bringing the HP 3577A to life for the first time. The procedure assumes that any board can be faulty. This procedure is written in a serial fashion but does not have to be performed in this order. If there is a strong suspicion that a particular functional area is faulty, that section of this procedure should be done first. If the HP 3577A passes all digital self tests, there is a high level of confidence that the digital section is working correctly. This section includes the Main Processor-Controller (A13), Trace Memory (A12), Fast Processor (A11) and HP-IB (A16) boards. If the digital self tests fail, then the area tested in each should be repaired before continuing with the fault isolation.

Table 2-5. Board Turn-On Hierarchy

Board Description	Board Designator
1. Main Power Supply	A21
2. Digital Display	1345A
3. Main Processor	A13
4. Keyboard	A15
5. Frequency Reference	A6
6. Trace Memory	A12
7. Fast Processor	A11
8. HP-IB	A16
9. Input (R,A,B)	A1
10. Synthesizer	A7
11. Local Oscillator	A4
12. 250k Offset	A 5
13. Output	A8
14. Oven	A31

MODEL 3577A FAULT ISOLATION

Table 2-5 lists the turn-on hierarchy for the HP 3577A, given that all boards are suspect of being faulty. Table 2-6 lists all the power supplies in the HP 3577A. The power supplies should be checked before extensive troubleshooting is performed. Table 2-7 lists all input and output signals between individual boards in the HP 3577A which are available from the top of the boards by coaxial cables and test points. Signal parameters are listed for each signal. All parameters listed are required parameters unless denoted by a \cong character. All \cong parameters are typical performance parameters of the instrument and only serious deviations should be investigated.

Supply Name	Output Location	Return Location	Nominal Voltage	Voltage Tolerance	Ripple Tolerance
+15V	TP8	Chassis	+15V	+0.05, -0.00	80 mVp-p
-15V	TP9	Chassis	-15V	±0.05	80 mVp-₁
+ 5V	TP26	Chassis	+5.1 V	±0.02	60 mVp-p
+8V	TP10	Chassis	+8V	±1	90 mVp-p
+5V (HP-IB)	TP11	TP12	+5V	±0.5	350 mVp-p

Table 2-6. Main Power Supply

Remove the 3577A bottom cover and check the supplies listed above with the power distribution cables connected and all circuit boards in the HP 3577A. If all supplies check good, continue with the Covers Off Board Level Fault Isolation. If any supplies are incorrect, then refer to Section VIII (Service) for troubleshooting information.

Do not remove or insert circuit boards in the HP 3577A with the power applied to the instrument. Damage may result when circuit boards are removed or inserted while instrument is powered on.

NOTE

The voltage levels and ripple tolerances listed above are for fully loaded supplies. When removing individual boards, the supply levels will change with the various loads. Keep this in mind when performing fault isolation.

FAULT ISOLATION MODEL 3577A

Table 2-7. Fault Isolation Test Signals

Board	Connector	tor Signal Parameters			
		Frequency	Amplitude	Level Flatness	Harmonics
A4	J3	.25-200 .25 MHz	≆+7 dBm	≅ ±1.0 dB	≅<-10 dB
	J4	.25-200 .25 MHz	≅ + 7 dBm	≅ ±1.0 dB	≅<-10 dB
]5	.25-200 .25 MHz	≅ +7 d Bm	≅ ±1.0 dB	≅<-10 dB
A5	J1	300 .25 MHz	≅ +7 dBm	N/A	≅<−18 dB
A6	J2	10 MHz	≅ 0 dBm	N/A	≅ < - 40 dB
	J3	300 MHz	≅ - 3 dB m	N/A	≅ < −10 dB
	J4	300 MHz	≅ - 26 d Bm	N/A	≅<−15 dB
	J5	100 kHz	≅ 2 Vpp	N/A	≅< 30 nS
			5 Vdc offset		Pulsewidth
	J7	30 MHz	TTL Levels	N/A	≅< 7 nS
					Risetime
A7	j1	300.25 MHz -	≅ -1 dBm	≅ ±1.5 dB	≅<-10 dB
		500.25 MHz			
	J2	300.25 MHz -	≅ -1 dBm	≅ ±1.5 dB	≅<-10 dB
		500.25 MHz			
A31	J 1	10 MHz	≅ - 0 dBm	N/A	≅<-25 dB
A8	Front Panel	5 Hz-200 MHz	-49 to +15 dBm	±1.5 dB	< - 30 dB

NOTE

All amplitude measurements cited here are made using an HP 436A Power Meter and an HP 8482A Power Sensor. All flatness and harmonics measurements are made using an HP 8566A Spectrum Analyzer. All time domain measurements are made using an HP 1980B Oscilloscope.

SECTION III PERFORMANCE TESTS

Table of Content	
	,

Introduction
Equipment Required
Test Record
Calibration Cycle
Operational Verification Tests
Initial Control Settings
Receiver Residuals and Noise Test
On Carrier Return Loss Test
Magnitude and Phase Dynamic Accuracy Test
Receiver Level Flatness and Absolute Accuracy Test
Alternate Receiver Level Flatness and Absolute Accuracy Test
(Does not require EPM-1 Power Meter)
Receiver Ratio Amplitude and Phase Accuracy Test 3-28
Receiver Crosstalk Test 3-34
Receiver Return Loss Test
Source Flatness and Absolute Accuracy Test
Alternate Source Flatness and Absolute Accuracy Test
(Does not require EPM-1 Power Meter)
Source Attenuator Accuracy Test
Source Distortion and Spur Test
Source Phase Noise Test
API Spur Test
Time Base Stability Test

List of Tables

3-1	Operational Verification Tests
3-2	Receiver Residual Test Points
3-3	Ratio Transformer Settings
3-4	Thermal Converter Test Frequencies
3-5	Power Meter Test Frequencies
3-6	Ratio Performance Inputs
3-7	Source Flatness Test Frequencies
3-8	Source Attenuator Accuracy Tests
3-9	Source Distortion Test Points
3-10	Test Record

	List of Figures	
3-1	On Carrier Return Loss Test Set-Up	. 3-€
3-2	Buffer Amplifier	
3-3	Suggested Layout for Buffer Amplifier	3-8
3-4	Dynamic Linearity Test Set-Up	. 3-10
3-5	Dynamic Linearity (Magnitude vs. Phase) Test Set Up	3-12
3-6	Calibration of Transmission Loss	3-15
3-7	Receiver Flatness and Absolute Accuracy Test Set-Up (50 Ω)	3-16
3-8	Receiver Flatness and Absolute Accuracy Test Set-Up (1 M Ω	3-17
3-9	Receiver Power Splitter Calibration (50 Ω)	3-21
3-10	Thermal Converter Calibration	3-22
3-11	Absolute Accuracy and Flatness Test Set-Up (50 Ω	3-23
3-12	Absolute Accuracy and Flatness Test Set-Up (1 M Ω)	3-27
3-13	Ratio Test Set-Up (50 Ω)	3-31
3-14	Ratio Test Set-Up (1 MΩ)	3-34
3-15	Receiver Return Loss Test Set-Up	3-3€
3-16	Calibration of Transmission Loss from Power Splitter to Channel R	3-39
3-17	Channel R Calibration for Source Flatness and Accuracy	. 3-40
3-18	Source Flatness and Absolute Accuracy Test Set-Up	3-41
3-19	Alternate Source Flatness and Absolute Accuracy Test Set-Up	3-4

SECTION III PERFORMANCE TESTS

3-1 INTRODUCTION

The procedures in this section test the electrical performance of the instrument using the specifications of Table 1-1 as the performance standards. Most tests can be performed without access to the interior of the instrument. A shorter test is included in this section under the Operational Verification Test. The performance tests must be performed in the sequence given, since some procedures rely on satisfactory results in previous tests. If a test measurement is out of tolerance, go to Section IV (Adjustments).

3-2 EQUIPMENT REQUIRED

Equipment required for the performance tests is listed in Table 1-2. Any equipment which meets the critical specifications given in the table may be substituted for the recommended model.

3-3 TEST RECORD

Results of the performance tests may be tabulated on the Test Record, Table 3-10, at the end of this section. The test record lists all tested specifications, and their acceptable limits. The test record may be removed from the manual and used as a permanent record of the incoming inspection or of routine performance verification. The performance test record may be reproduced without the written permission of Hewlett-Packard.

3-4 CALIBRATION CYCLE

This instrument requires periodic verification of performance. Depending on the use and environment the instrument is subject to, the performance tests should be performed at least every 12 months.

3-5 OPERATIONAL VERIFICATION TESTS

The Operational Verification Tests for the HP 3577A are designed to be run with a minimum amount of equipment. A comparison of the required equipment to run the tests is presented in Table 1-2. These tests give the user a high level of confidence that the HP 3577A meets all specifications as listed in Table 1-1, but do not guarantee that all specifications are met. The Operational Verification Tests require about 3 hours time to perform.

Table 3-1. Operational Verification Tests

Test Name	Paragraphs to Complete
Receiver Residuals and Noise Test	All
Magnitude and Phase Dynamic Accuracy Test	x through ii
Source Distortion and Spur Test	AII
Source Flatness and Absolute Accuracy Test	Ail
Confidence Test (internal)	

3-6 INITIAL CONTROL SETTINGS

Each of the following performance tests assumes an initial condition of the 3577A control settings. This is due to the trace arithmetic and trace input functions possible with the HP 3577A. Initial conditions can be achieved by pressing the INSTR PRESET button. The setting of the INSTR PRESET are:

INPUT
AMPTD10 dBm
FREQ
START FREQ 0 Hz
STOP FREQ
SWEEP TYPELIN FREQ SWEEP
SWEEP TIME
RESOLUTION BANDWIDTH 1 kHz
SCALE
REF LEVEL 0 dBm
dB/DIV10 dB

3-7 RECEIVER RESIDUALS AND NOISE TEST

SPECIFICATIONS:

Sensitivity:

Resolution	Minimum Frequency to 30 kHz Maximum Input Level			00 MHz(50 Ω) 0 MHz(1 MΩ)
Bandwidth			Maximum Input Level	
	0 dBm	- 20 dBm	0 dBm	- 20 dBm
	-13 dBV	- 33 dBV	-13 dBV	- 33 dBV
	(20dB att)	(0dB att)	(20dB att)	(0dB att)
1 Hz	-110 dBm	- 130 dBm	110 dBm	-130 dBm
10 Hz	-100 dBm	- 120 dBm	110 dBm	-130 dBm
100 Hz	- 90 dBm	- 110 dBm	105 dBm	-125 dBm
1 kHz	- 80 dBm	- 100 dBm	95 dBm	-115 dBm

Residual Responses:

Local Oscillator feedthrough: < -33 dB from maximum input.

Line and Fan related spurious: < −100 dBm.

Residual responses: < -100 dB from maximum input.

DESCRIPTION:

The receiver inputs to the HP 3577A are terminated in 50 Ω , and the receiver residual response is measured as indicated on the 3577A display. With the inputs still terminated, the average noise level is measured. The measurement consists of averaging the amplitude of eleven points in the linear magnitude of an amplitude sweep and converting to dBm.

EQUIPMENT:

50 Ω Termination (3 each)	P 11048C
N male to BNC female Adapter (3 each)	1250-0780

PROCEDURE:

RECEIVER RESIDUALS TEST

a. Preset the 3577A.

ير، -

- b. Terminate the R, A, and B receivers of the 3577A with the 50 Ω terminations, using N male to BNC female adapters.
- c. Set the 3577A controls as shown below:

SWEEP TYPE	/
SWEEP TIME (SAMPLE TIME)	2
AMPTD48 dBn	1
RES BW10 H	
AVG	
ATTEN (all channels)	3

3-3

- d. Press the FREQ hardkey and enter a FREQ of 149.625 MHz.
- e. Press the INPUT hardkey and select R.
- f. The marker MAG on the 3577A display should read < -100 dBm. Enter the reading in the test record.
- g. Repeat steps e and f for inputs A and B.
- h. Repeat steps d through g for all the frequencies listed in Table 3-2. For all frequencies the noise must be < -100 dBm. For 0 Hz, the L.O. Feedthrough must be < -33 dB.

Table 3-2. Receiver Residual Test Points

	All frequencies listed are in MHz	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
149.625	89.5	0.0080
149.875	120.0	0.0160
99.666 666 666	149.5	0.0240
99.833 333 333	180.0	0.027 777 7
74.6875	0.480	0.10
74.8125	0.960	0.20
59.7	0.0040	0.000 000 000
59.8		

NOISE TEST

- k. Preset the 3577A.
- I. Leave the 50 Ω terminations on the 3577A A, B, and R receivers.
- m. Set the 3577A controls as shown below:

SWEEP TYPE
SWEEP MODESINGLE
SWEEP TIME
AMPLITUDE
START AMPTD
STOP AMPTD — 48 dBm
STEPS/SWEEP
RES BW
DISPLY FCTNLIN MAG
SCALE
/DIV

- n. Press the FREQ hardkey and enter a FREQ of 100 Hz.
- o. Press the TRIC/RESET hardkey.
- p. Press the INPUT hardkey and select R.
- q. Use the 3577A RPG knob to measure the magnitude of the eleven points starting at the left. The RPG knob will move the marker directly from one point to the next. Record the magnitude of each point on the test record.
- r. Calculate the noise level using the following equation:

Noise Level (dBm) =
$$-150 + 10 \log_{10} \left[\sum_{n=1}^{11} (X_n^2) \right]$$
 where X is the marker value in nV

- s. The noise level should be < -100 dBm (-110 dBm for 30 kHz and 199 MHz). Record the reading in the test record.
- t. Repeat steps q through s for the inputs A and B.
- u. Repeat steps n through t for the 3577A FREQs of 30 kHz and 199 MHz. The noise level for both these frequencies should be < -110 dBm.

3-8 ON CARRIER RETURN LOSS TEST

SPECIFICATIONS:

Source Return Loss > 20 dB

DESCRIPTION:

The HP 3577A source return loss is measured using a signal generator (generates the incident signal) and a directional bridge. The sum of the HP 3577A source output and the generator signal reflected from the HP 3577A source is measured by channel R. In order to distinguish the two signals, the signal generator frequency is offset from the HP 3577A frequency. (The offset frequency is chosen to be within the loop bandwidth of the HP 3577A source leveling loop. This guarantees that the source return loss includes the effect of the leveling loop.) The summation of these two signals appear as a carrier (HP 3577A output) and one sideband (generator signal reflected from the HP 3577A source). If the sideband level is 20 dB below the HP 3577A source level, the two signals can be synthesized as simultaneous AM and PM modulation of the carrier where the modulation frequency is the frequency difference between the signal generator and the HP 3577A. The display function of channel R is set to linear magnitude, so that channel R acts as an AM detector. The peak-to-peak level of the AM signal is a measure of the sideband signal (signal reflected from the source). Given the reflected signal level, the source return loss can be computed.

EQUIPMENT:

3 dB AttenuatorHP 8	3491A Opt 003
10 dB Attenuator HP 8	3491A Opt 010
Directional Bridge	P 35677-63502
Signal Generator	HP 8660C
SMA male to BNC female Adapter (2 each)	.HP 1250-1200
N male to N male Adapter	. HP 1250-0778
N male to BNC female Adapter (2 each)	. HP 1250-0780
BNC Cables-48 inch (3 each)	HP 8120-1840

PROCEDURE:

a. Preset the 3577A.

b.	Set the 3577A as follows:
	SWEEP MODE
	FREQ
	FREQ SPAN 0 Hz
	CENTER FREQ175 MHz
	AMPTD12 dBm
	RES BW
	DISPLY FCTNLIN MAG
	SCALE

 REF POSN
 50%

 /DIV
 10 mV

 SAVE
 SAVE REG 1

- c. Connect the equipment as shown in Figure 3-1 except leave the HP 3577A source to directional bridge unconnected. (3577A EXT REF LED should be on.)
- d. Set the signal generator frequency to the HP 3577A center frequency.
- e. Set the signal generator amplitude to +10 dBm.
- f. Press the TRIG/RESET hardkey.

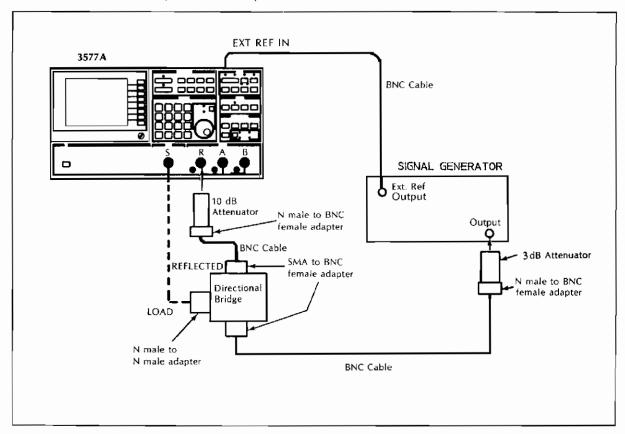


Figure 3-1 On Carrier Return Loss Test Set-Up

- g. Note the marker MAC of the 3577A and record this reference voltage (Vref) in the test record. (The voltage should be approximately 40 mV).
- h. Set the signal generator frequency 5 Hz above the HP 3577A frequency.
- Connect the 3577A source to the directional bridge load port using an N male to N male adapter as shown in Figure 3-1.
- Press the TRIG/RESET hardkey. Press the MKR→ hardkey and select MKR→REF LVL.
- k. Press the SCALE hardkey and enter a /DIV of 1 mV.
- Press the MKR→ hardkey and select MKR→MIN. Press the MKR hardkey and select ZERO MARKER. Using the 3577A RPG knob, set the marker to the next sinewave maximum and record this test voltage (Vtest) in the test record. (The voltage should be approximately 6 mV or less.)
- m. Calculate the on carrier return loss using the following equation:

On Carrier Return Loss (dB) =
$$-(3 \text{ dB} + 20 \log_{10} (\frac{\text{Vtest}}{2 \text{ Vref}}))$$

The 3 dB is added to compensate for the 3 dB insertion loss of a 5 Hz signal in a 10 Hz resolution bandwidth.

- The on carrier return loss should be > 20 dB. Record the value in the test record.
- Press the RECALL hardkey and select RECALL REG 1. Repeat steps c through n for a 3577A FREQ of 200 MHz.

3-9 MAGNITUDE AND PHASE DYNAMIC ACCURACY TEST

SPECIFICATIONS:

Test or Reference Level	Tolerance 1 k,100,10 Hz res BW		Tolerance 1 Hz res BW	
dB from max. allowable	Magnitude	Phase	Magnitude	Phase
0 to -10 dB	0.04 dB	0.4 deg	0.04 dB	0.4 deg
-10 to -50 dB	0.02 dB	0.2 deg	0.02 dB	0.2 deg
-50 to -60 dB	0.05 dB	0.5 deg	0.05 dB	0.5 deg
-60 to -80 dB	0.15 dB	1.5 deg	0.25 dB	N/A
−80 to −90 dB	0.75 dB	7.5 deg	0.75 dB	N/A
-90 to -100 dB	0.75 dB	7.5 deg	3.00 dB	N/A

DESCRIPTION:

The dynamic accuracy test is a measure of receiver linearity or the ability of the receiver to measure a relative change in magnitude and/or phase. The measurement has a reference level of approximately $-20~\mathrm{dBm}$ (0 dBm maximum input level) at a phase of approximately 0 degrees. The test requires a source whose relative output level can be adjusted to an accuracy that exceeds the 3577A dynamic accuracy specification. This is done with the 3577A source and a ratio transformer with seven decimal place resolution.

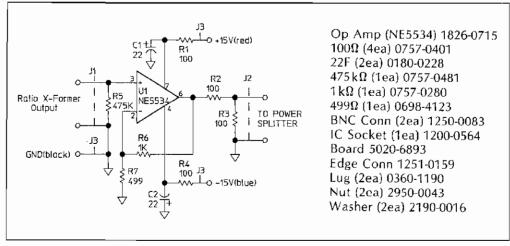


Figure 3-2 Buffer Amplifier

You will have to build a buffer amplifier to match the impedance of the ratio transformer to the 50 Ω input of the HP 3577A receivers. See Figures 3-2 and 3-3 for construction details.

EQUIPMENT:

Ratio Transformer	ESI DT72A
Power Splitter	HP 11850A/C
Synthesizer	HP 3325A
20 dB Attenuator	HP 8491A Opt 020
RF Cables-24 inch (3 each)	HP 35679A
BNC Cables-48 inch (3 each)	HP 8120-1840
N male to BNC female Adapter (2 each)	HP 1250-0780
BNC female to Banana Adapter (2 each)	
Power Supply	HP 6235A
Buffer Amplifier	SEE FIGURE 3-2
RF Balun	HP 03577-84404

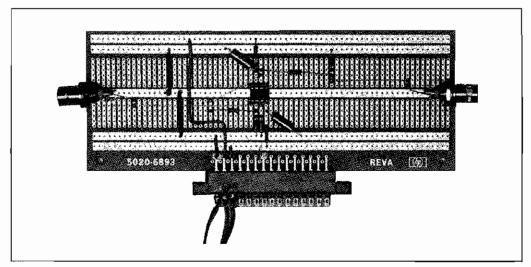


Figure 3-3 Suggested Layout for Buffer Amplifler

PROCEDURE:

- a. Preset the 3577A.
- b. Connect test equipment as shown in Figure 3-4.

NOTE

Test set up is critical to accurate results. Do not substitute equipment.

C.	Set the 3577A to the following conditions:
	SWEEP TYPECW
	SWEEP TIME (SAMPLE TIME)
	FREQ
	RES BW10 Hz
	AMPTD6 dBm
	STEP SIZE

- d. Set the Ratio Transformer to 0.1 and read the marker MAG of channel R.
- e. Press the AMPTD hardkey, select AMPTD, and use the \uparrow and \downarrow hardkeys until the marker MAG reads -20.5 dBm \pm 0.1 dBm.
- f. Change the following 3577A conditions:

DEFINE MATH K1 REAL
TRACE ONE DISPLY FCTN LOG MAG INPUT USER DEF INPUT K1*R/D1 (select USER DEF INPUT, K_, 1, *, R, /, D_, 1, ENTER) SCALE REF LEVEL 0 dB /DIV 20 dB TRACE TWO
DISPLY FCTN LOG MAG INPUT USER DEF INPUT
INPUT
USER DEF INPUT
(select USER DEF INPUT, K, 1, *, R, /, D, 1, ENTER) SCALE REF LEVEL
SCALE REF LEVEL 0 dB /DIV 20 dB TRACE TWO
REF LEVEL
/DIV
TRACE TWO
DISPLY FCTN PHASE
INPUT
SCALE
/DIV5 deg

- g. Press the SAVE hardkey and select SAVE REG 1.
- h. Press the INPUT hardkey and enter a USER DEF INPUT of K1*A/D2 (select USER DEF INPUT, K__, 1, *, A, /, D__, 2, ENTER).
- i. Press the TRACE 1 hardkey, then the INPUT hardkey. Select COPY Trc 2→1.
- j. Press the SAVE hardkey and select SAVE REG 2.

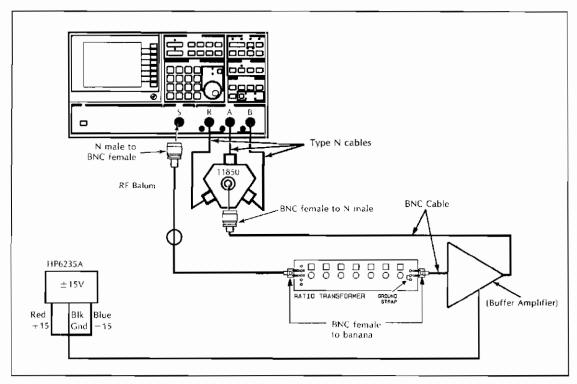


Figure 3-4 Dynamic Linearity Test Set-Up

- k. Press the INPUT hardkey and enter a USER DEF INPUT of K1*B/D3 (select USER DEF INPUT, K_, 1, *, B, /, D_, 3, ENTER).
- 1. Press the TRACE 2 hardkey, then the INPUT hardkey. Select COPY Trc $1\rightarrow 2$.
- m. Press the SAVE hardkey and select SAVE REG 3.
- n. Press the RECALL hardkey, select RECALL REG 1, and wait 10 sec.
- o. Press the STORE DATA hardkey and store R into USER DEF STORE register D1 (select USER DEF STORE, R, → D__, → D1). Store A into D2 and B into D3 in the same manner. (RECALL REG 2 for A and RECALL REG 3 for B.)
- p. Press the RECALL hardkey, select RECALL REG 1, and wait 5 sec.

q. The expected value of the MAG (Trace 1) should be -20.000 \pm 0.003 dB and the PHASE (Trace 2) should be 0.00 \pm 0.05 degrees. Record the values in the test record.

NOTE

This finishes the normalization procedure. If unable to normalize, repeat steps n through p until the magnitude at step q is -20.000 ± 0.003 dB.

- r. Repeat steps p and q for channels A and B (for channel A, RECALL REG 2 and for channel B, RECALL REG 3).
- s. Set the Ratio Transformer to 1.0.
- t. Press the RECALL hardkey, select RECALL REG 1, and wait 5 sec.
- u. The MAG should be 0.000 dB \pm 0.04 dB and the PHASE should be 0.0 deg \pm 0.4 deg. Record the values in the test record.
- v. Test this Ratio Transformer setting on channels A and B by recalling registers 2 and 3 as in step r. Record the readings in the test record.
- w. Repeat steps s through v for the Ratio Transformer settings in Table 3-3. The magnitude, phase and tolerances are listed in the table. For transformer settings below .01, wait 10 sec after recalling the registers, then press the SWEEP MODE hardkey and select SINGLE.

Table 3-3 Ratio Transformer Settings

Ratio Transformer	Magnitude (dB)	Tolerance (dB)	Phase (deg)	Tolerance (deg)
1.0	0.000	.04	0.0	.4
.31623	-10.000	.02	0.0	.2
.2	-13.979	.02	0.0	.2
.05	-26.020	.02	0.0	.2
.025	- 32.041	.02	0.0	.2
.01	-40.000	.02	0.0	.2
.0031623	-50.000	.02	0.0	.2
.001	-60.000	.05	0.0	.5
.0001	80.000	.15	0.0	1.5
.00001	-100.000	.75	0.0	7.5

x. Set up the equipment as in Figure 3-5. Make sure the HP 3577A 10 MHz OUT is connected to the synthesizer external reference input. The EXT REF LED on the front panel of the synthesizer should be on.

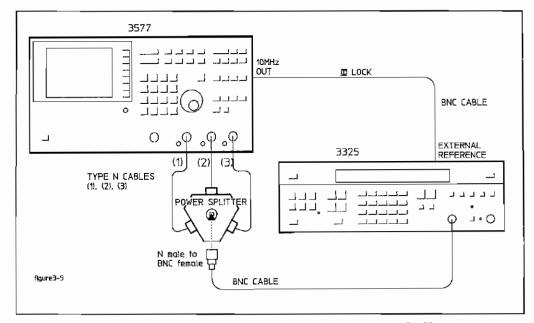


Figure 3-5 Dynamic Linearity (Magnitude vs. Phase) Test Set-Up

- y. Preset the 3577A.
- z. Set the 3577A to the following conditions:

SWEEP MODE SINC	ĴLΕ
SWEEP TIME (SAMPLE TIME)	ec
FREQ	
START FREQ	Hz
STOP FREQ	Ηz
AMPTD	3m
RES BW	Ηz
SCALE	
REF POSN 50	1%

- aa. Set the synthesizer amplitude to -29 dBm and frequency to 1.75 MHz.
- bb. Press the TRIG/RESET hardkey and let the 3577A complete a sweep.
- cc. The marker MAG on the 3577A should read approximately -39 dBm.
- dd. Press the SCALE hardkey and select AUTO SCALE.
- ee. Increase the synthesizer frequency by 0.02 Hz.
- ff. Press TRIG/RESET on the 3577A and let the 3577A complete a sweep.
- gg. Press the MKR→ hardkey and select MKR→ MIN. Press the MKR hardkey and select ZERO MARKER. Press the MKR→ hardkey and select MKR→ MAX.
- hh. The marker MAC should read < 0.04 dB. Record the reading in the test record.
- Repeat step gg and hh for channels A and B.

3-12

3-10A RECEIVER LEVEL FLATNESS AND ABSOLUTE ACCURACY TEST

NOTE

Perform test 3-10A (which uses a W&C EPM-1 power meter) or 3-10B (which uses a voltmeter, an HP 436A Opt. 022 power meter, and a thermal converter).

SPECIFICATIONS:

Absolute (at 100 kHz and full scale input): A B R Mode: ± 0.2 dB Flatness (at full scale input):

INPUT	MODE	20 Hz to 20 MHz	5 Hz to 20 MHz	5 Hz to 200 MHz
50 Ω	A B R	0.3 dB p-p	N/A	0.6 dB p-p
1 MΩ	A B R	0.5 dB p-p	1.0 dB p p	N/A

DESCRIPTION:

The flatness and absolute accuracy of each receiver (R, A, and B) is verified by leveling the HP 3577A source to a known accuracy and splitting the output with a three-port power splitter, each port driving a receiver channel. The 3577A source is externally leveled, using a W&G EPM-1 power meter as detector and reference level. The EPM-1 outputs an error correction signal to the source through connector W6 on the source board, maintaining 0 dBm at the EPM-1 power head. The three-way resistive power splitter is a 50 Ω splitter with equal incident power at each port. Assuming all ports are terminated in 50 Ω (reflected power is 0), the power output of the other two power splitter ports is equal to the power output of the EPM-1 port. The second power splitter divides the source into three equal outputs which become the test level inputs for each of the receivers. Knowing the transmission loss from the output of power splitter #1 (PS #1) to each receiver port allows the user to normalize the receiver input level to the EPM-1 level of PS #1. Because the transmission loss for each channel is equal (assuming a symmetrical power splitter), it is necessary to find only the transmission loss from PS #1 to channel R of PS #2 to normalize the receiver level for all channels. The transmission loss is stored in register D1 for the 5 Hz to 200 MHz frequency span and in register D2 for the 5 Hz to 20 MHz span.

Following calibration, the receiver input levels are normalized to the EPM-1 level, and the receiver input levels are measured and compared to the calibrated level. This procedure verifies the flatness and absolute accuracy for receiver input impedances of 50 Ω . The Hi-Z (1 M Ω) response is verified by installing a 50 Ω feed-through termination at each receiver input and repeating the procedure.

Because the 3577A receivers take data simultaneously, only one frequency sweep is necessary to verify receiver performance at a selected input level (0 dBm or -20 dBm). Therefore to measure the complete absolute frequency performance of the three receivers, it is necessary to complete only four sweeps—from 5 Hz to 200 MHz for each input level (50 Ω input impedance) and from 5 Hz to 20 MHz for each input level (1 $M\Omega$ input impedance).

EQUIPMENT:

•	
Power Meter	
Power Splitter (2 each)	HP 11850A/C
RF Cables-24 inch (5 each)	HP 35679A
Precision Termination	HP 909C,Opt200,Opt012
Error Correction Cable	
20 dB Attenuator	HP 8491A,Opt020
N male to N male Adapter	HP 1250-1475
Feedthrough Termination (3 each)	HP 11048C
N male to BNC female Adapter (6 each)	HP 1250-0780
BNC Cables-12 inch (3 each)	HP 8120-1838

PROCEDURE:

NOTE

All information describing differences between the 50 Ω tests and 1 M Ω tests in steps d through ff is in parentheses.

- a. Preset the HP 3577A.
- b. Connect the EPM-1 power head to the port marked OUTPUT on the front panel of the power meter and adjust the CAL potentiometer for a 0 dBm level (red scale) on the EPM-1 meter. This calibrates the EPM-1.
- c. Connect a 24-inch type N cable from the 3577A source to receiver R.
- d. Set the 3577A controls for the following settings:

SWEEP TYPE LOG FREQ SWEEP
SWEEP MODESINGLE
SWEEP TIME for 50 Ω
(SWEEP TIME for 1 M Ω
FREQ
START FREQ
STOP FREQ for 50Ω
(STOP FREQ for 1 MΩ
RES BW100 Hz
SCALE
REF POSN50%

- e. Press the TRIG/RESET hardkey and let the 3577A complete a sweep.
- f. Press the MEASR CAL hardkey and select NORMALIZE.
- g. Disconnect the 24-inch cable from receiver R and connect it to the 20 dB attenuator. Connect the equipment as shown in Figure 3-6.

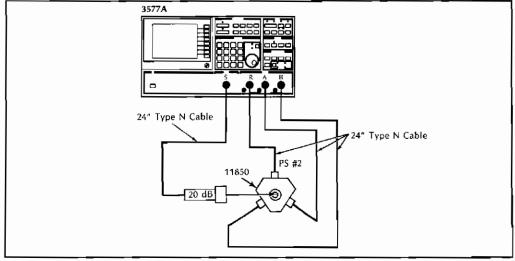


Figure 3-6 Calibration of Transmission Loss

- h. Press the SCALE hardkey and set the /DIV to 0.5 dB and the REF LEVEL to -29.5 dB.
- i. Press the TRIG/RESET hardkey to trigger a second sweep and store the data in register D1 (register D2 for 1 M Ω). The transmission loss should be approximately -30 dB.
- j. Press AMPTD hardkey and enter AMPTD of +10 dBm.
- k. Connect the equipment as shown in Figure 3-7 (Figure 3-8 for 1 MΩ). The EPM-1 Error Correction Cable connects to W6 at the top of the 3577A source board, A8, after removing the jumper. The EPM-1 level power meter will swing from -0.2 dBm to +0.2 dBm several times and settle to some level between the two points. Adjust the reference control on the front panel of the EPM-1 until the meter reads 0 dBm.

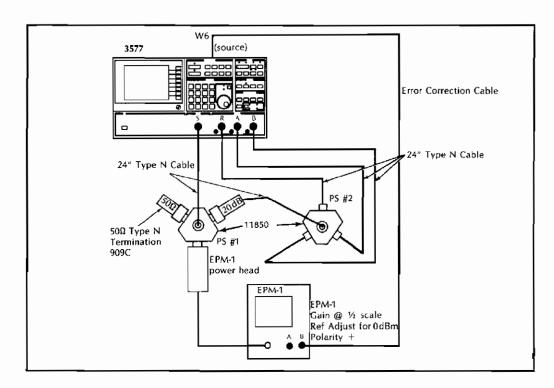


Figure 3-7 Receiver Flatness and Absolute Accuracy Test Set-Up (50 Ω)

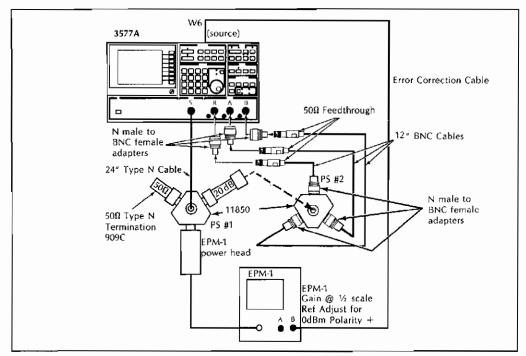


Figure 3-8 Receiver Flatness and Absolute Accuracy Test Set-Up (1 $M\Omega$)

- I. Preset the 3577A.
- m. Set the 3577A controls to the following conditions:

SWEEP TYPE	LOG FREQ SWEEP
SWEEP MODE	SINGLE
SWEEP TIME for 50 Ω	100 sec
(SWEEP TIME for 1 M Ω	120 sec)
FREQ	
START FREQ	5 Hz
STOP FREQ for 50 Ω	200 MHz
(STOP FREQ for 1 M Ω	20 MHz)
ATTEN for 50 Ω	50 Ω for IMPED R, A, B
(ATTEN for 1 M Ω	
AMPTD	+8 dBm
RES BW for 50 Ω	
(RES BW for 1 M Ω	
SCALE	
REF POSN	
/DIV	0.2 dB

- n. Press the DEFINE MATH hardkey and enter a value of 4.472 UNITS for K1 real.
- o. Press the INPUT hardkey and enter a USER DEF INPUT of K1*R/D1 (K1*R/D2 for 1 M Ω).

p. Press the TRIG/RESET hardkey and follow the sweep marker. When the sweep marker reaches approximately 10 MHz, enter a longer sweep time by pressing the SWEEP TIME hardkey and then the 1 hardkey twice. This increases the sweep time to 500 seconds for the remainder of the sweep. (This is not necessary for the 1 M Ω impedance.)

- q. Disregarding the "Sweep Rate Uncalibrated" message which may appear at the completion of the sweep, set the SWEEP TIME back to 100 sec. (Skip this step for 1 M Ω impedance.)
- r. Move the marker to 100 kHz. The marker MAG should read 0 ± 0.2 dB. Record the reading in the test record.
- s. Press the MKR- hardkey and select MKR-MIN.
- t. Press the MKR hardkey and select ZERO MARKER.
- u. Press the MKR→ hardkey and select MKR→MAX.
- v. The marker MAG should read <0.6 dB peak to peak (1.0 dB peak to peak for 1 M Ω). This is the flatness for channel R for the frequency range of 5 Hz to 200 MHz (frequency range of 5 Hz to 20 MHz for 1 M Ω). Record the reading in the test record.
- w. Press the MKR hardkey and turn the MKR OFFSET off.
- x. Move the marker to approximately 20 Hz.
- y. Press the MKR hardkey and select ZERO MARKER.
- Move the marker within the frequency range of 20 Hz to 20 MHz and find a minimum.
- aa. Press the MKR hardkey and select ZERO MARKER.
- bb. Move the marker within the frequency range of 20 Hz to 20 MHz and find a maximum should be close to 20 MHz.
- cc. The marker MAG should read < 0.3 dB peak-to-peak (0.5 dB peak-to-peak for 1 M Ω). Record the reading in the test record for the 20 HZ to 20 MHz range.
- dd. Press the MKR hardkey and turn MKR OFFSET off.
- ee. Select a USER DEF INPUT of K1*A/D1 (K1*A/D2 for 1 M Ω) and repeat steps r through dd for channel A.
- ff. Select a USER DEF INPUT of K1*B/D1 (K1*B/D2 for 1 M Ω) and repeat steps r through dd for channel B.
- gg. Press the ATTEN hardkey and change the attenuation of channels R, A, and B to the 0 dB mode.

hh. Repeat steps o through ff. All specifications remain the same.

ii. Repeat steps a through hh for 1 M Ω input impedance. Remember to replace the jumper on the source board for steps a through j. All settings will be the same except for those with a 1 M Ω option in parentheses.

3-10B ALTERNATE RECEIVER LEVEL FLATNESS AND ABSOLUTE ACCURACY TEST

(EPM-1 POWER METER NOT REQUIRED)

NOTE

Perform test 3-10A (which uses a W&G EPM-1 power meter) or 3-10B (which uses a voltmeter, an HP 436 Opt. 022 power meter, and a thermal converter).

SPECIFICATIONS:

Absolute (at 100 kHz and full scale input): A B R Mode: ± 0.2 dB Flatness (at full scale input):

INPUT	MODE	20 HZ TO 20 MHZ	5 HZ TO 20 MHZ	5 HZ TO 200 MHZ
50 Ω	A B R	0.3 dB p-p	N/A	0.6 dB p-p
1 ΜΩ	A B R	0.5 dB p-p	1.0 dB p-p	N/A

DESCRIPTION:

This procedure is an alternate approach for verifying 3577A receiver performance. The EPM-1 power meter is replaced by a thermal converter at frequencies below 20 MHz and an HP 436A power meter at frequencies from 20 MHz to 200 MHz. Discrete measurements must be made rather than the swept measurements possible with the EPM-1. Knowing the source output allows the user to compute the input signal. The difference between the computed level and the measured level is the absolute error of the receiver. This method is essentially the same as that in section 3-10 except that the source level at the output port of the first power splitter is not held constant at 0 dBm. This requires that the computed receiver input level be adjusted for the varying source level. Because manual computation for each measurement is tedious, the test procedure includes a short program which will read the source level, compute a source correction constant, output the correction constant to the 3577A, read each receiver level, and output the results to a computer display and a printer. The program is written in HP BASIC (3.0) and requires the user to input the verification frequency in MHz.

Before measuring receiver performance, the thermal converter and the power splitter transmission loss must be calibrated. The thermal converter output at a frequency of 1 kHz and a level of 0 dBm is stored in register Y of the HP 3456A voltmeter as the thermal converter calibration constant. The voltmeter math function (X-Y)/Z is used to display relative level of the thermal converter output. Transmission loss from the second power splitter input to each receiver input is measured and stored in registers D1, D2, and D3 for channels R, A, and B respectively.

EQUIPMENT:

Controller	HP Series 200 Compatible
Printer (optional)	
Synthesizer	
Voltmeter	
Thermal Converter	
Power Meter	HP 436A, Opt022
Power Head	
Power Splitter (2 each)	HP 11850A/C
RF Cables-24 inch (5 each)	
BNC Cables-12 inch (3 each)	
BNC Cables-48 inch (2 each)	HP 8120-1840
20 dB Attenuator (3 each)	HP 8491A, Opt020
BNC to dual banana Adapter (2 each)	
BNC to alligator Adapter	
BNC Tee Adapter	
N male to BNC female Adapter (7 each)	HP 1250-0780
N male to N male Adapter	HP 1250-0778
Precision Termination, 50Ω	HP 909C, Opt200, Opt012
BNC female to BNC female Adapter	HP 1250-0080
N female to N female Adapter	HP 1250-1472

PROCEDURE:

CALIBRATE RECEIVER POWER SPLITTER

- a. Preset 3577A. Connect the 3577A source output to receiver R using a 24-inch type N cable.
- b. Set the 3577A to the following conditions:

SWEEP TYPE	
FREQ	
RES BW1 Hz	

- c. After the MAG reading on the 3577A has settled, store the R input level in register D1 (press STORE DATA hardkey, select STORE REG D1).
- d. Disconnect the cable from receiver R and connect it to receiver A. Press the IN-PUT hardkey and select A.
- e. Repeat step c, storing the A input level in register D2.
- f. Disconnect the cable from receiver A and connect it to receiver B. Press the IN-PUT hardkey and select B.
- g. Repeat step c, storing the B input level in register D3.
- h. Connect the equipment as shown in Figure 3-9, connecting the cable used in steps a through g between the 3577A source and the power splitter input.

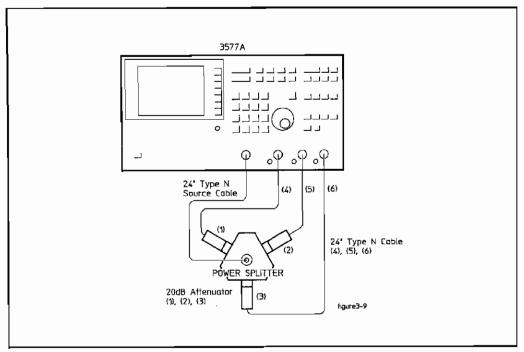


Figure 3-9 Receiver Power Splitter Calibration

- i. After the marker MAG reading has settled, store R/D1 in register D1 (press the STORE DATA hardkey and select USER DEF STORE, R, /, D__,(1) → D__, → D1).
- j. Store A/D2 in register D2 and B/D3 in register D3 as in step i.
- k. Check the normalization data for receiver R by pressing the INPUT hardkey and selecting DATA REG and D1. The marker MAG should be $-29.5~{\rm dB}~\pm~.3~{\rm dB}.$ Enter the reading in the test record.
- Check the normalization data for receivers A and B as in step k, selecting D2 for A and D3 for B.

CALIBRATE THERMAL CONVERTER

- m. Using a BNC female to female adapter, connect a BNC Tee to the input of the thermal converter. Connect a BNC cable from each of the BNC Tee female connectors to one of the 4-wire inputs of the voltmeter, using BNC to dual banana adapters at the voltmeter inputs.
- n. Set the voltmeter function to 4-wire ohms and record the reading in the test record (should be $50.0 \pm 0.2 \Omega$).
- o. Calculate the voltage reference level using the following equation and round the result to 4 decimal places:

Voltage reference level = SQR (.001 x resistance) The calculated level should be between 0.2232 and 0.2240 Vrms. Record the calculated level in the test record.

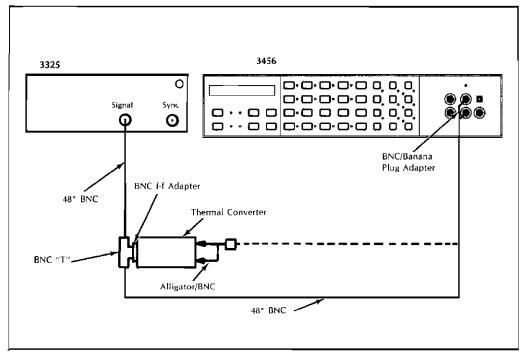


Figure 3-10 Thermal Converter Calibration

- p. Reset the voltmeter and select the AC volts function. Press the FILTER hardkey.
- q. Set the synthesizer frequency to 1 kHz, function to sine, and amplitude to 200 mVrms.
- r. Connect the equipment as shown in Figure 3-10. (Adjust the synthesizer amplitude until the voltmeter reads the voltage reference level calculated in step o.)

CAUTION

Do not exceed maximum input of 500 mV RMS to thermal converter.

- s. Disconnect the voltmeter BNC cable from the BNC Tee and connect it to the BNC-to-alligator adapter on the thermal converter. Set the number of digits displayed on the voltmeter to 6 (press the number 6 key, the STORE key, and the number 9 key).
- t. Set the voltmeter function to DC volts and store the reading in register Y (press the STORE key and the number 8 key). Turn on the math function (X-Z)/Y (press the MATH key and the number 7 key). Reduce the number of digits displayed to 5 (press the number 5 key, the STORE key, and the number 9 key). The voltmeter display should read 1.0000 ± 0.0050 . This completes the calibration of the thermal converter.

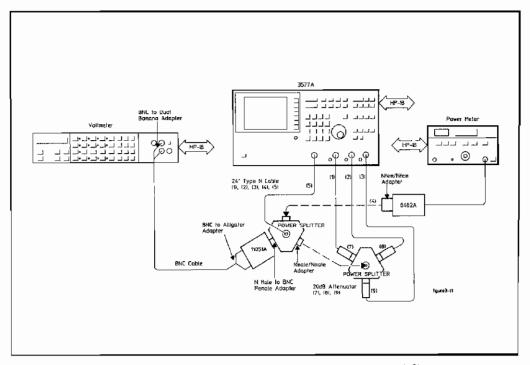


Figure 3-11 Absolute Accuracy and Flatness Test Set-Up (50 Ω)

FLATNESS AND ABSOLUTE ACCURACY TEST (50 Ω)

- u. Set the CAL FACTOR on the power meter to the value found for 10 MHz on the power head. Set the power meter to the dBm mode and press SENSOR ZERO.
- v. Connect the test equipment as shown in Figure 3-11. Also connect the voltmeter, power meter, and the HP 3577A to an HP-IB bus connected to a series 200 computer. The following addresses are used in the program:

Instrument	HP-IB Address
3577A	711
Voltmeter	722
Power Meter	713
Printer	706 (optional; if printout not desired, set print

w. Enter the following test program into the HP 200 series calculator:

```
INPUT "ENTER THE POWER METER CALIBRATION READING AT 10MHZ (DBM)...",Pm_1
10
Dmhz
        INPUT "ENTER THE VOLTMETER READING AT 10MHZ...", Tc_10mhz
50
30
        Pm_10mhz=Pm_10mhz-9.8*LGT(Tc_10mhz)
        OUTPUT 706 USING "#,0"
OUTPUT 706 USING "#,3/"
40
50
60
        QUTPUT 706;"
                              FREQ (MHz) CHANNEL R (dB)
                                                                    CHANNEL A (dB)
      CHANNEL B (dB)"
        OUTPUT 706;""
Freq$=" 1"
70
80
90
        LOOP
100
          OUTPUT 2 USING "#,K";Freq$;"%H"
110
          LINPUT "ENTER THE FREQUENCY IN MHz...", Freq$
120
          OUTPUT 711; "SFR"&Freq$&"MHz"
130
          UAIT 10
140
          IF VAL(Freq#)(21 THEN
150
            ENTER 722; Vm
160
            K1=SQR(20)+(ABS(Vm))^(- 512)
170
            IF VAL(Freq$)(.0001 THEN
180
               OUTPUT 711; "BW1"
190
            ELSE
200
              OUTPUT 711; "BW2"
            END IF
210
220
          ELSE
            OUTPUT 713; "9D-V"
230
240
            ENTER 713; Pm
250
            K1=10^((-Pm-Pm_10mhz)/20)*SQR(20)
250
            PRINT TABXY(8,9), "SET THE POWER HEAD CALIBRATION FACTOR ON THE 436A.
270
          END IF
280
          OUTPUT 711; "KR1"&VAL*(K1)&";"
290
          OUTPUT 711; "UDI K1*R/D1; TKM"
          GOSUB Marker_dump
300
310
          R=Marker
320
          PRINT TABXY(5,11), "CHANNEL R ACCURACY AT "&Freq$&"MHZ IS "&VAL$(PROUND
(Marker,-2))&"DB
330
          OUTPUT 711; "UDI K1*A/D2; TKM"
340
          GOSUB Marker_dump
350
          A≃Marker
360
          PRINT TABXY(5,13), "CHANNEL A ACCURACY AT "&Freq$&"MHZ IS "&VAL$(PROUND
(Marker,-2))&"DB
          DUTPUT 711; "UDI K1*B/D3; TKM"
370
380
          GOSUB Marker_dump
390
          B=Marker
400
          PRINT TABXY(5,15), "CHANNEL B ACCURACY AT "&Freq$&"MHZ IS "&VAL$(PROUND
(Marker,-2))&"DB
410
          GOSUB Print_result
420
        END LOOP
430 Marker dump: OUTPUT 711; "DM1"
        ENTER 711; Marker
440
450
        RETURN
460 Print_result:PRINTER IS 706
470
        PRINT "
                       ",Freq$,"
                                     "R"
                                                   ",A,"
                                                                  ",B
        PRINTER IS 1
480
490
        RETURN
500
        END
```

NOTE

The "H" at the end of step 100 is actually entered as "SHIFT CTL -" simultaneously on the controller. For the 9816, disregard this as it is not available on that controller.

x. Preset the 3577A.

у.	Set the 3577A to the following conditions:
	SWEEP TYPECW
	FREQ
	AMPTD
	AMPTD
	STEP SIZE 1 dB
	RES BW10 Hz
	INPUT

- 2. Press the HP 3577A AMPTD hardkey, select AMPTD, and vary the amplitude using the 1 and 1 keys until the power meter reads approximately 0 dBm. The HP 3577A amplitude should be 9.5 dBm ± 0.5 dB. The voltmeter should read 1.0000 ± 0.0500. Record the HP 3577A source amplitude level, the power meter reading, and the voltmeter reading in the test record.
- aa. Press the RUN key on the 200 series controller and enter the reading of the power meter and of the voltmeter as directed by the program. Enter these readings on the test record as well.
- bb. Disconnect the power head from the power splitter and terminate the power splitter port with a 50 Ω precision termination.
- cc. Enter a frequency of .1 MHz on the controller (all frequencies must be entered in MHz).

NOTE

Each measurement takes approximately 10 seconds to complete. This allows time for the thermal converter, power meter, and voltmeter to settle.

- dd. Record the readings for channels R, A, and B in the test record as the absolute level at 100 kHz. The readings should be $0.0\pm.2$ dB.
- ee. Enter each of the frequencies in Table 3-4 on the controller, recording the readings for channels R, A, and B in the test record or attach printout to the test record.

Table 3-4
Thermal Converter Test Frequencies

.000005 MHz	.01 MHz	1 MHz
.00002 MHz	.02 MHz	2 MHz
.0001 MHz	.05 MHz	5 MHz
.001 MHz	.1 MHz	10 MHz
.002 MHz	.2 MHz	15 MHz
.005 MHz	.5 MHz	20 MHz

- ff. Disconnect the precision termination from the power splitter. Reconnect the power head through an N female to N female adapter and a 24" type N cable to the power splitter. Disconnect the thermal converter and terminate the power splitter with a precision termination.
- gg. Enter each frequency from Table 3-5 on the controller. Set the CAL FACTOR on the power meter to the value found for each frequency.
- hh. Record the readings for channels R, A, and B in the test record for each frequency or attach printout to test record.

Table 3-5
Power Meter Test Frequencies

50 MHz	120 MHz	180 MHz
75 MHz	140 MHz	190 MHz
100 MHz	160 MHz	200 MHz
	170 MHz	

- ii. To calculate the flatness from 5 Hz to 200 MHz for each channel, find the maximum reading in the test record column for that channel. Subtract the minimum reading from the column and record the result as the flatness (in dB) for the channel from 5 Hz to 200 MHz. The results should be < .6 dB.
- jj. To calculate the flatness from 20 Hz to 20 MHz for each channel, find the maximum reading between 20 Hz (.00002 MHz) and 20 MHz in the test record column. Subtract the minimum reading in the frequency range and record the result as the flatness for the channel from 20 Hz to 20 MHz. The results should be < .3 dB.
- kk. Press the LCL hardkey and set the 3577A input attenuation for all three channels to 0 dB (press the ATTEN hardkey and select ATTEN R 0 dB, ATTEN A 0 dB, and ATTEN B 0 dB).
- II. Set the CAL FACTOR on the power meter to the value found for 10 MHz on the power head. Repeat steps bb through jj for input attenuation of 0 dB.

FLATNESS AND ABSOLUTE ACCURACY TEST (1 MΩ)

NOTE

If this test is performed independent of the preceding 50 Ω test the thermal converter and receiver power splitter must be calibrated (steps a through z). If the thermal converter and receiver power splitter have been calibrated for the 50 Ω test they need not be recalibrated for the 1 M Ω test. The program in step w must also be entered into the controller if the 1 M Ω test is run independently.

mm. Connect the test equipment as shown in Figure 3-12.

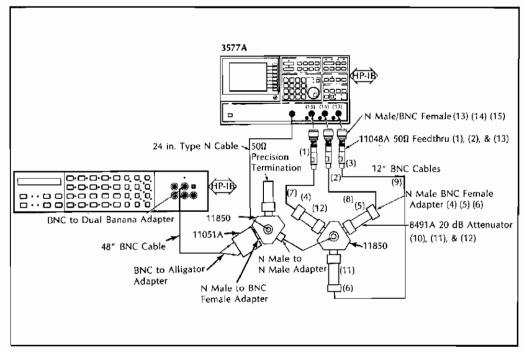


Figure 3-12 Absolute Accuracy and Flatness Test Set-Up (1 M Ω)

- nn. Preset the 3577A.
- qq. Press RUN on the series 200 controller. Enter a 0 when the program asks for the power meter reading. Enter the voltmeter reading from step z when the program asks for the voltmeter reading.
- rr. Enter a frequency of 0.1 MHz on the controller. Record the receiver measurements in the test record as the absolute accuracy at 100 kHz. The reading should be $0.0\,\pm\,0.2$ dB.
- ss. Enter each frequency from table 3-4 on the controller and record the receiver measurements at each frequency in the test record or attach printout to test record.
- tt. To calculate the flatness from 5 Hz to 20 MHz for each channel, find the maximum reading in the test record column for that channel. Subtract the minimum reading from the column and record the result in the test record. The flatness should be < 1.0 dB.

uu. To calculate the flatness from 20 Hz to 20 MHz for each channel, find the maximum reading between 20 Hz (.00002 MHz) and 20 MHz in the test record column. Subtract the minimum reading in the frequency range and record the result in the test record. The flatness should be < .5 dB.

vv. Press the LCL hardkey. Set the 3577A input attenuation for all three channels to 0 dB.

ww.Repeat steps rr through uu for input attenuation of 0 dB.

3-11 RECEIVER RATIO AMPLITUDE AND PHASE ACCURACY

SPECIFICATIONS:

FLATNESS AND ABSOLUTE ACCURACY: Absolute (at 100 kHz and full scale input): Ratio: A/R B/R A/B Mode: 50 Ω input ± 0.15 dB

1 M Ω input ± 0.2 dB Flatness (at full scale input);

Same Attenuator settings for ratio mode (column 1 of Table 3-6):

INPUT	MODE	20 Hz to 20 MHz	5 Hz to 20 MHz	5 Hz to 200 MHz
50 Ω	A/R,B/R,A/B	0 3 dB p-p	N/A	0.4 dB p-p
1 MΩ	A/R,B/R,A/B	0.3 dB p-p	0.6 dB p-p	N/A

Different Attenuator settings for ratio mode (column 2 Table 3-6):

50 Ω mode: add 0.15 dB to above for 20 Hz to 20 MHz add 0.30 dB to above for 5 Hz to 200 MHz

1 M Ω mode: add 0.20 dB to above for 20 Hz to 20 MHz add 0.40 dB to above for 5 Hz to 20 MHz

PHASE:

Absolute: ±2 degree at 100 kHz

Flatness:

Same attenuator settings for ratio mode:

FREQUENCY	50 Ω INPUT	1 MΩ INPUT
20 Hz to 20 MHz	2 deg p-p	5 deg p-p
5 Hz to 200 MHz	10 deg p-p	N/A
5 Hz to 20 MHz	N/A	10 deg p-p

Different Attenuator settings for ratio mode: add 8 deg to above

DESCRIPTION:

Ratio amplitude and phase accuracy are verified using a resistive three-way power splitter (HP 11850) and four 24-inch Type N cables (not phase matched). A brief calibration procedure compensates for the electrical length of each receiver cable, and the power splitter is assumed to be ideal. As a result, the ratio amplitude and phase accuracy of the 3577A can be measured directly without further error correction. Amplitude correction is not required because the transmission loss of the cables is low and a ratio measurement cancels that low loss if the cable lengths are approximately equal. The ratio performance will be verified in two frequency ranges: 5 Hz to 200 MHz and 20 Hz to 20 MHz. Two sweeps will be made for each frequency span: one at 20 dB input attenuation and the other at 0 dB. Ratio performance will be checked with equal and unequal input attenuators.

EQUIPMENT:

Power Splitter	HP 11850A/C
RF Cables-24 inch (4 each)	HP 35679A
Feedthrough Termination (3 each)	HP 11048C
BNC Cables-24 inch (3 each)	HP 8120-1839
N female to N female Adapter	HP 1250-1472
N male to BNC female Adapter (6 each)	HP 1250-0780

PROCEDURE:

NOTE

The four RF cables used in this test must be calibrated to determine their electrical length. The cables can be permanently marked with their name ("R", "A", "B", or "Source") and the length determined for each cable in steps b through t of this test procedure. If these marked cables are used for future 3577A calibration, steps a through t can be eliminated by presetting the 3577A, entering the length of the cables, and proceeding from step u.

- a. Preset the 3577A.
- b. Mark the four 24-inch RF cables "R", "A", "B", and "source". (See Note at the beginning of this procedure).
- c. Connect the "source" cable between the source and receiver B.
- d. Set the 3577A controls for the following settings:

INPUT
FREQ
START FREQ 1 MHz
STOP FREQ
DISPLY FCTN PHASE
SCALE
/DIV

- e. Press the MEASR CAL hardkey and select NORMALIZE.
- f. Connect the "B" cable between the "source" cable and the receiver input B, using the N female to N female adapter between the two cables.

- g. Press the LENGTH hardkey, select LENGTH B, and enter a value of -97 cm. This is an estimate of the length of cable "B".
- h. Rotate the RPG to get the marker to 200 MHz.
- Press the ENTRY hardkey for the RPG and rotate it to achieve a phase marker reading of 0 degrees at 200 MHz. The negative length displayed is an equivalent length of cable removed from receiver B. Record this length in the test record. (See Note at the beginning of this procedure.)
- Press SWEEP MODE hardkey and select SINGLE.
- k. Press the MKR→ hardkey and select MKR→ MIN. Press the MKR hardkey and select ZERO MARKER. Press the MKR→ hardkey and select MKR→ MAX. The marker PHASE should read <1 degree. If not, try another "B" cable.
- Disconnect the "source" cable from the "B" cable, leaving the "B" cable connected to receiver B.
- m. Press the INPUT hardkey and select A.
- n. Press SWEEP MODE hardkey and select CONT. Press MKR hardkey and turn MKR OFFSET off. Press the RPG ENTRY hardkey to get back to the MARKER mode.
- o. Connect the "source" cable between the source and receiver A.
- p. Press the MEASR CAL hardkey and select the NORMALIZE.
- q. Connect the "A" cable between the "source" cable and the receiver A, using the N female to N female adapter between the two cables.
- Repeat steps g through I, replacing the A receiver where B is called out.
- s. Press the INPUT hardkey and select R.
- t. Repeat steps n through r, replacing the R receiver where B or A is called out.
- u. Connect the equipment as shown in Figure 3-13.

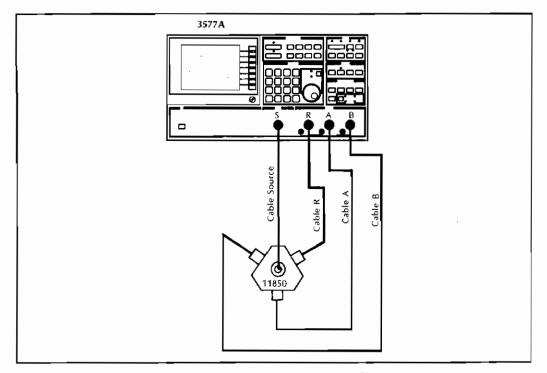


Figure 3-13 Ratio Test Set-Up (50 Ω)

v. Do not preset the 3577A. Change only the following 3577A settings:

SWEEP TYPELOG FI	
SWEEP MODE	SINGLE
SWEEP TIME	25 sec
FREQ	
START FREQ	5 Hz
STOP FREQ	200 MHz
AMPTD	– 20 dBm
RES BW	100 Hz
DISPLY FCTN	LOG MAG
SCALE	
/DIV	0.2 dB
REF POSN	50%
INPUT	
ATTEN (all receivers)	0 dB

NOTE

(Information pertaining to unequal attenuator settings is in parentheses.) [Information pertaining to the $1M\Omega$ impedance tests is in brackets.]

- w. Press the TRIC/RESET hardkey and let the 3577A complete a sweep.
- x. Press the STORE DATA hardkey and enter a USER DEF STORE of R into D1. (Select USER DEF STORE, R, \rightarrow D, \rightarrow D1.)

- y. Enter a USER DEF STORE of A into D2.
- z. Enter a USER DEF STORE of B into D3.
- aa. Press the ATTEN hardkey and set the R, A, and B attenuators to 20 dB.
- bb. Press the TRIG/RESET hardkey and let the 3577A complete a sweep.
- cc. Move the marker to approximately 100 kHz.
- dd. The marker MAG should read 0 ± 0.15 dB [±0.2 dB]. Enter the reading in the test record.
- ee. Press the DISPLY FCTN hardkey and select PHASE. Press the SCALE hardkey and change /DIV to 5 deg.
- ff. The marker PHASE should read 0 ± 2 degrees. Enter the reading in the test record.
- gg. Press the MKR→ hardkey and select MKR→ MIN. Press the MKR hardkey and select ZERO MARKER. Press the MKR→ hardkey and select MKR→ MAX.
- hh. The marker PHASE should read < 10 degrees (18 deg) peak-to-peak. Enter the reading in the test record.
- ii. Press the DISPLY FCTN hardkey and select LOG MAG.
- jj. Measure the amplitude flatness using the MKR→ and MKR hardkeys as in step gg.
- kk. The marker MAG should read < 0.4 dB (.7 dB) peak-to-peak [0.6 dB (1.0 dB)]. Enter the reading in the test record.
- II. Press MKR hardkey and turn MKR OFFSET off.
- mm.Repeat steps cc through II for the inputs in Table 3-6, using USER DEF INPUTs. The D1, D2, and D3 are for the 0 dB attenuator mode and R, A, and B are for the 20 dB attenuator mode. The specifications remain the same except for unequal attenuator settings (they are in parentheses). [The specifications for the 1 $M\Omega$ input impedance are in brackets.]

Table 3-6
Ratio Performance Inputs

Equal Input Attenuators	Unequal Input Attenuators
B/R (20,20)	D2/R (0,20)
A/B (20,20)	A/D1 (20,0)
D2/D1 (0,0)	A/D3 (20,0)
D3/D1 (0,0)	D2/B (0,20)
D2/D3 (0,0)	B/D1 (20,0)
	D3/R (0,20)

nn. Change the following 3577A settings:

SWEEP TIME	30 sec
FREQ	
START FREQ	20 Hz
STOP FREQ	20 MHz
RES BW	10 Hz
DISPLY FCTN	LOG MAG
ATTEN (for all receivers)	0 dB
INPUT	A/R

- oo. Repeat steps w through bb.
- pp. Press the MKR hardkey and turn the MKR OFFSET off.
- qq. Measure the amplitude flatness using the MKR→ and MKR hardkeys as in step gg.
- rr. The marker MAG should read < 0.3 dB (.45 dB) peak-to-peak [0.3 dB (0.5 dB)]. Enter the reading in the test record.
- ss. Press the DISPLY FCTN hardkey and select PHASE.
- tt. Measure the phase flatness using the MKR-+ and MKR hardkeys as in step gg.
- uu. The marker PHASE should read < 2 degrees (10 deg) peak-to-peak [5 deg (13 deg)].
- vv. Repeat steps pp through uu for the inputs in Table 3-6. (The unequal attenuators specifications are in parentheses.)
- ww. Press the ATTEN hardkey and set the R, A, and B inputs to the 1 $M\Omega$ input impedance.
- xx. Connect the equipment as shown in Figure 3-14 using the BNC cables and the 50 Ω Feedthrough Terminations.

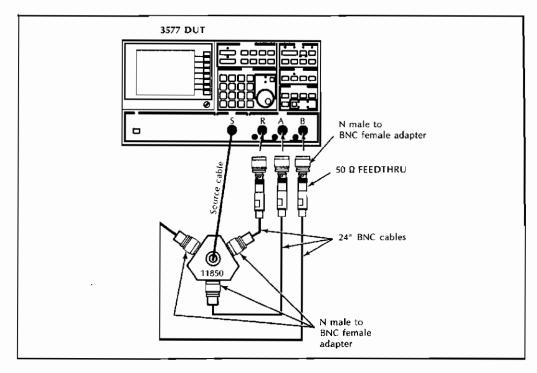


Figure 3-14 Ratio Test Set-Up (1 MΩ)

yy. Change the following 3577A settings:

REQ	FRI
START FREQ5 Hz	
STOP FREQ	
DISPLY FCTNLOG MAG	
NPUT	INF
.ENGTH (for all receivers) 0 cm	LEN
ATTEN (for all receivers)	ΑT

zz. Repeat steps w through vv for the 1 M Ω input impedance. [The specifications for the 1 M Ω input impedance are in brackets.]

3-12 RECEIVER CROSSTALK TEST

SPECIFICATIONS:

Channel isolation > 100 dB below maximum input level

DESCRIPTION:

The 3577A source is input to one channel at a time and the isolation measured on the other two channels.

EQUIPMENT:

3-34

PROCEDURE:

- a. Preset the HP 3577A.
- b. Connect an RF cable between the 3577A source and receiver R.

C.	Set the 3577A to the following conditions:
	SWEEP TYPE LOG FREQ SWEEP
	SWEEP TIME
	FREQ
	START FREQ 10 kHz
	AMPTD1 dBm
	RES BW10 Hz
	SCALE
	REF POSN
	REF LEVEL—100 dBm
	AVG
	INDUT. A

- d. Save these instrument conditions in Register 1. (Press hardkey SAVE, select SAVE REG 1.)
- e. Allow the 3577A to complete two sweeps, then set SWEEP MODE to SINGLE.
- f. The noise level at all points across the sweep should be < −100 dBm. Press the MKR→ hardkey and select MKR→MAX. Record the marker MAG reading in the test record.
- g. Select an INPUT of B.
- h. Find the maximum level as in step f; enter the value in the test record.
- i. Move the RF cable from receiver R to receiver A.
- Press the RECALL hardkey and select RECALL REG 1. (This resets the 3577A to the conditions set up in step c.)
- k. Select an INPUT of B.
- I. Allow the 3577A to complete two sweeps, then set SWEEP MODE to SINGLE.
- m. Find the maximum level as in step f; enter the value in the test record.
- n. Select an INPUT of R.
- o. Find the maximum level as in step f; enter the value in the test record.
- p. Move the RF cable from receiver A to receiver B.
- q. Press the RECALL hardkey and select RECALL REG 1.
- r. Allow the 3577A to complete two sweeps, then set SWEEP MODE to SINGLE.

- s. Find the maximum level as in step f; enter the value in the test record.
- t. Select an INPUT of R.
- u. Find the maximum level as in step f; enter the value in the test record.

3-13 RECEIVER RETURN LOSS TEST

SPECIFICATIONS:

Return loss: Channels A, B, and R > 25 dB

DESCRIPTION:

A manual partial port calibration is performed to improve the accuracy of the measurements. Channels A and B are measured, using channel R as the reference. Channel A is then used as a reference to measure channel R.

EQUIPMENT:

Directional Bridge	HP 35677-63502
BNC Cables-24 inch (2 each)	HP 8120-1839
10 dB Attenuator	HP 8491A Opt 010
Precision Termination	. HP 909C,Opt200,Opt012
SMA male to BNC female adapter (2 each)	HP 1250-1200
N male to BNC female adapter (2 each)	
N male to N male adapter	

PROCEDURE:

- a. Preset the HP 3577A.
- b. Connect the equipment as shown in Figure 3-15, leaving the load port of the directional bridge unconnected.

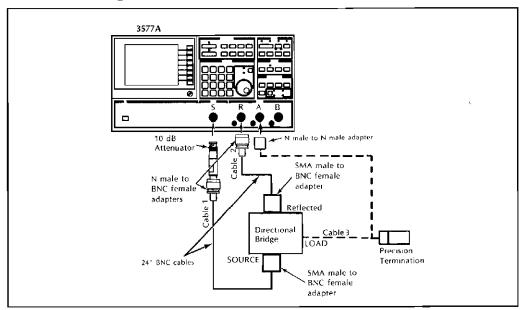


Figure 3-15 Receiver Return Loss Test Set-Up

3-36

c.	Set the 3577A to the following conditions:	
	SWEEP TIME	C
	FREQ	
	START FREQ100 kH	
	AMPTD15 dBn	n
	DEC DW/ 100 LI	_

START FREQ)0 kHz
AMPTD1	5 dBm
RES BW1	100 Hz
ATTEN ATTEN	R OdB
INPUT	R

- d. Allow the 3577A to complete one sweep.
- e. Press the STORE hardkey and select STORE REG D1.
- f. Terminate the directional bridge load port with the precision 50 Ω termination.
- g. Allow the 3577A to complete one sweep.
- h. Press the STORE DATA hardkey and select STORE REG D2.
- Remove the precision termination and connect the directional bridge load port to 3577A receiver A using the N male to N male adapter.
- j. Press the INPUT hardkey and enter a USER DEF INPUT of (R D2)/D1 (select USER DEF INPUT, (, R, -, D_, 2,), /, D_, 1, ENTER).
- k. Allow the 3577A to complete one sweep.
- Press the MKR→ hardkey and select MKR→MAX.
- m. The marker MAG should read < -25 dB; enter the reading in the test record.
- n. Press the ATTEN hardkey and select ATTEN A 0dB.
- o. Repeat steps k through m.
- p. Connect the directional bridge load port to 3577A receiver B.
- q. Repeat steps k through o, selecting ATTEN B 0dB in step n.
- Move cable 2 from receiver R to receiver A and disconnect the directional bridge from receiver B.
- s. Press the INPUT hardkey and select A.
- t. Press the ATTEN hardkey and set ATTEN R to 20 dB.
- u. Repeat steps d through o for channel R using channel A as a reference. Use channel A whenever channel R is called out, even in the equation of step j, and use channel R whenever channel A is called out.

3-14A SOURCE FLATNESS AND ABSOLUTE ACCURACY TEST

NOTE

Perform test 3-14A (which uses a W&G EPM-1 power meter) or test 3-14B (which uses a voltmeter and an HP 436 power meter).

SPECIFICATIONS:

Absolute Accuracy: ±1 dB at +15 dBm and 100 kHz Flatness: 1.5 dB peak-to-peak from 5 Hz to 200 MHz

DESCRIPTION:

Source flatness and absolute accuracy are verified using channel R (calibrated receiver) to measure the source error directly. Before proceeding with the source verification, channel R is calibrated to remove its frequency response errors. Channel R error correction terms are stored in register D1 and test system error correction terms are stored in registers D2 (error correction for the transmission loss from the power splitter to channel R) and D3 (error correction terms for cable loss of the source cable).

The test configuration used for calibration of channel R is very similar to that used for the receiver performance test. The EPM-1 power meter levels the 3577A source, maintaining an output of 0 dB at each of the power splitter ports. One output of the power splitter is attenuated by 20 dB and input to channel R. A single sweep is made and the error response of channel R is displayed after error correction for the transmission loss from the attenuator to channel R [Chan-R-error(freq)]. The results are stored in register D1. The final sweep is the source accuracy and flatness measurement, which is made without the EPM-1 (Figure 3-18) and is the product of the source and receiver error response [Source-error × Chan-R-error]. The ratio of the final sweep with the receiver calibration sweep is the source frequency error.

Source-error(freq) = $[Source-error \times Chan-R-error] / Chan-R-error(freq)$

Flatness and absolute accuracy of the source are read directly from the 3577A display.

EQUIPMENT:

Power Meter	M-1
20 dB Attenuator	020
Error Correction Cable HP 03577-616	540
Power Splitter	A/C
Precision Termination (2 each)	012
RF Cables-24 inch (2 each)	79A
N female to N female adapter	472

PROCEDURE:

a. Preset the HP 3577A.

Set the 3577A controls to the following settings:
SWEEP TYPELOG FREQ SWEEP
SWEEP MODESINGLE
SWEEP TIME
FREQ
START FREQ 5 Hz
STOP FREQ
RES BW
INPUTR/D1
SCALE
REF POSN50%
/DIV
REF LEVEL 0 dB

- c. Connect a 24-inch cable between the source and receiver R. This is labeled the "test" cable.
- d. Press the TRIG/RESET hardkey to trigger a sweep and let the 3577A complete the sweep.
- e. Press the MEASR CAL hardkey and select NORMALIZE.

b.

- f. Connect another 24-inch cable between the first cable and receiver R, using an N female to N female adapter between the two cables. This second cable is labeled the "source" cable.
- g. Press the TRIG/RESET hardkey and let the 3577A complete a sweep.
- h. Press the STORE DATA hardkey and select STORE REG D3. This is the cable loss of the source cable.
- i. Connect the equipment as shown in Figure 3-16.

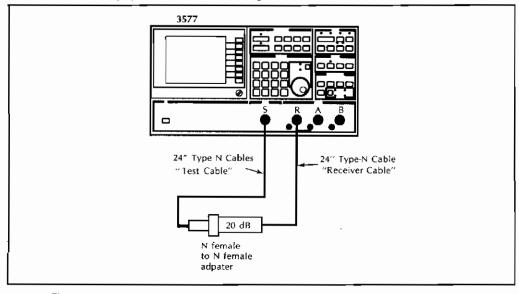


Figure 3-16 Calibration of Transmission Loss from Power Splitter to Channel R

- j. Press the SCALE hardkey and set the REF LEVEL to -20 dB.
- k. Press the TRIG/RESET hardkey and let the 3577A complete a sweep.
- I. Press the STORE DATA hardkey and select STORE REG D2. This is the transmission loss from the output of the power splitter to receiver R.
- m. Connect the equipment as shown in Figure 3-17.

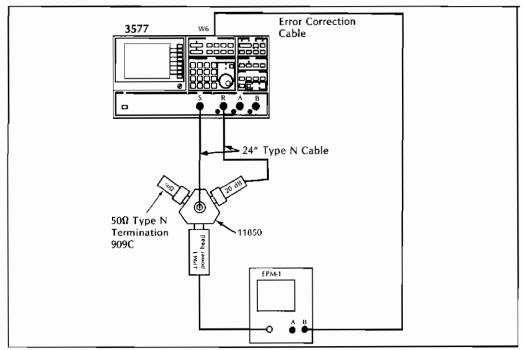


Figure 3-17 Channel R Calibration for Source Flatness and Accuracy

n.	Change only the following 3577A settings:	
	SWEEP TIME	
	RES BW	
	AMPTD	+10 dBm
	SCALE	
	/DIV	
	REF LEVEL	
	INPUT	
	DEFINE MATH	
	K1 REAL	4.472 UNITS
	1	
Ο.	Set the EPM-1 controls for the following setting	ngs:
	RANGE	0 dBm (red scale)
	POLARITY SWITCH	
	GAIN	Adjust to approximately half scale
	REFERENCE	Adjust for 0 dBm meter reading

p. Wait until EPM-1 settles at approximately 0 dBm and press the 3577A TRIG/RESET hardkey. When the sweep marker reaches approximately 20 MHz, enter a longer sweep time by pressing the SWEEP TIME hardkey and then the 1 hardkey twice. This increases the sweep time to 500 seconds for the remainder of the sweep.

- q. At the completion of the sweep, set the sweep rate back to 100 seconds. (Disregard the "Sweep Rate Uncalibrated" message which may appear.)
- r. Press the STORE DATA hardkey and select STORE REG D1.
- s. Disconnect the EPM-1 (including the Error Correction Cable—remember to reinstall the factory installed jumper) and set up the equipment as shown in Figure 3-18.

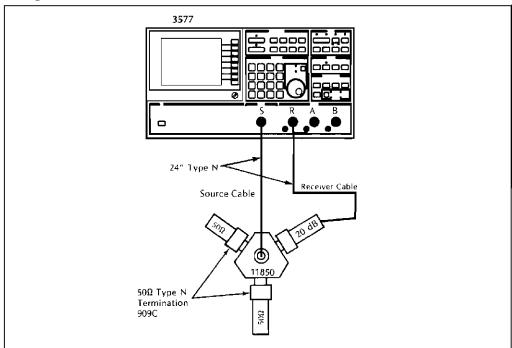


Figure 3-18 Source Flatness and Absolute Accuracy Test Set-Up

- Press the DEFINE MATH hardkey and enter a value of 2.3823 UNITS for K1 REAL.
- u. Press the INPUT hardkey and enter a USER DEF INPUT of K1*R/D1/D2/D3 (select USER DEF INPUT, K_, 1, *, R, /, D_, 1, /, D_, 2, /, D_, 3, ENTER).
- v. Press AMPTD hardkey and enter an AMPTD of +15 dBm.
- w. Press the TRIG/RESET hardkey. When the sweep marker reaches approximately 20 MHz, enter a longer sweep by pressing the SWEEP TIME hardkey and then the 1 hardkey twice. This increases the sweep time to 500 seconds for the remainder of the sweep.

x. Move the marker to 100 kHz. The marker MAG should read $<\pm1.0$ dB. Enter the reading in the test record.

y. Press the MKR→ hardkey and select MKR→MIN. Press the MKR hardkey and select ZERO MARKER. Press the MKR→ hardkey and select MKR→MAX. The marker MAG should read < 1.5 dB peak-to-peak. Enter the reading in the test record (5 Hz - 200 MHz).

3-14B ALTERNATE SOURCE FLATNESS AND ABSOLUTE ACCURACY TEST

Note

Perform test 3-14A (which uses a W&G EPM-1 power meter) or test 3-14B (which uses a voltmeter and an HP 436 power meter).

SPECIFICATIONS:

Absolute Accuracy: ±1 dB at +15 dBm and 100 kHz Flatness: 1.5 dB peak-to-peak from 5 Hz to 200 MHz

DESCRIPTION:

This procedure is an alternate approach for verifying the 3577A source accuracy using a voltmeter and HP 436A power meter rather than the EPM-1 power meter. Discrete measurements must be made rather than the swept measurements possible with the EPM-1. For frequencies less than 100 kHz, the source level is verified by measuring the voltage across an 11048C 50 Ω feedthrough using an HP 3456A voltmeter. For frequencies of 100 kHz and above the levels are measured using an HP 436A power meter.

EQUIPMENT:

Power Meter	HP 436A
Power Head	HP 8482A
Voltmeter	HP 3456A
BNC Cable-48 inch	HP 8120-1840
Feedthrough Termination	HP 11048C
N male to BNC female adapter	HP 1250-0780
BNC female to dual banana male adapter	HP 1251-2277

PROCEDURE:

- a. Preset the 3577A.
- c. Connect the voltmeter to the HP 3577A source output using a BNC cable, feed-through termination, and N male to BNC female adapter as shown in Figure 3-19.

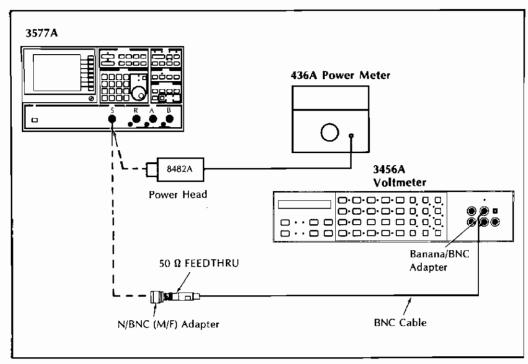


Figure 3-19 Alternate Source Flatness and Absolute Accuracy Test Set-Up

- d. Reset the 3456A and press the AC volts function key.
- e. Press the FILTER hardkey and enter the math dBm(R) function (press the blue MATH hardkey and the number 4 hardkey).
- f. Store 50 in the ohms register (press the numbers 5 and 0, STORE hardkey, and number 4 hardkey).
- g. The voltmeter display should read 15 dBm \pm 1 dBm. (This is for information only. The absolute reading at 100 kHz will be made in a later step using the HP 436A power meter.)
- h. Enter the following frequencies on the 3577A and record the voltmeter reading for each frequency in the test record:

5 Hz 10 Hz 100 Hz 1 kHz 10 kHz 20 kHz 50 kHz

- Enter a frequency of 100 kHz on the 3577A. Disconnect the voltmeter from the 3577A source.
- j. Set the 436A function to dBm and the CALIBRATION FACTOR to the 100 kHz value found on the 8482A power head. Press SENSOR ZERO on the 436A.
- k. Connect the 8482A power head to the 3577A source as shown in Figure 3-19.
- I. Record the 436A reading in the test record for 100 kHz. This level should be 15 dBm \pm 1 dBm.

m. Enter each frequency from Table 3-7 on the 3577A, set the 436A CALIBRATION FACTOR to the level found on the calibration curve on the HP 8482A power head for each frequency, and enter the 436A reading on the test record.

Table 3-7
Source Flatness Test Frequencies

100 kHz	1 Mhz	10 MHz	100 MHz	160 MHz
200 kHz	2 MHz	20 MHz	120 MHz	180 MHz
500 kHz	5 MHz	50 MHz	140 MHz	200 MHz

n. To calculate the source flatness, find the maximum level from 5 Hz to 200 MHz and subtract from this level the minimum level in the frequency range. Enter the result in the test record as the flatness from 5 Hz to 200 MHz. The result should be < 1.5 dB.</p>

3-15 SOURCE ATTENUATOR ACCURACY TEST

SPECIFICATIONS:

Attenuator Accuracy: ± 0.02 dB/dB or ± 0.2 dB, whichever is greater.

DESCRIPTION:

The 3577A R channel receiver is used to measure the attenuation of the source.

EQUIPMENT:

RF Cable	9A
10 dB Attenuator (2 each))10
3 dB Attenuator	003

PROCEDURE:

- a. Preset the HP 3577A.
- Connect the 3577A source to 3577A receiver R through the RF Cable and all three attenuators.
- c. Set the 3577A to the following conditions:

ME	
「 FREQ	Š
+12 dBm 100 Hz	

- d. Allow the HP 3577A to complete a sweep. Press the MEASR CAL hardkey and select NORMALIZE.
- e. Press the AMPTD hardkey and enter an AMPTD of ± 8 dBm. This sets the attenuator to the 4 dB position without disturbing the leveling loop settings.
- f. Press the MKR- hardkey and select MKR-MAX. The marker MAG on the 3577A display should read -4 dB ±0.2 dB. Record the reading in the test record.

- g. Press the MKR \rightarrow hardkey and select MKR \rightarrow MIN. The marker MAG on the 3577A display should read -4 dB ± 0.2 dB. Record the reading in the test record.
- h. Repeat steps e through g for the amplitude and attenuation settings as listed in Table 3-8. The marker MAG in steps f and g should read the attenuation value \pm the attenuation accuracy.

Table 3-8
Source Attenuator Accuracy Tests

AMPLITUDE	ATTENUATION	ATTENUATION ACCURACY
+8 dBm	4 dB	±0.2 dB
+ 4 dBm	8 dB	±0.2 dB
- 4 dBm	16 dB	±0.32 dB
-20 dBm	32 dB	±0.64 dB
−36 dBm	48 d B	±0.96 dB

3-16 SOURCE DISTORTION AND SPUR TEST

SPECIFICATIONS:

Harmonic Distortion: < -30 dB

Non-harmonic Spurious: < -50 dBc or < -70 dBm, whichever is greater.

DESCRIPTION:

The HP 3577A is connected to a spectrum analyzer and the spurious signals measured.

EQUIPMENT:

Spectrum Analyzer		68B
RF Cable	HP 356	79A

PROCEDURE:

- a. Preset the 3577A.
- b. Connect the HP 3577A source to the spectrum analyzer input.
- c. Press the SWEEP TYPE hardkey and select CW. Set the 3577A FREQ to the following frequencies, verifying that all harmonics are at least 30 dB below the fundamental:

250 kHz 10 MHz 150 MHz 459 kHz 100 MHz 200 MHz

Record the level of the largest harmonic for each frequency in the test record.

d. Set the 3577A FREQ to 50 MHz.

e. Adjust the spectrum analyzer to observe the frequencies listed in Table 3-9 for the 50 MHz 3577A frequency. These are spurious frequencies generated in the 3577A. While checking these frequencies, be sure to note any other spurious signals. All spurious signals other than harmonics should be < -50 dBc or < -70 dBm. Record the levels for the listed frequencies in the test record.</p>

f. Repeat steps d and e for all HP 3577 frequencies in Table 3-9.

Table 3-9 Source Distortion Test Points

250.25 MHz 200.25 MHz 100.25 MHz 150.25 MHz 200.25 MHz 100.25 MHz 99.75 MHz 200.50 MHz 0.25 MHz	- 50 dBc - 50 dBc
100.25 MHz 150.25 MHz 200.25 MHz 100.25 MHz 99.75 MHz 200.50 MHz 0.25 MHz	- 50 dBc - 50 dBc - 50 dBc - 50 dBc - 50 dBc - 50 dBc
150.25 MHz 200.25 MHz 100.25 MHz 99.75 MHz 200.50 MHz 0.25 MHz	- 50 dBc - 50 dBc - 50 dBc - 50 dBc - 50 dBc
200.25 MHz 100.25 MHz 99.75 MHz 200.50 MHz 0.25 MHz	- 50 dBc - 50 dBc - 50 dBc - 50 dBc
100.25 MHz 99.75 MHz 200.50 MHz 0.25 MHz	-50 dBc -50 dBc -50 dBc
99.75 MHz 200.50 MHz 0.25 MHz	−50 dBc −50 dBc
200.50 MHz 0.25 MHz	-50 dBc
0.25 MHz	
	-50 dBc
150.25 MHz	
	-50 dBc
0.25 MHz	50 dBc
150.50 MHz	-50 dBc
0.50 MHz	−.50 dBc
151.00 MHz	-50 dBc
149.75 MHz	-50 dBc
100.25 MHz	-50 dBc
99.75 MHz	-50 dBc
0.50 MHz	-50 dBc
199.50 MHz	50 dBc
201.00 MHz	-50 dBc
199.00 MHz	-50 dBc
300.25 MHz	-50 dBc
301.00 MHz	-50 dBc
400.00 MHz	-50 dBc
	0.50 MHz 151.00 MHz 149.75 MHz 100.25 MHz 99.75 MHz 0.50 MHz 199.50 MHz 201.00 MHz 199.00 MHz 300.25 MHz 300.25 MHz

3-17 SOURCE PHASE NOISE TEST

SPECIFICATION:

SSB Phase Noise (1 Hz bandwidth, excluding spurious)

Offset Frequency Level 100 Hz to 20 kHz < -70 dBc

DESCRIPTION:

The 3577A source phase noise is measured normalized to a 1 Hz bandwidth using the noise level function of the 8568B spectrum analyzer. Measurements are made with three offsets for each of two 3577A frequencies.

FO	u	IPM	FN'	T٠

 Spectrum Analyzer
 HP 8568B

 RF Cable-24 inch
 HP 35679A

 BNC Cable-48 inch
 HP 8120-1840

PROCEDURE:

- a. Preset 3577A.
- b. Connect the RF cable from the HP 3577A source to the spectrum analyzer input
 2. Connect the 10 MHz REF OUT from the spectrum analyzer to the HP 3577A
 EXT REF IN. The EXT REF LED on the HP 3577A front panel should be on.
- c. Set the 3577A to the following conditions:

SWEEP TYPECW
SWEEP TIME (SAMPLE TIME)10 sec
FREQ

- d. Preset spectrum analyzer.
- e. Set spectrum analyzer to the following conditions:

CENTER FREQUENCYsame as 357	7A FREQ
FREQUENCY SPAN	1 kHz

- f. Press the NORMAL key on the spectrum analyzer to obtain the marker mode.
- g. After one complete sweep press PEAK SEARCH on the spectrum analyzer.
- h. Select MKR-REF LEVEL on spectrum analyzer.
- Press shift key (blue key) then NORMAL key in the marker mode block(this is the noise level key).
- Move the spectrum analyzer marker to 100 Hz offset (first gradicule to the right of center). Record the marker reading and the ref level reading in the test record.
- k. Calculate the noise level using the following equation:

Noise Level (dBc) = marker reading - ref level reading

- The noise level should be < 70 dBc. Record the calculated value in the test record.
- m. Repeat steps j through | for spectrum analyzer frequency spans of 10 kHz (1 kHz offset in step j) and 100 kHz (10 kHz offset in step j)
- n. Repeat steps d through m for a 3577A frequency of 199.75 MHz.

3-18 API SPUR TEST

SPECIFICATIONS:

Fractional N spurs < -50 dBc

DESCRIPTION:

The API performance of the 3577A is verified by a measurement made with an spectrum analyzer to which the 3577A is phase locked.

EQUIPMENT:

Spectrum Analyzer	HP 8568B
RF Cable-24 inch	HP 35679A
BNC Cable-48 inch	HP 8120-1840

PROCEDURE:

- a. Preset the 3577A to its initial conditions.
- b. Connect the HP 3577A source to input 2 of the spectrum analyzer with the RF cable. Also connect the 10 MHz REF OUT from the spectrum analyzer to the HP 3577A EXT REF IN. The EXT REF LED on the HP 3577A front panel should be on.
- c. Set the 3577A to the following conditions:

SWEEP TYPE	. CW
FREQUENCY	MHz

- d. Preset the spectrum analyzer.
- e. Set the spectrum analyzer to the following conditions:

CENTER FREQUENCY	.3577A frequency
FREQUENCY SPAN	10 kHz
CENTER FREC STEP SIZE	1360 Hz

- f. In the marker block on the front panel of the spectrum analyzer press the following hardkey sequence: NORMAL, PEAK SEARCH, \triangle .
- g. Increase the spectrum analyzer center frequency 1360 Hz by pressing the CENTER FREQUENCY hardkey followed by the ↑ hardkey, and set the FREQUENCY SPAN to 100 Hz.
- h. Let the spectrum analyzer complete the sweep.
- i. Press the PEAK SEARCH hardkey in the marker block on the spectrum analyzer.
- i. Record the marker value in the test record in the 1360 Hz offset column.
- k. Increase the spectrum analyzer center frequency another 1360 Hz by pressing the CENTER FREQUENCY hardkey followed by the 1 hardkey (total offset 2720 Hz).
- Let the spectrum analyzer complete a sweep, then press the PEAK SEARCH hardkey in the marker block.

m. Record this value in the test record in the 2760 Hz offset column. The larger of the two offset columns is the API level for this frequency (test limit < -50 dBc).

n. Set the 3577A FREQUENCY to 199.7636 MHz and repeat steps d through m.

3-19 FREQUENCY STABILITY TEST

DESCRIPTION:

The 3577A must be powered up for at least one hour before the frequency stability is verified. A frequency standard is connected to an oscilloscope external trigger. The 3577A 10 MHz REF OUT is connected to the oscilloscope input and the display triggered externally. The oscilloscope controls are adjusted so that one complete cycle fills the screen. The 10 MHz REF OUT is adjusted so that the signal on the screen is stable (indicating that the two frequencies are the same).

As the 3577A REF OUT ages, the signal on the oscilloscope display will drift across the screen. The rate at which the display drifts after one hour of aging is the fractional stability, calculated from the following equation:

The frequency stability is defined as the drift rate after one day and is equal to 24 times the fractional stability.

EQUIPMENT:

Frequency Standard	WWVB
Oscilloscope	HP 1980B
BNC Cable-48 inch H	IP 8120-1840

PROCEDURE:

NOTE

The 3577A must be powered up for a minimum of one hour before testing.

- a. Preset the 3577A.
- b. Connect the 3577A rear panel 10 MHz OUT to the oscilloscope Channel A input.
- c. Set the oscilloscope controls as follows for Channel A:

Volts/Div	 		 										 							. (0.0	2
Time/Div	 			 	 					 			 				 ,		 	10	n	S
Trigger	 		 	 				 												[X	Ţ

d. Connect the frequency standard to the EXT TRIG connector on the oscilloscope.

e. The display on the oscilloscope should be a sinewave that may drift across the screen. Adjust A31R2 and A31U1 for an oscilloscope display which does not drift.

- f. Allow the 3577A to age for 1 hour.
- g. Observe the drift rate of the signal. For the oscilloscope settings in step c, the display should not shift more than 1 division in five seconds ($\pm 5 \times 10^{-8}$ per day). Record the drift in the test record.

TABLE 3-10 PERFORMANCE TEST RECORD

	el 3577A Analyzer umber	<u>-</u>			Tested by	
	IVER RESIDU DUAL RESPO Frequency		OISE TEST	Receiver A	В	Tolerance
149.625		MHz				< -100 dBm
149.875		MHz				< -100 dBm
99.666	566 666	MHz				< -100 dBm
99.833		MHz				< -100 dBm
74.687		MHz				< -100 dBm
74.812		MHz				< -100 dBm
59.7		MHz				< -100 dBm
59.8		MHz				< -100 dBm
89.5		MHz				< -100 dBm
120.0		MHz				< -100 dBm
149.5		MHz				< -100 dBm
180.0		MHz				< -100 dBm
0.480		MHz				< -100 dBm
0.960		MHz				< -100 dBm
0.004 ()	MHz				< -100 dBm
0.008)	MHz				< -100 dBm
0.016	0	MHz				< -100 dBm
0.024		MHz				< -100 dBm
	777 700	MHz				< -100 dBm
0.10		MHz				< -100 dBm
0.20		MHz				< -100 dBm
0.000	000 000	MHz				< - 33 dBm
NOIS	E TEST					
NOIS	Frequency			Receiver		Tolerance
	,		R	A	В	
100 Hz	Magnitude	point 1				
	Magnitude					
	Magnitude	point 3				
	Magnitude	point 4				
	Magnitude	point 5				
	Magnitude	point 6				
	Magnitude	point 7				
	Magnitude					
	Magnitude					
	Magnitude					
	Magnitude					
	Average No	ise Level				< -100 dBm

	Frequency		Receiver		Tolerance
		R	A	В	
30 kHz	Magnitude point 1				
	Magnitude point 2				
	Magnitude point 3				
	Magnitude point 4				
	Magnitude point 5				
	Magnitude point 6				
	Magnitude point 7				
	Magnitude point 8				
	Magnitude point 9				
	Magnitude point 10				
	Magnitude point 11				
	Average Noise Level $10 \log_{10} \left[\frac{\sum_{n=1}^{11} (X_n^2)}{500} \right], X = m$				< -110 dBm
199 MH.	z Magnitude point 1 Magnitude point 2				
	Magnitude point 3				
	Magnitude point 4				
	Magnitude point 5				
	Magnitude point 6				
	Magnitude point 7				
	Magnitude point 8				
	Magnitude point 9				
	Magnitude point 10				
	Magnitude point 11				
	Average Noise Level				< -110 dBm
	10 $\log_{10} \left[\frac{\sum_{n=1}^{11} (X_n^2)}{500} \right]$. $X = n$				

Test Frequency	Vref	Vtest	-(3dB	Return Loss + 20 log ₁₀ (Vtest / 2Vref)]	Tolerance
175 MHz					_ > 20 dB
200 MHz			- 		_ > 20 dB
-9 MAGNITUDE		NAMIC ACCUI	RACY TEST		
OYNAMIC LINEA					
Ratio Transformer	Magnitude/ Phase	R	Α	Receiver B	Tolerance
1.0	Magnitude Phase				0.00 ± .04 dB 0.0 ± .4 deg
31623	Magnitude Phase				$-10.00 \pm .02 d$
2	Magnitude Phase				$0.0 \pm .2 \text{ deg}$ -13.979 ± .02 c $0.0 \pm .2 \text{ deg}$
05	Magnitude Phase	<u> </u>			$-26.020 \pm .02$ deg $-0.0 \pm .2$ deg
025	Magnitude				$-32.041 \pm .02$
01	Phase Magnitude				0.0 ± .2 deg -40.000 ± .02
0031623	Phase Magnitude				$0.0 \pm .2 \text{ deg}$ $-50.000 \pm .02$
001	Phase Magnitude				$0.0 \pm .2 \text{ deg}$ $-60.000 \pm .05$
0001	Phase Magnitude				0.0 ± .5 deg -80.000 ± .15
00001	Phase Magnitude Phase				$0.0 \pm 1.5 \text{ deg}$ -100.00 ± .75
	rnase				0.0 ± 7.5 deg
YNAMIC LINEA	RITY (MAGNITU	DE VS PHASE)			
			Receiver	_	
		R	A	В	Tolerance
					< 0.04 dB

Input Mode: 50 Ω, 20 dB					
			Receiver		
l	Frequency	R	A	В	Tolerance
	100 kHz				±0.2 dB
*	200 MHz				± 0.6 dB
20 Hz	- 20 MHz				±0.3 dB
Input Mode: 50 Ω, 0 dB					
			Receiver		
Freque	ncy	R	A	В	Tolerance
	100 kHz				±0.2 dB
5 Hz -	200 MHz				±0.6 dB
	- 20 MHz				±0.3 dB
nput Mode: 1 MΩ, 20 dB					
			Receiver		
Freque	ncy	R	A	В	Tolerance
	100 kHz				±0.2 dB
5 Hz -	200 MHz				±0.2 dB ±1.0 dB
	- 20 MHz				±0.5 dB
Input Mode: 1 MΩ, 0 dB					
			Receiver		
	Frequency	R	A	В	Tolerance
	100 kHz				±0.2 dB
5 Hz -	200 MHz				±1.0 dB
20 Hz	- 20 MHz				$\pm0.5~\text{dB}$
3-10B ALTERNATE RECEIV	/ER LEVEL	FLATNESS A	ND ABSOLUTE A	ACCURACY T	EST
Power splitter calibration				Tolerano	e
D1 dB	_ dB	D3 dB		- 29.5	± .3 dB
Thermal converter calibration	ation				
	Recisto	ince	Ω	50 ± .1	Ω
		ince ;		.2236 ±	

Flatness and absolute accuracy				
3577 A	source AMP	TD	_	
Power meter rea	ading at 10 M	Hz	_	
Voltmeter rea	ading at 10 M	iHz	1.000	0500 ± .0500
Input impedance = 50 Ω , attenuation	n = -20 dB			
		Receiver		
Frequency	R	A	В	Tolerance
Thermal converter measurements	(enter readi	ngs or attach p	rintout)	
Absolute level at .1 MHz				0.0 ± .2 dB
.000005 MHz				
.00002 MHz				
.0001 MHz				
.001 MHz				
.002 MHz				
.005 MHz				
.01 MHz				
.02 MHz				
.05 MHz				
.1 MHz				
.2 MHz				
.5 MHz				
1 MHz				
2 MHz				
5 MHz				
10 MHz 15 MHz				
20 MHz				
20 MHz				
Power meter measurements	(enter readi	ngs or attach p	rintout)	
50 MHz				
75 MHz				
100 MHz				
120 MHz				
140 MHz				
160 MHz				
170 MHz				
180 MHz				
190 MHz				
200 MHz				

5 Hz - 200 MHz				< .6 dB
20 Hz - 20 MHz				< .3 dB
iput impedance = 50 Ω , attenuatio	n = 0 dB			
		Receiver		
Frequency	R	Α	В	Tolerance
Thermal converter measurements	(enter reac	lings or attach p	rintout)	
Absolute level at .1 MHz				0.0 ± .2 dB
.000005 MHz				
.00002 MHz				
.0001 MHz				
.001 MHz				
.002 MHz				
.005 MHz				
.01 MHz				
.02 MHz				
.05 MHz				
.1 MHz				
.2 MHz				
.5 MHz				
1 MHz				
2 MHz				
5 MHz				
10 MHz				
15 MHz				
20 MHz				
Power meter measurements	(enter reac	dings or attach p	rintout)	
Tower meter measurements	(circo reac	ings of accept p		
30 MHz				
50 MHz				
75 MHz				
100 MHz				
120 MHz				
140 MHz				
160 MHz				
170 MHz				
180 MHz				
190 MHz				
200 MHz				

Flatness (maximum — minimum)				
5 Hz - 200 MHz				< .6 dB
20 Hz - 20 MHz				< .3 dB
20 112 20 11112	<u> </u>			1.0 0.0
Input impedance = 1 M Ω , attenuation	on = -20 dB			
		Receiver		
Frequency	R	Α	В	Tolerance
Thermal converter measurements	(enter readin	gs or attach p	rintout)	
Absolute level at .1 MHz				$0.0 \pm .2 dB$
.000005 MHz				
.00002 MHz				
.0001 MHz				
.001 MHz				
.002 MHz				
.005 MHz				
.01 MHz				
.02 MHz				
.05 MHz				
.1 MHz				
.2 MHz				
.5 MHz				
1 MHz				
2 MHz				
5 MHz				
10 MHz				
15 MHz				
20 MHz				
Flatness (maximum — minimum)				
5 Hz - 20 MHz				< 1.0 dB
20 Hz - 20 MHz				< .5 dB

PERFORMANCE TESTS

put impedance = 1 M Ω , attenuation				
		Receiver		
Frequency	R	A	В	Tolerance
Thermal converter measurements	(enter readi	ings or attach p	printout)	
Absolute level at .1 MHz				0.0 ± .2 dB
.000005 MHz				
.00002 MHz				
.0001 MHz				
.001 MHz				
.002 MHz				
.005 MHz				
.01 MHz				
.02 MHz				
.05 MHz				
.1 MHz				
.2 MHz				
.5 MHz				
1 MHz			·	
2 MHz				
5 MHz				
10 MHz				
15 MHz				
20 MHz				
atness (maximum — minimum)				
5 Hz - 20 MHz				< 1.0 dB
	_			< .5 dB

3-11 RECEIVER LEVEL RATIO AMPLITUDE AND PHASE ACCURACY TEST								
Length of Ca	bles:	в	_ A		R			
Input Impedance = 50	Ω Ω							
Frequency = 100 kHz, Equal Attenuators								
	A/R	B/R	A/B	D2/D1	D3/D1	D2/D3	Tolerance	
Amplitude							±0.15 dB	
Phase							± 2.0 deg	
Frequency = 5 Hz - 200 MHz, Equal Attenuators								
	A/R	B/R	AJB	D2/D1	D3/D1	D2/D3	Tolerance	
Phase							< 10 deg p-p	
Amplitude							< 0.4 dB p-p	
Frequency = 100 kHz								
	D 2 / R	A/D1	A/D3	D 2 / B	B/D1	D3/R	Tolerance	
Amplitude							± 0.15 dB	
Phase							±2.0 deg	
F	00 4411-		444					
Frequency = 5 Hz - 2	00 MHZ, D2/R	Unequal A A/D1	A / D 3	D 2 / B	B/D1	D3/R	Tolerance	
	DZ/K	AIDI	A/D3	02,0	D, D 1	DJ/K	Toterance	
Phase							< 18 deg p-p	
Amplitude							< 0.7 dB p-p	
Frequency = 20 Hz - 20 MHz, Equal Attenuators								
	A/R	B/R	A/B	D2/D1	D3/D1	D2/D3	Tolerance	
Amplitude							< 0.3 dB p-p	
Phase							< 2 deg p-p	
Frequency = 20 Hz -		•		D 0 / D				
	D 2 / R	A/D1	A/D3	D 2/B	B/D1	D3/R	Tolerance	
Amplitude							< 0.45 dB p-p	
Phase							< 10 deg p-p	

- '	•	tenuators					_
	A/R	B/R	A / B	D2/D1	D3/D1	D2/D3	Tolerance
Amplitude							±0.2 dB
Phase							±2.0 deg
Frequency = $5 \text{ Hz} \cdot 2$	0 MHz, Ed	qual Atten	uators				
	A/R	B/R	AIB	D2/D1	D3/D1	D2/D3	Tolerance
Phase							< 10 deg p-
Amplitude							< 0.6 dB p-
requency = 100 kHz	. Unequal	Attenuato	ors				
,	D 2 / R	A/D1	A/D3	D 2 / B	B/D1	D3/R	Tolerance
Amplitude							±0.2 dB
Phase							± 2.0 deg
	A 4412- 11						
requency = 5 Hz - 2	0 MHz, U D2/R	nequal At	tenuators A / D 3	D 2 / B	B/D1	D3/R	Tolerance
	•	_		D 2 / B	B/D1	D3/R	
Frequency = 5 Hz - 2 Phase Amplitude	•	_		D 2 / B	B/D1	D 3 / R	Tolerance < 18 deg p- < 1.0 dB p-
Phase	•	_		D 2 B	B/D1	D 3 / R	< 18 deg p-
Phase Amplitude	D 2 / R	A/D1	A1D3	D 2 / B	B/D1	D 3 / R	< 18 deg p-
Phase Amplitude	D 2 / R	A/D1	A1D3	D2/B	B/D1 D3/D1	D3/R	< 18 deg p-
Phase Amplitude	D 2 / R	A/D1	A / D 3				< 18 deg p-
Phase Amplitude Frequency = 20 Hz -	D 2 / R	A/D1	A / D 3				< 18 deg p- < 1.0 dB p- Tolerance < 0.3 dB p-
Amplitude Frequency = 20 Hz - Amplitude Phase	D 2 / R	A/D1	nuators A/B				< 18 deg p-
Phase Amplitude Frequency = 20 Hz - Amplitude Phase	D 2 / R	A/D1	nuators A/B				< 18 deg p- < 1.0 dB p- Tolerance < 0.3 dB p-
Phase Amplitude Frequency = 20 Hz - Amplitude	D 2 / R 20 MHz, I A / R 20 MHz, I	A / D 1 Equal Atte B / R Unequal A	A / D 3 nuators A / B ttenuators	D2/D1	D3/D1	D2/D3	< 18 deg p- < 1.0 dB p- Tolerance < 0.3 dB p- < 5 deg p-p

3-15 SOURCE ATTENUATOR AC	CURACY			
Amplitude	Attenuation	Max	Min	Tolerance
+12 dBm	0 dB	Ref	Ref	
+ 8 dBm	-4 dB			± 0.2 dB
+ 4 dBm	-8 dB			± 0.2 dB
-4 dBm	-16 dB		-	± 0.32 dB
- 20 dBm	-32 dB			\pm 0.64 dB
- 36 dBm	-48 dB			± 0.96 dB
İ				
3-16 SOURCE DISTORTION AND	D SPUR TEST			
Harmonics				
3577A Frequency	Actual	Maximu	m	
250 kHz		< -30 6	1B	
459 kHz		< -30 (dB	
10 MHz		< -30 (dΒ	
100 MHz		< -30	dB	
150 MHz		< -30	dB	
200 MHz		< '- 30 (dB	
HP 3577A Frequency	Test Frequency	Actu	al	Maximum
50 MHz	250.25 MHz			< -50 dBc
	200.25 MHz			< -50 dBc
	100.25 MHz			< -50 dBc
	150.25 MHz			< -50 dBc
100 MHz	200.25 MHz			< -50 dBc
	100.25 MHz			< -50 dBc
	99.75 MHz			< -50 dBc
	200.50 MHz			< -50 dBc
	0.25 MHz			$< -50 \; \mathrm{dBc}$
150 MHz	150.25 MHz			< -50 dBc
	0.25 MHz			< -50 dBc
	150.50 MHz			< -50 dBc
	0.50 MHz			< -50 dBc
	151,00 MHz			< -50 dBc
	149.75 MHz			< -50 dBc
200 MHz	100.25 MHz			< -50 dBc
	99.75 MHz			< -50 dBc
	0.50 MHz			< -50 dBc
	199.50 MHz			< -50 dBc
	201.00 MHz			< -50 dBc
	199.00 MHz			< -50 dBc
0.75 MHz	300.25 MHz			< -50 dBc
	301.00 MHz			< -50 dBc
99.75 MHz	400.00 MHz			< -50 dBc
10.75 MHz	11.25 MHz			< -50 dBc
98.75 MHz	99.25 MHz			< -50 dBc
198.75 MHz	190.25 MHz			< -50 dBc

577A Source	Offset	Marker	Ref	Noise	Maximum
Frequency	Frequency	Reading	Level	Level	Level
1.75 MHz	100 Hz		= _		< -70 dBc
	1 kHz		= .		< -70 dBc
	10 kHz		= .		< -70 dBc
199.75 MHz	100 Hz		= _		< -70 dBc
	1 kHz		= .		< -70 dBc
	10 kHz		= .		< -70 dBc
-18 API SPUR T	EST				
	3577A	1360 Hz	2720 Hz	Maxi	mum
	Frequency	Offset	Offset	Level	
	1.7636 MHz			< -	50 dBc
1	99.7636 MHz			< -	50 dBc
	TEST Actual Max				

SECTION IV ADJUSTMENTS

Table of Contents

4-1	Introduction	4-1
4-2	Equipment Required	4-1
4-3	Safety Considerations	4-1
4-4	Related Adjustments	4-2
4-5	Power Supply Adjustments	4-8
4-6	Synthesizer Tuning Range Adjustment	4-10
4-7	Synthesizer 100 kHz Null Adjustment	4-11
4-8	API Adjustments	4-12
4-9	Local Oscillator Leveling Loop Adjustments	4-14
4-10	Local Oscillator 300 MHz Filter Adjustments	4-15
4-11	Local Oscillator 200 MHz Filter Adjustments	4-16
4-12	Oven Board 10 MHz Reference Frequency Adjustment	4-18
4-13	Oven Heater Shutdown Adjustment	4-18
4-14	Reference Board 10 MHz Oscillator Adjustment	4-19
4-15	300 MHz Output Level Peaking Adjustment	4-20
4-16	Offset Board Oscillator Tuning Range Adjustment	4-20
4-17	Source Flatness Adjustment	4-21
4-18	Source Output Board Filter Adjustment	4-22
4-19	Source Amplitude and Step Adjustments	4-23
4-20	On Carrier Return Loss Adjustment	4-24
4-21	Receiver Return Loss Adjustment	4-25
4-22	Input 50 Ω Gain Adjustment	4-26
4-23	Input 1 MΩ Gain Adjustment	4-27
4-24	Input 1 MΩ Attenuator Adjustment	4-28
4-25	Input 1 MΩ Capacitance Adjustment	4-29
4-26	Input Local Oscillator Feedthrough Adjustment	4-30
4-27	Input Notch Filter Adjustment	4-30
4-28	Input Variable Gain Amplifier DC Offset Adjustment	4-32
4-29	Input 250 kHz Filter Adjustment	
4-30	Input Phase Zero Adjustment	
4-31	Input Level Flatness Adjustment	4-38
4-32	300 MHz Band Pass Filter Adjustment	

	List of Tables	
1 -1	Adjustment List	. 4-2
4-2	Post Repair/Interactive Adjustments	. 4-4
4-3	Performance Test Adjustments	4-6
4-4	Reference Board Phase Offset	. 4-37
	List of Figures	
4-1	On Carrier Return Loss Test Set Up	. 4-25
4-2	14 kHz Filter Response	. 4-31
4-3	250 kHz Filter Response	. 4-35
4-4	Input Level Calibration Test Set Up	. 4-38
4-5	Input Level Flatness Test Set Up	. 4-41
4-6	Adjustment Locations	4-43
4-7	Individual Board Adjustment Locations	4-45

SECTION IV ADJUSTMENTS

4-1 INTRODUCTION

This section describes adjustments and checks required to bring the instrument within the specifications listed in Table 1-1. These procedures should only be performed if the specifications of Table 1-1 are not met, if instructed to do so in the troubleshooting section, or after part and/or component replacement. These procedures should not be performed as a routine maintenance procedure.

Table 4-1 lists the adjustment procedure in tabular form and the adjustment functions. Figures 4-4 and 4-5 illustrate the adjustment locations within the instrument. Table 4-2 lists all interrelated and interactive adjustments. Table 4-3 lists possible solutions for failing performance tests.

NOTE

Before performing any adjustments, allow the instrument to warm up for 1 hour. Adjustments must be made with all internal shields and covers in place and the instrument in thermal equilibrium.

4-2 EQUIPMENT REQUIRED

Table 1-2 lists the equipment required for the adjustment procedures. Any equipment which meets the critical specifications given in the table may be substituted for the recommended model.

4-3 SAFETY CONSIDERATIONS

Although the -hp- 3577A is designed in accordance with international safety standards, this manual contains information, cautions, and warnings which must be followed to ensure operation and to keep the unit in safe condition. Service and adjustments should be performed only by qualified personnel who are aware of the hazards involved.

WARNING

Any interruption of the protective (grounding) conductor inside or outside the unit, or disconnection of the protective earth terminal is likely to make the unit hazardous. Capacitors inside the -hp- 3577A may still be charged even though the -hp- 3577A has been removed from mains supply.

Only fuses with the required rated current and specified type should be used for replacement. The use of repaired fuses and short circuiting of fuse holders is not permitted. Whenever it is likely that the protection offered by the fuse has been impaired, the -hp- 3577A must be made inoperative and secured against unintended operation.

Adjustments described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

4-4 RELATED ADJUSTMENTS

The following adjustment procedures are written so that all interactive adjustments are made in the same paragraph. Adjustments in paragraphs which interact with those in other paragraphs are listed in Table 4-2. Also listed in Table 4-2 are the Performance Tests which should be run after an adjustment has been made to be sure the instrument meets the specifications listed in Table 1-1. Table 4-3 lists adjustment procedures, possible problems, and padding parts to correct failing performance tests.

Table 4-1 Adjustment List

Adjustment Name	Reference Designator	Adjustment Paragraph	Service Sheet	Description
	A1R44	4-28		VGA DC Offset
	A1C112	4-25		Input Capacitance
	A1C114	4-24		20 dB Attenuation
PHASE ADJ	A1R74	4-30		Input Phase Zero
RTN LOSS ADJ	A1R172	4-21		Return Loss
FLATNESS ADJ	A1R173	4-31		Level Flatness
LO FEED THRU	A1R141	4-26		L.O. Feedthrough
ADJ	A1L3	4-29		250 kHz Filter
ND)	A1L4	4-29		250 kHz Filter
	A1L5	4-29		250 kHz Filter
50 Ω GAIN ADI	A1R71	4-23		50 Ω Gain
JO II GAIN ADJ	AUN	4-22		30 M Gain
HI Z GAIN ADJ	A1R76	4-23		HI Z Gain
	A1C26	4-27		10 kHz Filter
	A1C20	4-27		10 kHz Filter
R PHASE ADJ	A4C50	4-9		R Channel LO Output Level
A PHASE ADJ	A4C70	4-9		A Channel LO Output Level
B PHASE ADJ	A4C90	4-9		B Channel LO Output level
	A4L2	4-10		300 MHz Filter 1
	A4L3	4-10		300 MHz Filter 1
	A4L4	4-10		300 MHz Filter 2
	A4L5	4-10		300 MHz Filter 2
	A4L7	4-11		200 MHz Filter Zero
	A4L8	4-11		200 MHz Filter Zero
	A4L9	4-11		200 MHz Filter Flatness
	A4L100	4-11		200 MHz Filter Zero
	A4L101	4-11		200 MHz Filter Zero
	A4L102	4-11		200 MHz Filter Flatness
	A5R9	4-16		Offset Tuning Range

Table 4-1 Adjustment List (Cont'd)

Adjustment Name	Reference Designator	Adjustment Paragraph	Service Sheet	Description
IO MHz ADI	A6R12	4-14		10 MHz Tuning Range
,	A6L33	4-15		300 MHz peaking
API 1 ADJ	A7R76	4-8		API 1
API 2 ADJ	A7R74	4-8		API 2
API 3 ADJ	A7R73	4-8		API 3
API 4 ADJ	A7R88	4-8		API 4
	A7R161	4-6		VCO Tuning Range
00 kHz NULL ADI	A7R107	4-7		100 kHz Pedestal Null
STEP 1	A8R142	4-19		Step Cal 1
.VL 1	A8R144	4-19		Level Cal 1
STEP 2	A8R157	4-19		Step Cal 2
VL 2	A8R156	4-19		Level Cal 2
IIGH FREQ	A8C155	4-17		Source Flatness
RTN LOSS	A8C71	4-20		Output Return Loss
	A8L11	4-18		200 MHz Filter 1
	A8L12	4-18		200 MHz Filter 1
	A8L13	4-18		200 MHz Filter 1
	A8L14	4-18		200 MHz Filter 2
	A8L15	4-18		200 MHz Filter 2
	A8L123	4-18		300 MHz Filter 2
	A8L124	4-18		300 MHz Filter 2
	A8L223	4-18		300 MHz Filter 1
	A8L224	4-18		300 MHz Filter 1
+15 V ADJ	A21R122	4-5		+15 V Output Level
15 V ADJ	A21R124	4-5		-15 V Output Level
+ 5 V ADJ	A21R22	4-5		+5 V Output Level
OVEN SHUT OFF	A31R9	4-13		Shutdown Level
FINE FREQ ADJ	A31R2	4-12		Fine Frequency
COARSE FREQ	A31U1	4-12		Coarse Frequency

TABLE 4-2 POST REPAIR/INTERACTIVE ADJUSTMENTS

Repaired/Adjusted	Recommended Performance Check and/or Adjustment procedure	Paragraph Number
	anajor rajosmon procedure	11411120
All A1 board	1. All receiver adjustments	4-21
analog repairs	1. All receives adjustments	through
analog rapans		4-31
	2. All receiver performance tests	3-7 &
		3-9
		through
		3-13
All A1 board	1. All Operational Verification	3-5
digital repairs	tests for the receiver board	
	2. Input 50 Ω Gain Adjustment	4-22
	3. Input 1 MΩ Gain Adjustment	4-23
All A4 board	1. Receiver Level Flatness	3-10
repairs	2. Input 50 Ω Gain Adjustment	4-22
	3. Input 1 MΩ Gain Adjustment	4-23
	4. Input Phase Zero Adjustment	4-30
All A5 board	1. Check A5 Fault Isolation Signals	2-11
repairs	2. Source Distortion & Spur Test	3-16
All A6 board	1. Check A6 Fault Isolation Signals	2-11
repairs		
All A7 API and	Receiver Residuals & Noise Test	3-7
VCO repairs and	2. Source Distortion and Spur Test	3-16
adjustments	3. Source Phase Noise Test	3-17
·	4. API Spur Test	3-18
	5. Synthesizer 100 kHz Null Adjustment	4-7
	6. API Adjustments	4-8
All A8 Filter and	1. Source Distortion and Spur Test	3-16
Amplifier repairs	2. Source Flatness and Absolute	3-14
and adjustments	Accuracy Test	
	3. Source Amplitude and Step Adjustments	4-19
	4. Source Flatness Adjustment	4-17
A8 Freq Gain	1. Source Flatness and Absolute Accuracy	3-14
Error Correction	Test	
and Amplitude	2. On Carrier Return Loss Test	3-8
leveling repairs	3. Source Amplitude and Step Adjustments	4-19
-	4. On Carrier Return Loss Adjustment	4-20

Table 4-2 POST REPAIR/INTERACTIVE ADJUSTMENTS (Cont'd)

Repaired/Adjusted sub-block	Recommended Performance Check and/or Adjustment procedure	Paragraph Number
All A11 board	1. All Power On Self Tests	2-7
repairs	2. All Service Diagnostics	2-10
All A13 board	1. All Power On Self Tests	2-7
repairs	2. All Service Diagnostics	2-10
All A16 board repairs	1. DISP HP-IB Service Diagnostic	2-10
All A21 board repairs	1. Main Power Supply Fault Isolation	2-11
All A31 board	1. Time Base Stability Test	3-19
repairs	Oven Board 10 MHz Reference Frequency Adjustment	4-12

Table 4-3 Performance Test Adjustments

FAILING PERFORMANCE TEST	ADJUSTMENT PROCEDURE	POSSIBLE PROBLEM OR PADDING PART
3-7		
step h: frequency		
0.0277777 MHz	4-8 A7R76	
	4-26	
0.000 MHz	4-26	
Other		Low output from A4
		A1 first IF mixer
step s: frequency		
100 Hz		A1 before the first mixer
30 kHz		A11U61
199 MHz		Boards not screwed into card nest Improperly seated input shield on receiver board Broken RF cables
3-8	4-20	60 dB attenuator on A8
3-9		
step u: magnitude		A1 first IF to third IF
		(mixer, op amps in 10 kHz IF)
		A4 local oscillator levels
step w: lower ratio		
transformer settings	4-28	Check for ground loops before do-
		ing any adjustments. Set up must
		be as specified in Fig. 3-3
		Low power supply
step hh	A1R44 adj.	1
	until the test	
	passes or do	1
	adj. 4-28	
3-10A		
step r: 50Ω	4-22	
step r: 1 MΩ	4-23	A1 input buffer relay
		A1 input buffer
		A1 first mixer
		A4 low local osc. levels
step v	4-31	A1 first mixer to input
		connector inclusive
		A1R140
step v: 1 MΩ		
frequencies <10 MHz	4-24	

Table 4-3 Performance Test Adjustments(cont)

FAILING PERFORMANCE TEST	ADJUSTMENT	POSSIBLE PROBLEM	
PAILING PERFORMANCE TEST	PROCEDURE	OR PADDING PART	
3-10B			
step dd	4-22		
step ii	4-31	Same as 3-10A step v	
step rr	4-23	Same as 3-10A step r	
step tt: 1 M Ω			
frequencies <10 MHz	4-24		
3-11			
step dd	4-22		
step ff	4-30		
step hh		Cables in the box not properly	
		hooked up	
		If parts were replaced, see service	
		notes HP 3577A-11/13	
step kk	4-31	If parts were replaced, see service	
-		note HP 3577A-12	
		Note 11F 337/A-12	
step rr		Vary the length of A1R140	
step uu		Same as 3-11 step hh	
step uu frequencies < 100 Hz		A1C101	
,,			
3-12		A1U43	
3-13	4.21	If A1K1 or A1K2 was replaced,	
3-13	4-21		
		lead length can affect return loss	
3-14A			
step y	4-17		
step x	4-19		
3-14B			
step g	4-19		
step h		A8	
step m	4-17		
3-15		60 dB attenuator on A8	
3-16			
step c: 2nd harmonic of 100MHz		A8Q45 and A8Q46	
step f	4-6		
3-17	4-6	A7 voltage regulators	
~	1-0	A7 VCO	
3-18	4.9	7.0 400	
3.0	4-8		

4-5 POWER SUPPLY ADJUSTMENTS

DESCRIPTION:

This procedure checks and adjusts all power supplies on the A21 Main Power Supply board for correct voltage and minimum line related ripple.

EQUIPMENT:

DC Voltmeter HP 3456A

PROCEDURE:

WARNING

Adjustments made to the power supply are in close proximity to terminals with AC voltages capable of causing personal injury. The main power supply filter capacitors are charged to approximately 250 V. Even with the power switch in the OFF position, these voltages may be present. Before making equipment connections to the FET POWER and FET DRIVE circuits, turn OFF the instrument's power switch, remove the power cord, and place jumpers A21W1 and A21W2 into the TEST position using insulated pliers. The jumpers must remain in the TEST position for approximately 2 minutes to insure the capacitors are fully discharged. After performing these steps, make all equipment connections and connect the instrument to the power line.

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the bottom cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Set the voltmeter as follows:

Function	, DC
Range	AUTO
Trigger	Internal
Math	OFF
Sample Rate	Maximum

- c. The switching power supply monitors the +5 V power supply, so this supply must be loaded nominally when making adjustments. Verify connection of power supply cables to A21J1, A21J2, and A21J8.
- d. Connect the voltmeter negative terminal to the instrument chassis.
- e. Connect the voltmeter positive terminal to TP26. If necessary, adjust A21R22 for $+5.10 \pm 0.02$ V.

NOTE

The +15 V and -15 V power supplies derive their reference from the +5 V supply. If the +5 V supply is not within specifications, do not adjust the 15 V supplies.

- f. Connect the voltmeter positive terminal to TP8. If necessary, adjust A21R122 for +15.00 (0.00, +0.05) V.
- g. Connect the voltmeter positive terminal to TP9. If necessary, adjust A21R124 for -15.00 \pm 0.05 V.
- h. Connect the voltmeter positive terminal to TP10. The voltmeter should read $+8.0\,\pm\,1.0$ V.

NOTE

The +8 V power supply is not adjustable. This power supply feeds unregulated DC voltage to the A6 Reference and A7 Synthesizer boards. If the voltage is not correct, turn the POWER switch OFF and remove the A6 and A7 boards. Turn the POWER switch ON, and check the +8 V supply again. If there is no change in the supply voltage after the boards are removed, the problem is most likely on the A21 Main Power Supply board.

i. Move the voltmeter negative terminal to TP12.

NOTE

The isolated +5 V supply is isolated from the other instrument power supplies by transformer T1. Be sure to use the correct ground when checking this supply.

j. Connect the voltmeter positive terminal to TP11. The voltmeter should read $\pm 5.00 \pm 0.25$ V.

NOTE

The isolated +5 V supply is not adjustable. If the voltage is not correct, disconnect the cable from A21J2 while monitoring the supply to determine if the A16 HP-IB board is affecting the supply. If there is no change in the supply voltage when the cable is removed, the problem is most likely on the A21 Main Power Supply board.

k. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-6 SYNTHESIZER TUNING RANGE ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A7 Synthesizer board tuning range. This insures that the A7 Synthesizer can tune to all required frequencies during environmental extremes.

EQUIPMENT:

Spectrum Analyzer		HP 8568B
	HP	
Service Accessory k	Kit	3577-84401

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A7 Synthesizer board on the extender board. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the spectrum analyzer 10 MHz REF OUT to the HP 3577A EXT REF IN using a BNC cable. The EXT REF LED on the HP 3577A front panel should be lit.
- c. Check that the green LED on the A7 Synthesizer board is lit. This indicates that the +8 V power supply is operational.
- d. With 13 on the A7 board disconnected, the red Unlock LED should be lit.
- e. Connect A7J3 to A6J5 (normal connection) using the extender cable. The Unlock LED should go out.
- f. Connect the spectrum analyzer to A7J1 using the BNC to SMA cable.
- g. Set the spectrum analyzer as follows:

Center Frequency 400 MHz
Frequency Span 300 MHz
Reference Level
Input Attenuation
Resolution Bandwidth Auto

- h. Press and hold down the reset button on the A13 Main Processor board. The output frequency should be 290 ± 8 MHz. When the reset pushbutton is released, the signal should jump to the high end of the VCO tuning range for approximately 2 seconds.
- i. Using the spectrum analyzer, note the frequency of the largest signal when the reset pushbutton is released.
- j. Adjust A7R161 (within the shield) for a signal frequency of 515 \pm 10 MHz when the pushbutton is released and the VCO is running at the high end of the frequency range.
- k. Check to see that the low end is below 298 MHz. Repeat steps h through j until both the lower and upper frequencies are within specification.

I. Disconnect the cable at A7)3. The frequency of the largest signal on the spectrum analyzer should be 290 ± 8 MHz.

m. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-7 SYNTHESIZER 100 kHz NULL ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 100 kHz synthesizer reference frequency sideband present on the synthesized signal to an acceptable level. This is required for proper signal purity of the A7 Synthesizer board.

EQUIPMENT:

Spectrum Analyzer	HP 8568B
BNC Cable-48 inch HP	8120-1840
Service Accessory Kit HP 03	3577-84401

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A7 Synthesizer board on the extender board and connect A7J3 to A6J5. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the spectrum analyzer 10 MHz REF OUT to the HP 3577A EXT REF IN using a BNC cable. The EXT REF LED on the HP 3577A front panel should be lit.
- c. Set the HP 3577A sweep type to CW and frequency to 750 kHz.
- d. Set the spectrum analyzer as follows:

Center Frequency	301 MHz
Frequency Span	
Reference Level	+5 dBm

- e. Connect the spectrum analyzer to A7J1. Note the level measured at 301 MHz.
- f. Adjust A7R107 until the signal levels at 300.9 MHz and 301.1 MHz are at least 65 dB below the level seen at 301 MHz.
- g. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-8 API (ANALOG PHASE INTERPOLATION) ADJUSTMENTS

DESCRIPTION:

This procedure adjusts the API circuits on the A7 Synthesizer board. This is required for proper operation of the fractional N circuits.

EQUIPMENT:

Signal Generator		HP 8660C
BNC Cable-48 inch	ΗP	8120-1840
N male to BNC female Adapter (2 each)	ΗP	1250-0780

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON
- b. Connect the signal generator 10 MHz REF OUT to the HP 3577A EXT REF IN. The EXT REF LED on the HP 3577A front panel should be lit.
- c. Set the HP 3577A as follows:

Sweep TypeCW
Res BW
FREQ 1.75038 MHz

d. Set the signal generator as follows:

	5	dBm
Frequency		MHz

- e. Connect the signal generator output to Receiver Input R.
- f. Press the MKR hardkey and the MKR ZERO softkey.
- g. Increase the signal generator frequency 38 Hz to 1.750418 MHz.
- h. Adjust A7R76 (API 1) for a marker level at least 50 dB below the reference level set in step f. Do not fine tune this if the level is in spec, as it may throw the API circuit out of balance and many adjustments may have to be made.
- i. Increase the signal generator frequency 38 Hz twice and verify that the marker level is at least 50 dB below the reference level set in step f. The two check frequencies are 1.750456 MHz and 1.750494 MHz. Adjust A7R76 only as necessary.
- j. Repeat steps c through i for 199.75038 MHz. The reference frequencies and test frequencies for both HP 3577A frequencies are listed below.

HP 3577A	Reference	First Test	Second Test	Third Test
Frequency	Frequency	Frequency	Frequency	Frequency
1.75038	1.75038	1.750418	1.750456	1.750494
199.75038	199.75038	199.750418	199.750456	199.750494

k. Repeat steps c through i for the following frequencies, but increase the signal generator in steps of 1.36 kHz rather than 38 Hz. Adjust A7R76 only when necessary.

HP 3577A	Reference	First Test	Second Test	Third Test
Frequency	Frequency	Frequency	Frequency	Frequency
1.7636	1.7636	1.76496	1.76632	1.76768
199.7636	199.7636	199.76496	199.76632	199.76768

 Repeat steps c through k as necessary until the HP 3577A meets specification for all frequencies listed without adjustment.

NOTE

This adjustment is a compromise for each HP 3577A frequency and test frequency. The adjustment must be made so that all test points meet specifications simultaneously.

- m. Set the signal generator frequency to 98.750038 MHz.
- n. Change the HP 3577A frequency to 98.750038 MHz. Press the MKR hardkey and the MKR ZERO softkey. Increase the frequency 38 Hz to 98.750076 MHz.
- Adjust API 2, A7R74, for a marker reading of less than -50 dB (typically -53 dB).
- p. Increase the frequency 380 Hz from the value in step n to 98.750418 MHz.
- q. Adjust API 3, A7R73, for a marker reading of less than 50 dB. \
- r. Increase the frequency 3800 Hz from the value in step n to 98.753838 MHz.
- s. Adjust API 4, A7R88, for a marker reading of less than 50 dB.
- t. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-9 LOCAL OSCILLATOR LEVELING LOOP/FLATNESS ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A4 Local Oscillator board output for maximum level flatness with respect to frequency. This adjustment is required by the A1 Receiver boards in order to meet the dynamic accuracy and absolute amplitude accuracy specifications.

EQUIPMENT:

Power	Meter			 		 	 	HP 436A
Power	Sensor			 		 	 	HP 8482A
Service	e Acces	sory	Kit	 	. .	 	 <i>.</i>	HP 03577-84401

PROCEDURE:

- Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Place the A4 Local Oscillator board on the extender board. Leave all interconnecting cables disconnected unless instructed to do otherwise in this procedure.
- c. Connect A4J1 to A6J3 (normal connection), A4J2 to A7J1 (normal connection), and A6J5 to A7J3 (normal connection) using extender cables.
- d. Connect the power sensor to A4J4 using the proper adapters. Terminate A4J3 and A4J5 into their normal A1 connections.
- e. Connect the instrument to the power line, and turn the POWER switch ON.
- f. Set the HP 3577A sweep type to CW and frequency to 1 MHz.
- g. With the proper cal factor selected on the power meter, adjust A4R49 for a power meter reading of ± 7.00 dBm ± 0.05 dB. Record the final amplitude measured.
- h. Connect the power sensor to A4J3 and terminate A4J4 into its normal connection. Record the power meter reading. It should be ± 7.0 dBm ± 0.2 dB.
- i. Connect the power sensor to A4J5 and terminate A4J3 into its normal connection. Record the power meter reading. It should be ± 7.0 dBm ± 0.2 dB.
- Turn OFF the instrument's power switch, remove the power cord, and place the A4 Local Oscillator board back into the instrument.

DO NOT insert or remove the circuit boards from the HP 3577A with power applied to the instrument. Power surges to circuit boards may cause unknown instrument states and/or damage the circuitry.

- k. Connect the instrument to the power line, and turn the POWER switch ON.
- 1. Set the HP 3577A sweep type to CW and frequency to 200 MHz.
- m. Connect the power sensor to A4J4. Terminate A4J3 and A4J5 into their normal A1 board connections.
- n. With the proper cal factor selected on the power meter, adjust A4C70 for the same amplitude \pm 0.05 dB as read at 1 MHz in step g above.
- Connect the power sensor to A4J3 and terminate A4J4 into its normal connection.

p. Adjust A4C50 for the same amplitude \pm 0.05 dB as read at 1 MHz in step h above.

- q. Connect the power sensor to A4J5 and terminate A4J3 into its normal connection.
- r. Adjust A4C90 for the same amplitude ± 0.05 dB as read at 1 MHz in step i above.
- s. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-10 LOCAL OSCILLATOR 300 MHz FILTER ADJUSTMENTS

DESCRIPTION:

This procedure adjusts both of the 300 MHz filters on the A4 Local Oscillator board. These filters eliminate upper harmonics that can interfere with the peak detecting leveling loop.

EQUIPMENT:

Signal Generator HP 86600	2
Spectrum Analyzer	3
3 dB Attenuator	3
Service Accessory Kit HP 03577-8440	1

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Remove the A4 Local Oscillator board. Remove the shield and place the A4 board on the extender board. Move jumper A4W1 to the top right position.
- c. Connect the signal generator output to A4J1 and the spectrum analyzer input to A4J6 through the 3 dB attenuator.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- e. Set the signal generator for a 0 dBm, 300 MHz, CW signal.
- f. Set the spectrum analyzer as follows:

Center Frequency
Frequency Span 0 Hz
Resolution Bandwidth 300 Hz
Reference Level 0 dBm
dB/Div
Sweep Time

- g. Adjust A4L2 and A4L3 for a maximum reading on the spectrum analyzer.
- h. Increase the spectrum analyzer dB/Div to 10 dB, and wait for a complete sweep. Then press Marker Normal, Marker Δ , and increase the center frequency to 600 MHz.
- i. Increase the signal generator frequency to 600 MHz.
- The spectrum analyzer reading should be at least 40 dB below the reading in step g.
- k. Set jumper A4W1 to the bottom right position and jumper A4W2 to the bottom left position.
- 1. Connect the signal generator output to A4J6 and the spectrum analyzer input to A4J7 through the 3 dB attenuator.
- m. Change the signal generator frequency to 300 MHz and the amplitude to +10dBm.

- n. Change the spectrum analyzer center frequency to 300 MHz, the dB/div to 2dB, and the reference level to +5 dBm.
- o. Adjust A4L4 and A4L5 for a maximum spectrum analyzer reading.
- p. Increase the spectrum analyzer dB/Div to 10 dB, and wait for a complete sweep. Then press Marker Normal, Marker Δ , and increase the center frequency to 600 MHz.
- q. Increase the signal generator frequency to 600 MHz.
- r. The spectrum analyzer reading should be at least 35 dB below the reading in step o.
- s. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-11 LOCAL OSCILLATOR 200 MHZ FILTER ADJUSTMENTS

DESCRIPTION:

This procedure adjusts the 200 MHz filters on the A4 Local Oscillator board. These filters eliminate the upper mixer harmonics that can interfere with the peak detecting leveling loop.

EQUIPMENT:

Spectrum Analyzer HP 8568B
Signal Generator HP 8660C
3 dB Attenuator
Service Accessory Kit HP 03577-84401

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Remove the A4 Local Oscillator board. Remove the shield and place the A4 board on the extender board. Move both A4W4 and A4W5 to the bottom left position.
- c. Connect the signal generator output to A4J9 and the spectrum analyzer to A4J10 through the 3 dB attenuator.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- e. Set the signal generator for a +10 dBm, 200 MHz, CW signal.
- f. Set the spectrum analyzer as follows:

Center Frequency	00 MHz
Frequency Span	0 Hz
Resolution Bandwidth	300 Hz
Reference Level	+5 dBm
dB/Div	1 dB
Sweep Time	. 10 sec

- g. Adjust A4L7 and A4L9 for a maximum reading on the spectrum analyzer.
- h. Increase the spectrum analyzer dB/Div to 10 dB, and wait for a complete sweep. Then press Marker Normal, Marker Δ , and increase the center frequency to 300 MHz.
- i. Increase the signal generator frequency to 300 MHz.
- j. Adjust A4L8 for a minimum reading on the spectrum analyzer.

k. Repeat steps e through j until no further improvement can be made. The final 300 MHz level should be at least 55 dB below the 200 MHz level.

- 1. Set A4W5 to the bottom right position and A4W6 to the top left position.
- m. Connect the signal generator to A4J10 and the spectrum analyzer to A4J11 through the 3 dB attenuator.
- n. Return the signal generator frequency to 200 MHz.
- Change the spectrum analyzer center frequency to 200 MHz, dB/div to 1 dB, and sweep time to 20 sec.
- p. Adjust A4L100 and A4L102 for a maximum reading on the spectrum analyzer.
- q. Increase the spectrum analyzer dB/div to 10 dB and wait for a complete sweep. Then press Marker Normal, Marker Δ , and increase the center frequency to 300 MHz.
- r. Increase the signal generator frequency to 300 MHz.
- s. Adjust A4L101 for a minimum reading on the spectrum analyzer.
- t. Repeat steps in through s until no further improvement can be made. The final 300 MHz level should be at least 55 dB below the 200 MHz level.
- u. Move A4W6 to the top right position and A4W7 to the bottom left position.
- v. Set the signal generator for -40 dBm, 200 MHz, CW signal.
- w. Connect the signal generator to A4J11 and the spectrum analyzer to A4J12.
- x. Set the spectrum analyzer as follows:

Center Frequency
Frequency Span 0 Hz
Resolution Bandwidth
Video Bandwidth 300 Hz
Sweep Time
dB/Div

- y. Adjust A4L201 for a maximum reading. If necessary, adjust the reference level on the spectrum analyzer for a mid screen display.
- z. Increase the spectrum analyzer dB/div to 10 dB and wait for a complete sweep. Then press Marker Normal, Marker Δ and increase the center frequency to 300 MHz.
- aa. Increase the signal generator frequency to 300 MHz.
- bb. The 300 MHz level should be at least 25 dB below the 200 MHz level.
- cc. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-12 OVEN BOARD 10 MHz REFERENCE FREQUENCY ADJUSTMENT

DESCRIPTION:

This procedure adjusts the absolute frequency of the 10 MHz A31 Oven board. This is the absolute frequency reference in the HP 3577A.

EQUIPMENT:

Oscilloscope	HP 1980B
Frequency Standard	WWVB

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON. NOTE: THE HP 3577A MUST BE WARMED UP FOR AT LEAST 8 HOURS BEFORE THE ADJUSTMENT IS MADE.
- b. Connect the frequency standard to the oscilloscope external trigger connector. Terminate the frequency standard as required.
- c. Connect the HP 3577A REF OUT, located on the rear panel, to the oscilloscope channel 1 input. Terminate the channel 1 input in 50 Ω .
- d. Set the oscilloscope time/div control to 0.1 μs per division.
- e. Remove the screw on A31U1 and set the coarse frequency adjust for a stable (i.e., not moving) display as seen on the oscilloscope.
- f. Set the oscilloscope time/div control to 10 ns per division.
- g. Set the fine frequency adjust (A31R2) for a stable display as seen on the oscilloscope.
- h. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-13 OVEN HEATER SHUTDOWN ADJUST

DESCRIPTION:

This procedure adjusts the heater shutdown trip point on the A31 Oven board. This is required so that the HP 3577A is disconnected from the oven reference when the oven is cold and connected when the oven has warmed up.

EQUIPMENT:

Spectrum Analyzer	HP 8568B
Service Accessory Kit	HP 03577-84401

- a. Turn OFF the instrument's power switch, and remove the power cord. Remove the top cover, and the cover above A31. Connect the instrument to the power line, but DO NOT turn the POWER switch ON.
- b. Connect the spectrum analyzer to A31J1 and set as follows:

Center Frequency	10	MHz
Reference Level	. 0	dBm
Span	. 1	MHz

c. Turn the HP 3577A line power ON. When the oven is cold, the 10 MHz signal on the spectrum analyzer should be approximately -100 dBm or lower. To check, set the spectrum analyzer reference level to -80 dBm and the span to 1 kHz.

- d. After approximately 20 minutes, when the oven is sufficiently warm, the 10 MHz signal on the spectrum analyzer should be approximately 0 dBm. Adjust A31R9 until the 10 MHz signal on the spectrum analyzer drops out, then back off A31R9 (counter-clockwise) about 10 degrees or until the signal just appears.
- e. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-14 REFERENCE BOARD 10 MHz OSCILLATOR ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 10 MHz oscillator on the A6 Reference board. This 10 MHz oscillator is phase locked to the 10 MHz oven or external reference and is the source of all frequencies in the HP 3577A.

EQUIPMENT:

Spectrum Analyzer		HP 8568B
BNC Cable-48 inch	HP	8120-1840

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Remove the cable from A6J6 and any external reference from the rear panel.
- c. Connect the spectrum analyzer to the rear panel 10 MHz output.
- d. Set the spectrum analyzer to track the input signal and count its frequency.
- e. Place the jumper A6W1 in the test position. This places the switchable loop filter in the wideband mode and allows the 10 MHz VCXO to free run.
- f. Adjust A6R12 for a spectrum analyzer frequency reading of 10 MHz \pm 5 Hz.
- g. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-15 300 MHZ OUTPUT LEVEL PEAKING ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 300 MHz output filter pass element on the A6 Reference board. Adjusting the filter center frequency controls the 300 MHz output level.

EQUIPMENT:

Spectrum Analyzer F	IP 8568B
Service Accessory Kit HP 035	77-84401

PROCEDURE:

- Turn OFF the instrument's power switch, remove the power cord, and and remove the top cover.
- b. Place the A6 Reference board on the extender board. Reconnect the cables to their proper position using extender cables.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Connect the spectrum analyzer to A6J3.
- e. Adjust A6L33 for the maximum 300 MHz spectrum analyzer reading. (This adjustment is inside the shielded assembly and can be made through the top cover of the shield.) This reading should be between 5 and -2 dBm (check 2nd I600MHz1 harmonic to see if it is less than -40 dBm).
- f. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-16 OFFSET BOARD OSCILLATOR TUNING RANGE ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 300.25 MHz oscillator voltage controlled tuning range on the A5 Offset board. This is required to ensure that the oscillator remains phase-locked under all environmental conditions.

EQUIPMENT:

Spectrum Analyzer H	P 8568B
Service Accessory Kit HP 035	77-84401

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Place the A5 Offset board on the extender board.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Connect A5J2 to A6J4 (normal connection) using extender cables. Set A5W3 to the test position.
- e. Connect the spectrum analyzer to A5J1 and set as follows:

Center Frequency	300.25 MHz
Reference Level	+10 dBm
Span	50 MHz

f. Press the Max Hold function, if available, on the spectrum analyzer. The VCO ramps over its tuning range, and the spectrum analyzer display should show a waveform similar to a bandpass filter.

g. Adjust A5R9 (inside the shield) for a spectrum analyzer display where the range of the waveform is two-thirds above and one-third below 300.25 MHz. After any adjustment is performed, the spectrum analyzer Max Hold values must be reset. On the HP 8568B, this is done by pressing the Clear Write control.

h. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-17 SOURCE FLATNESS ADJUSTMENT

DESCRIPTION:

This procedure adjusts the source output level flatness with respect to frequency on the A8 Source board.

EQUIPMENT:

Power Meter		HP 436A
Power Sensor	r	HP 8482A

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the power sensor to the A8 Source Output.
- c. Adjust the cal factor on the power meter for 1 MHz.
- d. Set the HP 3577A as follows:

Sweep Type	<i></i> CW
AMPTD	0 dBm
FREQ	1 MHz

- e. Press dB[REF] on the power meter.
- f. Increase the HP 3577A frequency to 200 MHz.
- g. Adjust the cal factor on the power meter for 200 Mhz.
- h. Adjust A8C155 for 0.00 dB(REF) \pm 0.02 dB on the power meter.
- i. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-18 SOURCE OUTPUT BOARD FILTER ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 200 and 300 MHz low pass filters on the A8 Source board. These filters are required for the specified spectral purity of the output and for the peak detectors in the amplitude leveling loop.

EQUIPMENT:

Power Meter HP 436/
Power Sensor
Service Accessory Kit HP 03577-8440
Signal Generator HP 86600
Spectrum Analyzer HP 8568
3 dB Attenuator HP 8491A Opt00

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Remove the A8 Source circuit board shields and place the board on the extender board. Connect A7J2 to A8J1 and A5J1 to A8J2 using extender cables.
- c. Connect the power meter to A8J3.
- d. Set the HP 3577A as follows:

SWEEP TYPE	1
FREQ 99 kHz	Z
AMPTD +15 dBn	n

- e. Adjust A8L124 and A8L123 for a maximum reading on the power meter. These adjustments interact, so repeat until a common maximum is obtained.
- f. Adjust A8L224 and A8L223 for a maximum reading on the power meter. These adjustments interact, so repeat until a common maximum is obtained.
- g. Increase the HP 3577A frequency to 200 MHz. Press the SPCL FCTN hardkey and the SERVICE DIAG softkey. Toggle LEVELING to the OFF state.
- h. Adjust A8L14 and A8L15 for a maximum reading on the power meter.
- Set A8W5 to the bottom right position. Connect the spectrum analyzer to A8J8 through the 3 dB attenuator.
- Move A8W4 to the bottom left position, and connect the output of the signal generator to A8J7.
- k. Set the signal generator for a 0 dBm, 200 MHz, CW signal.
- I. Set the spectrum analyzer as follows:

Center Frequency	200 MHz
Frequency Span	0 Hz
Resolution Bandwidth	. 300 Hz
dB/Div	1 dB
Sweep Time	. 10 sec

- m. Adjust A8L11 and A8L13 for a maximum spectrum analyzer reading.
- n. Change the spectrum analyzer dB/div to 10 dB. Wait for a complete sweep, then press Marker Normal, Marker Δ. Increase the center frequency to 300 MHz.
- Increase the signal generator frequency to 300 MHz.
- p. Adjust A8L12 for a minimum reading on the spectrum analyzer.

q. Repeat steps k through p until the adjustments cannot be improved. With the final adjustment, the 300 MHz spectrum analyzer reading in step p should be at least 55 dB below the 200 MHz reading in step m.

r. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

4-19 SOURCE AMPLITUDE AND STEP ADJUSTMENTS

DESCRIPTION:

This procedure adjusts the A8 Source board leveling circuits. The step adjustment sets the increments of the DAC controlled "vernier". These adjustments are necessary for the instrument to meet output level specifications.

EQUIPMENT:

Power Meter	HP 436/	
Power Sensor	HP 8482/	ĺ

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the power sensor to the A8 Source Output.
- c. Adjust the cal factor on the power meter for 100 kHz.
- d. Set the HP 3577A as follows:

SWEEP TYPE C	W
FREQ 101 kH	Ηz
AMPTD +11 dB	m

- e. Adjust A8R144, LVL 1, for a power meter reading of 11.00 dBm ± 0.01 dB.
- f. Increase the HP 3577A amplitude to +15 dBm.
- g. Adjust A8R142, STEP 1, for a power meter reading of \pm 15.00 dBm \pm 0.01 dB.
- h. Decrease the HP 3577A amplitude to +11 dBm and the frequency to 99 kHz.
- i. Adjust A8R156, LVL 2, for a power meter reading of ± 11.00 dBm ± 0.01 dB.
- j. Increase the HP 3577A amplitude to ± 15.00 dBm.
- k. Adjust A8R157, STEP 2, for a power meter reading of \pm 15.00 dBm \pm 0.01 dB.
- I. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-20 ON CARRIER RETURN LOSS ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A8 Source board output impedance.

EQUIPMENT:

· ·	
Signal Generator HP	8660C
Directional Bridge HP 35677	7-63502
3 dB Attenuator HP 8491A C)pt 003
10 dB Attenuator HP 8491A C)pt 010
SMA male to BNC female Adapter (2 each)	50-1200
N male to BNC female Adapter (2 each) HP 125	50-0780
N male to N male Adapter	50-0778
BNC Cables-48 inch (3 each) HP 812	20-1840

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the equipment as shown in Figure 4-1 except leave the A8 Source Output to the directional bridge unconnected.
- c. Set the HP 3577A as follows:

rkeQ
FREQ SPAN 0 Hz
CENTER FREQ
AMPTD 12 dBm
RES BW 10 Hz
DISPLY FCTN LIN MAG
SCALE
REF POSN 50%
/DIV 10 mV

- d. Set the signal generator for a 200 MHz, 5 Hz step size, +10 dBm, CW signal.
- e. Note the MARKER MAG on the HP 3577A. It should read approximately 33 mV.
- f. Step the signal generator frequency up 5 Hz.
- g. Connect the A8 Source Output to the directional bridge load port using a N male to N male adapter.
- h. Change the HP 3577A scale /div to 1 mV. Press the MKR → hardkey and the MKR → REF LVL softkey.
- i. Adjust A8C71 for a minimum peak-to-peak sine wave (must be less than 2.5 mV peak-to-peak). Press MKR → REF LVL if necessary to keep the signal on the screen.
- This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

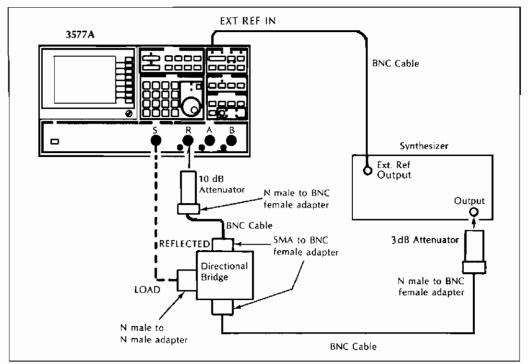


Figure 4-1. On Carrier Return Loss Adjustment Test Set Up

4-21 RECEIVER RETURN LOSS ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A1 Receiver board return loss. An external return loss bridge, driven by the A8 Source board and measured by the A1 Receiver board in channel R, is used to verify the Receivers in channels A and B. The Receiver in channel R is then verified using the Receiver in channel A as the measurement channel.

EQUIPMENT:

Directional Bridge	HP 35677-63502
RF Cable-24 inch (3 each)	HP 35679A
10 dB Attenuator	HP 8491A, Opt 010
Precision Termination (female)	. HP 909C,Opt200,Opt013

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the A8 Source Output to the source input of the directional bridge through the 10 dB attenuator.
- c. Set the HP 3577A as follows:

TREQ	
START FREQ	. 100 kHz
AMPTD	0 dBm

d. Connect the reflected output port on the directional bridge to Receiver Input R. Connect an RF cable to the load port on the directional bridge and leave the other end of the RF cable open.

- e. Press the INPUT hardkey and select the R channel softkey.
- f. Allow the HP 3577A to make 2 complete sweeps. Press the STORE hardkey and the D2 softkey. This is the load port open reference.
- g. Connect the precision termination to the end of the load port cable.
- h. Allow the HP 3577A to make two sweeps and store the display in register D1.
- i. Press the INPUT hardkey and enter a USER DEFINED input of (R-D1)/D2. This is the one port partial cal error correction for the directional bridge.
- Connect the load port cable to Receiver Input A.
- k. Allow the HP 3577A to make two sweeps. Press the ATTEN hardkey and toggle the channel being adjusted to 0 dB. Press the MKR → hardkey and the MKR → MAX softkey. Adjust A1R172 for a minimum marker reading.
- I. Repeat steps j and k for Receiver Input B.
- m. Repeat steps d through k for Receiver Input R. All control settings will be the same except Input A must be used whenever Input R is specified (even in equations).
- n. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-22 INPUT 50 Ω GAIN ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A1 Receiver board IF gain when the input is in the 50 Ω termination mode. This is necessary for the instrument to meet absolute amplitude accuracy specifications.

EQUIPMENT:

Synthesizer	HP 3335A
BNC Cables-48 inch (2 each)	HP 8120-1840
BNC female to N male Adapter	HP 1250-0780

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the spectrum analyzer 10 MHz REF OUT to the HP 3577A EXT REF IN using a BNC cable. The EXT REF LED on the HP 3577A front panel should be lit.
- c. Set the synthesizer as follows:

Frequency	 100 kHz
Amplitude	 -30 dBm

d.	Set the HP	3577A as f	ollows: (RUT =	Receiver	under tes	it)
----	------------	------------	-----------	-------	----------	-----------	-----

SWEEP TYPE C	W
FREQ 100 kł	Ηz
SCALE	
REF LEVEL	3m
REF POSN 50	%
/ DIV	dΒ

ATTEN (all receiver inputs)

ATTEN	 0 dBm
RES RW	10 Hz

- e. Connect the synthesizer output to Receiver Input <RUT> using a BNC cable and adapter.
- f. Adjust A1R71 for a marker reading of -30.00 dBm \pm 0.01 dB.
- g. Repeat steps d through f for all A1 Receiver boards requiring adjustment.
- h. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-23 INPUT 1 MΩ GAIN ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A1 Receiver board IF gain when the input is in 1 $M\Omega$ terminate mode. This is necessary for the instrument to meet absolute amplitude specifications.

EQUIPMENT:

Synthesizer HP 33	35A
BNC Cables-48 inch (2 each) HP 8120-1	840
BNC female to N male Adapter HP 1250-0)780
Feedthrough Termination	48C

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the spectrum analyzer 10 MHz REF OUT to the HP 3577A EXT REF IN using a BNC cable. The EXT REF LED on the HP 3577A front panel should be lit
- c. Set the synthesizer as follows:

	Frequency 100 kHz
	Amplitude30 dBm
d.	Set the HP 3577A as follows: (RUT = Receiver under test)
	INPUT <rut></rut>
	SWEEP TYPE CW
	FREQ 100 kHz
	SCALE
	REF LEVEL30 dBm
	REF POSN 50 %
	/ DIV 0.1 dB
	ATTEN (all receiver inputs)
	ATTEN 0 dBm
	IMPED 1 ΜΩ
	RES BW

- e. Connect a cable from the synthesizer output to the feedthrough termination. Connect the open end of the feedthrough termination to Receiver Input <RUT> using a BNC cable and adapter.
- f. Adjust the 1 Meg level adjust, A1R76, for a marker reading of -30 dBm \pm 0.01 dB.
- g. Repeat steps d through f for all A1 Receiver boards requiring adjustment.
- h. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-24 INPUT 1 MΩ ATTENUATOR ADJUSTMENT

DESCRIPTION:

This procedure adjusts the attenuation value of the 1 Meg, 20 dB attenuator on the A1 Receiver board.

EQUIPMENT:

BNC female to N male Adapter	HP 1250-0780
50 Ω Feedthrough Termination	HP 11048C
Service Accessory Kit	HP 03577-84401

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- Connect the feedthrough termination to the A8 Source Output with the adapter.

NOTE

When adjusting the Receiver board in channel A, place the board on an extender board in channel R or B. Adjusting a Receiver board on an extender in channel A may cause the signal to jump erratically. Return the Receiver to channel A after completing the adjustment.

- c. Connect A1J2 to the feedthrough termination with the proper cable and adapter. Place the Receiver under test on an extender board. Connect A1J1 to A4J3, J4, or J5 using an extender cable.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- f. Allow the HP 3577A to settle, then press the MEASR CAL hardkey and the NORMALIZE softkey. Press the ATTEN hardkey, and select an ATTEN (RUT) of 20dB.
- g. Adjust A1C114 for 0.00 ± 0.03 dB.
- h. Repeat steps c through g for all A1 Receiver boards requiring adjustment. Remember to disconnect power to the HP 3577A before removing a A1 Receiver board.
- i. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

4-25 INPUT 1 MΩ CAPACITANCE ADJUSTMENT

DESCRIPTION:

The procedure adjusts the input capacitance of the Hi-Z (1 Meg) input mode on the A1 Receiver board. There is only a typical specification for input capacitance, but lower capacitance allows better high impedance, high frequency measurements.

EQUIPMENT:

BNC female to N male Adapter	HP 1250-0780
1 Meg Series Resistor	HP 0698-7332
Service Accessory Kit H	P 03577-84401

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Connect the 1 Meg series resistor to the A8 Source Output with the adapter.

NOTE

When adjusting the Receiver board in channel A, place the board on an extender board in channel R or B. Adjusting a Receiver board on an extender in channel A may cause the signal to jump erratically. Return the Receiver to channel A after completing the adjustment.

- c. Connect A1J2 to the 1 Meg series resistor with a cable and adapter. Place the Receiver under test on an extender board. Connect A1J1 to A4J3, J4, or J5 using an extender cable.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- f. Allow the HP 3577A to settle, then press the MEASR CAL hardkey and the NORMALIZE softkey. Press the ATTEN hardkey and select an ATTEN (RUT) of 20dB.
- g. Adjust A1C112 for 0 dB.
- h. Repeat steps c through g for all A1 Receiver boards requiring adjustment. Remember to disconnect power to the HP 3577A before removing a Receiver board.
- i. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

NOTE

The 1M Ω Capacitance and 1M Ω Attenuator Adjustments interact. For best results, repeat both tests several times to obtain the optimum settings.

4-26 INPUT LOCAL OSCILLATOR FEEDTHROUGH ADJUSTMENT

DESCRIPTION:

This procedure adjusts the local oscillator feedthrough for the first IF mixer on the A1 Receiver board. This adjustment is necessary for the instrument to meet the receiver level flatness and dynamic accuracy specification.

EQUIPMENT:

None

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- c. Adjust A1R141, LO feedthrough adjust, for a minimum marker amplitude reading. This reading must be at least 33 dB below the maximum input level.
- d. Repeat steps b and c for all Receiver boards requiring adjustment.
- e. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

4-27 INPUT NOTCH FILTER ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 10 kHz IF filter notch on the A1 Receiver board. This filter rejects input image and noise signals. This is required for the A1 Receiver board to meet the flatness and dynamic accuracy specifications.

EQUIPMENT:

1:1 Probe	HP 10021A
10:1 Probe	HP 10040A
BNC female to N male Adapter (2 each)	HP 1250-0780

PROCEDURE:

NOTE

This procedure requires that one of the A1 Receiver boards is operating within specification. This minimizes the required equipment list and simplifies the adjustment procedure.

- Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Place the Receiver, which requires adjustment, on an extender board into channel B. Note each Receiver board's original position in the unit.

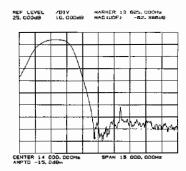


Figure 4-2: 14 kHz Filter Response

- Place the operational Receiver board into channel R and connect A1J1 to A4J3.
- d. Connect the instrument to the power line, and turn the POWER switch ON. ATTEN

 IMPED (R)
 1 MEG

 FREQ
 2

 CENTER FREQ
 14 kHz

 FREQ SPAN
 5 kHz

- f. Connect the A8 Source Output to A1TP5 (channel B) using the 1:1 probe.
- g. Connect Receiver Input R to the top of A1R28 (channel B) using the 10:1 probe.
- h. Set the 10 kHz filter adjust, A1C20, for a null at 14 kHz.
- i. Move the 1:1 Probe to the top of A1R28 and the 10:1 probe to A1TP6.
- j. Set the 10 kHz filter adjust, A1C26, for a null at 14 kHz.
- k. Move the 1:1 probe to A1TP5.
- Change the HP 3577A frequency span to 15 kHz, resolution bandwidth to 100 Hz, and sweep time to 2 sec.
- m. The HP 3577A display should resemble the wave shape shown in Figure 4-2. The most critical part of this filter is that the 14 kHz response should be at least 70 dB below the response at 10 kHz.
- n. Repeat this procedure for all A1 Receiver boards requiring adjustment.
- o. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

4-28 INPUT VARIABLE GAIN AMPLIFIER DC OFFSET ADJUSTMENT

DESCRIPTION:

This procedure adjusts the DC offset for the variable gain amplifier and the sample and hold output on the A1 Receiver board. A1R44 is adjusted for an equal DC offset in both the A/D converter and the variable gain amplifier. A1R187 is adjusted for an offset of \pm LSB so that the transition point of the MSB is not 0 V input. This adjustment is necessary for the instrument to meet the absolute amplitude specifications.

EQUIPMENT:

Computer
Jumper Pomona 3781-8
300 pF Capacitor HP 0160-5350
Service Accessory Kit HP 03577-84401

PROCEDURE:

a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.

NOTE

When adjusting the Receiver board in channel A, place the board on an extender board in channel R or B. Adjusting a Receiver board on an extender in channel A may cause the signal to jump erratically. Return the Receiver to channel A after completing the adjustment.

- b. Remove the A1 Receiver board requiring adjustment. Move A1W2 and A1W3 to the test position. Solder the 300 pF capacitor between pins two and six of A1U15 and place a jumper across A1C30. Place the A1 Receiver board on an extender board.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Connect the HP-IB cable from the computer to the HP 3577A.
- e. Load and run the DC offset adjustment program.
- f. Enter the A1 Receiver board channel you wish to adjust when prompted.
- g. Adjust A1R44 for center screen (if measurement jumps erratically, try connecting a jumper from A1 ground to the chassis or moving the Receiver board to a different channel).
- h. Press the softkey START OVER on the computer and turn the HP 3577A OFF.
- Remove the jumper across A1C30 and the capacitor across A1U15.
- Turn the instrument on and select the channel to be adjusted using the computer keyboard.
- k. Adjust A1R187 for three divisions above or below the reference level.
- Repeat this procedure for all A1 Receiver boards requiring adjustment.
- m. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

```
10 !RE-STORE "USERS/DH/HIP_HOG_ADJ:REMOTE"
      ASSIGN @Net_anl TO 711
ASSIGN @O TO 711;FORMAT OFF
      COM /Flag/ Exit_flag
      DIM Input_data(0:1), Output_data(0:1)
60 Start:
70 CALL Clear_screen
80 PRINT TABXY(5,8):"PLACE CHANNEL UNDER TEST ON EXTENDER BOARD"
90 PRINT TABXY(5,9):"MOVE W2 AND W3 TO TEST"
100 OUTPUT 2 USING "#,K":"R":CHR$(255)&"H"
110 LINPUT "Enter the channel under test (R. A. or B.).",Input$
120 Input$=TRIM$(Input$)
130 CALL Clear screen
140 PRINT TABXY(10,2):"NOTE: R44 must be adjusted before adjusting R187"
150 PRINT TABXY(16,3):"Response to adjustments will be slow due to averaging"
160 PRINT TABXY(5,5):"CONNECT A JUMPER ACROSS C30 AND A 300pf CAP FROM U15 PIN 2
  TO U15 PIN 6"
170 PRINT TABXY(5,6): "ADJUST R44 TO REFERENCE LINE"
180 PRINT TABXY(5,8): "REMOVE JUMPER AND CAP"
190 PRINT TABXY(5,9): "ADJUST R187 TO THREE DIVISIONS ABOVE OR BELOW REFERENCE LI
NE"
200 PRINT TABXY(5,12):"PRESS SOFTKEY &5 (START OVER) TO CHANGE CHANNEL"
210 DUTPUT @Net_an1;"UDS A/R TD1 ID1 DF3 ST5 SM2 MSR .5MSC "
220 DUTPUT @Net_an1;"REF 2048; DIV 1: FM2 BP0 "
230 Read_ad:
240 Const=2.05669908*2048
250 Mask=-32768
260 OUTPUT @Net anl: "BP0 FM2 SE0"
270 REPEAT
280
            ON KEY 5 LABEL "START OVER" CALL Flag
            OUTPUT @Net_anl;"DR"&Input$
ENTER @O USING "#,2(A)";Dummy$:Dummy2$
290
300
            ENTER @0; Input_data(*)
310
320
            A_d=Const*Input_data(0)
330
            WĀIT .2
340
            A_d=16*A_d
350
            A_d=BINEOR(Mask,A_d)
360
            A_d = A_d / 16
370
            A_d = 2048 + A_d
380
            IF Avg_ad<2040 OR Avg_ad>2055 THEN
390
                 Avg_ad=.50*Avg_ad+.50*A_d
400
410
                 Avg_ad=.95*Avg_ad+.05*A_d
            END IF
420
            OUTPUT @O USING "#,K";"LD1#I"
430
            Output_data(0)=Avg_ad
OUTPUT @0;Output_data(*)
OUTPUT @Net_anl;"TKM"
440
450
450
470 UNTIL Exit_flag>0
480 Exit_flag=0
490 GOTO Start
500 END
510 SUB Flag
            COM /Flag/ Exit_flag
520
            Exit_flag=1
530
540 SUBEND
550 SUB Clear_screen
560 - DUTPUT 2 USING "#,K":CHR$(255)&"K"
560
570 SUBEND
```

4-29 INPUT 250 kHz FILTER ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 250 kHz filter shape on the A1 Receiver board. This filter rejects upper mixer products after the first IF mixing. This is required for the Receiver to meet absolute level and flatness specifications.

EQUIPMENT:

1:1 Probe	HP 10021A
10:1 Probe	HP 10040A
BNC female to N male Adapter (2 each) HF	1250-0780

PROCEDURE:

NOTE

This procedure requires that one of the A1 Receiver boards is operating within specifications. This minimizes the required equipment list and simplifies the adjustment procedure.

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Place the A1 Receiver board, which requires adjustment, on an extender board into channel B. Note each Receiver board's original position.
- Place the operational Receiver board into channel R and connect A1J1 to A4I3.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- e. Connect the Source Output to A1TP3 (channel B) using the 1:1 probe.
- f. Connect Receiver Input R to A1TP4 (channel B) using the 10:1 probe.
- g. Set the HP 3577A as follows:

AMPTD	IBm
ATTEN (R) 0 d	lBm
IMPED (R)	Meg
SWEEP TYPE	
FREQ	kHz

- h. Adjust A1L4 (channel B) for a minimum marker reading.
- i. Change the HP 3577A frequency to 250 kHz. Press the MKR→ hardkey and the MKR→ REF LVL softkey. Press the SCALE hardkey and enter a REF POSN of 50 % and a /DIV of 0.1 dB.
- Adjust A1L3 and A1L5 (channel B) for a maximum as read by the marker readout.
- k. Connect both the 1:1 and 10:1 probes to A1TP3 (channel B).
- Press the HP 3577A DISP FCTN hardkey and the PHASE softkey. Press the MEASR CAL hardkey and the NORMALIZE softkey.
- m. Move the 10:1 probe to A1TP4. Note the phase reading on the marker readout.
- n. Adjust A1L5 (channel B) for a marker phase reading halfway between the value noted in step m and 90°. Adjust A1L3 for a marker reading of 90 degrees.

NOTE

This adjusts A1L3 and A1L5 for exactly the same value which is necessary if the A1 Receiver board is to meet its phase specifications.

- o. Move the 10:1 probe to A1TP3 (channel B).

 p. Make the following changes to the HP 3577A.

 SWEEP TYPE LIN FREQ

 FREQ

 FREQ SPAN 100 kHz

 CENTER FREQ 250 kHz

 DISPLY FCTN LOG MAG

 SCALE

 REF LEVEL 3 dB

 /DIV 6 dB

 REF POSN 100%

 MEASR CAL NORMALIZE

 q. Move the 10:1 probe to A1TP4. The HP 3577A display should be similar to
- that shown in Figure 4-3.
- r. Repeat this procedure for all A1 Receiver boards requiring adjustment.
- s. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

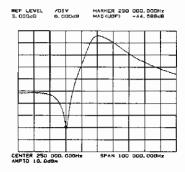


Figure 4-3. Input 250 kHz Filter Frequency Response

ADJUSTMENTS MODEL 3577A

4-30 INPUT PHASE ZERO ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A1 Receiver board phase circuits for a zero phase reference. This is required for the A1 Receiver board to meet phase specifications.

EQUIPMENT:

N male to BNC female Adapter (2 each)	ΗP	1250-0780
BNC Cable-24 inch	ΗP	8120-1839

PROCEDURE:

a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.

NOTE

All Receivers must be adjusted for the HP 3577A to meet the channel-tochannel ratio specifications.

b. Set the HP 3577A as follows:

INPUT R
SWEEP TYPE CW
FREQ
DISP FCTN PHASE
SCALE
/DIV

- c. Using a short cable, connect the Source Output to Receiver Input R.
- d. Adjust the Phase Adjust, A1R74, for a marker phase reading of 0.0 ± 0.5 degrees.
- e. Repeat steps b through d for Receiver Inputs A and B.
- f. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

NOTE

If you were unable to adjust the phase to zero, use the following procedure to select the switch setting in the phase initialization circuit on the A6 board (see steps 1 through 6).

- 1. Set the Phase Adjust, A1R74, on the Receiver in channel R for a midrange, multiple of 30 degrees phase reading. Note the Receiver R phase reading.
- Turn OFF the instrument's power switch, remove the power cord, and remove the A6 Reference board.

MODEL 3577A ADJUSTMENTS

3. Determine the current phase offset by comparing the A6S1 switch setting to Table 4-4.

Table 4-4 Reference Board Phase Offset

Switch Number			ber	Phase Offset		
4	4 3 2 1		3 2 1			
0	0	0	0	0		
0	1	0	1	0		
0	0	1	0	30		
1	1	1	0	30		
0	0	1	1	60		
1	1	1	1	60		
1	1	0	0	90		
1	1	0	1	120		
1	0	1	0	150		
1	0	1	1	180		
1	0	0	0	210		
1	0	0	1	240		
0	1	1	0	270		
0	1	1	1	300		
0	1	0	0	330		
0	0	0	1	Not a valid setting		

KEY 0 = closed 1 = open No. 4 switch is at the bottom of A6S1 No. 1 switch is at the top of A6S1

4. Compute the new phase offset by subtracting the Receiver R phase reading from the current phase offset.

(current phase offset) - (R phase reading) = new phase offset

5. Use the table to determine the new switch setting and set A6S1 accordingly. An example follows:

Receiver R phase reading is approximately -30 degrees. A6S1 is presently set at "1 0 1 1" or 180 degrees of phase offset.

(current phase offset) - (R phase reading) = new phase offset (180) - (-30) = 210

Match the new phase offset of 210 degrees to Table 4-4, and set A6S1 to the corresponding "1 0 0 0" switch number.

Replace the A6 Reference board and connect the instrument to the power line. Return to step b. ADJUSTMENTS MODEL 3577A

4-31 INPUT LEVEL FLATNESS ADJUSTMENT

DESCRIPTION:

This procedure adjusts the A1 Receiver board amplitude flatness with respect to frequency. The source output and power splitter are calibrated using a power meter. The calibration data is then stored into a data register in the HP 3577A. This allows you to display the receiver flatness on the HP 3577A.

EQUIPMENT:

Computer
Power Meter HP 436A Opt 022
Power Sensor HP 8482A
Power Splitter
20 dB Attenuator HP 8491A Opt 020
N female to N female Adapter HP 1250-1472
RF Cables-24 inch (4 each) HP 35679A

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Set the power meter cal factor for 1 MHz and press SENSOR ZERO. (The power sensor must have a flatness of two percent or less from 1 MHz to 200 MHz.)
- c. Connect the equipment as shown in Figure 4-4.
- d. Load and run the receiver flatness adjustment program.

Figure 4-4 Input Level Calibration Test Set Up

MODEL 3577A ADJUSTMENTS

```
10!RE-STORE "USERS/DH/RCVR_FLAT_ADJ:REMOTE"
      IRCUR FLATNESS ADJ. USING 436A TO CAL THE SOURCE
   DIM Sour_amptd(0:101)
40 COM Atten_label$[10]
50 COM /Input/ Input$[10]
60 Bin=0
70 Atten_label#="ATTEN_OUT"
80 Input$="R"
90 PRINTER IS 1
100 CALL Clear_screen
110 OUTPUT 711; "IPR:ST5:BW3:SAM0DBM; SFR1MHZ"
120 PRINT TABXY(5,5): "CONNECT 3577A SOURCE TO INPUT OF POWER SPLITTER"
130 PRINT TABXY(5,6): CONNECT POWER METER TO ONE OUTPUT OF THE POWER SPLITTER TH
RU AN N TYPE CABLE"
140 PRINT TABXY(5,7); "CONNECT THE REMAINING TWO OUTPUTS TO TWO 3577A INPUTS"
150 PRINT TABXY(5,9); "SET THE CAL FACTOR ON THE 436A FOR 1 Mhz"
160 PRINT TABXY(5,10); "PRESS 'CONTINUE' WHEN READY"
170 PAUSE
180 CALL Clear screen
190 DISP "PLEASE WAIT APPROX. 3 MINUTES FOR CAL DATA COLLECTION"
200 FDR Freq=1.0 TO 200 STEP 3.98
210
       OUTPUT 711; "SFR", freq, "MHZ"
220
       WAIT .2
230
       FOR N=1 TO 5
240
          WAIT .20
250
          OUTPUT 713; "9D-V"
260
          ENTER 713:Pm_level
270
          Sour_amptd(Bin)=10^(Pm_level/10)+Sour_amptd(Bin)
280
       NEXT N
290
       Sour_amptd(Bin)=SQR(Sour_amptd(Bin)/5)
       Bin=Bin+2
300
310 NEXT Freq
320 OUTPUT 711; "ST1; RS1; SWTSSEC; FRA1MHZ; FRB200MHZ; UDI; R/D1"
330 OUTPUT 711; "FM1; LD1"
340 OUTPUT 711;Sour_amptd(*)
350 OUTPUT 711; "DIV. 108R; RPS50%"
360 DISP '
370 PRINT TABXY(5,5); "INSTALL A 20 dB PAD BETWEEN THE 3577A SOURCE AND THE CABLE
380 PRINT TABXY(5,6); "MOVE THE CABLE FROM THE POWER METER TO THE REMAINING 3577A
 INPUT"
390 PRINT TABXY(5,8); "PRESS 'CONTINUE' WHEN READY"
400 PAUSE
410 OUTPUT 711; "TKM; MTR: RST"
420 CALL Clear_screen
430 CALL Delta
440 LOOP
450
       PRINT TABXY(5,3); "ADJUST A1R173 OF SELECTED INPUT FOR AN ABSOLUTE FLATNES
S OF < 0.6dB P-P"
       PRINT TABXY(5,4); "(NORMALLY 1 Mhz = 200 Mhz)"
460
470
       PRINT TABXY(5,6); "THEN CHECK RATIO FLATNESS FOR < 0.4d8 P-P AND ADJUST AS
REQUIRED"
       PRINT TABXY(5,9); "USE SOFTKEYS TO: CHANGE SELCTED INPUT"
471
472
       PRINT TABXY(22,10); "CHANGE ATTENUATOR POSITION"
473
       PRINT TABXY(22,11); "CHECK P-P FLATNESS"
       PRINT TABXY(1,15); "SELECTED INPUT IS "; Input$;"
480
       IF Atten_labels="ATTEN_IN" THEN
490
500
          PRINT TABXY(1,17): "20 dB ATTENUATORS ARE OUT"
510
       ELSE
520
          PRINT TABXY(1,17): "20 dB ATTENUATORS ARE IN "
530
       END IF
       ON KEY 5 LABEL " R " CALL Input_r
540
550
       ON KEY 6 LABEL " A " CALL Input_a
      ON KEY 7 LABEL " B " CALL Input_b
ON KEY 0 LABEL " A/R " CALL Input_ar
ON KEY 1 LABEL " B/R " CALL Input_br
560
570
580
```

```
ON KEY 2 LABEL " A/B " CALL Input_ab
        ON KEY 9 LABEL Atten_label$ CALL Atten
ON KEY 8 LABEL " DELTA P-P " CALL Delta
610
620 END LOOP
630 END
640 SUB Input_r
650
       COM /Input/ Input$
670
        DISP "PLEASE WAIT...
        OUTPUT 711; "UDIR/D1; TKM; MTR"
680
690
        Input$="R"
700
        CALL Delta
710 SUBEND
720 SUB Input_a
730
       COM /Input/ Input$
750
        DISP "PLEASE WAIT..."
       OUTPUT 711; "UDIA/D1; TKM; MTR"
760
       Inputs="A"
770
780
       CALL Delta
790 SUBEND
800 SUB Input_b
810
       COM /Input/ Input$
       DISP "PLEASE WAIT..."
830
       OUTPUT 711; "UDIB/D1:TKM:MTR"
840
850
       Input$="B"
860
       CALL Delta
870 SUBEND
880 SUB Input_ar
       COM /Imput/ Input$
890
900
       OUTPUT 711: "IAR:MTR"
910
       Inputs="A/R"
920
       CALL Delta
930 SUBEND
940 SUB Input_br
950
       COM /Input/ Input$
960
       OUTPUT 711; "IBR; MTR"
970
       Inputs="B/R"
       CALL Delta
990 SUBEND
1000 SUB Input_ab
1010
       COM /Input/ Input$
       OUTPUT 711; "UDIA/B:MTR"
1020
       Inputs="A/B"
1030
1040
       CALL Delta
1050 SUBEND
1060 SUB Delta
1070
       OUTPUT 711; "MTN; ZMK; MTX; DM1"
1080
       ENTER 711; Marker_delta
       DISP "FLATNESS IS "; Marker_delta; "dB P-P"
1100 SUBEND
1110 SUB Atten
     COM Atten_label$
1120
1130
       SELECT Atten_label$
       CASE "ATTEN_IN"
1140
1150
         OUTPUT 711; "AR2; AA2; AB2; RST"
1150
          Atten_label$="ATTEN_OUT"
       CASE "ATTEN_OUT"
1170
1180
          OUTPUT 711; "AR1; AA1; AB1; RST"
1190
          Atten_labels="ATTEN_IN"
      END SELECT
1200
1210
       DISP "PLEASE WAIT..."
1220
       WAIT 5.5
1230
      CALL Delta
1240 SUBEND
1250 SUB Clear_screen
1260 OUTPUT 2 USING "#,K"; "K"
1270 SUBEND
```

4-40

MODEL 3577A ADJUSTMENTS

e. After the calibration data has been collected, connect the equipment as shown in Figure 4-5.

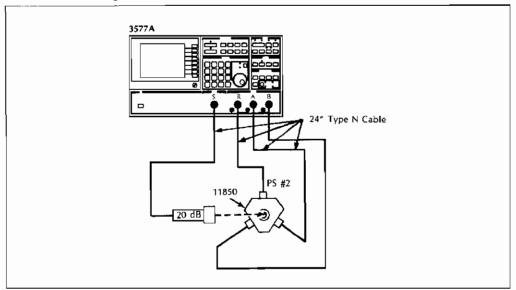


Figure 4-5 Input Level Flatness Test Set Up

- f. Adjust A1R173 on the selected Receiver for the flattest response. (Normally 200 MHz level equal to the 1 MHz level.) Absolute flatness must be less than 0.6 dB peak-to-peak.
- g. Verify that all ratios meet a flatness of less than 0.4 dB peak-to-peak and adjust if necessary.
- h. Repeat steps f and g until all specs are met.
- i. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and replace the top cover.

ADJUSTMENTS MODEL 3577A

4-32 300 MHz BAND PASS FILTER ADJUSTMENT

DESCRIPTION:

This procedure adjusts the 300 MHz band pass filter on the A25 board. This filter eliminates 30 MHz harmonics.

EQUIPMENT:

Spectrum Analyzer	 HP 8568B
Service Accessory Kit	 HP 03577-84401

PROCEDURE:

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Remove the cable connecting A25J2 to A4J1 and connect the spectrum analyzer to A25J2.
- c. Set the spectrum analyzer as follows:

Center Frequency 3	300 MHz
Frequency Span	0 Hz
Resolution Bandwidth	. 300 Hz
Video Bandwidth	300 Hz
Sweep Time	. 10 sec

- d. Adjust A25L1 for a maximum reading on the spectrum analyzer.
- e. This completes the adjustment. Turn OFF the instrument's power switch, remove the power cord, and return the instrument to its original state.

SECTION V REPLACEABLE PARTS

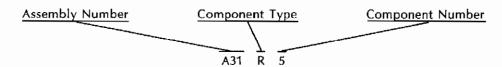
Table of Contents

5-1 5-2 5-3 5-4 5-5	Introduction Replaceable Parts List Ordering Information Direct Mail System Special Handling	
	List of Tables	
5-1	Abbreviations Used	5-2
5-2	Code List of Manufacturers	5-2a/b
5-3	Replaceable Parts List	5-3
	List of Figures	
5-1	Cabinet Parts, Exploded View	5-49/5-50
5-2	Cabinet Parts, Exploded View	
5-3	Mechanical Parts Identification, Cables and Shields	5-51/5-52
5-4	Mechanical Parts Location, Cables and Shields	5-51/5-52
5-5	Mechanical Parts Identification, Covers	5-53/5-54
5-6	Mechanical Parts Location, Covers	5-53/5-54
5-7	Mechanical Parts Identification, Bottom	5-55/5-56
5-8	Mechanical Parts Location, Bottom	5-55/5-56
5-9	Mechanical Parts Identification, Chassis	5-57/5-58
5-10	Mechanical Parts Location, Chassis	5-57/5-58

SECTION V REPLACEABLE PARTS

5-1 INTRODUCTION

This section contains information for ordering parts. Table 5-1 lists abbreviations used in Table 5-3 (Replaceable Parts and throughout this manual). Table 5-2 lists the manufacturer's name and address by manufacturer's code numbers.


5-2 REPLACEABLE PARTS LIST

In Table 5-3, the Replaceable Parts List is organized as follows:

- 1. PC Board Assemblies: A1,A2,A3,...
- 2. Chassis Mounted Components
- 3. Chassis Components
- 4. Hardware

Table 5-3 headings include:

1. REFERENCE DESIGNATOR

- 2. HP PART NUMBER
- CD The Check Digit is used by -hp- to verify the order has been transmitted correctly.
- 4. QTY The total quantity in the instrument.
- DESCRIPTION The -hp- description of the part.
- 6. MFR CODE The manufacturer's code (see Table 5-2).
- 7. MFR PART NUMBER The manufacturer's part number.

5-3 ORDERING INFORMATION

To order a part listed in Table 5-3, quote the -hp- part number, check digit, quantity required and address the order to the nearest Hewlett-Packard Sales and Service Office.

To order a part that is not listed in Table 5-3, describe the part, its function, the instrument model and serial number, the quantity required and address the order to the nearest Hewlett-Packard Sales and Service Office.

REPLACEABLE PARTS MODEL 3577A

5-4 DIRECT MAIL SYSTEM

Within the U.S.A., Hewlett-Packard can supply parts throught a direct mail order system. Advantages of using this system are:

- Direct ordering and shipment from the -hp- Parts Center in Mountain View, California.
- No maximum or minumum on any mail order. There is a minumum order amount for parts ordered through a local -hp- sales and service office when the orders require billing and invoicing.
- Transportation charges are prepaid. A small handling charge is added to each order.
- No invoicing. A check or money order must accompany each order.

Mail order forms and specific ordering information are available throught your local Hewlett-Packard sales and service office. Addresses and phone numbers are located at the back of this manual.

5-5 SPECIAL HANDLING

The HP 3577A contains many static sensitive components. Use the appropriate precautions when removing, handling and installing all parts to avoid unnecessary damage.

Ag siver authorises and summore authorises an

Table 5-1 Abbreviations Used

MODEL 3577A REPLACEABLE PARTS

Table 5-2. Manufacturers Code List

MFR NO.	MANUFACTURER NAME	ADDRESS		ZIP CODE
H9027	Schurter A G H	Luzern	SW	
01121	Allen-Bradley Co	Milwaukee	WI	53204
01295	Texas Instr Inc Semicond Cmpnt Div	Dallas	TX	75222
02111	Spectrol Electronics Corp	City of Ind	CA	91745
03508	GE Co Semiconductor Prod Dept	Auburn	NY	13201
03888	K D I Pyrofilm Corp	Whippany	NJ	07981
04713	Motorola Semiconductor Products	Phoenix	ΑZ	85008
06665	Precision Monolithics Inc	Santa Clara	CA	95050
07263	Fairchile Semiconductor Div	Mountain View	CA	94042
11236	CTS of Berne Inc	Berne	IN	46711
13103	Thermalloy Co	Dallas	TX	75234
13606	Sprague Elect Co Semiconductor Div	Concord	NH	03301
14099	Semtech Corp	Newbury Park	CA	91320
15454	Ametek/Rodan Div	Anaheim	CA	92806
17856	Siliconix Inc	Santa Clara	CA	95054
18324	Signetics Corp	Sunnyvale	CA	94086
19701	Mepco/Electra Corp	Mineral Wells	TX	76067
20932	Emcon Div 1TW	San Diego	CA	92129
24546	Corning Glass Works (Bradford)	Bradford	PA	16701
25403	N.V. Philips-Elcoma Department	Eindhoven	HL	02876
27014	National Semiconductor Corp	Santa Clara	CA	95051
27167	Corning Glass Works (Wilmington)	Wilmington	NC	28401
28480	Hewlett-Packard Co Corporate HQ	Palo Alto	CA	94304
3L585	RCA Corp Solid State Div	Somerville	NJ	
32997	Bourns Inc Trimpot Prod Div	Riverside	CA	92507
34335	Advanced Micro Devices Inc	Sunnyvale	CA	94086
34371	Harris Semicon Div Harris-Intertype	Melbourne	FL	32901
52063	Exar Integrated Systems Inc.	Sunnyvale	CA	94086
56289	Sprague Electric Co	North Adams	MA	01247
72136	Electro Motive Corp	Florence	SC	06226
72982	Erie Technological Products Inc	Erie	PA	16512
73138	Beckman Instruments Inc Helipot Div	Fullerton	CA	92634
75915	Littelfuse Inc	Des Plaines	IL	60016
84411	TRW Capacitor Div	Ogallala	NE	69153
91637	Dale Electronics Inc	Columbus	NE	68601

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
	3577A	7	1	NETWORK ANALYZER	28480	3577A
A1	03577-66501	2	3	RECEIVER BD	28480	03577-66501
A1C1 A1C2 A1C3 A1C4 A1C5	0160-4571 0160-2724 0140-0157 0160-2724 0160-4571	2000 2000 2000 2000	14 1 1	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 1800PF +-2% 500VDC MICA CAPACITOR-FXD 1857FF +-1% 500VDC MICA CAPACITOR-FXD 500PF +-2% 500VDC MICA CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 09023 00853 09023 04222	SA105E104ZAA SA105E104ZAA
A1C6 A1C7 A1C8 A1C11-C12 A1C13	0180-0210 0160-4571 0180-0309 0160-4571 0160-5349	68490	3 3 1	CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD .1UF+80-20% 50VDC CER CAPACITOR-FXD 1.7UF+-20% 10VDC TA CAPACITOR-FXD .1UF+80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	13606 04222 13606 04222 13606	150D335X0015A2-DYS SA105E104ZAA 150D475X0010A2-DYS SA105E104ZAA 292CC0G201J100B
A1C14-C17 A1C18 A1C19 A1C20 A1C21	0160-6514 0160-4591 0160-6514 0121-0491 0160-2646	32314	10 1 2 2	G-F 4700PF 1% 50V CERMLr CAPACITOR-FXD .018UF +-1% 200VDC G-F 4700PF 1% 50V CERMLr CAPACITOR-V TRMR-CER 5-30PF 50V PC-MTG CAPACITOR-FXD 168.9PF +-1% 300VDC MICA	04222 84411 04222 74970 09023	SR215A472FAAHTR HEW-249 SR215A472FAAHTR 274-0030-005
A1C22-C23 A1C24 A1C25 A1C26 A1C27	0160-6514 0160-4591 0160-6514 0121-0491 0160-4682	32312	1	C-F 4700PF 1% 50V CERMLr CAPACITOR-FXD .018UF +-1% 200VDC C-F 4700PF 1% 50V CERMLr CAPACITOR-V TRMR-CER 5-30PF 50V PC-MTG CAPACITOR-FXD 1000PF +-2.5% 180VDC POLYP	04222 84411 04222 74970 25098	SR215A472FAAHTR HEW-249 SR215A472FAAHTR 274-0030-005 B33062-A1102-H
A1C28-C29 A1C30 A1C31-C32 A1C33 A1C34	0160-6513 0160-2197 0160-4571 0180-0210 0160-0127	5 0 8 5 5	1	C-F 68PF 5% 200V CERMLr CAPACITOR-FXD 10PF +-5% 300VDC MICA CAPACITOR-FXD 1.UF +80-20% 50VDC CER CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD 1.UF +-20% 25VDC CER	28490 00853 04222 13606 13606	RPE121-978C0G680J200V SA105E104ZAA 150D335X0015A2-DYS 2C37Z5U105M050A
A1C35 A1C36 A1C37-C3B A1C39 A1C40	0180-0309 0180-0553 0180-1743 0180-0553 0160-6508	4 0 2 0 5	1 4 2	CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD 22UF+-20% 25VDC TA C-F 22PF 5% 200V CERMLr	13606 28490 13606 28490 28490	150D475X0010A2-DYS T382C226M025ASC8245 150D104X9035A2-DYS T382C226M025ASC8245 RPE121-978C0G220J200V
A1C41-C42 A1C43-C44 A1C45 A1C46 A1C47-C49	0180-1743 0160-4797 0180-0309 0160-4819 0160-4571	2 8 4 7 8	2	CAPACITOR-FXD .1UF+-10% 35VDC TA CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD 2200PF +-5% 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	13606 04222 13606 04222 04222	150D104X9035A2-DYS SA106A22OJAA 150D475X0010A2-DYS SA301A222JAA SA105E104ZAA
A1C50 A1C51-C52 A1C53-C55 A1C98-C99 A1C100	0160-2646 0160-6514 0160-4571 0160-4532 0160-6515	4 3 8 1 4	2 1	CAPACITOR-FXD 168.9PF +-1% 300VDC MICA C-F 4700PF 1% 50V CERMLr CAPACITOR-FXD 11UF +80-20% 50VDC CER CAPACITOR-FXD 1000PF +-20% 50VDC CER C-F 10PF% 200V CERMLr	09023 04222 04222 13606 28480	SR215A472FAAHTR SA105E104ZAA 592CX7R102M050B RPE121-978C0G100D200V
A1C101 A1C102 A1C103-C104 A1C105 A1C106	0180-2618 0160-6511 0160-6506 0180-0291 0160-0337	0 0 3 3 6	1 1 11 1	CAPACITOR-FXD 60UF+-20% 6VDC TA C-F 15PF 5% 200V CERMLT C-F .1UF 20% 50V CERMLT CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 116PF +-1% 300VDC MICA	13606 28480 28480 13606 09023	186D004 RPE121-978C0G150J200V RPE121-978Z5U104M50V 150D105X9035A2-DYS
A1C107 A1C108 A1C109 A1C110-C111 A1C112	0160-6508 0160-4507 0160-4571 0160-6510 0121-0449	3 0 8 9	1 6	C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 1800PF +-2% 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER C-F .1UF 20% 50V CERMLr CAPACITOR-V TRMR-CER 3.5-10PF 63V PC-MTG	28480 54583 04222 28480 52763	RPE121-978Z5U104M50V FD12C0C2A182G SA105E104ZAA RPE121-978X7R104M50V 5S-TRIKO-04 3.5-10 PF-N470
A1C113 A1C114 A1C115 A1C116 A1C118	0160-6521 0121-0449 0160-6524 0160-6506 0180-0210	2 9 5 3 6	1 2 1	C.F 2.2PF 200V CERMLr CAPACITOR-V TRMR-CER 3.5-10PF 63V PC-MTG C.F 6.8PF 200V CERMLr C.F .1UF 20% 50V CERMLr CAPACITOR-FXD 3.3UF+-20% 15VDC TA	28480 52763 28480 28480 1 3606	RPE121-978C0G2R2C200V 5S-TRIKO-04 3.5-10 PF-N470 RPE121-978C0G6R8D200V RPE121-978Z5U104M50V 150D335X0015A2-DYS
A1C119 A1C120-C127 A1C129 A1C130 A1C131	0160-6510 0160-6506 0160-6523 0160-6510 0160-5041	93499	1	C-F .1UF 20% 50V CERMLr C-F .1UF 20% 50V CERMLr C-F 1PF% 200V CERMLr C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .015UF +-10% 100VDC CER	28480 28480 28480 28480 04222	RPE121-978X7R104M50V RPE121-978Z5U104M50V RPE121-978C0G010C200V RPE121-978X7R104M50V SR201C153KAA
A1C132-C133 A1C137 A1C139-C140 A1C141-C142 A1C143	0160-3914 0160-6524 0160-6506 0180-3767 0180-1746	1 5 3 4 5	1 1 2 1	CAPACITOR-FXD .01UF +-10% 100VDC CER C-F 6.8PF% 200V CERMUF C-F .1UF 20% 50V CERMUF C-F 3.3UF 20% 25V TADPDF CAPACITOR-FXD 15UF+-10% 20VDC TA	04222 28480 28480 28480 13606	SR201C103KAA RPE121-978C0GSR8D200V RPE121-9787S11104M60V T350B335M025AS C-8310 150D156X9020B2-DYS

See introduction to this section for ordering information and indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	ç	Qty.	Description	Mfr. Code	Mfr. Part Number
A1C144 A1C145 A1C146 A1C147 A1C148-C149	0160-0127 0160-6508 0160-0127 0160-6506 0160-6510	25239		CAPACITOR-FXD 1UF +-20% 25VDC CER C-F 22PF 5% 200V CERMLI CAPACITOR-FXD 1UF +-20% 25VDC CER C-F .1UF 20% 50V CERMLI C-F .1UF 20% 50V CERMLI C-F .1UF 20% 50V CERMLI	13606 28480 13606 28480 28480	2C37Z5U105M050A RPE121-978C0G22QU20QV 2C37Z5U105M050A RPE121-978Z5U104M50V RPE121-978X7R104M50V
A1C150 A1C200-C201* A1C200-C201* A1C200-C201* A1C200-C201*	0160-6505 0160-4381 0160-6521 0160-4382 0160-3873	2 9 2 9	1	C-F .01UF 20% 100V CERMLr CAPACITOR.FXD 1.6PF + .25PF 200VDC CER C-F 2.2PF% 200V CERMLr CAPACITOR.FXD 3.3PF + .25PF 200VDC CER CAPACITOR.F 4.7PF +25PF 200VDC CER	28480 54583 28480 54583 54583	RPE121-978X7R103M100V FD11C0G2D1R5C RPE121-978C0G2R2C200V FD12C0G2D3R3C FD11C0G2D4R7C
A1CR1 A1CR2-CR3 A1CR4 A1CR5 A1CR6	1902-0953 1901-0376 1902-0951 1902-0953 1901-0050	7 6 5 7 3	6 2 1 2	DIODE-ZNR 6.2V 5% DO-35 PD=.4W TC=+.053% DIODE-GEN PRR 35V 50MA DO-35 DIODE-ZNR 5.1V 5% DO-35 PD=.4W TC=+.035% DIODE-ZNR 6.2V 5% DO-35 PD=.4W TC=+.053% DIODE-SWITCHING 80V 200MA 2NS DO-35	04713 9N171 04713 04713 07263	SZ30035-11RL NDP202 SZ30035-9RL SZ30035-11RL FDH 6308
A1CR7-CR8 A1CR9 A1CR10 A1CR11-CR12 A1CR13	1901-1068 1901-0050 0122-0085 1901-1068 1901-0040	5 3 1 5	1 1 4	DIODE-SCHOTTKY SM SIG DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-VC 2.2PF 7% C3/C25-MIN=4,5 DIODE-SCHOTTKY SM SIG DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 07263 \$0545 26480 07263	1901-1068 FDH 6308 132209(B) 1901-1069 FDH1088
A1CR14-CR16 A1CR17 A1CR16 A1CR19-CR20 A1CR21	1902-0953 1901-0040 1902-0953 1901-0040 1902-0957	7 1 7 1	,	DIODE-ZNR 6.2V 5% DO-35 PD=,4W TC=+,053% DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 9,1V 5% DO-35 PD=,4W TC=+,069%	04713 07263 04713 07263 04713	SZ30035-11RL FDH1088 SZ30035-11RL FDH1088 SZ30035-015
A1CR22-CR23 A1CR24 A1CR25 A1E3 A1H4	1901-0179 1901-0026 1901-0535 9170-0694 03577-04101	7 3 9 0 8	2 	DIODE-SWITCHING 15V 50MA 750PS DIODE-PWR RECT 200V 750MA DO-29 DIODE-SCHOTTKY SM SIG CORE-SHIELDING BEAD SHTF CVR-RECEIVER BDS	07263 04713 28480 02114 28480	FD7018 SRI 358-8BRL 1901-0535 56-590-85/4A6 03577-04101
A1H5 A1H6 A1H7 A1H26 A1H31-H39	03577-04102 03577-20601 03577-20602 1810-0398 4330-0496	9 7 8 9 3	1 1 1 1 9	SHTF CVR-RECEIVER BD CSTG-CIRC SIDE CSTG-COMP SIDE NETWORK-RES 10-SIP 22.0K OHM X 9 INSULATOR-BEAD GLASS	26480 28480 28480 11236 53101	03577- 04102 750-101-R22K KG12
A1HDR17 A1J1 A1J2 A1K1-K3 A1L1-L2	1258-0141 1250-1512 1250-1314 0490-1404 9140-0748	9 3 9 0	1 1 3 1	CON-JUMPER REM .025P CONNECTOR-RF SMB M PC 50-OHM CONNECTOR-RF SM-SLD FEM PC 50-OHM REL AY 2C 12VDG-COIL .5A 28VDC (NDUCTOR 250UH 25% .250X.5LG Q=3	00779 98291 98291 T01014 24226	530163-2 51-353-0039-226 52-054-0000-226 412Y-0191 CA-253-3
A1L3 A1L4 A1L5 A1L6 A1L7-L8	03577-60329 03577-60331 03577-60329 9100-2275 9140-0144	0 4 0 8 0	2 1 1 2	IND POT CORE VAR 101-108 UH IND POT CORE VAR 247-263 UH IND POT CORE VAR 101-108 UH INDUCTOR RF-CH-MLD 82UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG	28480 28480 28480 24226 99800	03577-60329 03577-60331 03577-60329 10M822K 1025-36
A1L9 A1L10 A1L11 A1L12 A1L13	9100-1611 9140-0129 03577-67901 9100-2574 9100-1611	4 1 8 0 4	2 1 1 2	INDUCTOR RF-CH-MLD 220NH 20% INDUCTOR RF-CH-MLD 220UH 5% .166DX.385LG NDCTR-WIRE 22GA LOOP INDUCTOR RF-CH-MLD 1.2MH 10% INDUCTOR RF-CH-MLD 220NH 20%	99800 99800 A01130 24226 99800	1537-02 1537-92 17S124K 1537-02
A1L14 A1P1 A1P1A A1P2 A1P3	9100-2574 1251-9736 1251-5033 1251-4822 1251-9735	0 9 3 6 8	2 2 9 	INDUCTOR RF.CH-MLD 1.2MH 10% CONN-POST TYPE .100-PIN-SPCG 6-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 8-CONT	24226 00779 00779 27264 28480	17S124K 103240-3 103239-3 22-03-2031 1251-8735
A1P3A A1P4 A1P4A A1P5-P6 A1P7-P15	1251-7524 1251-8736 1251-5033 1251-4047 1251-4822	1 9 3 7 6	1 2	CONN-POST TYPE .100-PIN-SPCG 4-CONT CONN-POST TYPE .100-PIN-SPCG 6-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT	28480 00779 00779 27264 27284	1251-7524 103240-3 103239-3 22-05-2031 22-03-2031
A1Q1-Q2 A1Q3 A1Q4 A1Q5 A1Q6	1854-0686 1853-0553 1854-0686 1855-0081 1854-0686	0 B 0 1 0	1 1	TRANSISTOR NPN SI TO-72 PD=200MW FT=4GHZ TRANSISTOR PNP SI TO-72 PD=200MW FT=5GHZ TRANSISTOR NPN SI TO-72 PD=200MW FT=4GHZ TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI TO-72 PD=200MW FT=4GHZ	25403 25403 25403 04713 25403	A400 A400 SPFB19 A400
A1Q7-Q8 A1Q11 A1Q12 A1Q13-Q21 A1Q22-Q23	1853-0419 1855-0232 1853-0036 03577-60339 1855-0420	5 4 2 2 2	1 1 1 1 1	TRANSISTOR PNP SI PD=310MW FT=200MHZ TRANSISTOR-JFET DUAL 2N5565 N-CHAN TRANSISTOR PNP SI PD=310MW FT=250MHZ PMISC SILICONE TRANSISTOR J-FET 2N4391 N-CHAN D-MODE	04713 17856 04713 28490 17856	SPS7476 2N5565 SPS3612 03577-60339 2N4331

See introduction to this section for ordering information * Indicates factory selected values

Table 5-3. Replaceable Parts

Reference	Reference HP Part C Mir. Mir.					
Designation	Number	CD	Qty.	Description	Code	Mfr. Part Number
A1Q24 A1Q25 A1Q26 A1Q27 A1Q28	1853-0083 1854-0263 1854-0515 1853-0320 1854-0477	9 9 4 7	1 1 1 1	TRANSISTOR-DUAL PNP PD-500MW TRANSISTOR NPN 2N3019 SI TO-39 PD-600MW TRANSISTOR-DUAL NPN TO-77 PD-600MW TRANSISTOR PNP 2N4023 SI TO-5 PD-600MW TRANSISTOR NPN 2N4222A SI TO-18 PD-500MW	07263 04713 32293 07263 04713	SP 12102 ST14B1 ITS1015A S44044 ST128B
A1029 A1R1 A1R2 A1R3-R4 A1R5	1854-0686 0698-4445 0683-2025 0683-3925 0683-2025	0 4 1 2 1	1 4 2	TRANSISTOR NPN SI TO-72 PD=200MW FT=4GHZ RESISTOR 5.76K 1% .125W F TC=0+-100 RESISTOR 2K 5% .25W CF TC=0-400 RESISTOR 3.9K 5% .25W CF TC-0-400 RESISTOR 2K 5% .25W CF TC=0-400	25403 91637 77902 77902 77902	A400 CMF-55-1, T-1 R-25J R-25J R-25J
A1R6 A1R7 A1R8 A1R9 A1R10	0698-6971 0698-3581 0757-0278 0698-3228 0683-2025	4 7 9 9	1 1 1	RESISTOR 10K .5% .125W F TC=0+-50 RESISTOR 13.7K 1% .125W F TC=0+-100 RESISTOR 1.70K 1% .125W F TC=0+-100 RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 2K 5% .25W CF TC=0-400	19701 19701 19701 19701 19702	5033R SFR25H SFR26H SFR25H R-25J
A1R11 A1R12 A1R13 A1R14 A1R15	0683-6225 0683-2025 0698-6965 0757-0268 0698-4489	1 7 1 6	1 1 1 1	RESISTOR 6.2K 5% .25W CF TC=0.400 RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR 505 .1% .125W F TC=0+-25 RESISTOR 9.09K 1% .125W F TC=0+-100 RESISTOR 26K 1% .125W F TC=0+-100	77902 77902 19701 19701 91637	R-25J R-25J 5033R SFR25H CMF-55-1, T-1
A1R17 A1R18 A1R19 A1R20 A1R21	0698-6362 0698-6630 0698-7674 0698-6805 0698-6343	9 3 7 4 5	2 5 1 1	RESISTOR 1K.1%.125W F TC=0+-25 RESISTOR 20K.1%.125W F TC=0+-25 RESISTOR 13.19K.1%.125W F TC=0+-50 RESISTOR 1.07BK.25%.125W F TC=0+-50 RESISTOR 9K.1%.125W F TC=0+-25	19701 19701 19701 19701 19701	5033R 5033R 5033R 5033R 5033R
A1R22 A1R23 A1R24-R25 A1R26 A1R27	0698-6630 0698-6630 0698-7960 0698-5418 0699-0192	83432	1 4 2 2	RESISTOR 5K.1%.125W F TC=0+-25 RESISTOR 20K.1%.125W F TC=0+-25 RESISTOR 7.87K 1%.125W F TC=0+-25 RESISTOR 50.1%.125W F TC=0+-50 RESISTOR 3.994K.1%.125W F TC=0+-25	91637 19701 19701 19701 19701	CMF-55-1, T-9 5033R 5033R 5033R 5033R
A1R28 A1R29 A1R30 A1R31 A1R32	0757-0448 0698-6630 0698-7394 0698-6362 0698-6630	53883	1	RESISTOR 16.2K 1% .125W F TC=0+-100 RESISTOR 20K .1% .125W F TC=0+-25 RESISTOR 699 .1% .125W F TC=0+-25 RESISTOR 1K .1% .125W F TC=0+-25 RESISTOR 20K .1% .125W F TC=0+-25	19701 19701 19701 19701 19701	SFR25H 5033R 5033R 5033R 5033R
A1R33-R34 A1R35 A1R36 A1R38-R39 A1R40	0698-7960 0698-5418 0699-0192 0698-3558 0698-3279	4 3 2 8 0	3 1	RESISTOR 7.87K 1%.125W F TC=0+-25 RESISTOR 50.1%.125W F TC=0+-50 RESISTOR 3.894K.1%.125W F TC=0+-25 RESISTOR 4.02K 1%.125W F TC=0+-100 RESISTOR 4.99K 1%.125W F TC=0+-100	19701 19701 19701 19701 19701	5033R 5033R 5033R SFR25H SFR25H
A1R41 A1R42 A1R43 A1R44 A1R45	0698-3558 0757-0401 0698-3582 2100-3356 0757-0277	8 0 8 1 8	2 1 1 3	RESISTOR 4.02K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 41.2K 1% .125W F TC=0+-100 RESISTOR-TRMR 200K 10% C SIDE-ADJ 1-TRN RESISTOR 49.9 1% .125W F TC=0+-100	19701 19701 19701 32997 19701	SFR25H SFR25H SFR25H 3386X-Y46-204 SFR25H
A1R46 A1R47 A1R49 A1R51 A1R63-R68	0683-6815 0683-5625 0683-1035 0683-3045 0683-4725	5 3 1 7 2	1 1 8	RESISTOR 680 5% .25W CF TC=0-400 RESISTOR 5.6K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 300K 5% .25W CF TC=0-800 RESISTOR 4.7K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J
A1R67-R68 A1R69 A1R70 A1R71 A1R72-R73	0698-6619 0698-4441 0757-0427 2100-3273 0683-1045	8 0 0 1 3	2 1 1 2	RESISTOR 15K .1% .125W F TC=0+-25 RESISTOR 3.74K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR-TRIMR 2K 10% C SIDE-ADJ 1-TRN RESISTOR 100K 5% .25W CF TC=0-400	19701 91637 19701 32997 77902	5033R CMF-55-1, T-1 SFR25H 3386X-Y46-202 R-25J
A1R74 A1R78 A1R77 A1R78 A1R79	2100-3274 2100-3352 0757-0161 0757-0442 0698-7934	2 7 9 9 2	1 1 3 1	RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR 604 1% .125W F TC-04-100 RESISTOR 10K 1% .125W F TC-04-100 RESISTOR 12.1K .1% .125W F TC-04-25	32997 32997 19701 19701	3386X-Y46-103 3386X-Y46-102 SFR25H 5FR25H 5033R
A1R80 A1R81 A1R82 A1R83 A1R87-R88	0698-6706 0698-8191 0698-6630 0698-5323 0683-1025	4 5 3 9 9	1 1 1 2	RESISTOR 1.24K .25% .125W F TC=0+-100 RESISTOR 12.5K .1% .125W F TC=0+-25 RESISTOR 20K .1% .125W F TC=0+-25 RESISTOR 4K .5% .125W F TC=0+-50 RESISTOR 1K 5% .25W CF TC=0-400	19701 91637 19701 19701 77902	5033R CMF-55-1, T-9 5033R 6033R R-25J
A1R91 A1R92 A1R93 A1R94 A1R96	0683-5125 0683-1015 0757-0444 0757-0273 0683-1035	8 7 1 4 1	1 2 1 1 12	RESISTOR 5.1K 5% .25W CF TC=0.400 RESISTOR 100 5% .25W CF TC=0.400 RESISTOR 12.1K 1% .125W F TC=0+.100 RESISTOR 3.01K 1% .125W F TC=0+.100 RESISTOR 10K 5% .25W CF TC=0-400	77902 77902 19701 19701 77902	R-25J R-26J SFR25H SFR25H R-25J

See introduction to this section for ordering information
• Indicates factory selected values

Table 5-3. Replaceable Parts

rable 5-3. Replaceable Parts						
Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number
A1R100 A1R101 A1R102 A1R103 A1R104	0675-4721 0683-1525 0699-2130 0699-2131 0699-2130	1 4 2 3 2	1 1 2 1	RESISTOR 4.7K 10% .125W CC TC=-350/+957 RESISTOR 1.5K 5% .25W CF TC=0.400 R-F 61.1 OH .1% 1/20W HF04 T0 R-F 247 OHM .1% 1/20W HF04 T0 R-F 61.1 OH .1% 1/20W HF04 T0	01121 77902 91637 91637 91637	BB4721 R-25J CMF-50-21 CMF50-21 CMF-50-21
A1R105 A1R106 A1R107 A1R108 A1R109	0699-2075 0898-3378 0683-2035 0699-2071 0699-2083	4 0 3 0 4	2 1 1 1 3	R-F 50 OHM .1% 1/20W HF04 T0 RESISTOR 51 5% .125W CC TC270/4540 RESISTOR 20K 5% .25W CF TC0-400 R-F 33.2 OH .1% 1/20W HF04 T0 R-F 100 OHM .1% 1/20W HF04 T0	91637 01121 77902 91637 91637	CMF-50-21 BB5105 R-25J CMF-50-21 CMF-50-21
A1R110 A1R111 A1R112 A1R113 A1R114	0683-3325 0757-0283 0757-0419 0683-1515 0683-5105	6 6 0 2 4	2 5 1 3 1	RESISTOR 3.3K 5% .25W CF TC=0-400 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 581 1% .125W F TC=0+-100 RESISTOR 150 5% .25W CF TC=0-400 RESISTOR 51 5% .25W CF TC=0-400	77902 19701 19701 77902 77902	R-25J SFR25H SFR25H R-25J R-25J
A1R115 A1R116 A1R117 A1R118 A1R119	0699-2083 0698-5178 0699-2083 0699-2075 0683-3325	4 2 4 4 6	1	R-F 100 OHM .1% 1/20W HF04 T0 RESISTOR 1.5K 5% .125W CC TC=-350/+857 R-F 100 OHM .1% 1/20W HF04 T0 R-F 50 OHM 1% 1/20W HF04 T0 RESISTOR 3.3K 5% .25W CF TC=0-400	91637 01121 91637 91637 77902	CMF-50-21 BB1525 CMF-50-21 CMF-50-21 R-25J
A1R121 A1R122 A1R123 A1R124 A1R125	0757-0280 0698-513† 0698-6979 0699-1947 0698-3378	3 7 3 7 0	2 1 1 2	RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 900K.5% .25W F TC=0+-100 RESISTOR 111.1K .1% .125W F TC=0+-25 R-F 38.3 OH 1% 1/20W MFHF TO RESISTOR 51 5% .125W CC TC=-270/+540	19701 19701 19701 91637 01121	SFR25H 5043R 5033R CMF-50-21 BB5105
A1R126 A1R127 A1R128 A1R129 A1R130*	0698-7332 0693-1225 0698-3113 0698-4585 0698-1969	4 1 1 3 3	1 1 1	RESISTOR 1M 1% .125W F TC=0+-100 RESISTOR 1.2K 5% .25W OF TC=0-400 RESISTOR 100 5% .125W OC TC=-270/+540 RESISTOR 34B 1% .25W F TC=0+-100 R-F 90.9 OH 1% 1/20W HF04 TO	19701 77902 01121 91637 91637	5033R R-25J BB015 CMF-60-1, T-1 CMF-50-21
A1R130* A1R130+ A1R131 A1R132 A1R133	0699-2077 0698-3113 0699-1947 0698-7236 0686-4715	6 1 7 7 6	1	R-F 75 OHM 1% 1/20W HF04 TD RESISTOR 100 5% .125W CC TC=-270/+540 R-F 38.3 OH 1% 1/20W MFHF TD RESISTOR 1K 1% .05W F TC=0+100 RESISTOR 470 5% .5W CC TC=0+529	91637 01121 91637 24546 01121	CMF-50-21 BB1016 CMF-50-21 CT3 EB4715
A1R134 A1R136 A1R137 A1R138 A1R139	0693-3955 0698-8996 0698-4534 0757-0401 0683-2045	8 2 0 5	1 3 1	RESISTOR 3.9M 5% .25W CC TC=-900/+1100 RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR 309K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 200K 5% .25W CF TC=0-800	01121 24546 19701 19701 77902	CB3955 CT3 SFR25H SFR25H R-25J
A1R140 A1R141 A1R142-R143 A1R145 A1R146	03577-67902 2100-3355 0698-8996 0757-0459 0683-1055	9 0 8 8 5	1 2 2	WIRE ASM-MAGNETIC RESISTOR.TRMR 100K 10% C SIDE-ADJ 1-TRN RESISTOR 100K 1% .05W F TC=0+-100 RESISTOR 56.2K 1% .125W F TC=0+-100 RESISTOR 1M 5% .25W CF TC=0-800	A01130 32997 24546 19701 77902	3386X-Y46-104 CT3 SFR25H R-25J
A1R147 A1R148 A1R149 A1R150 A1R151	0757-0459 0683-1055 0683-3025 0699-2163 0683-3025	8 5 1 3	2 1	RESISTOR 56.2K 1%.12SW F TC=0+-100 RESISTOR 1M 5%.25W CF TC=0.800 RESISTOR 3K 5%.25W CF TC=0.400 R-F 31.6 OH 1% 1/20W HF04 T0 RESISTOR 3K 5%.25W CF TC=0.400	19701 77902 77902 91637 77902	SFR25H R-25J R-25J CMF-50-21 R-25J
A1R152-R155 A1R156 A1R157-R158 A1R161-R162 A1R163	0683-4725 0698-4461 0757-0283 0698-6943 0757-0283	2 4 6 1 8	2	RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 698 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 20K .1% .125W F TC=0+-50 RESISTOR 2K 1% .125W F TC=0+-100	77902 91637 19701 19701 19701	R-25J CMF-55-1, T-1 SFR25H 5033R SFR25H
A1R164 A1R165 A1R166 A1R167 A1R188	0698-4461 0757-0283 0683-1015 0686-3305 0683-1035	4 6 7 9 1	1	RESISTOR 698 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 33 6% .5W CC TC=0+412 RESISTOR 10K 5% .25W CF TC=0-400	91637 19701 77902 01121 77902	CMF-55-1, T-1 SFR25H R-25J EB3305 R-25J
A1R170-R171 A1R172 A1R173 A1R175 A1R176	0683-1515 2100-3207 2100-3354 0698-3378 0757-0277	2 1 9 0 0	1	RESISTOR 150 5% .25W CF TC=0-400 RESISTOR-TRMR 5K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR 51 5% .125W CC TC=-270/+540 RESISTOR 49.9 1% .125W F TC=0+-100	77902 32997 32997 01121 19701	R-25J 3396X-Y46-502 3396X-Y46-503 BB5105 SFR25H
A1R177-R178 A1R179 A1R180 A1R181 A1R182	0757-0442 0757-0280 0699-2070 0757-0277 0757-0412	9 9 9 8 3	1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 R-F 21. OHM .1% 1/20W HF04 T0 RESISTOR 49.9 1% .125W F TC=0+-100 RESISTOR 365 1% .125W F TC=0+-100	19701 19701 91637 19701 19701	SFR25H SFR25H CMF-50-21 SFR25H SFR25H

See introduction to this section for ordering information
• Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Table 5-3. Replaceable Parts										
Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number				
A1R183 A1R184-R185 A1R186 A1R187 A1R188	0757-0407 0757-0284 0757-0407 2100-1986 0757-0199	6 7 6 9 3	2 2 1 1	RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 150 1% .125W F TC=0+-100 RESISTOR 200 1% .125W F TC=0+-100 RESISTOR 70 1 10% C TOP-ADJ 1-TRN RESISTOR 21.5K 1% .125W F TC=0+-100	19701 19701 19701 73138 19701	SFR25H SFR25H SFR25H B2PR1K SFR25H				
A1R189-R200 A1R201-R202 A1RP1 A1RP2 A1RP3	0683-1035 0683-6815 1810-0280 1810-0279 1GG8-0078	1 5 8 5 2	2 1 1 1	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 880 5% .25W CF TC=0-400 NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 10-SIP 4.7K OHM X 9 IC CUSTOM	77902 77902 91637 91637 28480	R-25J R-25J CSC10A01-103G/MSP10A01-103G CSC10A01-472G/MSP10A01-472G 1QGB-0078				
A1RP4 A1TP1-TP14 A1U1 A1U3 A1U3	1810-0675 1251-0600 1820-1244 03577-60307 1816-1142	5 0 7 4 5	1 14 1 1	NETWORK-RES 10-SIP MULTI-VALUE CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SO IC MUXR/DATA-SEL TTL LS 4-TO-1-LINE DUAL PRGMD PROM IC TTL S 4096 (4K) PROM 70-NS 3-S	13606 27264 01295 28480 18324	2160K261 16-06-0034 SN53619N 03577-60307 CK1753F				
A1U5 A1U6-U7 A1U8 A1U8 A1U8	1820-1997 1SB9-0029 03577-60308 1816-1142 1820-1997	7 0 5 5 7	3 2 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC CUSTOM PRGMD PROM IC TTL S 4096 (4K) PROM 70-NS 3-S IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	27014 28480 28480 18324 27014	GDEA105 1SB9-0029 03577-6030B CK1753F GDEA105				
A1U10-U11 A1U12 A1U13 A1U14 A1U15	1820-1216 1820-1197 1820-3368 1813-0257 1826-0715	3 9 0 5 7	2 1 1 1 2	IC DODR TTL LS 3-TO-8-LINE 3-INP IC GATE TTL LS NAND QUAD 2-INP IC-9-BIT BIDIRECTIONAL I/O PORT A/O 12-BIT 28-CBRZ/SDR BPLR IC OP AMP LOW-NOISE 8-DIP-P PKG	01295 01295 34335 24355 18324	SN53522N SN53504N AM2950DC AD41152 CC3802				
A1U16 A1U17-U18 A1U19 A1U20 A1U21	1820-1997 1826-0138 1820-2096 1826-0715 1826-0503	7 8 9 7	1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC COMPARATOR GP QUAD 14-DIP-P PKG IC CNTR YTLL IS BIN DUAL 4-BIT IC OP AMP LOW-NOISE B-DIP-P PKG SAMPLE AND HOLD 8 -METAL	27014 27014 01295 18324 27014	GDEA105 SL24958 SN59197N CC3802 SL35198				
A1U22 A1U23 A1U24 A1U25 A1U25	1826-0522 1826-0889 1820-0427 03577-60308 1816-1571	4 6 6 4	1 1 1 1	IC OP AMP LOW-BIAS-H-IMPD QUAD 14_DIP-P IC OP AMP LOW-NOISE DUAL 14_DIP-C PKG IC MODULATOR TO-100 PKG PKGMD PHOM IC TTL S 256-BIT PROM 40-NS 3-S	01295 52063 04713 28480 01295	SN99856N XR5533AN SC8232G1 03577-80309 TBP18S030N				
A1U26 A1U27 A1U28 A1U29 A1U31-U32	1826-0412 1826-0319 1820-1202 1826-0302 1820-1430	1 7 7 8 3	2 1 1 2	IC COMPARATOR PRON DUAL 8-DIP-P PKG IC OP AMP LOW-BIAS-H-IMPD TO-99 PKG IC GATE TTL LS NAND TPL 3-INP IC OP AMP GP TO-99 PKG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	27014 27014 01295 04713 01295	SL33675 SL31560 SN53509N SC61966G1 SN57191N				
A1U33 A1U34 A1U35-U36 A1U37 A1U39	1826-0635 1926-0412 1820-1112 1920-1417 1926-1116	0 1 8 6 4	2 1 1	IC OP AMP LOW-OFS 8-DIP-P PKG IC COMPARATOR PRON DUAL 8-DIP-P PKG IC FF TTL LS D-TYPE POS-EDE-TRIG IC GATE TTL LS NAND QUAD 2-INP IC OP AMP GP QUAD 14-DIP-P PKG	06065 27014 01295 01295 07933	OP-07 138P SL33675 SN53030N SN57178 RC4156DB				
A1U42 A1U43 A1U44 A1W1 A1W2	1826-0635 03577-87900 1820-1199 1258-0223 1258-0141	0 9 1 7 8	1 1 2 11	IC OP AMP LOW-OFS 8-DIP-P PKG MIX MWAV FC200-YHL 200MHZ 3 IC INV TTL LS HEX 1-INP CON-JUMPER 3 AMPS CON-JUMPER REM .025P	06665 L01065 01295 28480 00779	OP-07 138P SN53508N 1258-0223 530153-2				
A1W3 A1W4 A1W5-W13 A1W16	1258-0222 1258-0223 1258-0141 7175-0057	6 7 8 5	1	CON-JUMPER 3 AMPS MULT REM 2x3 CON-JUMPER 3 AMPS CON-JUMPER REM .025P RESISTOR-ZERO OHMS SOLID TINNED COPPER	28480 28480 00779 62223	1258-0222 1258-0223 530153-2				
A4	03577-66504	5	1	LO BOARD	28480	03577-66504				
A4C1 A4C2 A4C3 A4C4 A4C5	0160-6508 0160-6521 0160-6511 0160-6508 0160-6521	5 2 0 5 2	8 5 6	C-F 22PF 5% 200V CERMLr C-F 2.2PF% 200V CERMLr C-F 15PF 5% 200V CERMLr C-F 22PF 5% 200V CERMLr C-F 2:2PF% 200V CERMLr	28490 28490 28490 28490 28490	RPE121-978C0G220J200V RPE121-978C0G2R2C200V RPE121-978C0G150J200V RPE121-978C0G220J200V RPE121-978C0G2C20J200V				
A4C6 A4C7-C8 A4C10 A4C11 A4C12-C13	0160-6511 0160-6508 0160-6507 0160-6506 0160-6507	0 5 4 3 4	15 46	C-F 15PF 5% 200V CERMLr C-F 22PF 5% 200V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 28480 28480 28480	RPE121-978C0G150J200V RPE121-978C0G220J200V RPE121-978X7R102W100V RPE121-978Z5U104M50V RPE121-978X7R102W100V				

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A4C14 A4C15-C16 A4C17 A4C18-C20 A4C21	0160-6506 0160-6507 0160-6506 0160-6507 0160-6506	3 4 3 4 3		C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480 28480	RPE121-97825U104M50V RPE121-978X7R102M100V RPE121-978Z5U104M50V RPE121-978Z5U104M50V RPE121-978Z5U104M50V
A4C22 A4C23 A4C24 A4C25 A4C26	0180-3768 0160-6506 0180-0553 0160-6507 0160-6506	5 3 0 4 3	22 1	C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+20% 25VDC TA C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480	T350D335M035AS C-8310 RPE121-978Z5U104M50V T362C228M0526ASC8245 RPE121-978X7R102M100V RPE121-978Z5U104M50V
A4C27 A4C28 A4C29 A4C30 A4C31	0180-3768 0160-8506 0160-6523 0160-8506 0180-3768	53435	2	C.F 3.3UF 20% 35V TADPDr C.F. 1UF 20% 50V CERMLr C.F. 1PF % 200V CERMLr C.F. 1UF 20% 50V CERMLr C.F. 3.3UF 20% 35V TADPDr	28480 28480 28480 28480 29480	T350D335M035AS C-8310 RPE121-97825U104M50V RPE121-978CDG010C200V RPE121-97825U104M50V T350D335M035AS C-8310
A4C32 A4C33 A4C34 A4C35 A4C36	0160-6506 0180-3768 0160-6506 0180-3768 0160-6506	35353		C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 36V TADPDr C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480	RPE121-978Z5U104M50V T350D335M35AS C-8310 RPE121-978Z5U104M50V T350D335M035AS C-8310 RPE121-978Z5U104M50V
A4037 A4038 A4039 A4040 A4041	0180-0553 0160-6506 0180-3788 0160-6506 0180-3788	03535		CAPACITOR-FXD 22UF+-20% 25VDC TA C-F 1UF 20% 50V CERMULT C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMULT C-F 3.3UF 20% 35V TADPDr	28480 28480 28480 28480 28480	T362C226M025ASCB245 RPE121-97825U104M50V T3600335M035AS C-8310 RPE121-97825U104M50V T350D335M035AS C-8310
A4C48 A4C49 A4C50 A4C51 A4C52	0160-6506 0180-3768 0121-0512 0160-6521 0160-6506	35723	3	C-F 1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr CAPACITOR-V THMR-CER 2-5PF 100V PC-MTG C-F 2.2PF% 200V CERMLr C-F .1UF 20% 50V CERMLr	28480 28480 59660 28480 28480	RPE121-97825U104M50V T350D335M035AS C-9310 518-002 A 2-5 RPE121-978C0G2R2C200V RPE121-978Z5U104M50V
A4C53 A4C54 A4C55 A4C56 A4C57	0180-3710 0160-6506 0180-3768 0160-6506 0180-0553	7 3 5 3 0	1	C-F 15UF 20% 25V TADPDr C-F .1UF 20% 50V CERMUr C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMUr CAPACITOR-FXD 22UF+-20% 25VDC TA	28490 28490 28490 28490 28490	T350G156M025AS C-9310 RPE121-97825U104M50V T350D335M035AS C-9310 RPE121-978Z5U104M50V T362C226M025ASC8245
A4C58 A4C59 A4C61 A4C62 A4C63	0160-6506 0160-3768 0160-6523 0160-6506 0160-3710	3 5 4 3 7		C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr C-F 1PF% 200V CERMLr C-F .1UF 20% 50V CERMLr C-F 15UF 20% 25V TADPDr	28490 28480 28480 28480 28480	RPE121-978Z5U104M50V T350D335M035AS C-8310 RPE121-978CCG010C200V RPE121-978Z5U104M50V T350G156M025AS C-8310
A4C64 A4C65 A4C66 A4C67 A4C6B	0160-6506 0180-3768 0160-6506 0180-0553 0160-6506	3 5 3 0 3		C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 55V TADPDT C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+-20% 25VDC TA C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480 28480	RPE121-97825U104M5DV T350D335M035AS C-8310 RPE121-978Z5U104M5DV T362C226M025ASC9245 RPE121-978Z5U104M5OV
A4C69 A4C70 A4C71 A4C72 A4C73	0180-3768 0121-0512 0160-6521 0160-6506 0180-3710	5 7 2 3 7		C.F 3.3UF 20% 35V TADPDI CAPACITOR-V TRMR-CER 2-5PF 100V PC-MTG C.F 2.2PF % 200V CERMLr C.F. 1UF 20% 50V CERMLr C.F. 15UF 20% 25V TADPDI	28480 59660 28480 28480 28480	T350D335M035AS C-8310 518-002 A 2-5 RPE121-978C0G2R2C200V RPE121-376Z5U104M55V T350G156M025AS C-8310
A4C74 A4C75 A4C76 A4C77 A4C78	0160-6506 0180-3768 0160-6506 0180-0553 0160-6506	35303		C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 55V TADPOT C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+-20% 25VDC TA C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480 28480	RPC121-970Z5U104M50V T350D335M035A5 C-8310 RPE121-978Z5U104M50V T3620Z26M025A5G8245 RPE121-978Z5U104M50V
A4C79 A4C80 A4C81 A4C88 A4C89	0180-3768 0160-6506 0180-3768 0160-6506 0180-3768	53535		C.F. 3.3UF 20% 35V TADPDr C.F. 1.UF 20% 50V CERMLr C.F. 3.UF 20% 35V TADPDr C.F. 1.UF 20% 50V CERMLr C.F. 3.3UF 20% 35V TADPDr	28480 28480 28480 28480 28480 28480	T350D335M035AS C-8310 RPE121-97825U104M50V T350D335M035AS C-8310 RPE121-97825U104M50V T350D335M035AS C-8310
A4C90 A4C91 A4C92 A4C93 A4C94	0121-0512 0160-6521 0160-6506 0180-3710 0160-6506	7 2 3 7 3		CAPACITOR-V TRIMR-CER 2-5PF 100V PC-MTG C-F 2-2PF% 200V CERMLr C-F -1UF 20% 50V CERMLr C-F 15UF 20% 25V TADPDr C-F -1UF 20% 50V CERMLr	59660 28480 28480 28480 28480	518-002 A 2-5 RPE121-978C0G2R2C2C00V RPE121-978Z5U104M50V T350G156M025AS C-8310 RPE121-978Z5U104M50V
A4C95 A4C96 A4C97 A4C98 A4C99	0180-3768 0160-6506 0180-0553 0180-6506 0180-3768	53095		C.F. 3.3UF 20% 35V TADPDr C.F. 1.UF 20% 56V CERMLr CAPACITOR-FXD 22UF+.20% 25VDC TA C.F. 1.UF 20% 56V CERMLr C.F. 3.3UF 20% 35V TADPDr	28480 28480 28480 28480 28480	T350D335M035AS C-8310 RPE121-978Z5U104M50V T362C226M025ASC8245 RPE121-978Z5U104M50V T350D335M035AS C-8310

See introduction to this section for ordering information. * Indicates factory selected values.

Table 5-3. Replaceable Parts

Table 5-3. Replaceable Parts										
Reference Designation	HP Part Number	S	Qty.	Description	Mfr. Code	Mfr. Part Number				
A4C101 A4C102 A4C103 A4C104 A4C105	0160-6515 0160-4381 0160-6506 0160-6524 0160-6508	48555	4 1 2	C-F 10PF% 200V CERMLr CAPACITOR-FXD 1.5PF +25PF 200VDC CER C-F 22PF 5% 200V CERMLr C-F 6.8PF% 200V CERMLr C-F 22PF 5% 200V CERMLr	29480 54583 28480 28480 28480	RPE121-978C0G100D200V FD11C0G2D1R5C RPE121-978C0G220J200V RPE121-978C0G6R8D200V RPE121-878C0G220J200V				
A4C107 A4C108 A4C111 A4C112 A4C113	0160-6515 0160-6506 0160-6506 0180-3768 0160-6507	4 3 3 5 4		C-F 10PF% 200V CERMLr C-F .1UF 20% 50V CERMLr C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr C-F 1000PF 20% 100V CERMLr	28490 28490 28480 28480 28480 28480	RPE121-978C0G100D200V RPE121-978Z5U104M50V RPE121-978Z5U104M50V T350D335M035AS C-8310 RPE121-978X7R102M100V				
A4C114 A4C115-C116 A4C117 A4C120 A4C121	0180-0553 0160-6508 0180-3768 0160-6515 0160-4381	0 3 5 4 8		CAPACITOR-FXD 22UF+-20% 25VDC TA C-F. 1UF 20% 56V CERMLr C-F 3.3UF 20% 35V TADPDr C-F 10PF% 200V CERMLr CAPACITOR-FXD 1.5PF +25PF 200VDC CER	28480 28480 28480 28480 54583	T362C226M025ASC8245 RPE121-978750U104M50V T350D335M035AS C-8310 RPE121-978C0G100D200V FD11C0G2D1R5C				
A4C122 A4C123 A4C124 A4C126 A4C130	0160-6508 0160-6524 0160-6508 0160-6515 0160-6507	55544		C-F 22PF 5% 200V CERMLr C-F 8.BFF% 200V CERMLr C-F 22PF 5% 200V CERMLr C-F 10PF% 200V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 28480 28480 28480	RPE121-978C0G220J200V RPE121-978C0G6R8D200V RPE121-978C0G20J200V RPE121-978C0G20J200V RPE121-978X7R102M100V				
A4C149 A4C150-C151 A4C152 A4C153 A4C154	0160-6507 0160-6506 0180-1746 0160-6506 0180-1746	43535	3	C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA	28480 28480 13606 28480 13606	RPE121-978X7R102M100V RPE121-978Z5U104M50V 150D156X9020B2-DYS RPE121-978Z5U104M50V 150D156X9020B2-DYS				
A4C155-C156 A4C157 A4C160 A4C161 A4C162	0160-6506 0180-1746 0160-6507 0160-6506 0180-3768	3 5 4 3 5		C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr	28480 13606 28480 28480 28480	RPE121-979Z5U104M50V 150D156X9020B2-DYS RPE121-978X7R102M100V RPE121-978Z5U104M50V T350D335M035AS C-8310				
A4C163 A4C184 A4C166 A4C167 A4C168	0160-6506 0160-3914 0160-6506 0160-0127 0160-6506	3 1 3 2 3	1	C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .01UF +-10% 100VDC CER C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 1UF +-20% 25VDC CER C-F .1UF 20% 50V CERMLr	28480 04222 28480 13606 29480	RPE121-978Z5U104M50V SR201C103KAA RPE121-978Z5U104M50V 2G37Z5U105M050A RPE121-978Z5U104M50V				
A4C180 A4C190 A4C200-C201 A4C202 A4C203-C205	0160-6507 0160-6507 0160-6511 0160-4382 0160-6511	4 4 0 9 0	1	C-F 1000PF 20% 100V CERMLr C-F 1000PF 20% 100V CERMLr C-F 15PF 5% 200V CERMLr CAPACITOR-FXD 3.3PF +-25PF 200VDC CER C-F 15PF 5% 200V CERMLr	28480 28480 28480 54593 28480	RPE121-978X7R102M100V RPE121-978X7R102M100V RPE121-978COG150J200V FD12C0G2D3R3C RPE121-978COG150J200V				
A4C207 A4C208 A4CR1-CR4 A4CR5 A4H1-H4	0180-3768 0160-6506 1901-0518 1902-1329 03577-00902	53839	1 1 4	C.F. 3.3UF 20% 35V TADPDr C.F. 1:UF 20% 50V CERMLr DIODE-SCHOTTKY SM SIG IC V RGLTR-V-REF-FXD 6.6/7.2V TO-46 PKG ETCH SPRNG-GROUNDING	28480 28480 28480 27014 N01063	T350D395M035AS C-8310 RPE121-97825U104M50V 1901-0518 LM329CH				
A4H5 A4H6 A4H7 A4H6 A4H70-H74	03577-04104 03577-04109 03577-20601 03577-20605 9170-0894	1 6 7 1 0	1 1 1 5	SHTF COVER-L.O. BOARD SHTF COVER-SHIELD CSTG-CIRC SIDE CSTG-SHIELD - SLOTTED CORE-SHIELDING BEAD	28480 28480 28480 28480 28480 02114	03577-04104 03577-04109 56-590-65/4A6				
A4J1-J5 A4J6-J12 A4L2-L5 A4L6 A4L7	1250-1512 1250-1339 9140-0814 9140-0144 9140-0815	3 2 1 0 2	5 6 4 11 5	CONNECTOR-RF SMB M PC 50-OHM CONNECTOR-RF SM-SLD M PC 50-OHM COIL-VAR 20NH-25NH Q=50 PC-MTG INDUCTOR RF-CH-MLD 4,7UH 10% (_105DX.26LG COIL-VAR 50,6NH-41,4NH PC-MTG	98291 98291 28480 99800 28480	51-353-0039-226 52-051-0000-226 9140-0814 1026-36 9140-0815				
A4L8 A4L9 A4L10-L90 A4L100 A4L101	9140-0813 9140-0815 9140-0144 9140-0815 9140-0813	02020	5	COIL-VAR 23NH-52NH Q=65 PC-MTG COIL-VAR 50.6NH-41.4NH PC-MTG INDUCTOR FF-CH-MLD 4.7UH 10% .105DX.26LG COIL-VAR 50.6NH-41.4NH PC-MTG COIL-VAR 23NH-52NH Q=65 PC-MTG	28480 28480 99800 28480 28480	9140-0813 9140-0815 1025-36 9140-0815 9140-0813				
A4L102 A4L150-L152 A4L153-L154 A4L201 A4Q30	9140-0815 9140-0607 9100-1618 9140-0815 1854-0591	2 0 1 2 6	3 2 1	COIL-VAR 50,6NH-41,4NH PC-MTG INDUCTOR RF-CH-MLD 3.3UH 10% 2DX.45LG INDUCTOR RF-CH-MLD 5.6UH 10% COIL-VAR 50,6NH-41,4NH PC-MTG TRANSISTOR NPN SI PD=180MW FT=4GHZ	28480 24226 99800 28480 25403	9140-0815 19M331K 1537-30 9140-0815 BFR90				
A4Q31 A4Q50 A4Q51 A4Q60 A4Q61	1854-0720 1854-0591 1854-0720 1854-0591 1854-0720	36363	1	TRANSISTOR NPN SI PD=500MW FT=4GHZ TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR NPN SI PD=500MW FT=4GHZ TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR NPN SI PD=500MW FT=4GHZ TRANSISTOR NPN SI PD=500MW FT=4GHZ	25403 25403 25403 25403 25403 25403	BFR96-S BFR90 BFR96-S BFR96-S BFR96-S				

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference HP Part C D Mfr. Mfr.								
Designation	Number	CD	Qty.	Description	Code	Mfr. Part Number		
A4Q70 A4Q71 A4Q90 A4Q91 A4R1	1854-0591 1854-0720 1854-0591 1854-0720 0699-2054	6 3 6 3 9	2	TRANSISTOR NPN SI PD-180MW FT-4GHZ TRANSISTOR NPN SI PD-500MW FT-4GHZ TRANSISTOR NPN SI PD-180MW FT-4GHZ TRANSISTOR NPN SI PD-500MW FT-4GHZ R-F 100 CHM 1% 1/20W HF04 TD	25403 25403 25403 25403 91637	BFR90 BFR96-S BFR90 BFR96-S CMF-50-21		
A4R2 A4R3 A4R4 A4R5 A4R6-R7	0699-1968 0699-2054 0698-7214 0699-1903 0698-7214	2 9 1 5	1 4 15	R-F 68.1 OH 1% 1/20W HF04 T0 R-F 100 CHM 1% 1/20W HF04 T0 RESISTOR 121 1% .05W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 121 1% .05W F TC=0+-100	91637 91637 24546 91637 24546	CMF-50-21 CMF-50-21 CT3 CMF-50-21 CT3		
A4R6 A4R9 A4R10 A4R11-R12 A4R13	0699-1903 0698-7214 0698-3445 0698-3132 0698-7230	5 1 2 4	2 4 2	R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 121 1% .05W F TC-0+-100 RESISTOR 348 1% .125W F TC-0+-100 RESISTOR 261 1% .125W F TC-0+-100 RESISTOR 562 1% 1/20W MF04	91637 24546 19701 19701 02995	CMF-50-21 CT3 SFR25H SFR25H 5032R		
A4R14 A4R15 A4R16-R17 A4R18 A4R19	0699-1902 0698-7230 0698-3132 0698-7223 0699-2030	4 1 4 2 1	1 17 6	R-F 10 OHM 1% 1/20W MF04 TO RESISTOR 562 1% 1/20W MF04 RESISTOR 261 1% .125W F TO=0+-100 RESISTOR 287 1% .05W F TC=0+-100 R-F 17.8 OH 1% 1/20W HF04 T0	91637 02995 19701 24546 91637	CMF-50-21 5032R SFR25H CT3 CMF-50-21		
A4R20 A4R21 A4R22 A4R23 A4R24	0698-7223 0698-3443 0698-7223 0699-2030 0698-7223	2 0 2 1 2	2	RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 287 1% .125W F TC=0+-100 RESISTOR 287 1% .05W F TC=0+-100 RF 17.8 OH 1% 1/20W HF04 T0 RESISTOR 287 1% .05W F TC=0+-100	24546 19701 24546 91637 24546	CT3 SFR25H CT3 CMF-50-21 CT3		
A4R25 A4R26 A4R27 A4R30 A4R31	0698-3443 0698-3445 0693-1025 0699-1903 0693-1025	0 2 9 5 9	6	RESISTOR 287 1% .125W F TC=0+-100 RESISTOR 348 1% .125W F TC=0+-100 RESISTOR 1K, 5% .25W CF TC=0-400 R.F. 51.1 OH 1% 1/20W HF04 T0 RESISTOR 1K 5% .25W CF TC=0-400	19701 19701 77902 91637 77902	SFR25H SFR25H R-25J CMF-50-21 R-25J		
A4R32 A4R33 A4R34 A4R35 A4R36	0683-4715 0683-2415 0698-7223 0699-1964 0683-1215	0 3 2 8 9	5 8 2	RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 240 5% .25W CF TC=0-400 RESISTOR 287 1% .05W F TC=0+100 R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 120 5% .25W CF TC=0-400	77902 77902 24546 91637 77902	R-26J R-25J CT3 CMF-50-21 R-25J		
A4R37-R39 A4R40 A4R41 A4R42 A4R43	0699-1903 0698-7216 0699-1947 0698-7216 0699-1903	5 3 7 3 5	4 2	R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 147 1% .05W F TC=0+-100 R-F 38.3 OH 1% 1/20W MFHF T0 RESISTOR 147 1% .05W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0	91637 24546 91637 24546 91637	CMF-50-21 CT3 CMF-50-21 CT3 CMF-50-21		
A4R44 A4R45-R46 A4R47 A4R48 A4R49	0698-3159 0757-0449 0698-3159 0757-0443 2100-0554	5 6 5 0 5	2 2 1	RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 26.1K 1% .125W F TC=0+-100 RESISTOR 11K 1% .125W F TC=0+-100 RESISTOR-TRMR 500 10% C TOP-ADJ 1-TRN	19701 19701 19701 19701 32997	SFR25H SFR25H SFR25H SFR25H 3396P-Y46-501		
A4R50 A4R51 A4R52 A4R53 A4R54	0699-1903 0683-1025 0683-4715 0683-2415 0698-7223	5 9 O 3 2		R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 1K 59. 25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 240 5% .25W CF TC=0-400 RESISTOR 287 1% .05W F TC=0+-100	91637 77902 77902 77902 24546	CMF-50-21 R-25J R-25J R-25J CT3		
A4R55 A4R56 A4R57 A4R58 A4R60	0699-1964 0698-4417 0699-1903 0698-4417 0699-1903	80505	6	R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 174 1% .125W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 174 1% .125W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0	91637 91637 91637 91637 91637	CMF-50-21 CMF-55-1, T-1 CMF-50-21 CMF-55-1, T-1 CMF-50-21		
A4R61 A4R62 A4R63 A4R64 A4R65	0683-1825 0683-4715 0683-2415 0698-7223 0699-1964	8 0 3 8		RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 470 5% .25W CF TC=0.400 RESISTOR 240 5% .25W CF TC=0.400 RESISTOR 287 1% .05W F TC=0100 R-F 14.7 OH 1% 1/20W HF04 T0	77902 77902 77902 24546 91637	R-25J R-25J R-25J CT3 CMF-50-21		
A4R66 A4R67-R70 A4R71 A4R72 A4R73	0693-1215 0699-1903 0693-1025 0693-4715 0693-2415	9 5 9 0 3		RESISTOR 120 5% .25W CF TC=0-400 R.F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 240 5% .25W CF TC=0-400	77902 91637 77902 77902 77902	R-25J CMF-50-21 R-25J R-25J R-25J		
A4R74 A4R75 A4R76 A4R77 A4R79	0698-7223 0699-1964 0698-4417 0699-1903 0698-4417	2 9 0 5 0		RESISTOR 287 1% .05W F TC=0+-100 R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 174 1% .125W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 174 1% .125W F TC=0+-100	24546 91637 91637 91637 91637	CT3 CMF-50-21 CMF-55-1, T-1 CMF-50-21 CMF-55-1, T-1		

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

ARROU	Table 5-3. Replaceable Parts										
ARREL 0681-1025 0681			CD	Qty.	Description		Mfr. Part Number				
ARRIS 0688-4417 0 RSSSTOR 174 % 129 FTC-0100 91637 CMF-56-1, T-1 CMF-56-2, T-1	A4R91 A4R92 A4R93	0683-1025 0683-4715 0683-2415	9 0 3		RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 240 5% .25W CF TC=0-400	77902 77902 77902	R-25J R-25J R-25J				
ART 102. 0698-7223 2	A4R96 A4R97 A4R98	0698-4417 0699-1903 0698-4417	0 5 0		RESISTOR 174 1% .125W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 174 1% .125W F TC=0+-100	91637 91637 91637	CMF-55-1, T-1 CMF-50-21 CMF-56-1, T-1				
ARRITIA ARRITIA ORBS-2163 ARRITIC ORBS-2165 ARRITIC ORBS-2263 ARRITIC ORBS-226	A4R102 A4R105-R108 A4R109	0698-7223 0699-1966 0698-7218	2 0 5	6	RESISTOR 287 1% .06W F TC=0+-100 R-F 26.1 OH 1% 1/20W HF04 T0 RESISTOR 178 1% .05W F TC=0+-100	24546 91637 24546	CT3 CMF-50-21 CT3				
ARRISO 0698-7223 2 RESISTOR 287 19-6 05W FTC-0-100 24546 CT3 CMF-60-21 CMF-6	A4R113 A4R114-R115 A4R116	0699-2163 0698-7218 0699-2163	1 5 1		R-F 31.6 OH 1% 1/20W HF04 T0 RESISTOR 178 1% .05W F TC-0+-100 R-F 31.6 OH 1% 1/20W HF04 T0	91637 24546 91637	CMF-50-21 CT3 CMF-50-21				
ART191 0699-2030 1 2	A4R150 A4R151 A4R152-R170	0698-7223 0699-2030 0698-7223	1 2	1	RESISTOR 287 1% .05W F TC=0+-100 R-F 17.8 OH 1% 1/20W HF04 TO RESISTOR 287 1% .05W F TC=0+-100	24546 91637 24546	CT3 CMF-50-21 CT3				
AAP204	A4R191 A4R192 A4R201	0699-2030 0698-7223 0698-7216	2 3		R-F 17.8 OH 1% 1/20W HF04 T0 RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 147 1% .05W F TC=0+-100	91637 24546 24546	CMF-50-21 CT3 CT3				
A4U20 0955-0193 7 1 1 MIX MWAY FC217-ZTF 200MHZ 3 L01065 FC217-ZTF A4U21-U22 1813-0212 2 1 1 G WIDEBAND AMPL TO-39 PKG 04713 SWA128 3WA128 0955-0194 8 1 1 MIX MWAY SRA-1-1 500MHZ 8 M01048 SRA-1-1 SWA129 1813-0215 5 1 G WIDEBAND AMPL TO-39 PKG 04713 SWA123 SWA121 SWA123 1813-0215 5 1 G WIDEBAND AMPL TO-39 PKG 04713 SWA123 SWA123 AMU25 1826-0147 9 1 I IC OP AMP GP TO-39 PKG 04713 SWA133 SWA123 SWA123 IN COPPER SWA133 SWA129 SRA-1-1 SWA123 SW	A4R204 A4TP1-TP4 A4U1	0699-1964 1251-0600 1813-0216	8	1	R-F 14.7 OH 1% 1/20W HF04 T0 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC WIDEBAND AMPL TO-39 PKG	91637 27264 04713	CMF-60-21 16-06-0034 SWA130				
AW1-W7 1251-1636	A4U20 A4U21-U22 A4U23	0955-0193 1813-0212 0955-0194	7 2 8	1	MIX MWAY FC217-ZTF 200MHZ 3 IC WIDEBAND AMPL TO-39 PKG MIX MWAY SRA-1-1 500MHZ 8	L01065 04713 M01048	FC217-ZTF SWA128 SRA-1-1				
A5C1	A4U150 A4W1-W7	1926-0147 1251-1636	9	1 6	IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG GONNECTOR-SGL CONT SKT ,04-IN-BSC-SZ RND	04713 71279	SC25174P1 450-3388-01-03-00				
ASC2-C3	A5	03577-66505	6	1	PC BOARD ASSY OFFSET	28480	03577-66505				
A5CB	A5C2-C3 A5C4* A5C4*	0160-6511 0160-4774 0160-4887	0 3 9	2	C-F 15PF 5% 200V CERMLr CAPACITOR-FXD 16PF +-2% 200VDC CER 0+-30 CAPACITOR-FXD 25PF +-2% 200VDC CER 0+-30	28480 54583 54583	RPE121-978C0G150J200V FD12C0G2D160G FD12C0G2D250G				
A5C11 0160-6506 3 2.3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-9782501404M50V A5C12-C13 0160-6510 9 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978278104M50V A5C14-C17 0160-6506 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978278102M100V A5C18 0160-6506 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V A5C19 0160-6506 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V A5C23-C24 0160-6506 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V A5C23-C24 0160-6507 4 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V A5C25 0160-6508 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V RPE121-978250104M50V A5C25 0160-6508 3 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978250104M50V RPE121-978250104M	A506 A507 A508	0180-1746 0160-4571 0160-6507	5 9 4	1	CAPACITOR-FXD 15UF+ 10% 20VDC TA CAPACITOR-FXD .1UF+80-20% 50VDC CER C-F 1000PF 20% 100V CERMLr	13606 04222 28480	150D156X9020B2-DYS SA105E104ZAA RPE121-978X7R102M100V				
A5C21 0180-6506 3 C.F. JUF 20% 50V CERMLr 28480 RPE121-978250194M50V A5C23-C24 0180-6507 4 C.F. 1000PF 20% 100V CERMLr 28480 RPE121-978X7R102M100V A5C25 0180-6508 3 C.F. IUF 20% 50V CERMLr 28480 RPE121-978X7R102M100V 28480 RPE121-978X7R102M100V	A5C11 A5C12-C13 A5C14-C17	0160-6506 0160-6510 0160-6507	3 9 4	23	C-F .1UF 20% 50V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 28480	RPE121-978Z5U104M50V RPE121-978X7R104M50V RPE121-978X7R102M100V				
7100-0507 4 C-F 1000FF 2076 1007 CERIVILY 20460 RFE121-316X/R102M1000	A5C21 A5C23-C24	0160-6506 0160-6507	3 4	1	C-F :1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480	RPE121-978Z5U104M50V RPE121-978X7R102M100V				

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

	Potesses UP Port C									
Reference Designation	HP Part Number	Ç	Qty.	Description	Mfr. Code	Mfr. Part Number				
A5C30-C31 A5C32 A5C33 A5C34-C35 A5C36-C39	0160-6506 0180-1746 0160-6506 0180-1746 0160-6506	35353		C-F.1UF 20% 50V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA C-F.1UF 20% 50V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA C-F.1UF 20% 50V CERMLr	28480 13606 28480 13606 28480	RPE121-97825U104M50V 150D156X9020B2-DYS RPE121-97825U104M50V 150D156X9020B2-DYS RPE121-97825U104M50V				
A5C40-C43 A5C44 A5C52-C53 A5C54 A5C55	0160-3847 0160-6526 0160-6506 0160-0162 0160-3847	96359	5 1 1	CAPACITOR-FXD .01UF +100-0% 50VDC CER C-F 47PF 5% 200V CERMLIT C-F .1UF 20% 50V CERMLIT CAPACITOR-FXD .022UF +10% 200VDC POLYE CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 28480 28480 84411 04222	SA105C103KAA RPE121-976C0G470J200V RPE121-9782U104M50V HEW-239M SA105C103KAA				
A5C56-C62 A5C63-C64 A5C65 A5C66-C69 A5C70-C71	0160-6506 0180-1746 0180-0229 0180-1746 0160-6507	3 5 7 5 4	1	C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 15UF-+10% 20VDC TA CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA C-F 1000PF 20% 100V CERMLr	28480 13606 13606 13606 28480	RPE121-978Z5U104M60V 150D156X9020B2-DYS 150D336X9010B2-DYS 150D156X9020B2-DYS RPE121-978X7R102M100V				
A5C72 A5C73 A5C74-C75 A5C76 A5C77-C84	0160-6506 0160-6507 0180-1746 0160-6510 0160-6507	34594		C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 13606 28480 28480	RPE121-978Z5U104M50V RPE121-978X7R102M100V 150D156X9020B2-DYS RPE121-978X7R104M50V RPE121-978X7R102M100V				
A5C85 A5C90 A5C91-C92 A5C93 A5C94-C95	0160-6506 0160-6521 0160-6515 0160-6506 0160-6507	32434	1 2	C-F .1UF 20% 50V CERIMLr C-F 2.2PF% 200V CERIMLr C-F 10PF% 200V CERIMLr C-F .1UF 20% 50V CERIMLr C-F 1000PF 20% 100V CERIMLr	28480 28490 28490 29480 28490	RPE121-97825U104M50V RPE121-978C0G2R2C200V RPE121-978C0G100D200V RPE121-97825U104M50V RPE121-978X7R102M100V				
A5C100 A5C101 A5C102 A5C103 A5C104	0160-2940 0140-0197 0160-0164 0160-0362 0160-0156	1 4 5 7	1 1 1 1 2	CAPACITOR-FXD 470PF +-5% 300VDC MICA CAPACITOR-FXD 180PF +-5% 300VDC MICA CAPACITOR-FXD 2300PF10% 200VDC POLYE CAPACITOR-FXD 510PF +-5% 300VDC MICA CAPACITOR-FXD 3900PF +-10% 200VDC POLYE	00853 09023 84411 00853 84411	HEW-238M HEW-238M				
A5C105 A5C106 A5C110-C111 A5CR1 A5CR2	0140-0199 0160-0156 0160-6506 1901-0040 0122-0095	6 7 3 1 1	1 5 1	CAPACITOR-FXD 240PF +-5% 300VDC MICA CAPACITOR-FXD 3900PF +-10% 200VDC POLYE C-F. 11P 29% 50V CERMLr DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-VVC 2.2PF 7% C3/C25-MIN=4.5	09023 84411 28480 07263 S0545	HEW-238M RPE121-97825U104M50V FDH108B 1S2208(B)				
A5CR3 A5CR4 A5CR50 A5CR51 A5CR52-CR53	1901-0040 0122-0085 1901-0040 1990-1125 1901-0040	1 1 2	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-VVC 2.2PF 7% C3/C25-MIN=4,5 DIODE-SWITCHING 30V 50MA 2NS DO-35 OPT LED LMP R XX LMP1002 TT1H DIODE-SWITCHING 30V 50MA 2NS DO-35	07263 \$0545 07263 28480 07263	FDH1088 1S2208(B) FDH1088 1990-1125 FDH1088				
A5H1 A5H2 A5H3 A5H4 A5J1~J2	03577-04103 03577-04105 03577-20601 03577-20602 1250-1512	0 2 7 8 3	1 1 1 1 2	SHTF SHIELD-COVER SHTF COVER-OFFSET BD CSTG-CIRC SIDE CSTG-COMP SIDE CONNECTOR-RF SMB M PC 50-DHM	28480 28480 28480 28480 98291	03577-04103 03577-04105 51-353-0039-226				
A5L1 A5L2 A5L3 A5L3 A5L4	9140-0748 9140-0144 03577-20301 8120-1543 9100-2891	0 0 4 2 4	1 12 1 0	INDUCTOR 250UH 25% 25DX.5LG Q-3 INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG NDCTR CBL-RGD 50OHM .1430D INDUCTOR RF-CH-MLD 50NH 10% .105DX.26LG	24226 99800 A01130 28480 24226	CA-253-3 1025-36 1871 8120-1543 10M050K-1				
A5L5 A5L7-L31 A5L32 A5L40 A5L60-L62	9140-0748 9140-0144 9140-0210 9140-0144 9140-0748	0 1 0 0	1	INDUCTOR 250UH 25% .25DX.5LG Q=3 INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR 250UH 25% .25DX.5LG Q=3	24226 99800 99800 99800 24226	CA-253-3 1025-36 1537-76 1025-36 CA-263-3				
A5L63-L64 A5L70-L77 A5L79 A5L81 A5L90	9100-1618 9140-0144 9140-0158 9140-0144 9135-0074	1 0 6 0 4	1	INDUCTOR RF-CH-MLD 5.6UH 10% INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 1UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 47NH 4% .102DX.26LG	99800 99800 32159 99800 24226	1537-30 1025-36 1A1002M +-10% 1025-36				
A5L91 A5L100 A5L101 A6L102 A5Q1	9140-0144 9100-1648 9100-1650 9140-0118 1854-0345	0 7 1 8	1 1 1	INDUCTOR RF-CH-MLD 4.7UH 10% .105DX 26LG INDUCTOR RF-CH-MLD 560UH 5% .2DX.46LG INDUCTOR RF-CH-MLD 680UH 5% .2DX.45LG INDUCTOR RF-CH-MLD 500UH 5% .2DX.45LG TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW	99800 99800 99800 99800 94713	1025-36 2500-16 2500-20 2500-24 SRF5064				
A5Q2 A5Q10-Q11 A5Q20 A5Q80 A5R1-R2	1853-0010 1854-0591 1854-0345 1854-0345 0683-1035	268	15	TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR NPN SI PD=190MW FT=4GHZ TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW RESISTOR 10K 5% _25W CF TC=0-400	04713 25403 04713 04713 77902	SM4713 BFR90 SRF5064 SRF5064 R-25J				

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A5R3 A5R4 A5R5 A5R6 A5R7	0683-1015 0683-1515 0683-3325 0683-1035 0683-1516	7 2 6 1 2	2 1 2	RESISTOR 100 5% .25W CF TC=0.400 RESISTOR 150 5% .25W CF TC=0.400 RESISTOR 3.3K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 150 5% .25W CF TC=0.400	77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J
A5R8 A5R9 A5R10 A5R11 A5R12	0683-4735 2100-3253 0699-2072 0683-1025 0683-4715	4 7 1 9 0	1 1 3 1	RESISTOR 47K 5% .25W CF TC=0-400 RESISTOR-TRMR 50K 10% C TOP-ADJ 1-TRN R-F 34.8 OH 1% 1/20W HF04 T0 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400	77902 32997 91637 77902 77902	R-25J 3386P-Y46-503 CMF-50-21 R-25J R-25J
A5R13 A5R14 A5R15 A5R16 A5R17	0698-7221 0699-2163 0699-1903 0698-7221 0699-1903	0 1 5 0 5	2 1 7	RESISTOR 237 1% .05W F TC=0+-100 R-F 31.6 OH 1% 1/20W HF04 T0 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 237 1% .05W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0	24546 91637 91637 24546 91637	CT3 CMF-50 21 CMF-50-21 CT3 CMF-50-21
A5R21-R22 A5R23 A5R24 A5R26-R30 A5R31-R32	0698-7249 0699-1965 0683-5615 0699-1903 0683-1035	2 9 1 5	4 2 2	RESISTOR 3.48K 1% .05W F TC=0+-100 R-F 21.5 OH 1% 1/20W HF04 T0 RESISTOR 560 5% .25W CF TC=0-400 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 10K 5% .25W CF TC=0-400	24546 91637 77902 91637 77902	CT3 CMF-50-21 R-25J CMF-50-21 R-25J
A5R33 A5R34-R35 A5R36 A5R40 A6R41	0698-7236 0683-1035 0683-1025 0683-1035 0683-1025	7 1 9 1 9	1	RESISTOR 1K 1% .05W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	24546 77902 77902 77902 77902	CT3 R-25J R-25J R-25J R-25J
A5R42 A5R43-R53 A5R64 A5R56 A5R66	0683-1035 0683-1035 0690-4467 0757-0465 0683-2025	1 1 0 6 1	1 1 1	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC>0-400 RESISTOR 1.06K 1% .125W F TC>0+100 RESISTOR 100K 1% .125W F TC=0+100 RESISTOR 2K 5% .25W CF TC=0-400	77902 77902 91637 19701 77902	R-25J R-25J CMF-55-1, T-1 SFR25H R-25J
A5R57 A5R58 A5R59 A5R70 A5R71	0683-1035 0683-3345 0698-3449 0698-7216 0699-1947	0 6 3 7	1 1 2 1	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 330K 5% .25W CF TC=0-800 RESISTOR 28.7K 1% .125W F TC=0+-100 RESISTOR 147 1% .05W F TC=0+-100 R-F 38.3 CH 1% 1/20W MFHF TO	77902 77902 19701 24546 91837	R-25J R-25J SFR25H CT3 CMF-50-21
A5R72 A5R76 A5R78 A5R80 A5R81-R82	0698-7216 0683-2715 0683-1015 0699-1903 0698-7249	3 6 7 5 2	2	RESISTOR 147 1% .05W F TC=0+-100 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 3.49K 1% .05W F TC=0+-100	24546 77902 77902 91637 24546	CT3 R-25J R-25J CMF-50-21 CT3
A5R93 A5R94 A5R96 A5R91 A6R92	0699-1965 0683-5615 0699-1903 0698-7214 0699-1903	9 1 5 1 5	2	R-F 21.5 OH 1% 1/20W HF04 TO RESISTOR 560 5% .25W OF TC+0-400 R-F 51.1 OH 1% 1/20W HF04 TO RESISTOR 121 1% .05W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0	91637 77902 91637 24546 91637	CMF-50-21 R-25J CMF-50-21 CT3 CMF-50-21
A5R93 A5R94 A5R102 A5R103 A5R104	0698-7214 0683-2715 0683-5125 0683-1535 0683-1525	5 8 6 4	1 1 1	RESISTOR 121 1% .05W F TC=0+-100 RESISTOR 270 5% .25W CF TC=0-400 RESISTOR 5.1K 5% .25W CF TC=0-400 RESISTOR 15K 5% .25W CF TC=0-400 RESISTOR 15K 5% .25W CF TC=0-400	24546 77902 77902 77902 77902	CT3 R-25J R-25J R-25J R-25J
A5R105 A5TP A5U20 A5U30-U31 A5U40	0683-2015 1251-0600 0955-0095 1820-0270 1820-1425	9 0 8 7 6	1 12 1 1	RESISTOR 200 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1,14-MM-BSC-SZ SQ MIX MWAV SRA-1-85 500MHZ 8 IC WIDEBAND AMPL VID TO-100 PKG IC SCHMITT-TRIG TTL LS NAND QUAD 2-INP	77902 27264 M0104B 07263 01295	R-25.J 18-08-0034 SRA-1-85 St.21440 SN57186N
A5U41 A5U42 A5U43 A5U50 A5U51	1820-1112 1820-1430 1820-1282 1826-0222 1826-0412	8 3 1 1	1 1 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC FF TTL LS J-K BAR POS-EDGE-TRIG IC OP AMP OF OUAD 14-DIP-P PKG IC COMPARATOR PRON DUAL 8-DIP-P PKG	01295 01295 01295 07933 27014	SN53030N SN57191N SN53656N RC4136DB SL33675
A5U60 A5U61 A5U70-U90 A5W1-W3 A5W1-W3	1826-0147 1826-0221 1813-0215 1251-4822 1258-0141	9 0 5 6 9	1 1 3 3	IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG IC V RGLTR-FXD-NEG 11.5/12.5V TO-220 PKG IC WIDEBAND AMPL TO-39 PKG CONN-POST TYPE .100-PIN-SPOG 3-CONT CON-JUMPER REM .025P	04713 04713 04713 27264 00779	SC25174P1 SC25256P1 SWA133 22-03-2031 530153-2
A6	03577-66506	7	1	REFERENCE BOARD	28460	03577-66506
A6C2-C3 A6C5-C7 A6C9 A6C9 A6C10	0180-0553 0160-4571 0180-2208 0160-6505 0190-6510	0 B 4 2 9	1 14 2 18 19	CAPACITOR-FXD 22UF++20% 25VDC TA CAPACITOR-FXD :1UF+80-20% 50VDC CER CAPACITOR-FXD 330PF++5% 300VDC MICA CF- 01UF 20% 100V CERMLr C-F :1UF 20% 50V CERMLr	28480 04222 00853 28480 26480	T362C226M025ASC8245 SA105E104ZAA RPE121-978X7R103M100V RPE121-978X7R104M50V
						-

See introduction to this section for ordering Information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A6C12 A6C13 A6C14 A6C15-C19 A6C20	0160-6518 0160-6505 0180-3370 0160-0127 0180-0553	7 25 20	2	C-F 220PF 20% 100V CERMLI C-F .01UF 20% 100V CERMLI CAPACITOR-FXD 22UF+-20% 25VDC AL NPOL CAPACITOR-FXD 1UF+-20% 25VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA	28480 28490 62643 13606 28480	RPE121-978X7R221M100V RPE121-978X7R103M100V SMBPID)25VB22IM) 2C3725U105M050A T362C276M075ASC8245
A6C21 A6C22-C23 A6C24 A6C25 A6C27-C28	0160-6518 0100-4935 0160-6517 0160-6508 0100-4571	7 0 6 5 8	1 1 1	C-F 220PF 20% 100V CERMLr CAPACITOR-FXD 510PF +-1% 100VDC CER C-F 100PF 20% 200V CERMLr C-F 22PF 5% 200V CERMLr CAPACITOR-FXD .1UF +80-20% 50VDC CER	28480 04222 28480 28480 04222	RPE121-978X7R221M100V SR201A511FAA RPE121-978X7R101M200V RPE121-978C0G220J200V SA105E104ZAA
A6C32-C34 A6C35 A6C36 A6C37 A6C38	0160-6505 0160-5306 0160-6510 0160-5306 0160-6507	2 9 9 4	2	C-F .01UF 20% 109V CERMLr CAPACITOR FXD .1UF +-10% 109VDC C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .1UF +-10% 100VDC C-F 1000PF 20% 100V CERMLr	28480 19701 28480 19701 28480	RPE121-978X7R103M100V 719A1CA104PK101SA RPE121-978X7R104M50V 719A1CA104PK101SA RPE121-978X7R102M100V
A6C39 A6C40 A6C41 A6C42 A6C43-C44	0160-6505 0160-6510 0140-0191 0160-3847 0160-6505	2 9 9 9 2	1 2	C.F.01UF 20% 100V CERMLr C.F.1UF 20% 50V CERMLr CAPACITOR-FXD 55PF +5% 300VDC MICA CAPACITOR-FXD .01UF +100.0% 50VDC CER C.F.01UF 20% 100V CERMLr	28480 28480 09023 04222 28480	RPE121-978X7R103M100V RPE121-978X7R104M50V CD15E0580/03C SA105C103KAA RPE121-978X7R103M100V
A6C45 A6C46 A6C47 A6C48 A6C49	0160-6507 0160-6505 0160-6507 0160-6515 0160-6507	4 4 4 4	3	C-F 1000PF 20% 100V CERMLr C-F .01UF 20% 100V CERMLr C-F 1000PF 20% 100V CERMLr C-F 10PF% 200V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 28480 28480 28480	RPE121-976X/R102M100V RPE121-978X/R103M100V RPE121-978X/R102M100V RPE121-978C0G100D200V RPE121-978X/R102M100V
A6C51 A6C52 A6C53 A6C54 A6C55	0160-6510 0160-6507 0160-6505 0160-6510 0160-6505	94292		C-F1UF 20% 50V CERMLr C-F. 1000PF 20% 100V CERMLr C-F01UF 20% 100V CERMLr C-F1UF 20% 50V CERMLr C-F01UF 20% 100V CERMLr	29480 29480 28480 28480 28480	RPE121-978X7R104M50V RPE121-978X7R102M100V RPE121-978X7R103M100V RPE121-978X7R104M50V RPE121-978X7R104M50V
A6C56 A6C57 A6C58-C59 A6C61-C62 A6C63	0160-6507 0180-0553 0160-6510 0180-0553 0160-6507	4 0 9 0 4		C-F 1000PF 20% 100V CERMLr CAPACTICR-FXD 22UF+-20% 25VDC TA C-F. 1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+-20% 25VDC TA C-F 1000PF 20% 100V CERMLr	28480 28480 28480 28480 28480	RPE121-978X7R102M100V T362C226M025ASC6245 RPE121-978X7R104M50V T362C226M025ASC6245 RPE121-978X7R102M100V
A6C64 A6C65-C66 A6C68 A6C69 A6C70	0160-3847 0160-6505 0160-6510 0180-3768 0160-6510	90959	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER C-F .01UF 20% 100V CERMUr C-F .1UF 20% 50V CERMUr C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMUr	04222 28480 28480 28480 28480	SA105C103KAA RPE121-978X7R103M100V RPE121-978X7R104M50V T350D335M035AS C-8310 RPE121-978X7R104M50V
A6C71 A6C72 A6C75-C77 A6C78 A6C79	0160-0127 0180-0553 0160-0507 0160-6505 0180-1746	20425	1	CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA C-F 1000PF 20% 100V CERMLr C-F .01UF 20% 100V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA	13606 28480 28480 28490 13606	2C37Z5U165M050A T362C226M025ASC8245 RPE121-978X7R102M100V RPE121-978X7R103M100V 150D156X9020B2-DYS
A6C80_C81 A6C82_C83 A6C90_C93 A6C95_C96 A6C99	0160-6510 0160-6505 0160-6510 0160-4571 0160-6506	9 9 9 9 3	4	C-F .1UF 20% 50V CERMLr C-F .01UF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .1UF +80-20% 50VDC CER C-F .1UF 20% 50V CERMLr	28480 28480 28480 04222 28480	RPE121-978X7R104M50V RPE121-978X7R103M100V RPE121-978X7R103M100V SA105E104ZAA RPE121-978Z5U104M50V
A6C100 A6C101 A6C102-C104 A6C105 A6C106	0160-2208 0160-2009 0160-6506 0160-4798 0160-3914	4 3 9 1	1 1 1	CAPACITOR-FXD 330PF +-5% 300VDC MICA CAPACITOR-FXD 820PF +-5% 300VDC MICA C-F. 1UE 20% 50V CERMLr CAPACITOR-FXD 18PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +-10% 100VDC CER	00853 09023 28480 04222 04222	RPE121-978Z5U104M50V SA101A180JAA SR201C103KAA
A6C107-C108 A6C109-C110 A6C111-C112 A6C113-C114 A6C115	0160-6510 0160-4571 0160-4571 0160-6505 0160-6510	98899		C-F .1UF 20% 50V CERMLT CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER C-F .01UF 20% 100V CERMLT C-F .1UF 20% 50V CERMLT	28480 04222 04222 28480 28480	RPE121-978X7R I04M50V SA105E104ZAA SA105E104ZAA RPE121-978X7R103M100V RPE121-978X7R104M50V
A6C116 A6C117 A6C120 A6C121 A6C122-C123	0180-0553 0160-8507 0160-4571 0160-6510 0160-6507	0 4 8 9 4		CAPACITOR-FXD 22UF+-20% 25VDC TA C-F 1000PF 20% 100V CERMLr CAPACITOR-FXD .1UF +80-20% 50VDC CER C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 04222 28480 28480	T362C226M025ASCB245 RPE121-978X7R102M100V SA106E104ZAA RPE121-978X7R104M50V RPE121-978X7R102M100V
A6C125 A6C126 A6C127 A6C128 A6CR2	0160-6515 0160-6521 0160-6515 0160-3914 0122-0162	4 2 4 1 5	1 1 1	C-F 10PF% 200V CERMLr C-F 2.2PF% 200V CERMLr C-F 10PF% 200V CERMLr CAPACITOR-FXD .01UF +-10% 10UVXC CER DIODE-VVC 29PF 10% BVR=30V	28480 28480 28480 04222 25403	RPE121-978C0G100D200V RPE121-978C0G2R2C200V RPE13-978C0G100D200V SR201C103KAA BB809

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference									
Designation	Number	Ď	Qty.	Description	Code	Mfr. Part Number			
A6CR3-CR4 A6CR5 A6CR7 A6CR8-CR9 A6CR11	1901-0040 1902-1329 1902-3149 1901-0040 1902-0041	1 3 9 1 4	13 1 2 2	DIODE-SWITCHING 30V 50MA 2NS DO-35 IC V RGLTR-V-REF-FXD 5.6/7.2V TO-46 PKG DIODE-ZNR 9.09V 5% DO-35 PD-,4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 5.11V 5% DO-35 PD=,4W	07263 27014 04713 07263 04713	FDH1088 LM329CH SZ 30016-1170 FDH1089 SZ 30016-1098			
A6CR12 A6CR13-CR14 A6CR15 A6CR16-CR17 A6CR20	1901-0040 0122-0085 1901-0040 1901-0376 1990-1125	1 1 6 2	1 2 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-VVC 2.2PF 7% C3/C35-MIN-4.5 DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-GEN PRP 35V 50MA DO-35 OPT LED LMP R XX LMP1002 TT IH	07263 \$0545 07263 9N171 28480	FDH1088 152208(B) FDH1088 NDP202 1990-1125			
A6CR21 A6CR23 A6CR24-CR25 A6CR26 A6CR27	1901-0040 1990-1125 1901-0040 1902-0041 1990-1125	1 2 3 4 2		DIODE-SWITCHING 30V 50MA 2NS DO-35 OPT LED LMP R XX LMP1002 TT1H DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 5.11V 5% DO-35 PD-4W OPT LED LMP R XX LMP1002 TT1H	07263 28480 07263 04713 28480	FDH1088 1990-1125 FDH1088 SZ 30016-1098 1990-1125			
A6CR28-CR29 A6CR31 A6CR32 A6CR33 A6CR34	1901-0040 1902-3149 1901-0040 1902-0958 1901-0040	9 1 2 1	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 9,09V 5% DO-35 PD=4W DIODE-SWITCHING 30V 50MA 2NS DC-35 DIODE-ZNR 10V 5% DO-35 PD=4W TC=+,075% DIODE-SWITCHING 30V 50MA 2NS DC-35	07263 04713 07263 04713 07263	FDH1088 SZ30016-1170 FDH1088 SZ30035-16RL FDH1088			
A6H4 A6H5 A6H6 A6H7 A6HR-H9	03577-04106 03577-04119 03577-20601 03577-20602 0360-0124	3 9 7 8 3	1 1 1 2	SHTF COVER-REF BOARD SHTF COVER-SHIELD REF CSTG-CIRC SIDE CSTG-COMP SIDE CONNECTOR-SGL CONT PIN .04-IN-BSC-SZ RND	28480 28480 28480 28480 97300	03577-04106 03577-04119			
A5J1-J7 A6L1-L3 A6L4 A6L5-L6 A6L7	1250-1512 9140-0748 9100-2279 9140-0144 03577-20301	3 0 2 0 4	7 1 2 10 1	CONNECTOR-RF SMB M PC 50-OHM INDUCTOR 250-UH 25%, 25DX.5L.G C=3 INDUCTOR RF-CH-MLD 190UH 10%, 105DX.26LG INDUCTOR RF-CH-MLD 4,7UH 10%, 105DX.26LG NDCTR	98291 24226 24226 99800 A01130	51-353-0039-226 CA-253-3 10M103K 1025-36 1871			
A5L7 A6L10-L12 A6L14 A6L15-L17 A6L1B	8120-1543 9140-0144 9100-3551 9140-0144 9140-0748	00000	0 2	CGL-RGD 500HM .1430D INDUCTOR RF-CH-MLD 4,7UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 1UH 5% .166DX.385LG INDUCTOR RF-CH-MLD 4,7UH 10% .105DX.26LG INDUCTOR 250UH 25% .25DX.5LG Q=3	28480 99800 24226 99800 24228	B120-1543 1025-36 15M101J 1025-36 CA-253-3			
A6L19-L20 A6L22-L23 A6L24 A6L25 A6L26	9140-0144 9140-0748 9100-3551 9140-0748 9140-0210	0 0 5 0 1	1	INDUCTOR RF.CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR 250UH 25% .25DX.5LG Q=3 INDUCTOR RF.CH-MLD 1UH 5% .166DX.385LG INDUCTOR 250UH 25% .25DX.5LG Q=3 INDUCTOR RF.CH-MLD 100UH 5% .166DX.385LG	99800 24226 24226 24226 99800	1025-36 CA-253-3 1537-76			
A6L28 A6L29-L31 A6L32 A6L33 A6Q1	9100-2279 9100-3345 9140-0398 9140-0814 1855-0420	2 5 6 1 2	3 1 1 1	INDUCTOR RF-CH-MLD 180UH 10% .105DX.28LG INDUCTOR RF-CH-MLD 2UH 5% .166DX.395LG INDUCTOR RF-CH-MLD 12UH 5% .166DX.385LG COIL-VAR 20NH-25MH 0-50 PC-MTG TRANSISTOR J-FET 2N4391 N-CHAN D-MODE	24226 24226 24226 28480 17856	10M183K 15M201J 15M122J 9140-0814 2N4391			
A6Q2 A6Q4 A6Q5 A6Q6 A6Q7	1854-0345 1855-0410 1855-0081 1853-0448 1854-0345	8 0 1 0 8	1 1 1	TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR PNP SI TO-52 PD=625MW TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW	04713 27014 04713 04713 04713	SRF5064 SF51006 SPF619 SPS7848 SRF5064			
A6Q9 A6Q9-Q10 A6Q11 A6Q12 A6Q13-Q14	1853-0010 1854-0591 1854-0345 1853-0448 1853-0036	2 6 9 0 2	1	TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR NPN 2N5179 SI TO-72 PD=200MW TRANSISTOR PNP SI TO-92 PD=825MW TRANSISTOR PNP SI PD=310MW FT=250MHZ	04713 25403 04713 04713 04713	SM4713 BFR90 9IF5064 SPS784B SPS3612			
ASR1 A5R2 ASR3 ASR4 AGR5	0683-6805 0683-1015 0683-1545 0683-5105 0698-3658	3 7 8 4 6	2 3 2 1 1	RESISTOR 68 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 150K 5% .25W CF TC=0.800 RESISTOR 51 5% .25W CF TC=0.400 RESISTOR 4.02K 1% .125W F TC=0+-100	77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J SFR25H			
A5R6 A6R7 A6RB A6R9 A6R10	0683-2025 0683-1025 0698-4502 0698-3162 0683-1025	1 9 4 0 9	3 7 1 1	RESISTOR 2K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 64.9K 1% .125W F TC=0+-100 RESISTOR 45.4K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 91637 19701 77902	R-25J R-25J CMF-55-1, T-1 SFR25H R-25J			
A6R11 A6R12 A6R13 A6R14 A6R15	0683-3325 2100-3274 0757-0453 0757-0449 0757-0482	6 2 2 6 7	1 1 1 1	RESISTOR 3.3K 5% .25W CF TC=0.400 RESISTOR-TRMR 10K 10% C SIDE-ADJ 1-TRN RESISTOR 30.1K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100	77902 32997 19701 19701 19701	R-25J 3386X-746-103 SFR25H SFR25H 5033R			

See introduction to this section for ordering Information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A6R16 A6R17 A6R18 A6R19 A6R20	0757-0283 0683-1045 0683-1055 0698-3492 0683-1045	63593	2 3 4 1	RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR 100K 5% .25W CF TC=0.400 RESISTOR 1M 5% .25W CF TC=0.800 RESISTOR 2.67K 1% .125W F TC=0+.100 RESISTOR 100K 5% .25W CF TC=0-400	19701 77902 77902 19701 77902	SFR25H R-25J R-25J SFR25H R-25J
A6R21 A6R22 A6R23 A6R24 A6R25-R26	0683-2055 0683-1055 0683-4715 0757-0415 0683-1025	7 0 6 9	1 1 1	RESISTOR 2M 5% .25W CF TC=0-900 RESISTOR 1M 5% .25W CF TC=0-800 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 475 1% .125W F TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	77902 77902 77902 19701 77902	R-25J R-25J R-25J SFR25H R-25J
A6R27 A6R29 A6R29 A6R30 A6R32	0698-0063 0698-4440 0757-0282 0683-2025 0698-3458	4 9 5 1 7	1 1 1	RESISTOR 5.23K 1% .125W F TC=0+-100 RESISTOR 3.4K 1% .125W F TC=0+-100 RESISTOR 221 1% .125W F TC=0+-100 RESISTOR 2K 5% .25W CF TC=0-400 RESISTOR 346K 1% .125W F TC=0+-100	19701 91637 19701 77902 19701	SFR25H CMF 55-1, T-1 SFR25H R-25J SFR25H
A6R34 A6R35* A6R35+ A6R36 A6R37	0683-4705 0683-3035 0757-0199 0698-3497 0683-1055	8 5 3 4 5	3 1 1	RESISTOR 47 5%, 25W CF TC=0-400 RESISTOR 30K 5%, 25W CF TC=0-400 RESISTOR 21.5K 1%, 125W F TC=0+-100 RESISTOR 8.04K 1%, 125W F TC=0+-100 RESISTOR 1M 5%, 25W CF TC=0-800	77902 77902 19701 19701 77902	R-25J R-25J SFR25H SFR25H R-25J
A6R39 A6R40-R44 A6R45-R47 A6R48 A6R49	0698-3279 0683-1025 0699-1903 0698-7231 0683-1025	0 9 5 2 9	4 3 1	RESISTOR 4.99K 1% ,125W F TC=0+-100 RESISTOR 1K 5% ,25W CF TC=0-400 R.F. 51.1 0H 1% 1/20W HF04 T0 RESISTOR 619 1% .05W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	19701 77902 91637 24546 77902	SFR25H R-25J CMF-50-21 CT3 R-25J
A6R50 A6R51 A6R52 A6R54-R56 A6R57	0698-7221 0699-1965 0757-0409 0699-1965 0683-1525	0 9 9 4	2 4 1	RESISTOR 237 1% .05W F TC=0+-100 R.F 21.5 OH 1% 1/20W HF04 T0 RESISTOR 274 1% .125W F TC=0+-100 R.F 21.5 OH 1% 1/20W HF04 T0 RESISTOR 1.5K 5% .25W CF TC=0-400	24546 91637 19701 91637 77902	CT3 CMF-50-21 SFR25H CMF-50-21 R-25J
A6R59 A6R60 A6R61 A6R62 A6R63	0683-1035 0699-4507 0683-3625 0683-1136 0683-1515	1 9 9 2 2	1	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 76.8K 1% .125W F TC=0+-100 RESISTOR 3.6K 5% .25W CF TC=0-400 RESISTOR 11K 5% .25W CF TC=0-400 RESISTOR 150 5% .25W CF TC=0-400	77902 91637 77902 77902 77902	R-25J CMF-55-1, T-1 R-25J R-25J R-25J
A6R64 A6R65 A6R67 A6R58 A6R69	0683-1015 0683-1035 0698-7224 0698-3700 0698-4498	7 1 3 2 7	1 1 1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC>0-400 RESISTOR 316 1% .05W F TC>0-400 RESISTOR 715 1% .125W F TC=0+-100 RESISTOR 53.6K 1% .125W F TC=0+-100	77902 77902 24546 19701 91637	R-25J R-25J CT3 SFR25H CMF-55-1, T-1
A6R70 A6R71 A6R72 A6R73 A6R74	0757-0272 0698-3439 0698-4014 0757-0442 0698-3280	3 4 3 9 3	1 1 1 4	RESISTOR 52.3K 1% .125W F TC=0+-100 RESISTOR 178 1% .125W F TC=0+-100 RESISTOR 707 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 63.4K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	SFR25H SFR25H SFR25H SFR25H SFR25H
A6R75 A6R76 A6R77 A6R81 A6R82	0698-7221 0757-0280 0698-7234 0698-3132 0683-7505	0 3 5 4 2	2 1 1	RESISTOR 237 1% .05W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 925 1% .05W F TC=0+-100 RESISTOR 251 1% .125W F TC=0+-100 RESISTOR 75 5% .25W CF TC=0-400	24546 19701 24546 19701 77902	CT3 SFR25H CT3 SFR25H R-25J
A6R85 A6R86 A6R87 A6R88 A6R81	0683-1005 0683-1035 0683-2035 0757-0427 0683-1055	5 1 3 0 5	1 1 1	RESISTOR 10 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 1.5K 1% .125W F TC=0-100 RESISTOR 1.M 5% .25W CF TC=0-800	77902 77902 77902 19701 77902	R-25J R-25J R-25J SFR25H R-25J
A6R92 A6R93 A6R94 A6R95 A6R96	0683-2025 0683-1025 0683-1045 0698-3512 0757-0280	1 9 3 4 3	1	RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 100K 5% .25W CF TC=0.400 RESISTOR 1.19K 1W .125W F TC=0+100 RESISTOR 1K 1% .125W F TC=0+-100	77902 77902 77902 19701 19701	R-25J R-25J R-25J SFR25H SFR25H
A6R97-R99 A6R100-R101 A6R102 A6R103 A6R104	0698-3279 0683-4705 0698-3444 0698-4399 0698-3447	0 8 1 7 4	î 1 1	RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 316 1% .125W F TC=0+-100 RESISTOR 99.7 1% .125W F TC=0+-100 RESISTOR 422 1% .125W F TC=0+-100	19701 77902 19701 91637 19701	SFR25H R-25J SFR25H CMF-55-1, T-1 SFR25H
A6R110 A6R111 A6R112 A6R115 A6R116	0683-6805 0683-1015 0683-1545 0698-4429 0757-0283	3 7 8 4 6	1	RESISTOR 68 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 150K 5% .25W CF TC=0-900 RESISTOR 1.97K 1% .125W F TC=0+-100 RESISTOR 2K 1% .125W F TC=0+-100	77902 77902 77902 91637 19701	R-25J R-25J R-25J CMF-55-1, T-1 SFR25H

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number
A6R117-R118 A6R120 A6R121 A6R122 A6R122 A6R123	0757-0442 0757-0394 0757-0442 0757-0472 0698-4473	9 0 9 5 8	1 1	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 51.1 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 200K 1% .125W F TC=0+-100 RESISTOR 8.06K 1% .125W F TC=0+-100	19701 19701 19701 19701 91637	SFR25H SFR25H SFR25H SFR25H CMF-35-1, T-1
A8R124 A6S1 A6TP1-TP14 A6U1 A6U2	0757-0437 3101-2063 1251-0600 1820-2634 1826-0522	2 0 1 4	14 1 1	RESISTOR 4,75K 1% .125W F TC=0+-100 SWITCH-RKR DIP-RKR-ASSY 4-1A .05A 30VDC CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SO IC INV TTL ALS HEX IC OP AMP LOW-BIAS-H-IMPD QUAD 14-DIP-P	19701 81073 27264 01295 01295	SFR25H 76YY2074S 16-06-0034 SN71332N SN99856N
A6U3 A6U4-U6 A6U7 A6U8 A6U9	1820-0321 1820-1279 1820-2779 1820-1199 1826-0081	9 8 5 1 0	1 2 1 1	IC COMPARATOR GP TO-99 PKG IC CNTR TTI, LS DECD UP/DOWN SYNCHRO IC CNTR TTI, ALS BIN SYNCHRO IC INV TTI, LS HEX 1-INP IC OP AMP WB TO-99 PKG	07263 01295 01295 01295 27014	SL21436 SN53845 SN771537N SN53506N SL160378
A6U10 A6U11 A6U13 A6U14 A6U15	1626-0412 1620-0630 1620-1453 1620-1688 1620-1202	1 3 0 5 7	1 1 1 1	IC COMPARATOR PRON DUAL 8-DIP-P PKG IC MISC TTL IC CNTR TTL S BIN SYNCHRO POS-EDGE-TRIG IC PRESCR ECL IC GATE TTL LS NAND TPL 3-INP	27014 04713 01295 04713 01295	SL33675 SC13265PK SN88499N SC63470L013 SN63509N
A6U18 A6U17 A6U18 A6U19 A6U20	1820-1430 1820-1991 1820-1282 1826-0147 1826-0418	3 1 3 9	1 1 1 1	IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC CNTR TTL LS DECD DUAL 4-BIT IC FF TTL LS J-R BAR POS-EDGE-TRIG IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG IC V RGLTR-FXD-NEG 12.4/11.6V TO-220 PKG	01295 07263 01295 04713 27014	SN57191N SL66293 SN53666N SC25174P1 SL33741
A6U21 A6U22 A6U23 A6U24 A6U25	1820-0321 1820-1144 1826-0122 1820-1994 1826-0762	9 6 0 4 4	1 1 1	IC COMPARATOR GP TO-59 PKG IC GATE TTL LS NOR GUAD 2-INP IC V RGLTR-FXD-POS 4-8/5 2V TO-220 PKG IC DRVR TTL LS LINE DRVR CCTL IC COMPARATOR HS TO-100 PKG	07263 01295 07283 01295 27014	SL21436 SN53243N SL23241 SN5865SN SL160468
A5W1 A6W1A A6Y1	1251-4047 1258-0141 0410-0437	7 8 8	1 1	CONN-POST TYPE - 100-PIN-SPCG 3-CONT CON-JUMPER REM .025P CRYSTAL-QUARTZ 9.99830 MHZ	27264 00779 33096	22-05-2031 530153-2
A7	03577-66507	8	1	PG BOARD ASSY SYNTHESIZER	28480	03577-66507
A7C1 A7C2-C3 A7C4 A7C6 A7C7	0140-0191 0160-3847 0180-1746 0140-0191 0160-4571	6 9 5 B B	3 42 1	CAPACITOR-FXD 56PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 55PF +-5% 300VDC MICA CAPACITOR-FXD .1UF +80-20% 50VDC CER	09023 04222 13606 09023 04222	CD15ED560J03C SA105C103KAA 150D156X8020B2-DYS CD15ED560J03C SA105E104ZAA
A7C8 A7C13 A7C15 A7C16 A7C17	0160-3847 0160-5306 0160-4461 0180-0553 0160-4461	99505	3 1 10	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +-10% 100VDC CAPACITOR-FXD 150FF +2.5% 630VDC POLYP CAPACITOR-FXD 22UF+-2.6% 25VDC TA CAPACITOR-FXD 150PF +-2.5% 830VDC POLYP	04222 19701 25088 28480 25088	SA105C103KAA 719A1CA104PK101SA B33062/150PF/2.5%/630V T362C225M025ASC6245 B33062/150PF/2.5%/630V
A7C18 A7C19 A7C22 A7C23 A7C24	0160-6510 0160-3847 0160-5306 0160-3847 0140-0149	99996	25	G-F .1UF 20% 50V CERMLr CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .1UF +10% 100VDC CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 470PF +-5% 300VDC MICA	28480 04222 19701 04222 00853	RPE121-978X7R104M50V SA105C103KAA 719A1CA104PK101SA SA105C103KAA
A7C26 A7C27 A7C28 A7C30 A7C31	0160-3847 0160-4798 0160-2208 0180-0553 0160-6510	9 1 4 0 9	1 1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 2.7PF +25PF 100VDC CER CAPACITOR-FXD 330PF +-5% 300VDC MICA CAPACITOR-FXD 22UF+-20% 25VDC TA C-F.1UF 20% 50V CERMLr	04222 54583 00853 28480 28490	SA105C103KAA MA12C0G2A2R7C T362C226M025ASC8245 RPE121-978X7R104M50V
A7C34 A7C35-C36 A7C38 A7C39 A7C40-C41	0160-3847 0160-4787 0180-0553 0180-1746 0160-3847	9 8 0 5 9	4	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 28480 13606 04222	\$A105C103KAA \$A108A22OJAA T3B2C225M025A\$C8245 15D0156X9020B2-DY\$ \$A105C103KAA
A7C42-C45 A7C46-C50 A7C51 A7C52-C53 A7C54	0180-0553 0160-3847 0180-0553 0160-3847 0180-0553	09090		CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA	28480 04222 28480 04222 28480	T362C226M025ASC8245 SA105C103KAA T362C226M025ASC8245 SA105C103KAA T362C226M025ASC8245
A7C55-C57 A7C58 A7C59 A7C60-C75 A7C76	0180-1746 0180-4787 0180-1746 0180-0553 0160-3847	58509		CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 22PF+-5% 100VDC CER 0+-30 CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 20VF-20% 25VDC TA CAPACITOR-FXD 20VIF+100-0% 50VDC CER	13606 04222 13606 28480 04222	150D156X9020B2-DYS SA106A220JAA 150D156X9020B2-DYS T362C2256M025ASCB245 SA105C103KAA

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

	Table 5-3. Replaceable Parts									
Reference Designation	HP Part Number	пο	Qty.	Description	Mfr. Code	Mfr. Part Number				
A7C77 A7C78 A7C79-C80 A7C81 A7C82-C83	0180-1746 0180-0291 0180-1746 0180-0553 0180-1746	5 3 5 0 5	1	CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1UF+-10% 35VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 20VF+-20% 25VDC TA CAPACITOR-FXD 20VDC TA CAPACITOR-FXD 15UF+-10% 20VDC TA	13606 13606 13606 28480 13606	150D168X9020B2-DYS 150D105X9035A2-DYS 150D156X9020B2-DYS 150D156X9020B2-DYS 13862C256M025A5C9245 150D156X9020B2-DYS				
A7C87 A7C88 A7C89 A7C90 A7C91	0140-0193 0160-0134 0160-0363 0140-0195 0140-0208	0 1 8 2 8	1 1 1 1	CAPACITOR-FXD 82PF +-5% 300VDC MICA CAPACITOR-FXD 220PF +-5% 300VDC MICA CAPACITOR-FXD 620PF +-5% 300VDC MICA CAPACITOR-FXD 130PF +-5% 300VDC MICA CAPACITOR-FXD 680PF +-5% 300VDC MICA	09023 09023 00953 09023 09023					
A7C92-C93 A7C94 A7C96 A7C9B A7C99	0160-3847 0180-0553 0180-0100 0180-0553 0180-0229	9 0 3 0 7	1	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR FXD 4.7UF+-10% 35VDC TA CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 33UF+-10% 10VDC TA	04222 29480 13606 28480 13606	SA105C103KAA T382C226M025ASC8246 150D475X9035B2-DYS T362C226M025ASC8245 150D336X9010B2-DYS				
A7C100 A7C101-C102 A7C103 A7C104-C106 A7C107-C108	0180-2207 0160-3847 0160-4787 0180-0553 0180-0100	59803	1	CAPACITOR-FXC 1000F+-10% 10VDC TA CAPACITOR-FXD .01UF +100.0% 50VDC CER CAPACITOR-FXD 22PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD 22UF+-20% 25VDC TA CAPACITOR-FXD 4.7UF+-10% 35VDC TA	13606 04222 04222 28480 13606	150D107X9010R2-DYS SA105C103KAA SA106A220JAA T362C226M025ASCB245 150D47SX9035B2-DYS				
A7C109 A7C116 A7C117 A7C118 A7C119-C124	0160-6510 0160-3647 0160-6510 0180-0309 0160-3847	99949	ŧ	C-F.1UF 20% 50V CERMLr CAPACITOR-FXD.01UF+100-0% 50VDC CER C-F.1UF 20% 50V CERMLr CAPACITOR-FXD 4.7UF+20% 10VDC TA CAPACITOR-FXD 0.01UF+100-0% 50VDC CER	28460 04222 28480 13606 04222	RPE121-976X7F104M50V SA106C103KAA RPE121-976X7F104M50V 150U4/5X0010A2-DYS SA105C103KAA				
A7C125 A7C126-C130 A7C131 A7C132 A7C134-C137	0160-6510 0160-3947 0140-0191 0160-6510 0160-3847	99899		C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 58PF +-5% 300VDC MICA C-F .1UF 20% 50V CERMLr CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 04222 09023 28480 04222	RPE121-978X7R104M50V SA105C103KAA CD15ED560J03C RPE121-978X7R104M50V SA105C103KAA				
A7C138 A7C139_C140 A7C141 A7C142 A7C144	0140-0206 0160-3847 0180-0553 0160-6510 0180-0229	6 9 0 9 7	1	CAPACITOR-FXD 270PF +-5% 500VOC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 22UF+-20% 25VDC TA C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 33UF+-10% 10VDC TA	09023 04222 28480 28480 13606	SA105C109KAA T362C226M025ASC8245 RPE121-978X7R104M50V 150D336X9010B2-DYS				
A7C145 A7C146-C149 A7C150-C153 A7C154 A7C155	0180-1746 0160-3847 0160-6510 0180-1746 0160-6522	5 9 5 3	5	GAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER C-F .1UF 20% 50V CERMLF CAPACITOR-FXD 15UF+-10% 20VDC TA C-F 1000PF 5% 100V CERMLF	13606 04222 28490 13606 28480	150D156X9020B2-DYS SA105C103KAA RPE121-978X7R104M50V 150D156X9020B2 DYS RPE121-978C0G102J100V				
A7C156 A7C158 A7C159-C160 A7C161 A7C162-C164	0160-6507 0160-6522 0180-1746 0160-5306 0160-6522	4 3 5 9 3	12	C-F 1000PF 20% 100V CERMLr C-F 1000PF 5% 100V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF+ 10% 100VDC C-F 1000PF 5% 100V CERMLr	26480 28480 13606 19701 28480	RPE121-978X7R102M100V RPE121-978C0G102J100V 150D155X9020B2-DYS 719A1CA104PK101SA RPE121-978C0G102J100V				
A7C165 A7C166 A7C167-C169 A7C170-C171 A7C172-C173	0160-6510 0160-6507 0160-6510 0160-6507 0160-6510	9 4 9 4 9		C F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F .100PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480 28480	RPE121-978X7R104M50V RPE121-978X7R102M100V RPE121-978X7R104M50V RPE121-978X7R102M100V RPE121-978X7R102M100V				
A7C176 A7C177-C1B0 A7C1B1-C1B2 A7C1B3-C1B4 A7C1B5	0160-6507 0160-6510 0160-6507 0160-6510 0160-6507	4 9 4 9 4		C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F .1UF 20% 50V CERMLr	28480 28480 28480 28480 28480 28480	RPE121-978X7R102M100V RPE121-978X7R104M50V RPE121-978X7R102M100V RPE121-978X7R104M50V RPE121-978X7R104M50V				
A7C189-C190 A7C194-C197 A7C204 A7C205 A7CR1-CR2	0160-6510 0160-6507 0180-0229 0160-6510 1901-0040	94791	13	C-F. 1UF 20% 50V CERMLr C-F. 1000PF 20% 100V CERMLr CAPACITOR-FXD 33UF+-10% 10VDC TA C-F. 1UF 20% 50V CERMLr DIODE-SWITCHING 30V 50MA 2NS DO-35	28480 28480 13606 28480 07263	RPE121-978X7R104M50V RPE121-978X7R102M100V 150D336X9010B2-DYS RPE121-978X7R104M50V FDH1088				
A7CR3-CR4 A7CR5 A7CR6-CR7 A7CR8-CR9 A7CR10	1901-0518 1901-0040 1902-0777 1901-0518 1902-1337	8 1 3 8 3	4 3 1	DIODE-SCHOTTKY SM SIG DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 1N925 6.2V 5% DO-7 PD=.4W DIODE-SCHOTTKY SM SIG DIODE-ZNR 13V 2% DO-7 PD=.4W	28480 07263 04713 28480 M01099	1901-0518 FDH1088 SZ14376RL 1901-0518 DZ790614ADD07				
A7CR11-CR14 A7CR17 A7CR20 A7CR21 A7CR23	1901-0040 1902-3054 1901-0040 1902-0945 1901-0040	1 5 1 7	1	DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3.65V 5% DC-35 FD-4W DIODE-SWITCHING 30V 50MA 2NS DO-35 DIODE-ZNR 3V 5% DC-35 FD-4W TC, U43% DIODE-SWITCHING 30V 50MA 2NS DO-35	07263 04713 07263 04713 07263	FDH108B SZ30016-056 FDH108B SZ30035-003 FDH108B				

See introduction to this section for ordering information Indicates factory selected values HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A7CR24 A7CR25 A7CR26-CR28 A7CR29 A7CR161-CR162	1990-1123 1902-0777 1901-0040 1990-1122 0122-0085	0 3 1 9	1	OPT LED LMP R AP LMP1301 TT1H DIODE-ZNR 11825 6.2V 5% DO-7 PD=.4W DIODE-SWITCHING 30V 50MA 2NS DO-35 OPT LED LMP G OP LMP1503 TT1H DIODE-VVC 2.2PF 7% C3/C25-MIN-4.5	28480 04713 07263 28490 \$0545	1990-1123 SZ 14376RL FDH108B 1990-1122 1S2208(B)
A7CR163 A7H1-H2 A7H3 A7H3 A7H4	1901-0040 1251-4822 03577-04107 1251-4822 03577-04110	1 6 4 6 9	1 1	DIODE-SWITCHING 30V 50MA 2NS DO-35 CONN-POST TYPE 100-PIN-SPCG 3-CONT SHTF COVER-SYNTH CONN-POST TYPE 100-PIN-SPCG 3-CONT SHTF COVER-SHIELD S	07263 27264 29480 27264 28480	FDH1088 22-03-2031 03577-04107 22-03-2031 03577-04110
A7H5 A7H6 A7H7 A7H8 A7H9	03577-04113 03577-20601 03577-20602 03577-20603 03577-20604	2 7 8 9 0	1 1 1 1	SHTF SHIELD-TOP COVER CSTG-CIRC SIDE CSTG-COMP SIDE MCHD SHIELD-COVER MCHD SHIELD-FRAME	28480 28480 28480 76854 76854	03577-04113
A7J1-J3 A7L1-L2 A7L3 A7L5 A7L9-L10	1250-1512 9140-0748 9100-1618 9140-0748 9140-0210	3 0 1 0	3 1 3	CONNECTOR-RF SMB M PC 50-OHM INDUCTOR 250UH 25% 25DX.5LG Q=3 INDUCTOR RF.CH-MLD 5.6UH 10% INDUCTOR 250UH 25% 25DX.5LG Q=3 INDUCTOR RF.CH-MLD 100UH 5% ,166DX,385LG	98291 24226 99800 24226 99800	51-353-0039-226 CA-253-3 15:37-30 CA-253-3 15:37-76
A7L11 A7L12 A7L13 A7L14-L15 A7L16-L17	9100-1645 9100-1652 9140-0748 9100-1618 9140-0210	4 3 0 1	1	INDUCTOR RF-CH-MLD 390UH 5% .2DX.45LG INDUCTOR RF-CH-MLD 620UH 5% .2DX.45LG INDUCTOR 250UH 25% .25DX 5LG O=3 INDUCTOR RF-CH-MLD 5.6UH 10% INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG	99800 99800 24226 99800 99800	2500-08 2500-24 CA253-3 1537-30 1537-76
A7L57-L59 A7L131-L132 A7L136-L138 A7L140-L148 A7L149	9140-0210 9140-0748 9140-0210 9140-0144 9100-1791	1 0 1 0 1	17 1	INDUCTOR RF-CH-MLD 100UH 5% .166DX.385LG INDUCTOR 250UH 25% 25DX.5LG Q=3 INDUCTOR RF-CH-MLD 100UH 5% .166DX.395LG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG CORE-FERRITE CHOKE-WIDEBAND;IMP:>360	99800 24226 99800 99800 02114	1537-76 CA-253-3 1537-76 1025-36 VK200-19/4B
A7L 151-L152 A7L 155-L164 A7L 165 A7L 165 A7L 167-L168	9140-0210 9140-0144 03577-20300 8120-1543 9140-0144	1 0 3 2 0	1	INDUCTOR RF-CH-MLD 100UH 5% ,166DX,385LG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX,26LG NDCTR CBL-RBD 500HM .1430D INDUCTOR RF-CH-MLD 4.7UH 10% .105DX,26LG	99800 99800 A01130 28480 99800	1537-76 1025-36 8120-1543 1025-36
A7L 169 A7L 170-L 160 A7L 191-L 166 A7Q1-Q2 A7Q3	9135-0076 9140-0144 9140-0748 1853-0448 1854-0345	8000	1 1 1	INDUCTOR RF.CH-MLD 39NH 6% .102DX.26LG INDUCTOR RF-CH-MLD 4,70H 10% .105DX.26LG INDUCTOR 250H 25% 25DX.5LG Q-3 TRANSISTOR PNP 3I TO-92 PD-925MW TRANSISTOR NPN 2N5179 SI TO-72 PD-200MW	24226 99800 24226 04713 04713	10M039X-1 1025-38 CA-253-3 5P37848 SRF5084
A7Q4 A7Q6-Q8 A7Q17 A7Q18-Q19 A7Q21	1853-0448 1853-0597 1855-0308 1855-0081 1855-0689	0 5 1 5	5 1 1	TRANSISTOR PNP SI TO-92 PD=625MW XTR SML1PNP SI 2N4917 P92 TRANSISTOR-JFET DUAL N-CHAN D-MODE SI TRANSISTOR J FET N CHAN D-MODE SI XTR SML1	04713 07263 17856 04713 04713	SPS7848 DN 324 SPF819 SS3723RLRA
A7G22-G24 A7G27 A7G28-G30 A7G33 A7G34	1854-0215 1855-0081 1854-0215 1855-0689 1854-0215	1 1 1 5	\$	TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR J-FET N-CHAN O-MODE SI TRANSISTOR NPN SI PD=350MW FT=300MHZ XTR SML1 TRANSISTOR NPN SI PD=350MW FT=300MHZ	04713 04713 04713 04713 04713	SPS3611 SPF819 SPS3611 SS3723RLRA SPS3611
A7Q39 A7Q41-Q42 A7Q43-Q44 A7Q50 A7Q51	1855-0081 1854-0215 1853-0597 1854-0215 1853-0320	1 1 0 1 7	1	TRANSISTOR J-FET N-CHAN D-MODE SI TRANSISTOR NPN SI PD-350MW FT-300MHZ XTR SML IPINP SI 2N4917 P92 TRANSISTOR NPN SI PD-350MW FT=300MHZ TRANSISTOR PNP 2N4032 SI TO-5 PD-800MW	04713 04713 07263 04713 07263	SPF819 SPS3611 SPS3611 S44044
A7Q131 A7Q161 A7Q162 A7Q163 A7R1	1853-0448 1854-1043 1853-0010 1854-0345 0698-4380	0 5 2 8 6	1	TRANSISTOR PNP SI TO-92 PD=625MW XTR SML1NPN SI 2N5179 @B72 TRANSISTOR PNP SI TO-18 PD=360MW TRANSISTOR NPN 2N5175 SI TO-72 PD=200MW RESISTOR 45.3 1% .125W F TC=0+-100	04713 04713 04713 04713 91637	SPS7848 SRF3604 SM4713 SRF5064 CMF-55-1, T-1
A7R2-R3 A7R4 A7R5 A7R6 A7R7	0757-0419 0693-4705 0757-0401 0757-0417 0693-4715	0 8 0 8	2 15 2 1 4	RESISTOR 681 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 562 1% .125W F TC=0+-100 RESISTOR 470 5% .25W CF TC=0-400	19701 77902 19701 19701 77902	SFR25H R-25J SFR25H SFR25H R-25J
A7R8 A7R9 A7R10 A7R11 A7R12-R13	0683-4705 0698-3440 0683-4715 0683-2205 0757-0429	8 7 0 9 2	1 1 2	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 196 1% .125W F TC=0+-100 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 22 5% .25W CF TC=0-400 RESISTOR 1.82K 1% .125W F TC=0+-100	77902 19701 77902 77902 19701	R-25.J SFR25H R-25.J R-25.J SFR25H

See introduction to this section for ordering information.

Indicates factory selected values.

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A7R14 A7R15 A7R15 A7R18 A7R17 A7R18	0757-0418 0698-3441 0698-3515 0757-0280 0698-0084	9 B 7 3 5	1 1 5 2	RESISTOR 619 1% .125W F TC=0+-100 RESISTOR 215 1% .125W F TC=0+-100 RESISTOR 5.9K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 9.31K 1% .125W F TC=0+-100	19701 19701 19701 19701 19701	SFR25H SFR25H SFR25H SFR25H SFR25H
A7R19 A7R20-R21 A7R22 A7R23 A7R24	0698-3225 0683-4705 0699-4464 0698-3178 0698-4469	6 8 7 8 2	1 1 1	RESISTOR 1.43K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 987 1% .125W F TC=0+-100 RESISTOR 487 1% .125W F TC=0+-100 RESISTOR 1.15K 1% .125W F TC=0+-100	19701 77902 91637 19701 91637	SFR25H R-25J CMF-55-1, T-1 SFR25H CMF-55-1, T-1
A7R25 A7R26 A7R27-R28 A7R29 A7R30	0683-4705 0767-0395 0757-0317 0683-4705 0698-3156	8 1 7 8 2	1 2 2	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 56.2 1% .125W F TC=0+-100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 14.7K 1% .125W F TC=0+-100	77902 19701 19701 77902 19701	R-25J SFR25H SFR25H R-25J SFR26H
A7R31 A7R32 A7R33 A7R34 A7R36	0683-3325 0683-4715 0683-4705 0757-0438 0757-0280	6 0 8 3 3	2	RESISTOR 3.3K 5% .25W CF TC=0-400 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 5.11K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	77902 77902 77902 19701 19701	R-25.J R-25.J R-25.J SFR25H SFR25H
A7R37 A7R38 A7R39 A7R40 A7R41	0757-0281 0698-0083 0683-4705 0683-1015 0698-4125	4 B 8 7 7	3 5 4 1	RESISTOR 2.74K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 953 1% .125W F TC=0+-100	19701 19701 77902 77902 19701	SFR25H SFR25H R-25J R-25J SFR25H
A7R42-R43 A7R44 A7R45 A7R4G A7R53-R54	0757-0281 0698-0083 0683-1005 0698-3495 0757-0280	4 8 5 2 3	1	RESISTOR 2.74K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 10 5% .25W CF TC=0-4-00 RESISTOR 866 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	19701 19701 77902 19701 19701	SFR25H SFR25H R-25J SFR25H SFR25H
A7R56 A7R68 A7R69 A7R71 A7R72	0698-0093 0683-0275 0698-3156 0757-0450 0683-1025	99299	1 1 9	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 2.7 5% .25W CF TC=0-400 RESISTOR 14.7K 1% .125W F TC=0+-100 RESISTOR 22.1K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	19701 77902 19701 19701 77902	SFR25H R-25J SFR25H SFR25H R-25J
A7R73 A7R74 A7R75 A7R76 A7R77	2100-3354 2100-3352 0757-0442 2100-3611 0683-1065	9 7 9 1 7	1 1 1 1 1 1	RESISTOR TRMR 50K 10% C SIDE-ADJ 1-TRN RESISTOR-TRMR 1K 10% C SIDE-ADJ 1-TRN RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR-TRMR 50K 10% C SIDE-ADJ 17-TRN RESISTOR 10M 5% .25W CC TC=-900/+1100	32997 32997 19701 73138 01121	3386X-Y46-503 3386X-Y46-102 SFR25H 67XR CB1065
A7R7B A7R79 A7R80 A7R81 A7R82	0757-0488 0757-0401 0698-4394 0683-1035 0683-3625	3 0 2 1 9	1 1 15 1	RESISTOR 909K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 RESISTOR 76.8 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 3.6K 5% .25W CF TC=0-400	19701 19701 91637 77902 77902	5033R SFR25H CMF-55-1, T-1 R-25J R-25J
A7R83 A7R84 A7R85 A7R86 A7R87	0683-2025 0698-3464 0757-0439 0757-0436 0683-4715	1 9 4 1 0	3 1 2 1	RESISTOR 2K 5% .25W CF TC=0-400 RESISTOR 6.68K 1% .125W F TC=0+-100 RESISTOR 6.91K 1% .125W F TC=0+-100 RESISTOR 4.32K 1% .125W F TC=0+-100 RESISTOR 470 5% .25W CF TC=0-400	77902 19701 19701 19701 77902	R-25.J SFR25H SFR25H SFR25H R-25.J
A7R88 A7R89 A7R90 A7R91 A7R92	2100-0552 0683-4705 0757-0280 0698-0083 0683-1025	3 8 8 9	1	RESISTOR-TRMR 50 10% C SIDE-ADJ 1-TRN RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400	32997 77902 19701 19701 77902	3386X-Y46-500 R-25J SFR25H SFR25H R-25J
A7R93-R94 A7R96 A7R97 A7R98 A7R99	0683-4705 0757-0421 0698-4424 0757-0451 0757-0465	9 9 0 6	2 1 1 3	RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 1.4K 1% .125W F TC=0+-100 RESISTOR 24.3K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100	77902 19701 91637 19701 19701	R-25J SFR25H CMF-55-1, T-1 SFR25H SFR25H
A7R100 A7R101 A7R102-R103 A7R105 A7R108	0757-0454 0698-4514 0757-0465 0683-1025 0683-1035	3 9 6 9	1	RESISTOR 33.2K 1% .125W F TC=0+-100 RESISTOR 105K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	19701 91637 19701 77902 77902	SFR25H CMF-55-1, T-1 SFR25H R-25J R-25J
A7R107 A7R108 A7R109 A7R110 A7R111	2100-3759 0698-0083 0683-4705 0683-6815 0683-4705	8 8 6 5 8	1	RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN RESISTOR 1.98K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-4-00 RESISTOR 600 5% .25W CF TC=0-4-00 RESISTOR 47 5% .25W CF TC=0-4-00	73138 19701 77902 77902 77902	67XR SFR25H R-25J R-25J R-25J

See introduction to this section for ordering information
Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C D	Qty.	Description	Mfr. Code	Mfr. Part Number
A7R112 A7R113-R114 A7R115 A7R116 A7R117	0757-0421 0757-0416 0757-0420 0683-4705 0757-0439	4 7 3 8 4	2 1	RESISTOR 825 1% .125W F TC=0+-100 RESISTOR 511 1% .125W F TC=0+-100 RESISTOR 750 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 6.81K 1% .125W F TC=0+-100	19701 19701 19701 19701 77902 19701	SFR25H SFR25H SFR25H R-26J SFR25H
A7R118 A7R119 A7R120-R121 A7R122-R123 A7R124	0683-1025 0683-1835 0683-1025 0683-1035 0683-1315	9 9 1 0	1	RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 18K 5% .25W CF TC=0.400 RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 130 5% .25W CF TC=0.400	77902 77902 77902 77902 77902 77902	R-26J R-25J R-25J R-25J R-25J
A7R125 A7R126 A7R128 A7R129 A7R130	0683-1525 0683-5625 0698-4307 0693-2035 0683-1045	4 3 7 3 3	2 1 1 1	RESISTOR 1.6K 5% .25W CF TC=0.400 RESISTOR 5.6K 5% .25W CF TC=0.400 RESISTOR 14.3K 1% .125W F TC=0+-100 RESISTOR 20K 5% .25W CF TC=0.400 RESISTOR 100K 5% .25W CF TC=0.400	77902 77902 19701 77902 77902	R-25.J R-25.J S-FR25H R-25.J R-25.J
A7R131 A7R132 A7R133 A7R134-R137 A7R138	0683-1025 0757-0398 0698-3132 0683-1035 0698-0064	9 4 1 5	1	RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 75 1% .125W F TC=0+100 RESISTOR 261 1% .125W F TC=0+100 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 9.31K 1% .125W F TC=0+100	77902 19701 19701 77902 19701	R-25.) SFR25H SFR25H R-25.J SFR25H
A7R141 A7R142 A7R143 A7R144 A7R146-R147	0698-4440 0683-1035 0683-1015 0683-3325 0683-1035	9 1 7 6 1	1	RESISTOR 3.4K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 3.3K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	91637 77902 77902 77902 77902	CMF-55-1, T-1 R-25J R-25J R-25J R-25J
A7R148 A7R149-R153 A7R159 A7R160 A7R161	0683-2025 0683-1035 0683-3015 0683-2025 2100-3252	1 1 1 6	1	RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 300 5% .25W CF TC=0.400 RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR.TRMR 5K 10% C TOP.ADJ 1.TRN	77902 77902 77902 77902 77902 32997	R-25J R-25J R-25J R-25J 3386P-Y46-502
A7R162 A7R163 A7R164 A7R165 A7R166	0683-1015 0683-5125 0698-4207 0698-4429 0683-1035	7 8 6 4 1	1 1 1	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 5.1K 5% .25W CF TC=0-400 RESISTOR 4.2K 1% .125W F TC=00-100 RESISTOR 1.67K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400	77902 77902 19701 91637 77902	R-25.J R-25.J SFR25H CMF-55-1, T-1 R-25.J
A7R167 A7R168 A7R169 A7R170 A7R172	0683-1015 0683-1515 0698-3558 0698-3581 0699-1903	7 2 8 7 5	1 1 1 2	RESISTOR 100 5% .25W CF TC=0-400 RESISTOR 1505% .25W CF TC=0-400 RESISTOR 4.02K 1% .125W F TC=0+-100 RESISTOR 13.7K 1% .125W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 T0	77902 77902 19701 19701 91637	R-25.J R-25.J SFR25H SFR25H CMF-50-21
A7R173 A7R174 A7R175 A7R177 A7R180	0699-2077 0693-4705 0693-1525 0698-7224 0699-1969	6 8 4 3	1 7	R-F 75 OHM 1% 1/20W HF04 T0 RESISTOR 47 5% .25W CF TC=0-400 RESISTOR 1.5K 5% .25W CF TC=0-400 RESISTOR 316 1% .05W F TC=0-+100 R-F 90.9 OH 1% 1/20W HF04 T0	91637 77902 77902 24546 91637	CMF-50-21 R-25J R-25J CT3 CMF-50-21
A7R183 A7R185 A7R186 A7R187 A7R188	0683-1025 0683-2715 0699-1989 0699-2079 0699-1969	9 6 3 8 3	4 1	RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 270 5% .25W CF TC=0.400 R-F 90.9 0H 1% 1/20W HF04 T0 R-F 82.5 OH 1% 1/20W HF04 T0 R-F 90.9 OH 1% 1/20W HF04 T0	77902 77902 91637 91637 91637	R-25J R-25J CMF-50-21 CMF-50-21 CMF-50-21
A7R189-R190 A7R191 A7R192 A7R195 A7R196-R198	0698-7229 0699-1903 0683-1025 0683-2715 0699-2029	B 5 9 6 8	2 3	RESISTOR 511 1% .05W F TC=0+-100 R-F 51.1 OH 1% 1/20W HF04 TU RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 270 5% .25W CF TC=0-400 R-F 16.2 OH 1% 1/20W HF04 T0	24546 91037 77902 77902 91637	CT3 CMF-50-21 R-25J R-25J CMF-50-21
A7R210-R210 A7R212-R215 A7R216-R217 A7TP1-TP34 A7U1	0683-2715 0699-1969 0699-1968 1251-0600 1820-0817	6 3 2 0 8	2 2B 1	RESISTOR 270.5% .25W CF TC=0-400 R-F 90.9 OH 1% 1/20W HF04 T0 R-F 68.1 OH 1% 1/20W HF04 T0 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SO IG FF ECL D-M/S DUAL	77902 91637 91637 27264 04713	R-26J CMF-50-21 CMF-50-21 16-06-0034 SC22631P
A7U2 A7U3 A7U4 A7U5 A7U6	1821-0001 1810-0294 1820-1196 1820-1112 1826-0021	4 4 8 8	1 1 3 1 1	TRANSISTOR ARRAY 14-PIN PLSTC DIP NETWORK-RESISTOR 16 PIN DIP; RES IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG IC OP AMP GP TO-99 PKG	3L585 28480 01295 01295 27014	90962 1910-0294 SN53525N SN53030N SL11611
A7U7 A7U8 A7U9 A7U10 A7U11	1820-0629 1826-0715 1820-1279 1826-0715 1820-1279	0 7 8 7 8	1 2 3	IC FF TTL S J.K NEG-EDGE-TRIG IC OP AMP LOW.NOISE B-DIP-P PKG IC CNPR TTL LS DECD UP/DOWN SYNCHRO IC OP AMP LOW.NOISE B-DIP-P PKG IC CNTR TTL LS DECD UP/DOWN SYNCHRO	01295 18324 01295 18324 01295	SN23357N CC3802 SN83645 CC3802 SN53645

See introduction to this section for ordering information * Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A7U12 A7U13 A7U14-U15 A7U17	1820-0681 1820-0629 1820-1196 1820-1322	4 0 8 2	3 7	IC GATE TTL S NAND QUAD 2-INP IC FF TTL S J-K NEG-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL S NOR QUAD 2-INP	01295 01295 01295 01295 01295	SN24649N SN23357N SN53525N SN84050N
A7U19 A7U19 A7U21 A7U22-U23 A7U24	1920-0629 1820-2004 1820-0693 1820-0681 1820-0629	9 6 4 0	1	IC FF TTL S J-K NEG-EDGE-TRIG IC MISC NMOS IC INV TTL S HEX 1-INP IC GATE TTL S NAND QUAD 2-INP IC FF TTL S J-K NEG-EDGE-TRIG	01295 28480 01295 01295 01295	SN23357N 1820-2004 SN24661N SN24649N SN23357N
A7U25 A7U26 A7U27 A7U28 A7U29-U30 A7U31	1820-1112 1820-0693 1820-0629 1820-2102 1820-0629 1820-1144	8 0 8 0 6	1 1 7	IC FF TTL LS 0-TYPE POS-EDGE-TRIG IC FF TTL S D-TYPE POS-EDGE-TRIG IC FF TTL S J-K NEG-EDGE-TRIG IC LCH TTL LS D-TYPE CCTL IC FF TTL S J-K NEG-EDGE-TRIG IC GATE TTL LS NOR QUAD 2-INP	01295 01295 01295 01295 01295 01295	\$N63030N \$N24681N \$N23357N \$N69195N \$N23357N \$N63243N
A7U32 A7U33 A7U34-U36 A7U37 A7U38	1820-0629 1820-1780 1813-0215 1820-1208 1826-0715	0 6 5 3 7	1 1 1	IC FF TTL S J-K NEG-EDGE-TRIG IC PRESCR ECL IC WIDEBAND AMPL TO-39 PKG IC GATE TTL LS OR QUAD 2-INP IC OP AMP LOW-NOISE 8-DIP-P PKG	01295 07263 04713 01295 18324	SN23357N SL63346 SWA133 SN633516N CC3802
A7U39 A7U40 A7U41 A7U42 A7U43	1813-0215 1826-0147 1826-0221 1826-0412 1826-0147	5 9 0 1 9	1	IC WIDEBAND AMPL TO-39 PKG IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG IC V RGLTR-FXD-NEG 11.5/12.5V TO-220 PKG IC COMPARATOR PRON DUAL B-DIP-P PKG IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG	04713 04713 04713 27014 04713	SWA133 SC25174P1 SC25566P1 SL33675 SC25174P1
A7U44 A7U45-U46 A7U47 A7U48 A7U49	1826-0773 1826-0122 1826-0700 1826-0122 1826-0147	7 0 0 0 9	1 1	IC OP AMP GP TO: 99 PKG IC V RGLTR-FXD-POS 4.8/5.2V TO: 220 PKG IC OP AMP WB 14-DIP: C PKG IC V RGLTR-FXD-POS 4.8/5.2V TO: 220 PKG IC V RGLTR-FXD-POS 11.5/12.5V TO: 220 PKG	27014 07263 34371 07263 04713	SL41902 SL23241 HA1-5195 B3053-016 SL23241 SC25174P1
A7U50 A7W1-W2	1826-0715 1258-0141	7 8	2	IC OP AMP LOW-NOISE 8-DIP-P PKG CON-JUMPER REM .025P	18324 00779	CC3802 530153-2
AB	03577-66508	9	1	PC BOARD ASSY OUTPUT	28480	03577-66508
A8C1 A8C2-C3 A8C4-C5 A8C6-C7 A8C8	0180-3768 0160-6506 0160-6508 0180-0374 0160-6506	53533	3 82 12 1	C-F 3.3UF 20% 35V TADPDr C-F .1UF 20% 50V CERMLr C-F 22PF 5% 200V CERMLr CAPACITOR.FXO 10UF+-10% 20VDC TA C-F .1UF 20% 50V CERMLr	29480 29480 29480 13606 29480	T350D335M035AS C-B310 RPE121-97825U104M50V RPE121-878C0G220J200V 150D106X9020B2-DYS RPE121-97825U104M50V
A8C11 A8C12 A8C13 ABC14 A8C15	0160-6515 0160-4381 0160-6508 0160-6524 0160-6508	4 8 5 5 5	3 1 3	C-F 10PF% 200V CERMLr CAPACITOR-FXD 1.5PF +-25PF 200VDC CER C-F 22PF 5% 200V CERMLr C-F 8.8PF% 200V CERMLr C-F 22PF 5% 200V CERMLr	26480 54583 28480 28480 28480	RPE121-978C0G100D200V F011C0G2D1R5C RPE121-978C0G220J200V RPE121-978C0G6R8D200V RPE121-978C0G220J200V
A8C15 A8C21 A8C22-C23 A8C24-C25 A8C26-C27	01 6 0-6515 0180-3768 0160-6506 0160-6508 0180-0374	4 5 3 5 3		C-F 10PF% 200V CERMLr C-F 3,3UF 20% 35V TADPDr C-F 1,1UF 20% 50V CERMLr C-F 22PF 5% 200V CERMLr CAPACITOR-FXD 10UF+-10% 20VDC TA	28480 28480 28480 28480 13606	RPE121-978C0G100D200V T350D335M035AS C-8310 RPE121-978Z5U104M50V RPE121-978C0G220J200V 150D106X9020B2-DYS
ABC28 ABC40 ABC41-C42 ABC43-C44 ABC45-C46	0160-6506 0160-3769 0180-0374 0160-6506 0160-6507	3 5 3 4	Θ	C-F .1UF 20% 50V CERMLr C-F 3.3UF 20% 35V TADPDr CAPACITOR-FXD 10UF+-10% 20VDC TA C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	26480 26480 13606 26480 26480	RPE121-978Z5U104M50V T350D335M035AS C-8310 150D106X9020B2-DYS RPE121-978Z5U104M50V RPE121-978X7R102M100V
ABC47-C4B ABC49-C50 ABC51-C61 ABC52 ABC54-C6B	0160-6506 0160-6505 0160-6506 0180-0374 0160-6506	3 2 3 3 3	6	C-F .1UF 20% 50V CERMLr C-F .01UF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr CAPACITIOR-FXD 10UF+-10% 20VDC TA C-F .1UF 20% 50V CERMLr	28480 28480 28480 13606 28480	RPE121-978Z5U104M50V RPE121-978X7R103M100V RPE121-978Z5U104M50V 150D106X9020B2-DYS RPE121-978Z5U104M50V
A8C69 A8C71 A8C72 A8C83 A8C84-C85	0180-0374 0121-0512 0160-6523 0180-0374 0180-1974	37431	2 3 1	CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-Y TAMR-CER 2-5PF 100V PC-MTG C-F 1PF% 200V CERMLr CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 10UF+-10% 35VDC TA	13606 59660 26480 13606 13606	150D106X902082-DYS 518-002 A 2-5 RPE121-578C0G010C200V 150D106X902082-DYS 150D106X9035R2-DYS
ABC90-C108 ABC110 ABC111-C113 ABC114 ABC115	0160-6508 0180-0228 0160-6506 0180-0228 0160-6505	3 6 3 6 2	1	C-F.1UF 20% 50V CERMLr CAPACITOR-FXD Z2UF+-10% 15VDC TA C-F.1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+-10% 15VDC TA C-F.01UF 20% 100V CERMLr	26480 13606 28480 13606 28480	RPE121-978Z5U104M50V 150D226X9015B2-DYS RPE121-978Z5U104M50V 150D226X9015B2-DYS RPE121-978X7R103M100V

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

				Table 5-3. Replaceable Parts								
Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number						
ABC117-C11B ABC120 ABC121 ABC122 ABC122	0160-6506 0160-6507 0160-6506 0160-6507 0160-6506	3 4 3 4 3		C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F .1009F 20% 100V CERMLr C-F .1UF 20% 50V CERMLr	26480 26480 28480 28480 28480	RPE121-978Z5U104M50V RPE121-978X7R102M100V RPE121-978Z5U104M50V RPE121-978X7R102M100V RPE121-978Z6U104M50V						
A9C124 A9C125-C126 A8C127 A8C128 A8C129	0160-6507 0160-6506 0160-6507 0160-6506 0160-6507	4 3 4 3 4		C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr	28480 28480 28480 28480 28480 28480	RPE121-978X7R102M100V RPE121-878Z6U104M50V RPE121-978X7R102M100V RPE121-978Z5U104M50V RPE121-978X7R102M100V						
A8C130 A8C131 A8C132 A8C133 A8C134	0160-6506 0160-6507 0160-6508 0160-6521 0160-6511	3 4 5 2 0	6	C-F .1UF 20% 50V CERMLr C-F 1000PF 20% 100V CERMLr C-F 22PF 5% 200V CERMLr C-F 2:2PF% 200V CERMLr C-F 15PF 5% 200V CERMLr	28480 28480 28480 28480 28480	RPE121-978Z5U104M50V RPE121-978X7R102M100V RPE121-978C0G220J200V RPE121-978C0G2R2C200V RPE121-978C0G150J200V						
A8C135 ABC136 A8C140-C145 ABC146 ABC147-C154	0160-6508 0160-6511 0160-6506 0160-6505 0160-6506	50323		C-F 22PF 5% 200V CERMLr C-F 15PF 5% 200V CERMLr C-F .1UF 20% 50V CERMLr C-F .01UF 20% 100V CERMLr C-F .1UF 20% 50V CERMLr	28490 28480 28480 28480 28480 28490	RPE121-978C0G220J200V RPE121-978C0G150J200V RPE121-978Z50104M50V RPE121-978X7R103M100V RPE121-978Z5U104M50V						
A8C155 A8C156 A8C157 A8C158-C170 A8C179-C180	0121-0512 0160-6506 0160-6517 0160-6506 0160-6505	7 3 6 3 2	4	CAPACITOR-V TRMR-CER 2-5PF 100V PC-MTG C-F. 1UP 20% 55V CERMLr C-F. 100PF 20% 200V CERMLr C-F. 1UF 20% 50V CERMLr C-F. 01UF 20% 100V CERMLr	59660 28460 28460 28480 28480 28480	518-002 A 2-5 RPE121-97825U104M50V RPE121-978X7R101M200V RPE121-978Z5U104M50V RPE121-978X7R103M100V						
ABC181-C182 ABC183 ABC184 ABC185 ABC190-C191	0160-8506 0180-0228 0160-6506 0180-0374 0160-6517	3 6 3 6		C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 22UF+-10% 15VDC TA C-F .1UF 20% 50V CERMLr CAPACITOR-FXD 10UF+-10% 20VDC TA C-F 100PF 20% 200V CERMLr	28480 13606 28480 13606 28480	RPE121-978Z5U104M50V 150D226X9015B2-DYS RPE121-978Z5U104M50V 150D106X9020B2-DYS RPE121-978X7R101M200V						
ABC192-C193 ABC194 ABC200 ABC201 ABC210-C223	0160-6506 0160-6508 0160-6506 0180-1974 0160-6506	3 5 3 1 3	1	C-F :1UF 20% 50V CERMLr C-F :22PF 5% 200V CERMLr C-F :1UF 20% 50V CERMLr CAPACITOR-FXD 10UF+-10% 35VDC TA C-F :1UF 20% 50V CERMLr	28480 28480 28480 13606 28480	RPE121-978Z5U104M50V RPE121-978C50G22QJ200V RPE121-978Z5U104M50V 150D106X9035R2-DYS RPE121-978Z5U104M50V						
ABC232 ABC233 ABC234 ABC235 ABC236	0160-6508 0160-6521 0160-6511 0160-6508 0160-6511	5 2 0 5 0		C-F 22PF 5% 200V CERMLr C-F 2.2PF% 200V CERMLr C-F 15PF 5% 200V CERMLr C-F 22PF 5% 200V CERMLr C-F 15PF 5% 200V CERMLr	28480 28480 28480 28480 28480	RPE121-978C0G220J200V RPE121-978C0G2R2C200V RPE121 978C0G150J200V RPE121-978C0G220J200V RPE121-978C0G150J200V						
A9C250 A9C251 A9C252 A9C253 A9C254	0160-6515 0160-4381 0160-6524 0160-6508 0160-6521	4 8 5 5 2		C-F 10PF% 200V CERMLr CAPACITOR-FXD 1.5PF +-25PF 200VDC CER C-F 6.8PF% 200V CERVLr C-F 22PF 5% 200V CERMLr C-F 2.2PF% 200V CERMLr	28480 54583 28480 28480 28460	RPE121-978C0G100D200V FD11C0G2D1RSC RPE121-978C0GR8D200V RPE121-978C0G220J200V RPE121-978C0G2R2C200V						
A8C255 ABC260 ABC261-C262 ABC280 ABC300-C301	0160-6511 0160-6521 0160-6523 0160-6517 0160-6506	0 2 4 6 3		C-F 15PF 5% 200V CERMLr C-F 2.2PF% 200V CERMLr C-F 1PP% 200V CERMLr C-F 100PF 20% 200V CERMLr C-F .1UF 20% 50V CERMLr	26480 28480 28480 28480 28480 28480	RPE121-978C0G150J200V RPE121-978C0G2R2C200V RPE121-978C0G010C200V RPE121-978X7R101M200V RPE121-978X7R101M200V						
ABC350 ABC351-C352 ABC353 ABC354-C355 ABCR41-CR42	0160-4382 0160-4381 0160-6524 0160-6521 1902-0920	9 5 2 8	1	CAPACITOR-FXD 3.3PF +25PF 200VDC CER CAPACITOR-FXD 1.5PF +25PF 200VDC CER CF 6.8PF% 200V CERMLr CF 2.2PF% 200V CERMLr DIODE-ZNR 1N5345B 8,7V 5% PD=SW	545B3 545B3 284B0 264B0 04713	FD12C0G2D3R3C FD11C0G2D1R5C RPE121-979C0G6R8D200V RPE121-979C0G2R2C200V SZP40119						
ABCR43-CR46 ABCR60 ABCR62-CR63 ABCR71-CR72 ABCR73-CR74	1901-0025 1902-0041 1902-0920 1901-0047 1902-0025	2 4 8 8 4	1 2 2	DIODE-GEN PRP 100V 200MA DO-7 DIODE-ZNR 5,11V 5% DO-35 PD=4W DIODE-ZNR 1N53458 B,7V 5% PD=5W DIODE-SWITCHING 20V 75MA 10NS DIODE-ZNR 10V 5% DO-35 PD=,4W TC=+,06%	07263 04713 04713 07263 04713	FDH538 SZ30016-109B SZP40119 FDH0835 SZ30016-1182						
A6CR111-CR112 A8CR113-CR114 A8CR140 A6CR160-CR163 A8CR164	1901-0518 1901-0048 1902-1329 1901-0518 1901-0025	8 1 3 0 2	6 2 1 6	DIODE-SCHOTTKY SM SIG DIODE-SWITCHING 30V 50MA 2NS DO-35 IC V RGLTR-V-REF-FXD 6-6/7.2V TO-46 PKG DIODE-SCHOTTKY SM SIG DIODE-GEN PRP 180V 200MA DO-7	28480 07263 27014 28480 07263	1901-0518 FDH108B LM329CH 1901-0519 FDH536						
ABCR170 ABCR171 ABE1-E5 ABE6-E9 ABH16	1902-1329 1901-0025 03577-00901 03577-00902 03577-00903	3 9 9	5 4 1	IC V RCLTR-V-REF-FXD 6,6/7.2V TO-46 PKG DIODE-GEN PRP 100V 200MA DO-7 ETCH SPRING-GROUNDING ETCH SPRING-GROUNDING ETCH BAR-GROUNDING ETCH BAR-GROUNDING	27014 07263 N01063 N01063 N01063	LM329CH FDH536						

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Deferre	UD Dead			Table 5-3. Replaceable Parts	844-	
Reference Designation	HP Part Number	င္ခ	Qty.	Description	Mfr. Code	Mfr. Part Number
A8H17 A8H18 A8H19 A8H20 A8H21	03577-04108 03577-04109 03577-20601 03577-20605 03577-20606	5 6 7 1 2	1 1 1	SHIF COVER-OUTPUT BD. SHIF COVER-SHIELD CSTG-GRC SIDE CSTG-SHIELD - SLOTTED MCHD COVER-SHIELD CAN	28480 28480 28480 28480 H01050	03577-04108 03577-04109
ABH22 ABH54-H55 ABHBB A9J1-J2 A9J3	03577-20607 1258-0141 4330-0496 1250-1512 1250-1314	3 8 3 3	1 2 12 2 1	MCHD COVER-SHIELD CAN CON-JUMPER REM. 025P INSULATOR-BEAD GLASS CONNECTOR-RF SMB M PC 50-OHM CONNECTOR-RF SM-SLD FEM PC 50-OHM	H01050 00779 53101 98291 98291	530153-2 KG12 51-353-0039-226 52-054-0000-226
A8J4-J8 A8K1-K6 A8L1-L2 A8L11 A8L12	1250-1339 0490-1404 9140-0144 9140-0815 9140-0813	ONOGN	5 6 13 3 2	CONNECTOR-RF SM-SLD M PC 50-OHM RELAY 2C 12VDC-COIL 5A 28VDC INDUCTOR RF-CH-MILD 4,7UH 10% .105DX.26LG COIL-VAR 50,8NH-41,4NH PC-MTG COIL-VAR 23NH-52NH Q-65 PC-MTG	98291 T01014 99800 28480 28480	52-051-0000-226 4127-0191 1025-36 9140-0815 9140-0813
ABL13 ABL14 ABL15 ABL31-L42 ABL80	9140-0815 9140-0813 9140-0815 9140-0144 9100-1618	2 0 2 0 1	3	COIL-VAR 50.6NH-41.4NH PC-MTG COIL-VAR 23NH-52NH O=65 PC-MTG COIL-VAR 50.6NH-41.4NH PC-MTG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG INDUCTOR RF-CH-MLD 5.6UH 10%	28480 28480 28480 99800 99800	9140-0915 9140-0913 9140-0815 1025-36 1537-30
A8L81 A8L82 A8L90-L122 A8L123-L124 A8L125-L180	9140-0607 9100-1618 9140-0144 9140-0814 9140-0144	0 1 0 1 0	1	INDUCTOR RF-CH-MLD 3.3UH 10% .2DX.45LG INDUCTOR RF-CH-MLD 5.6UH 10% INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG COIL-VAR 20NH-25NH 0~50 PC-MTG INDUCTOR RF-CH-MLD 4.7UH 10% .105DX.26LG	24226 99800 99800 28480 99800	18M331K 1537-30 1025-36 9140-0814 1025-36
ABL200 ABL223-L224 ABL250-L251 ABQ1 ABQ2	9100-1619 9140-0814 9140-1070 1853-0544 1854-0591	1 3 7 6	2 1 1	INDUCTOR RF-CH-MLD 5:5UH 10% COIL-VAR 20NH-25NH Q=5D PC-MTG IND RF CHOKE VAR 78:4NH TRANSISTOR PNP SI PD=180MW TRANSISTOR NPN SI PD=180MW FT=4GHZ	99800 28480 28480 25403 25403	1537-30 9140-0614 9140-1070 BFO51 BFR90
ABQ3 ABQ4-Q5 ABQ6 ABQ7 ABQ21	1853-0544 1854-0591 1853-0544 1855-0410 1853-0544	7 6 7 0 7	1	TRANSISTOR PNP SI PD=180MW TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR PNP SI PD=180MW TRANSISTOR J-FET N-CHAN Q-MODE TO-18 SI TRANSISTOR PNP SI PD=180MW	25403 25403 25403 27014 25403	BFQ51 BFR90 BFQ51 SF51006 BFQ51
ABQ22 ABQ23 ABQ24 ABQ25 ABQ26	1854-0591 1853-0544 1954-0591 1854-0720 1853-0527	6 7 6 3 6	1 1	TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR PNP SI PD=180MW TRANSISTOR NPN SI PD=180MW FT=4GHZ TRANSISTOR NPN SI PD=500MW FT=4GHZ TRANSISTOR NPN SI PD=500MW FT=4GHZ TRANSISTOR PNP SI PD=500MW FT=4GHZ	25403 25403 25403 25403 25403	BFR90 BFQ51 BFR90 BFR86-S BFQ 32
ABQ27 ABQ41 ABQ43 ABQ44 ABQ45	1855-0410 1855-0410 1853-0527 1854-0720 1854-0876	00630	1	TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI TRANSISTOR PNP SI DP-3500MV FT=4GHZ TRANSISTOR NPN SI PD=500MV FT=4GHZ TRANSISTOR NPN SI PD=500MV FT=4GHZ TRANSISTOR NPN PD=1W FT=1GHZ	27014 27014 25403 25403 04713	SF5100B SF51006 BFQ 32 BFR98-S SRF2955
ABQ46 ABQ61 ABQ62 ABQ62 ABQ160	1853-0495 1853-0037 1854-0039 1205-0033 1855-0410	7 3 7 6 0	1 1 1	TRANSISTOR PNP PD=1W FT=1GHZ TRANSISTOR PNP SI TO.39 PD=1W FT=100MHZ TRANSISTOR NPN 2N3053S SI TO.39 PD=1W HEAI SINK TU.5/TO.39-CS TRANSISTOR J-FET N-CHAN D-MODE TO-18 SI	04713 04713 3L585 05820 27014	SRF2954 SS2109 72007 207-CB SF51006
ABR1 ABR2-R3 ABR4-R5 ABR6 ABR7	0699-2069 0698-7222 0699-1964 0698-7216 0693-1055	6 1 8 3 5	2 4 8 2 4	R-F 13.3 CH 1% 1/20W HF04 TO RESISTOR 261 1% .05W F TC-0+-100 R-F 14.7 CH 1% 1/20W HF04 TO RESISTOR 147 1% .05W F TC-0+-100 RESISTOR 1M 5% .25W CF TC=0-800	91637 24546 91637 24546 77902	CMF-50-21 CT3 CMF-50-21 CT3 R-25J
A8R8-R9 A8R10-R11 A8R12-R13 A8R14-R15 ABR16-R17	0699-1964 0757-0409 0698-4496 0699-1948 0698-3228	9 7 5 9	4 2 7 5	R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 243 1% .125W F TC=0+-100 RESISTOR 45.3K 1% .125W F TC=0+-100 R-F 48.4 OH 1% 1/20W HF04 T0 RESISTOR 49.9K 1% .125W F TC=0+-100	91637 19701 91637 91637 19701	CMF-50-21 SFR25H CMF-55-1, T-1 CMF-50-21 SFR25H
ABR18 ABR19 ABR20 ABR21 ABR22-R23	0698-7223 0699-2030 0698-7223 0683-1555 0698-7222	1 2 0 1	4 2 2	RESISTOR 267 1% .05W F TC=0+-100 R-F 17.8 CH 1% 1/20W HF04 TO RESISTOR 287 1% .05W F TC=0+-100 RESISTOR 1.5M 5% .25W CF TC=0-900 RESISTOR 261 1% .05W F TC=0+-100	24546 91637 24546 77902 24546	CT3 CMF-50-21 CT3 R-25J CT3
A9R24-R25 ABR26 ABR27 ABR28-R29 ABR30-R31	0699-1964 0698-7216 0693-1055 0699-1964 0757-0408	8 3 5 8 7		R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 147 1% .05W F TC-0+-100 RESISTOR 1M 5% .25W CF TC-0-800 R-F 14.7 OH 1% 1/20W HF04 T0 RESISTOR 243 1% .125W F TC-0+-100	91637 24546 77902 91637 19701	CMF-50-21 CT3 R-25J CMF-50-21 SFR25H

See introduction to this section for ordering information * Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	S D	Qty.	Description	Mfr. Code	Mfr. Part Number
A6R32-R33 A6R34-R35 A6R36-R37 A6R38 A6R41-R43	0757-0456 0639-1948 0638-3228 0683-1555 0699-1948	5 8 9 0 8	2	RESISTOR 43.2K 1% .125W F TC=0+-100 R-F 45.4 OH 1% 1/20W HF04 T0 RESISTOR 49.9K 1% .125W F TC=04-100 RESISTOR 1.5M 5% .25W CF TC=0-900 R-F 45.4 OH 1% 1/20W HF04 T0	19701 91637 19701 77902 91637	SFR25H CMF-50-21 SFR25H R-25J CMF-50-21
A8R44-R45 A8R46-R47 A8R49-R49 A8R51 A8R52-R53	0757-0427 0699-1965 0698-7221 0698-4517 0698-3446	0 9 0 1 3	2 2 2 1 4	RESISTOR 1.5K 1% .125W F TC=0+-100 R-F 21.5 OH 1% 1/20W HF04 T0 RESISTOR 237 1% .05W F TC=0+-100 RESISTOR 127K 1% .125W F TC=0+-100 RESISTOR 383 1% .125W F TC=0+-100	19701 91637 24546 91637 19701	SFR25H CMF-50-21 CT3 CMF-55-1, T-1 SFR25H
A8R54-R55 A8R56-R59 A8R60 A8R61-R62 A8R63	0699-1902 0698-4123 0693-1055 0757-0447 0683-1025	4 5 4 9	2 6 2 8	R-F 10 OHM 1% 1/20W HF04 T0 RESISTOR 499 1% .125W F TC-0+-100 RESISTOR 1M 5% .25W CF TC-0-800 RESISTOR 16.2K 1% .125W F TC-0+-100 RESISTOR 1K 5% .25W CF TC-0-400	91637 19701 77902 19701 77902	CMF-50-21 SFR25H R-25J SFR25H R-25J
A9R64-R65 A8R66-R69 ABR70-R71 ABR72 ABR73	0757-0442 0683-2215 0683-4725 0699-1480 0699-1483	9 1 2 3 6	10 8 3 1	RESISTOR 10K 1% .125W F YC=0+-100 RESISTOR 220 5% .25W CF TO=0-400 RESISTOR 4.7K 5% .25W CF TO=0-400 RESISTOR 100 .5% .125W F TC=0+-50 RESISTOR 221 .5% .125W F TC=0+-50	19701 77902 77902 701078 P01078	SFR25H R-25J R-25J PR8494-100 PR8494-221
A6R74 ABR75 ABR76 A6R77 ABR78	0699-1477 0699-1483 0699-1481 0699-1478 0699-1481	8 G 4 9 4	1 1 1	RESISTOR 23.85 ,5% .125W F TC=0+-50 RESISTOR 221 ,5% .125W F TC=0+-50 RESISTOR 116.1 .5% .125W F TC=0+-50 RESISTOR 52.84 .5% .125W F TC=0+-50 RESISTOR 110.1 .5% .125W F TC=0+-50	P01078 P01078 P01078 P01078 P01078	PR8494-23.95 PR8494-221 PR8494-116.1 PR8494-52.84 PR8494-116.1
ABR79 ABR80 ABR81-R82 ABR83 ABR84-R85	0699-1479 0699-1462 0699-1479 0699-1482 0699-1479	0 5 0 5 0	1	RESISTOR 68.83 .5% .125W F TC=0+-50 RESISTOR 153.8 .5% .125W F TC=0+-50 RESISTOR 58.83 .5% .125W F TC=0+-50 RESISTOR 153.8 .5% .125W F TC=0+-50 RESISTOR 68.83 .5% .125W F TC=0+-50	P01078 P01078 P01078 P01078 P01078	PR8494-68.83 PR8494-153.8 PR8494-68.83 PR8494-153.8 PR8494-56.83
A6R86 A6R87 A6R88 A6R90-R101 A6R102-R103	0699-1482 0699-1479 0699-1480 0683-3905 0683-1025	5 0 3 8 9	12	RESISTOR 153.8.5%.125W F TC=0+-50 RESISTOR 88.83.5%.125W F TC=0+-50 RESISTOR 100.5%.125W F TC=0+-50 RESISTOR 39.5%.25W OF TC=0-490 RESISTOR 1K.6%.25W OF TC=0-400	P01078 P01079 P01078 77902 77902	PR8494-153.6 PR8494 68.83 PR8494-100 R-25J R-25J
A8R110 A6R111 A6R112 A6R113 A6R114	0683-1035 0683-1045 0683-1035 0698-3497 0683-1035	1 3 1 4	5 3 1	RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 6.04K 1% .125W F TC=0+100 RESISTOR 10K 5% .25W CF TC=0.400	77902 77902 77902 77902 19701 77902	R-25J R-25J R-25J SFR25H R-26J
A8R115 A8R116 A8R117 A8R120 A8R121-R122	0683-1025 0683-2725 0683-1045 0683-3615 0683-2715	9 3 7 6	1 2 2	RESISTOR 1K. 5%, 25W CF TC=0.400 RESISTOR 2.7K 5%, 25W CF TC=0.400 RESISTOR 100K 5%, 25W CF TC=0.400 RESISTOR 360 5%, 25W CF TC=0.400 RESISTOR 270 5%, 25W CF TC=0.400	77902 77902 77902 77902 77902	R-25J R-26J R-25J R-25J R-25J
A8R123 A9R124 A9R125 A8R126 ABR127	0699-1903 0883-3615 0699-2054 0699-1968 0699-2054	5 7 9 2 9	1 5 2	R-F 51.1 OH 1% 1/20W HF04 T0 RESISTOR 360 5% .25W CF TC=0-400 R-F 100 OHM 1% 1/20W HF04 T0 R-F 68.1 OH 1% 1/20W HF04 T0 R-F 100 OHM 1% 1/20W HF04 T0	91637 77902 91637 91637 91637	CMF-50-21 R 25J CMF-50-21 CMF-50-21 CMF-50-21
A8R128 ABR129 ABR130 ABR131 ABR132	0698-7223 0699-2030 0698-7223 0699-2054 0699-1968	2 1 2 9 2		RESISTOR 287 1% .05W F TC=0+-100 R.F. 17.8 OH 1% 1/20W HF04 TO RESISTOR 287 1% .05W F TC=0+-100 R.F. 100 OHM 1% 1/20W HF04 TO R.F. 60.1 OH 1% 1/20W HF04 TO	24546 91637 24546 91637 91637	CT3 CMF-50-21 CT3 CMF-50-21 CMF-50-21
A8R133 A8R140 A8R142 A8R143 A8R144	0699-2054 0757-0449 2100-3056 0757-0449 2100-3056	96969	3 2 1	R-F 100 OHM 1% 1/20W HF04 T0 RESISTOR 20K 1% 1/25W F TC-0- 100 RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN RESISTOR 20K 1% 1/25W F TC-0100 RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN	91637 19701 73138 19701 73138	CMF-50-21 SFR25H 89PR5K SFR25H 89PR5K
A8R145 A8R146 A8R147 A8R148 A8R149-R150	0683-4725 0757-0465 0757-0449 0757-0465 0757-0442	2 6 6 8	2	RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	77902 19701 19701 19701 19701	R-25J SFR25H SFR25H SFR25H SFR25H
A9R151 A9R153-R155 A9R156 A9R157 A9R158	0699-2054 0757-0442 2100-3109 2100-3056 0698-0083	9 9 2 8 8	1	R-F 100 OHM 1% 1/20W HF04 T0 RESISTOR 10K 1% 1/25W F TC=0+-100 RESISTOR-TRMR 2K 10% C SIDE-ADJ 17-TRN RESISTOR-TRMR 5K 10% C SIDE-ADJ 17-TRN RESISTOR 1.96K 1% 1/25W F TC=0+-100	91637 19701 73138 73138 19701	CMF-50-21 SFR25H 99PR2K 99PR5K SFR25H

See introduction to this section for ordering information * Indicates factory selected values

Table 5-3. Replaceable Parts

Dotoronos	Potorone Land Communication Page 1970 Page 197								
Reference Designation	HP Part Number	S D	Qty.	Description	Mfr. Code	Mfr. Part Number			
ABR159-R160 ABR161 ABR162-R163 ABR164 ABR165	0757-0442 0757-0280 0698-4123 0757-0442 0693-4745	93596	1 3	RESISTOR 10K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 499 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0100 RESISTOR 470K 5% .25W CF TC=0-800	19701 19701 19701 19701 77902	SFR25H SFR25H SFR25H SFR25H R-25J			
ABR166 ABR167 ABR170 ABR171 ABR172	0683-1045 0683-1035 0683-1025 0683-1035 0698-4442	3 1 9 1	1	RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 11K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 4.42K 1% .125W F TC=0+-100	77902 77902 77902 77902 77902 91637	R-25J R-25J R-25J R-25J CMF-55-1, T-1			
A9R180 ABR181-R182 ABR190 A9R191 A6R192	0683-1055 0683-4745 0683-1015 0698-4381 0767-0415	5 6 7 6	1 1	RESISTOR 1M 5% .25W CF TC=0.800 RESISTOR 470K 5% .25W CF TC=0.800 RESISTOR 100 5% .25W CF TC=0.400 RESISTOR 48.7 1% .125W F TC=0+.100 RESISTOR 475 1% .125W F TC=0+.100	77902 77902 77902 77902 91637 19701	R-25J R-25J R-25J CMF-55-1, T-1 SFR25H			
A9R193 A9R194 A8R200 A8R210-R211 A8R300-R307	0698-3228 0757-0401 0699-2069 0698-3446 0683-2015	90639	1	RESISTOR 49.9K 1% .125W F TC=0+-100 RESISTOR 100 1% .125W F TC=0+-100 R.F. 13.3 OH 1% 1/20W HF04 T0 RESISTOR 383 1% .125W F TC=0+-100 RESISTOR 200 5% .25W CF TC=0-400	19701 19701 91637 19701 77902	SFR25H SFR25H CMF-50-21 SFR25H R-25J			
A8R310-R311 A8R320 A8R321 A8R322 A8R323	0683-2215 0698-3264 0698-4492 0757-0453 0757-0440	1 3 1 2 7	1 1 1	RESISTOR 220 5% .25W CF TC=0-400 RESISTOR 11.8K 1% .125W F TC=0+-100 RESISTOR 32.4K 1% .125W F TC=0+-100 RESISTOR 30.1K 1% .125W F TC=0+-100 RESISTOR 7.5K 1% .125W F TC=0+-100	77902 19701 91637 19701 19701	R-25J SFR25H CMF-55-1, T-1 SFR25H SFR25H			
ABR324 ABR325 ABR330-R331 ABR332 ABTP1-TP14	0698-4307 8159-0005 0683-1025 0683-1025 1251-0600	7 0 9 9	1 1 14	RESISTOR 14.3K 1% .125W F TC=0+-100 RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR IK 5% .25W CF TC=0-400 RESISTOR IK 5% .25W CF TC=0-400 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ	19701 20940 77902 77902 27264	SFR25H 106 F-25J R-25J 16-06-0034			
A8U1-U3 A8U4-U5 A8U6 A8U7 A8U8	1826-0043 1826-0139 1859-0047 1826-0412 1820-1144	4 9 5 1 6	† 2 1 1	IC OP AMP GP TO-99 PKG IC OP AMP GP DUAL 8-DIP-P PKG TRANSISTOR ARRAY 18-PIN PLSTC DIP IC COMPARATOR PRON DUAL 8-DIP-P PKG IC GATE TTL LS NOR CUAD 2-INP	27014 04713 13606 27014 01295	SL160762 SC25137P1 ULN-2003A SL33675 SN53243N			
A8U9 A8U10 A8U11 A8U13 A8U14	1813-0215 1813-0216 0955-0193 0955-0095 1813-0215	5 6 7 8 5	1 1 1	IC WIDEBAND AMPL TO 39 PKG IC WIDEBAND AMPL TO 39 PKG MIX MWAV FC217-ZTF 200MHZ 3 MIX MWAV SRA-1-85 500MHZ 8 IC WIDEBAND AMPL TO 39 PKG	04713 04713 L01065 M0104B 04713	SWA133 SWA130 FC217-ZTF SRA-1-85 SWA133			
A8U15 A8U16 A8U17 A8U18 A8U19	1820-1934 1820-1730 1820-1730 1820-1211 1820-1197	2 6 6 9	1 2 1 1	D/A B-BIT 18-CERDIP BPLR IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC GATE TTL LS EXCL-OR QUAD 2-INP IC GATE TTL LS NAND QUAD 2-INP	06665 01295 01295 01295 01295	DAC-08 096Q SN58030N SN58038N SN53518N SN53504N			
ABU20-U21 ABU190 ABU200 ABW3-W6 ABW1-W6	1826-0222 1826-0109 1826-0147 1251-1636 1258-0214	1 3 9 4 6	2 1 5 1	IC OP AMP GP QUAD 14-DIP-P PKG IC OP AMP WB TO-89 PKG IC V RGLTR-FXD-POS 11.5/12.5V TO-220 PKG CONNECTOR-SGL CONT SKT.04-IN-BSC-SZ RND CON-JUMPER WIRE PLUG-SHORTING	07933 34371 04713 71279 71279	RC4138DB HA2-2625 B3053-032 SC25174P1 450-3388-01-03-00 461-2872-01-03-16			
A8W8	1251-4047 1251-4822	7 6	1 1	CONN-POST TYPE .100-PIN-SPCG 3-CONT CONN-POST TYPE .100-PIN-SPCG 3-CONT	27264 27264	22-05-2031 22-03-2031			
A11	03577-66511	4	1	PRINTED CIRCUIT BOARD-ASSEMBLY	28460	03577-66511			
A11C1-C4 A11C5 A11C5-C29 A11C30 A11C31-C32	0160-4571 0160-6511 0160-4571 0180-0229 0160-4571	8 0 B 7 B	40 1	CAPACITOR-FXD.1UF +80-20% 50VDC CER C-F 15PF 5% 200V CERMLT CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .33UF+-10% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 28480 04222 13606 04222	SA105E104ZAA RPE121-97BC0G150J200V SA105E104ZAA 150D336X9010B2-DYS SA105E104ZAA			
A11C33 A11C34-C44 A11H1-H3 A11J2 A11J3	0160-6507 0180-4571 1258-0141 1250-0543 1251-5202	4 9 8 8	1 3 1 1	C-F 1000PF 20% 100V CERMLr CAPACITOR-FXD .1UF -88L-20% 50VDC CER CON-JUMPER REM .025P CONNECTOR-RF 5M-5NP M PC 50-OHM CONN-POST TYPE .125-PIN-SPCG 5-CONT	28480 04222 00779 98291 28480	RPE121-978X7R102M100V SA105E104ZAA 530153-2 51-053-0000-226 1251-5202			
A11L1 A11L2 A11R1-R4 A11R5-R6 A11R9-R10	9100-1791 9100-3345 0683-1025 0683-2025 0683-4725	1 5 9 1 2	1 1 1 3 9	CORE-FERRITE CHOKE-WIDEBAND;IMP:>380 INDUCTOR RF-CH-MLD 2UH 5% .168DX.385LG RESISTOR 1K 5% .25W CF TC-0-400 RESISTOR 2K 5% .25W CF TC-0-400 RESISTOR 4.7K 5% .25W CF TC-0-400	02114 24226 77902 77902 77902	VK200-19/4B 15M201J R-25J R-25J R-25J			

See introduction to this section for ordering information
* Indicates factory selected values

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A11R11 A11R12 A11R13 A11R14 A11R17-R22	0683-2025 0683-4725 0683-1035 0683-1025 0683-4725	1 2 1 9 2	1	RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400	77902 77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J
A11RP1-RP2 A11RP3-RP4 A11TP1-TP9 A11U1 A11U1	1810-0280 1810-0338 1251-0600 03577-60301 1816-1572	8 7 0 8 5	2 2 9 1	NETWORK-RES 10-SIP 10.0K OHM X 9 NETWORK-RES 16-DIP 100.0 OHM X 8 CONNECTOR-SGL CONT PIN 1.14-MM-BSO-SZ SO PRGMD PROM IC TTL S 16384 (16K) PROM 35-NS 3-S	91637 11236 27264 28490 34335	CSC10A01-103G/MSP10A01-103G 761-3-R100 16-06-0034 03577-60301 AM27S191ADC
A11U2 A11U2 A11U3 A11U3 A11U4	03577-60302 1B16-1572 03577-60303 1B16-1572 03577-60304	9 5 0 5 1	† 1 1 1	PRGMD PROM IC TTL S 16384 (16K) PROM 35-NS 3-S PRGMD PROM IC TTL S 16384 (16K) PROM 35-NS 3-S PRGMD PROM	26480 34335 26480 34335 26480	03577-60302 AM27S191ADC 03577-60303 AM27S191ADC 03577-60304
A1104 A1105 A1105 A1106 A1106	1816-1572 03577-60305 1816-1572 03577-60306 1816-1572	5 2 5 3 5	1 1 1 1 1 1	IC TTL S 16384 (16K) PPOM 35-NS 3-S PRGMD PROM IC TTL S 16384 (16K) PROM 35-NS 3-S PRGMD PROM IC TTL S 16384 (16K) PROM 35-NS 3-S	34335 28490 34335 28480 34335	AM27S191ADC 03577-60305 AM27S191ADC 03577-60306 AM27S191ADC
A1107-012 A11013-014 A11015 A11016 A11017-018	1820-1677 1820-099B 1820-2379 1820-0694 1820-1302	0 6 0 9	9 2 1 1 2	IC FF TTL S D-TYPE OCTL IC MUXR/DATA-SEL TTL S 4-TO-1-LINE DUAL IC MUXROPROGRAM CONTROLLER, 4K RANGE IC GATE TTL S EXCL-OR OUAD 2-INP IC MUXR/DATA-SEL TTL S 8-TO-1-LINE 8-INP	01295 01295 34335 01295 01295	SN88182N SN37508N AM2910ADC SN41018N SN48018N
A11U19-U20 A11U21 A11U22 A11U23 A11U24-U27	1820-2565 1820-1305 1820-2287 1820-1677 1820-2422	7 0 0 5	2 1 2 4	IC BFR TTL S LINE DRVR OCT. IC GEN TTL S LOOK-AND-CRY IC MUXR/DATA-SEL TTL S 4-TC-1-LINE DUAL IC FF TTL S 0-TYPE OCT. IC-BIT SLICE; 8 FUNCT ALU; 2 PORT	34335 01295 27014 01295 27014	AM74S244N SN48032 SD41869 SN88182N SD42151
A11U2B A11U29 A11U30 A11U31 A11U32	1820-1319 1820-0681 1820-1072 1820-1112 1820-1491	7 4 9 8 6	22111	IC MUXR/DATA-SEL TTL S 8-TO-1-LINE 8-JNP IC GATE TTL S NAND QUAD 2-INP IC DCDR TTL S 2-TO-4-LINE DUAL 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG IC 8FR TTL LS NON-INV HEX 1-INP	01295 01295 01295 01295 01295	SN84046IN SN22649IN SN43265IN SN53030IN SN57383IN
A11U33-U34 A11U35 A11U36 A11U37-U39 A11U40	1820-1278 1820-1430 1820-0693 1820-1216 1820-1322	7 3 8 3 2	4 1 2 3 1	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG IC FT TIL S O-TYPE POS-EDGE-TRIG IC DCOR TTL LS 3-TO-8-LINE 3-INP IC GATE TTL S NOR QUAD 2-INP	01295 01295 01295 01295 01295	SN53646N SN57191N SN24661N SN53522N SNB4050N
A11U41-U42 A11U43 A11U44 A11U45 A11U46-U47	1820-1278 1820-1641 1820-0683 1820-1319 1820-1794	7 8 6 7 2	2	IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC.DRVR TTL LS BUS HEX 1-INP IC INV TTL S HEX 1-INP IC MUXR/DATA-SEL TTL S 8-TO-1-LINE 8-INP IC BFR TTL LS NON-INV OCTL	01295 01295 01295 01295 27014	SN53546N SN5758BN SN24651N SN84048N SD32700
A11U48 A11U49 A11U50 A11U51-U52 A11U53	1920-0683 1920-1158 1820-0681 1820-1997 1820-2287	6 2 4 7 0	1	IC INV TTL S HEX 1-INP IC GATE TTL S AND-OR-INV DUAL 2-INP IC GATE TTL S NAND QUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC MUXR/DATA-SEL TTL S 4-TO-1-LINE DUAL	01295 01295 01295 27014 27014	SN24651N SN47460N SN24649N GDEA105 SD41869
A11U54-U55 A11U58 A11U57 A11U58 A11U59	1820-1677 1820-2697 1820-0688 1820-1275 1820-1470	0 6 1 4	1 1 1	IC FF TTL S D-TYPE OCTL IC SHF-RGTR TTL F MULTI-MODE IC GATE TTL S NAND DUAL 4-INP IC GATE TTL S NOR DUAL 5-INP IC MUXR/DATA-SEL TTLLS 2-TO-1-LINE QUAD	01295 07263 01295 01295 01295	SN88182N SL82891 SN24656N SN48015N SN53624N
A11U60 A11U61 A11W1-W3	1820-0693 1820-2634 1251-6515	9 1 8	1 3	IC FF TTL S D-TYPE POS-EDGE-TRIG IC INV TTL ALS HEX CONN-POST TYPE .100-PIN SPCG 6-CONT	01295 01295 28480	SN24661N SN71332N 1251-6515
A12	03577-66512	5	1	PC BOARD ASSY TRACE MEMORY	28480	03577-66512
A12BT1 A12C1 A12C2 A12C3-C8 A12C9	1420-0278 0160-4571 0180-2207 0160-4571 0180-2207	7 8 5 8 5	1 1 1 16	BATTERY 2.9V .72A-HR LI/S-DIOX W-FLEX CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 100UF+-10% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 100UF+-10% 10VDC TA	P01121 04222 13606 04222 13606	B9511 SA105E104ZAA 150D107X9010R2-DYS SA105E104ZAA 150D107X9010R2-DYS
A12C10-C19 A12CR1-CR2 A12CR3 A12H1 A12L1	0160-4571 1901-0535 1902-0946 03577-04112 9100-1791	8 9 8 1	1 1 1	CAPACITOR-FXD.1UF +80-20% 50VDC CER DIODE-SCHOTTKY SM SIG DIODE-ZNR 3.3V 5% DO-35 PD+.4W TC+039% SHTF COVER TRACY MEMO CORE-FERRITE CHOKE-WIDEBAND;IMP;>380	04222 28480 04713 28480 02114	SA105E104ZAA 1901-0535 SZ30035-004 03577-04112 VK200-19/4B

See introduction to this section for ordering information for indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

				Table 5-3. Replaceable Parts		
Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number
A12Q1 A12Q2 A12R2 A12R3 A12R4	1853-0398 1854-0215 0583-8205 0583-2015 0883-4725	9 1 1 9 2	1 1 1 1	TRANSISTOR PNP SI PD=15W FT=65MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 82 5% .25W CF TC=0.400 RESISTOR 20 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400	04713 04713 77902 77902 77902	SJE1654 SPS3611 R-25J R-25J R-25J
A12R5 A12R9-R10 A12R11 A12RP1 A12TP1-TP3	0757-0450 0583-1025 0683-1045 1810-0279 1251-0600	9 3 5 0	1 2 1 1 3	RESISTOR 22.1K 1%125W F TC=0+-100 RESISTOR 1K 5%25W CF TC=0-400 RESISTOR 100K 5%25W CF TC=0-400 NETWORK-RES 10-SIP 4.7K 0HM X 9 CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SO	19701 77902 77902 91637 27264	SFR25H R-25J R-25J CSC10A01-472G/MSP10A01-472G 16-06-0034
A12U1 A12U3-U4 A12U5-U10 A12U11 A12U11	1820-0681 1820-1216 1818-3286 03577-60311 1816-1142	4 3 6 0 5	1 2 12 1	IC GATE TTL S NAND QUAD 2-INP IC DCDR TTL LS 3-TO-8-LINE 3-INP IC CMOS 18384 (16K) STAT RAM 200-NS 3-S PROGRAMMED PROM IC TTL S 4096 (4K) PROM 70-NS 3-S	01295 01295 T01118 28480 18324	SN24649N SN53522N TC5516APL-2 03577-60311 CK1753F
A12U12-U17 A12U18 A12U18 A12U18 A12U19	1818-3286 03577-60318 1816-1142 1820-2019	6 7 5 6	1 1 1	IC CMOS 16384 (16K) STAT RAM 200-NS 3-S PROMD PROM IC TTL S 4096 (4K) PROM 70-NS 3-S IC SCHMITT-TRIG CMOS HEX	T01118 28480 18324 04713	TC5516APL-2 03577-60318 CK1753F SC45114PK
A13	03577-66513	6	1	PC BOARD ASSY MAIN PROCESSOR	28480	03577-66513
A13C1 A13C2-C3 A13C4-C5 A13C7 A13C8-C9	0160-4786 0160-3847 0160-4571 0180-0309 0160-3847	7 9 8 4 9	1 5 66 1	CAPACITOR-FXD 27PF +-5% 100VDC CER 0+-30 CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD .10F +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 04222 04222 13606 04222	SA101A270JAA SA105C103KAA SA105E104ZAA 150D475X0010A2-DYS SA105C103KAA
A13C10 A13C11 A13C12 A13C13-C73 A13C74	0160-0161 0160-3847 0180-0229 0160-4571 0180-0229	4 9 7 8 7	2	CAPACITOR-FXD .01UF +-10% 200VDC POLYE CAPACITOR-FXD .01UF +-100-0% 50VDC CER CAPACITOR-FXD 33UF+-10% 10VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC TA	84411 04222 13606 04222 13606	HEW-238M SA105C103KAA 150D336X9010B2-DYS SA105E104ZAA 150D336X9010B2-DYS
A13C75-C78 A13CR1 A13CR2 A13CR3 A13CR4	0160-4571 1901-0050 1902-0041 1902-0126 1990-1123	8 3 4 6 0	1 1 1	CAPACITOR.FXD.1UF +80.20% 50VDC CER DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 5.11V 5% DO-35 PD-4W DIODE-ZNR 2.61V 5% DO-7 PD-4W TC=072% OPT LED LMP R AP LMP1301 TT1H	04222 07263 04713 04713 28480	SA105E104ZAA FDH 6308 SZ30016-1098 SZ30016-014 1990-1123
A13CR5-CR6 A13CR7 A13H1-H2 A13J1 A13J2	1990-1124 1902-0946 1258-0141 1251-7229 1251-5202	1 B B 3 B	1 1 2 1 1	OPT LED LMP Y AP LMP1401 TT1H DIODE-ZNR 3.3V 5% DO-35 PD=.4W TC=039% CON-JUMPER BRM .025P CONN-POST TYPE .100.PIN-SPCG 26-CONT CONN-POST TYPE .125-PIN-SPCG 5-CONT	26480 04713 00779 56501 28480	1990-1124 \$Z30035-004 \$30153-2 609-2607 1251-5202
A13L1 A13Q1 A13Q2 A13Q3 A13R1	9100-1791 1854-0215 1853-0398 1854-0215 0683-1025	1 1 9 1 9	1 1 1 3	CORE-FERRITE CHOKE-WIDEBAND; IMP:> 360 TRANSISTOR NPN SI PD=350MW FT=300MHZ TRANSISTOR PNP SI PD=15W FT=65MHZ TRANSISTOR NPN SI PD=350MW FT=300MHZ RESISTOR 1K, 5%, 25W CF TC=0-400	02114 04713 04713 04713 77902	VK200-19/4B SPS3611 SJE1654 SPS3611 R-25J
A13R2 A13R3-R4 A13R5 A13R6 A13R7	0683-1035 0683-1025 0683-4705 0683-4725 0698-4489	1 9 8 2 6	2 1 12 1	RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 1K 5% .25W CF TC=0.400 RESISTOR 4.7 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 28K 1% .125W F TC=0+-100	77902 77902 77902 77902 77902 91637	R-25J R-25J R-25J R-25J CMF-55-1, T-1
A13R8 A13R9 A13R10-R12 A13R13 A13R14	0698-4472 0698-4486 0683-1045 0683-2735 0683-1035	7 3 0	1 1 4 1	RESISTOR 7.68K 1% .125W F TC=0+-100 RESISTOR 24,9K 1% .125W F TC=0+-100 RESISTOR 100K 5% .25W CF TC=0-400 RESISTOR 27K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	91637 91637 77902 77902 77902	CMF-55-1, T-1 CMF-55-1, T-1 R-25J R-25J R-25J
A13R15 A13R16-R20 A13R21 A13R22-R23 A13R24-R25	0683-1045 0683-4725 0683-3315 0683-4725 0683-3315	3 2 4 2 4	3	RESISTOR 100K 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 330 5% .25W CF TC=0.400 RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 330 5% .25W CF TC=0.400	77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-26J
A13R26-R29 A13R31 A13R32 A13R33 A13R34	0683-4725 0683-8205 0683-7525 0683-2015 0757-0450	2 1 6 9	1 1 1 1	RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 82 5% .25W CF TC=0.400 RESISTOR 7.5K 5% .25W CF TC=0.400 RESISTOR 200 5% .25W CF TC=0.400 RESISTOR 22.1K 1% .125W F TC=0+-100	77902 77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J SFR25H

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A13R35-R40 A13RP1-RP11 A13S1 A13SP1 A13TP1-TP8	6159-0005 1810-0280 3101-2170 0980-0483 1251-0600	0 8 8 0	6 10 1 1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA NETWORK. RES 10-SIP 10,0K OHM X 9 SWITCH-PB SPDT MCM ALRIM-AUDIBLE CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SO	20940 91637 09353 P01152 27264	106 CSC10A01-103G/MSP10A01-103G 8125-D8AE 16-06-0034
A13U1 A13U2 A13U3-U4 A13U5-U7 A13U9-U12	1820-3532 1820-2024 1820-2075 1820-2024 1820-1216	0 3 4 3 3	13 B 3	IC-16 BIT MICROPROCESSOR /B MHZ IC DRVR TTL LS LINE DRVR OCTL IC TRANSCEIVER TTL LS BUS OCTL IC DRVR TTL LS LINE DRVR OCTL IC DRVR TTL LS LINE 3-INP	04713 01295 01295 01295 01295	MC68000P8 SN58948N SN59111N SN59948N SN53522N
A13U13-U14 A13U15-U18 A13U19 A13U20 A13U21	1820-2053 1818-3286 1818-3569 1818-3570 1818-3571	8 6 8 1 2	2 8 1 1	IC DCDR TTL LS BCD 4-TO-16-LINE IC CMOS 18384 (16K) STAT RAM 200-NS 3-S ICM MROM 23256 32K×8 300NS P28 ICM MROM 23256 32K×8 300NS P28 ICM MROM 23256 32K×8 300NS P28	27014 T01118 18324 18324 18324	SD34831 TC5516APL-2 23256A-30 CN94782N 23256A-30 CN84783N 23256A-30 CN84784N
A13U22 A13U23 A13U24 A13U25 A13U26	1818-3572 1818-3573 1618-3574 1818-3575 1818-3576	3 4 5 6 7	1 1 1 1	ICM MROM 23256 32Kx8 300NS P28 ICM MROM 23258 32Kx8 300NS P28 ICM MROM 23256 32Kx8 300NS P28	18324 18324 18324 18324 18324	23256A-30 CN84785N 23256A-30 CN84786N 23256A-30 CN84787N 23256A-30 CN84788N 23256A-30 CN84789
A13U31-U32 A13U33-U34 A13U35-U36 A13U37-U38 A13U39-U40	1820-3368 1820-2075 1820-2024 1820-1112 1820-2075	0 4 3 8 4	2 6	IC.8-BIT BIDIRECTIONAL I/O PORT IC TRANSCEIVER TTL LS BUS OCTL IC DRVR TTL LS LINE DRVA OCTL IC FF TTL LS D-TYPE POS-EDGE-TRIG IC TRANSCEIVER TTL LS BUS OCTL	34335 01295 01295 01295 01295	AM2950DC 9N59111N SN58948N SN53030N SN59111N
A13U41 A13U42-U43 A13U44-U45 A13U46 A13U47	1820-2024 1820-2075 1820-2024 1820-1851 1820-2024	3 4 3 2 3	1	IC DRVR TTL LS LINE DRVR OCTL IC TRANSCEIVER TTL LS BUS OCTL IC DRVR TTL LS LINE DRVR OCTL IC ENCOR TTL LS IC DRVR TTL LS LINE DRVR OCTL	01295 01295 01295 01295 01295	SN58948N SN59111N SN58948N SN70488N SN50948N
A13U48 A13U49 A13U50 A13U51 A13U52	1826-1054 1820-1194 1820-1112 1820-1433 1820-1217	9 6 8 6 4	1 1 1	IC PL LOOP 16-DIP-P PKG IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGE-TRIG IC SHF-RGTR TTL LS R-S SERIAL-IN PRL-OUT IG MUXR/DATA-SEL TTL LS 8-TO-1-LINE	18324 01295 01295 01295 01295	CC3928 SN53527N SN53030N SN57194N SN53523N
A13U53 A13U54 A13U55 A13U56-U57 A13U58	1820-1112 1826-0412 1820-1144 1820-1201 1820-1208	8 1 6 6 3	1 1 2 5	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC COMPARATOR PRON DUAL B-DIP-P PKG IC GATE TTL LS NOR QUAD 2-INP IC GATE TTL LS AND QUAD 2-INP IC GATE TTL LS OR QUAD 2-INP	01295 27014 01295 01295 01295	SN53030N SL33875 SN53243N SN53508N SN53515N
A13U59 A13U60 A13U61 A13U62 A13U63	1820-1202 1820-2096 1820-1208 1820-2024 1826-0205	7 9 3 3 0	1 3	IC GATE TTL LS NAND TPL 3-INP IC GNTR TTL LS BIN DUAL 4-BIT IC GATE TTL LS OR OUAD 2-INP IC DRYR TTL LS LINE DRYR OCTL IC TIMER TTL	01295 01295 01295 01295 18324	SN53509N SN55197N SN53515N SN5994BN NE556N
A13U64 A13U65 A13U66 A13U67 A13U68	1820-1199 1820-1200 1820-1197 1820-2019 1820-1208	\$ 5 9 6 3	1 1 2 1	IC INV TTL LS HEX 1-INP IC INV TTL LS HEX IC GATE TTL LS NAND QUAD 2-INP IC SCHMITT-TRIG CMOS HEX IC GATE TTL LS OR QUAD 2-INP	01295 01295 01295 01295 04713 01295	SN53606N SN53507N SN53504N SC45114PK SN53515N
A13U69 A13U70 A13U71-U72 A13U77-U78 A13U79	1820-1197 1820-1112 1818-3296 1820-2096 1820-1112	9 6 9 8		IC GATE TTL LS NAND QUAD 2-INP IC FF TTL LS D. TYPE POS-EDGE-TRIG IC CMOS 16384 (16K) STAT RAM 200-NS 3-S IC CNTR TTL LS BIN DUAL 4-BIT IC FF TTL LS D-TYPE POS-EDGE-TRIG	01295 01295 T01118 01295 01295	SN53504N SN53030N TC5516APL-2 SN59197N SN53030N
A13U80 A13U81-U82 A13U83-U84 A13U85 A13U86	1820-1208 1818-3286 1820-2024 1820-1568 1820-1208	3 6 3 9 3	1	IC GATE TTL LS OR QUAD 2-INP IC CMOS 18384 (16K) STAT RAM 200-NS 3-S IC DRYR TTL LS LINE DRYR OCTL IC SFR TTL LS BUS QUAD IC GATE TTL LS OR QUAD 2-INP	01295 T01118 01295 01295 01295	SN53515N TC5516APL-2 SN58948N SN57451N SN53515N
A13W1-W2	1251-4822	6	2	CONN-POST TYPE . †90-PIN-SPOG 3-CONT	27264	22-03-2031
A15	03577-66515	8	1	PC BOARD ASSY KEYBOARD	28480	03577-66515
A15C1-C10 A15CR1-CR4 A15CR5-CR16 A15J1 A15J2	0160-4571 1990-0465 1990-0487 1251-4429 1251-5041	8 5 7 9 3	10 1 12 1 1	CAPACITOR-FXD _1UF +80-20% 50VDC CER LED-LAMP LUM-INT=2MCD IF=30MA-MX BVR=5V LED-LAMP LUM-INT-2MCD BVR=5V CONN-POST TYPE 100-PIN-SPCG 20-CONT CONN-POST TYPE 100-PIN-SPCG 5-CONT	04222 28480 28480 76381 28480	SA105E104ZAA 1990-0485 1990-0487 3492-1002 1251-5041

See introduction to this section for ordering information
Indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

Reference	HP Part	Te		Table 5-5. Replaceable Parts	Mfr.	
Designation	Number	Š	Qty.	Description	Code	Mfr. Part Number
A15R1 A15R2 A15R3-R6 A15RP1-RP2 A15RP3-RP4	0683-1035 0683-1315 0683-3915 1810-0278 1810-0271	10057	1 1 4 2 2	RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 130 5% .25W CF TC=0-400 RESISTOR 390 5% .25W CF TC=0-400 NETWORK-RES 10-5IP 4.7K OHM X 9 NETWORK-RES 10-5IP 200.0 OHM X 9	77902 77902 77902 91637 91637	R-25J R-25J R-25J R-25C CSC10A01-472G/MSP10A01-472G CSC10A01-201G/MSP10A01-201G
A15RPG A15SW1-SW52 A15TP1-TP2 A15U1-U2 A15U3	5061-8008 5060-9436 1251-0600 1820-2024 1820-1208	9 7 0 3 3	1 52 2 2 1	RPG CABLE ASSEMBLY SWPB BILL WEST CONNECTOR-SGL CONT PIN 1.14-MM-BSC-SZ SQ IC DRVR TTL LS LINE DRVR OCTL IC GATE TTL LS OR QUAD 2-INP	28480 28480 27264 01295 01295	5061-8008 5060-9436 16-06-0034 SN58948N SN53515N
A15U4 A15U6 A15U8 A15U8 A15U9-U10	1820-1997 1820-1194 1820-1112 1820-1197 1820-1997	7 G B 9 7	3 1 1	IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC CNTR TTL LS BIN UP/DOWN SYNCHRO IC FF TTL LS D-TYPE POS-EDGE-TRIG IC GATE TTL LS NAND OUAD 2-INP IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN	27014 01295 01295 01295 27014	GDEA105 SN53527N SN53030N SN53504N GDEA106
A16	03577-66516	9	1	PC BOARD ASSY HPIB	28480	03577-66516
A18C1 A16C2 A16C3 A16C4-C6 A16C8	0160-4571 0180-1746 0160-3847 0160-6516 0160-4571	85958	9 2 5 22	CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .01UF +00-0% 50VDC CER C-F. 022UF 20% 100V CERMUr CAPACITOR-FXD .1UF +80-20% 50VDC CER	04222 13606 04222 28480 04222	SA185E104ZAA 150D156X9020B2-DYS SA105C103KAA RPE121-378X7R223M100V SA105E104ZAA
A16C9 A16C10-C12 A16C13 A16C14 A16C15	0160-6519 0160-6516 0180-1746 0160-4571 0160-3847	8 5 9	1	C-F 470PF 20% 100V CERMLr C-F .022UF 20% 100V CERMLr CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER	28480 28480 13606 04222 04222	RPE121-976X7R471M100V RPE121-976X7R223M100V 150D156X9020B2-DYS SA105E104ZAA SA105C103KAA
A16C16-C23 A16C24-C25 A16C26-C29 A16C30 A16C31	0160-6516 0160-4571 0160-6516 0160-4571 0160-3847	5 8 5 8 9		C-F .022UF 20% 100V CERMLr CAPACITOR.FXD .1UF +80-20% 50VDC CER C-F .022UF 20% 100V CERMLr CAPACITOR.FXD .1UF +80-20% 50VDC CER CAPACITOR.FXD .01UF +100-0% 50VDC CER	28480 04222 28480 04222 04222	RPE121-978X7R223M100V SA105E104ZAA RPE121-978X7R223M100V SA105E104ZAA SA105C103KAA
A16C32 A16C33-C36 A16C37-C38 A16C39-C40 A16C41	0160-4571 0160-6516 0160-4571 0160-3847 0160-6507	85 B 9 4	1	CAPACITOR-FXD .1UF +80-20% 50VDC CER C-F .022UF 20% 100V CERMLr CAPACITOR-FXD .1UF +80-20% 50VDC CER CAPACITOR-FXD .01UF +100-0% 50VDC CER C-F 1000PF 20% 100V CERMLr	04222 28480 04222 04222 28480	SA105E104ZAA RPE121-978X7R223M100V SA105E104ZAA SA105C103KAA RPE121-978X7R102M100V
A16CR1-CR2 A16E1 A16EP1-EP2 A16J1 A16J3	1990-1122 03577-04114 1480-0116 1251-9517 1251-5202	9 3 8 4 8	1 2 1 1	OPT LED LMP G GP LMP1503 TT1H SHIF COVER PLATE-HPIB PIN-GRV ,062-IN-DIA .25-IN-LG STL CONN-RECT MICROREN 24-CKT 24-CONT CONN-POST TYPE .125-PIN-SPCG 5-CONT	28480 28480 73957 00779 28480	1990-1122 03577-04114 GP24-063 X 250-17 554194-2 1251-5202
A16L1-L2 A16R1 A16R2 A16R3-R4 A16R5	9100-1791 0698-0083 0698-0084 0683-4715 0698-0084	1 B 9 0 9	1 3 3 3	CORE-FERRITE CHOKE-WIDEBAND;IMP:>360 RESISTOR 1.98K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 2.15K 1% .125W F TC=0+-100	02114 19701 19701 77902 19701	VK200-19/4B SFR25H SFR25H R-25J SFR25H
A16R6-R7 A16R8 A16R9 A16R10 A16R11-R12	0698-0083 0698-0084 0683-4725 0683-1025 0683-2215	89 29 1	2 1 2	RESISTOR 1.96K 1% .125W F TC=0+-100 RESISTOR 2.15K 1% .125W F TC=0+-100 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 220 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	SFR25H SFR25H R-25J R-25J R-25J
A16R20 A16R21 A16RP1-RP6 A16TP1-TP5 A16U1	0683-4715 0683-4725 1810-0722 1251-0600 1820-2024	0 2 3 0 3	6 5 4	RESISTOR 470 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 R-N 120 OHMx4 2% SIP CONNECTOR-SQL CONT PIN 1.14-MM-BSC-SZ SO IC DRVR TTL LS LINE DRVR OCTL	77902 77902 91637 27264 01295	R-25J R-25J C25D803-121G/MSP08A03-121G 18-08-0034 SN58948N
A16U2-U3 A16U4 A16U5-U6 A16U7 A16U8	1820-1112 9100-4394 1820-1440 9100-4394 1820-2024	B 6 5 6 3	3 6 7	IC FF TTL LS D-TYPE POS-EDGE-TRIG XFM WIREWND PLS DIP PKG IC LCH TTL LS QUAD XFM WIREWND PLS DIP PKG IC DRVR TTL LS LINE DRVR OCTL	01295 97722 01295 97722 01295	SN53030N EPBB47 SN57201N EPBB47 SN58948N
A16U9 A16U10 A16U11 A16U12 A16U13	1820-1112 1820-1196 1820-1794 1820-1997 1820-2024	8 8 2 7 3	1 2 2	IC FF TTL LS D-TYPE POS-EDGE-TRIG IC FF TTL LS D-TYPE POS-EDGE-TRIG COM IC BFR TTL LS NON-INV OCT IC FF TTL LS D-TYPE POS-EDGE-TRIG PRL-IN IC DRVR TTL LS LINE DRVR OCTL	01295 01295 27014 27014 01295	SN53030N SN53525N SD32700 GDEA105 SN58948N
						•

See introduction to this section for ordering information Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

				Table 5-3. Replaceable Parts		
Reference Designation	HP Part Number	σo	Qty.	Description	Mfr. Code	Mfr. Part Number
A16U14 A16U15-U16 A16U17 A16U18 A16U19	9100-4394 1820-1440 9100-4394 1820-2024 1820-1432	65635	1	XFM WIREWND PLS DIP PKG IC LOH TTL LS QUAD XFM WIREWND PLS DIP PKG IC DRVR TTL LS LINE DRVR OCTL IC CNTR TTL LS BIN SYNCHRO POS-EDGE-TRIG	97722 01295 97722 01295 01295	EP8847 SN57201N EP8847 SN58948N SN57193N
A16U20 A16U21 A16U22 A16U23 A16U24	1820-1440 1820-2548 1820-2483 1820-2485 9100-4394	56806	1 1 1	IC LCH TTL LS QUAD IC-GENERAL PURPOSE INTERFACE BUS ADAPTER IC RCVR TTL LS BUS OCTL IC TRANSCEIVER TTL LS INSTR-BUS (EEE-488 XFM WIREWND PLS DIP PKG	01295 01295 01295 01295 97722	SN57201N MP9203NL SN100105N SN100104N EP8847
A16U25-U26 A16U27 A16U28 A16U29 A16U30	1820-1440 9100-4394 1820-1997 1820-1794 1990-0545	56728	1	IC LCH TTL LS QUAD XFM WIREWND PLS DIP PKG IC FF TTL LS O-TYPE POS-EDGE-TRIG PRL-IN IC BFR TTL LS NON-INV OCTL OPTO-ISOLATOR LED-PDIO/XSTR IF-40MA-MAX	01295 97722 27014 27014 28480	SN57201N EP8847 GDEA105 SD32700 1990-0545
A20	03577-66520	5	1	PC BOARD ASSY MOTHER BD	28480	03577-66520
A20C1-C2 A20J1-JB A20J11 A20J12 A20J13	0160-6506 1251-1365 1251-5160 1251-1365 1251-2915	3 6 7 6 4	2 10 2	C-F.1UF 20% 50V CERMLY CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 38-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONNECTOR-PC EDGE 25-CONT/ROW 2-ROWS	28480 71785 S01071 71785 71785	RPE121-978Z5U104M50V 252-22-30-301 ESM36DRXN 252-22-30-301 252-25-30-301
A20J14 A20J15 A20J16 A20J22 A20J26	1251-5160 1251-4634 1251-1365 1251-4836 1251-4837	7 8 6 2 3	1 1 1	CONNECTOR-PC EDGE 36-CONT/ROW 2-ROWS CONN-POST TYPE .100-PIN-SPCG 20-CONT CONNECTOR-PC EDGE 22-CONT/ROW 2-ROWS CONN-POST TYPE 2.5-PIN-SPCG 2-CONT CONN-POST TYPE 2.5-PIN-SPCG 4-CONT	\$01071 76381 71795 27264 27264	ESM36DRXN 3492-2002 252-22-30-301 22-12-1022 22-12-1042
A21	03577-66521	6	1	PC BOARD ASSY PWR SUPPLY	28480	03577-66521
A21C1 A21C2-C3 A21C4-C5 A21C6-C7 A21C8-C9	0150-0012 0190-3389 0160-4835 0160-4914 0160-0314	3 6 7 3 9	1 2 4 1	CAPACITOR-FXD. 01UF +-20% 1KVDC CER CAPACITOR-FXD 1200UF+50-10% 250VDC AL CAPACITOR-FXD 1-10F +-10% 50VDC CER CAPACITOR-FXD 470PF +-10% 600VDC POLYE CAPACITOR-FXD .01UF +-5% 400VDC POLYE	59660 13606 04222 B4411 84411	818-584 Z5U 103M 36DX122F250AE2A SA305C104KAA 636.2 471 10% 600V 663UW
A21C11-C12 A21C13 A21C14 A21C16-C20 A21C21	0160-4913 0180-2944 0160-3560 0160-4571 0160-2414	2 7 3 8 4	1 1 1 23 1	CAPACITOR-FXD 1800PF +-10% 600VDC POLYE CAPACITOR-FXD 15UF+-10% 20VDC TA CAPACITOR-FXD 1UF +-2% 100VDC MET-POLYC CAPACITOR-FXD 1.UF +80-20% 50VDC CER CAPACITOR-FXD 1.UF +80-20% 50VDC CER CAPACITOR-FXD 1.022UF +-5% 200VDC POLYE	84411 13606 84411 04222 84411	HEW-761 HEW-249 SA105E104ZAA HEW-238M
A21022 A21023 A21024 A21025 A21028-C53	0160-0300 0160-0170 0160-0180 0160-3335 0160-4571	3 5 7 0 8	1 1 1	CAPACITOR-FXD 2700PF +-10% 200VDC POLYE CAPACITOR-FXD .22UF +80-20% 50VDC CER CAPACITOR-FXD .033UF +-5% 200VDC POLYE CAPACITOR-FXD 470PF +-10% 100VDC CER CAPACITOR-FXD .1UF +80-20% 50VDC CER	84411 13606 84411 13606 04222	HEW-23BM 2C37Z5U224Z050A HEW-23BM 292CX7R471K100B SA105E104ZAA
A21054 A21055 A21056 A21057 A21058	0180-0116 0160-4801 0160-4682 0160-4571 0180-0309	1 / 2 8 4	1 1	CAPACITOR-FXD 6,8UF+-10% 35VDC TA CAPACITOR-FXD 100PF +-5% 100VDC CER CAPACITOR-FXD 1000PF +-2.5% 160VDC POLYP CAPACITOR-FXD 1.1UF +80-20% 50VDC CER CAPACITOR-FXD 4.7UF+-20% 10VDC TA	13606 04222 25088 04222 13606	150D685X9035B2-DYS SA101A101JAA B33062-A1102-H SA106E104ZAA 150D475X0010A2-DYS
A21059 A21060 A21061-063 A21070 A21071	0180-0374 0180-0116 0160-4571 0170-0040 0180-3368	3 1 8 9	7 1 1 1	CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 0.8UF+-10% 35VDC TA CAPACITOR-FXD .1UF +80.20% 50VDC CER CAPACITOR-FXD .047UF +-10% 200VDC POLYE CAPACITOR-FXD 3300UF+100-10% 20VDC AL	13606 13606 04222 84411 13606	150D106X9020B2-DYS 150D6B5X9035B2-DYS SA105E104ZAA HEW-238M 674D338H020HL5A
A21072 A21080 A21081-086 A21087 A21088-089	0160-6510 0160-4915 0160-6510 0160-4571 0160-6510	9 4 9 8 9	1	C-F .1UF 20% 50V CERMLr CAPACITOR.FXD 3000PF5% 800VDC POLYE C-F .1UF 20% 50V CERMLr CAPACITOR.FXD .1UF +80.20% 50VDC CER C-F .1UF 20% 50V CERMLr	29480 84411 28480 04222 28480	RPE121-978X7R104M50V HEW-761 RPE121-978X7R104M50V SA105E104ZAA RPE121-978X7R104M50V
A21C90-C91 A21C92-C93 A21C94-C95 A21C96 A21C97	0180-3366 0180-0374 0180-3366 0180-0374 0180-2976	9 3 9 3 5	1	CAPACITOR-FXD 180UF+100-10% 60VDC AL CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 180UF+100-10% 60VDC AL CAPACITOR-FXD 10UF+-10% 20VDC TA CAPACITOR-FXD 68UF+50-10% 100VDC AL	13606 13606 13606 13606 13606	674D187H060HE5A 150D106X902D82-DYS 674D187H060HE5A 150D106X902D82-DYS 674D686F100HE6A
A21C98 A21C99 A21C100 A21C101 A21C102-C104	0180-2771 0180-0374 0180-3367 0160-6510 0160-4914	8 3 0 9	1	CAPACITOR-FXD 110UF+100-20% 30VDC AL CAPACITOR-FXD 10UF+10% 20VDC TA CAPACITOR-FXD 470UF+100-10% 40VDC AL C-F. 1UF 20% 50V CERMLT CAPACITOR-FXD 470PF +-10% 600VDC POLYE	13506 13606 13606 29480 94411	672D153 150D106X9020B2-DYS 674D477H040HE5A RPE121-978X7R104M50V 636.2 471 10% 600V

See introduction to this section for ordering information
• Indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A21C105-C108 A21C109 A21C110-C111 A21C112 A21C114-C116	0160-6510 0160-0127 0160-4571 0160-0127 0160-4571	9 2 B 2 B	1	C.F. 1UF 20% 50V CERMLr CAPACITOR-FXD 1UF +-20% 25VDC CER CAPACITOR-FXD 1.UF +80-20% 55VDC CER CAPACITOR-FXD 1.UF +20% 25VDC CER CAPACITOR-FXD 1.UF +80-20% 50VXC CER	28480 13606 04222 13606 04222	RPE121-979X7R104M50V 2C37Z5U105M050A SA105E104ZAA 2C37Z5U105M050A SA105E104ZAA
A21C117 A21C120 A21C121 A21C122 A21C122 A21C123	0180-0210 0180-3078 0160-4571 0180-2986 0160-4571	6 0 8 ? B	1	CAPACITOR-FXD 3.3UF+-20% 15VDC TA CAPACITOR-FXD 1000UF+50-10% 50VDC AL CAPACITOR-FXD 1.1UF +80-20% 50VDC CER CAPACITOR-FXD 330UF+-20% 50VDC AL GAPACITOR-FXD 1.1UF +80-20% 50VDC CER	13606 62643 04222 62643 04222	150D335X0015A2-DYS SL50VB1000 SA105E104ZAA SMC50VB331M12X20 SA105E104ZAA
A21C124-C125 A21CR2 A21CR3 A21CR5 A21CR5 A21CR6	0180-0374 1902-0945 1901-0050 1902-0945 1901-0050	3 7 3 7 3	2 22	CAPACITOR-FXD 10UF+-10% 20VDC TA DIODE-ZNR 3V 5% DO-35 PD+.4W TC+043% DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 3V 5% DO-35 PD+.4W TC+043% DIODE-SWITCHING 80V 200MA 2NS DO-35	13606 04713 07263 04713 07263	150D106X9020B2-DYS 9Z30035-003 FDH 6308 9Z30035-003 FDH 6308
A21CR7 A21CR10 A21CR11 A21CR14 A21CR14 A21CR17	1906-0080 1902-0777 1901-0050 1990-1124 1884-0317	9 3 3 1 7	1 1 1	DIODE-FW BRDG 600V 10A DIODE-ZNR 1N825 8.2V 5% CO-7 PD=.4W DIODE-SWITCHING 80V 200MA 2NS DO-35 OPT LED LMP Y AP LMP1401 TT1H THY SCR	27777 04713 07263 28480 P01202	VJ647 SZ14376RL FDH 630B 1990-1124 C203YY
A21CR20 A21CR21 A21CR22 A21CR23-CR26 A21CR23-CR26 A21CR30-CR31	1902-0953 1901-0050 1990-1124 1901-0050 1902-0950	7 3 1 3 4	2	DIODE-ZNR 6,2V 5% DO-35 PD=,4W TC++,053% DIODE-SWITCHING BOV 200MA 2NS DO-35 OPT LED LMP Y AP LMP1401 TT1H DIODE-SWITCHING BOV 200MA 2NS DO-35 DIODE-ZNR 4,7V 6% DO-35 PD=,4W TC++,025%	04713 07263 28460 07263 04713	SZ30035-11RL FDH 6308 1990-1124 FOH 6308 SZ30035-008
A21CR33-CR36 A21CR40 A21CR41 A21CR42 A21CR42 A21CR45-CR46	1901-0026 1906-0278 1990-1122 1901-0673 1901-0050	3 7 9 6 3	4 1 1	DIODE-PWR RECT 200V 750MA DO-29 DIODE-CT-RECT 50V 60A OPT LED LMP G GP LMPI503 TT1H DIODE-PWR RECT 100V 5A 5US DIODE-SWITCHING 80V 200MA 2NS DO-35	04713 27777 28480 T01118 07263	SR1368-8BRL VSK231 1990-1122 FDH 6308
A21CR50 A21CR52-CR53 A21CR57-CR59 A21CR60 A21CR61	1906-0277 1901-1108 1901-0704 1901-0049 1901-0673	6 4 4 0 6	1 1 3	DIODE-CT-RECT 300V 30A DIODE-SWITCHING 300V 3A 50NS DIODE-GEN PRP 1N4002 100V 1A DO-41 DIODE-PWR RECT 50V 750MA DO-29 DIODE-PWR RECT 100V 5A 5US	9N171 9N171 P01202 04713 T01118	UES2605 UES1305 1N4002 SR1358-6B
A21CR62 A21CR63 A21CR64 A21CR65 A21CR70	1990-1122 1901-0050 1901-0673 1990-1122 1901-0669	9 6 9 0	1	OPT LED LMP G GP LMP1503 TT1H DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-PWR RECT 100V 5A 5US OPT LED LMP G GP LMP1503 TT1H DIODE-PWR RECT 400V 1A 150NS	28480 07263 T01118 28480 14099	1990-1122 FDH 6308 1990-1122 SS2676
A21CR71-CR72 A21CR73 A21CR74-CR75 A21CR76 A21CR81	1901-1112 1901-0669 1901-1112 1902-0522 1902-0959	0 0 6 2	1 1 1	DIODE-SWITCHING 150V 2A 25NS DIODE-PWR RECT 400V 1A 150NS DIODE-SWITCHING 150V 2A 25NS DIODE-SWITCHING 150V 2A 25NS DIODE-ZNR 1N5340B 6V 5% PD=5W IR=1UA DIODE-ZNR 10V 5% DO-35 PD=,4W TC=+,075%	25403 14099 25403 04713 04713	BYV27-150 SS2676 BYV27-150 SZP40117 SZ30035-16RL
A21CR82 A21CR84 A21CR85 A21CR86-CR89 A21CR90	1902-0589 1990-1124 1684-0317 1901-0050 1902-0569	5 1 7 3 5	2	DIODE-ZNR 10V 2% DO-35 PD=.4W TC=+.066% OPT 1.ED LMP Y AP LMP1401 TT1H THY SCR DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 10V 2% DO-35 PD=.4W TC=+.066%	04713 28480 P01202 07263 04713	SZ11651 1990-1124 C203YY FDH 6308 SZ11651
A21CR91 A21CR92 A21CR93 A21CR94 A21CR96	1902-0953 1990-1124 1894-0317 1901-0050 1990-1123	7 1 7 3 0	1	DIODE-ZNR 6.2Y 5% DO-35 PD=,4W TC=+.053% OPT LED LMP Y AP LMP1401 TT1H THY SCR DIODE-SWITCHING 80V 200MA 2NS DO-35 OPT LED LMP R AP LMP1301 TT1H	04713 28480 P01202 07263 28480	SZ30035-11RL 1990-1124 C203YY FDH 6308 1990-1123
A21CR96 A21CR97 A21CR98 A21CR100 A21CR101	1884-0317 1901-0050 1902-3160 1990-1123 1884-0317	7 3 4 0 7	1	THY SCR DIODE-SWITCHING 80V 200MA 2NS DO-35 DIODE-ZNR 10V 2% DO-35 PD= 4W TC=+.08% OPT LED LMP R AP LMP1301 TT1H THY SCR	P01202 07263 04713 28480 P01202	C203YY FDH 6308 SZ30016-11B3 1990-1123 C203YY
A210R102 A210R103 A210R104 A210R105 A210R106	1901-0050 1990-1123 1884-0317 1901-0050 1990-1123	3 0 7 3 0		DIODE-SWITCHING 80V 200MA 2NS DO-35 OPT LED LMP R AP LMP1301 TT1H THY SCR DIODE-SWITCHING 80V 200MA 2NS DO-35 OPT LED LMP R AP LMP1301 TT1H	07263 28480 P01202 07263 28480	FDH 6308 1990-1123 C203YY FDH 6308 1990-1123
A21CR107 A21CR110-CR113 A21F3-F5 A21J1 A21J2	1884-0317 1901-0050 2110-0001 1251-5863 1251-5862	7 3 0 7 6	3 1 1	THY SCR DIODE-SY/ITCHING 80V 200MA 2NS DO-35 FUSE 1A 250V NTD 1.25X SU. CONN-POST TYPE 2.5-PIN-SPCG 5-CONT CONN-POST TYPE 2.5-PIN-SPCG 4-CONT	P01202 07263 75915 27264 27264	C203YY FDH 6308 312 001 22-11-1051 22-11-1041
, at the	1231-3092		·	SCHOOL TELESCHIPSTON POUNT	21204	20-11-10-1
REIJE	1251-5862	6	1	CUMPI-POST TIPE 2.5-MIN-SPOG 4-CONT	21264	.zz=11-109T

See introduction to this section for ordering information
* Indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number
A21J3-J5 A21J8 A21JB A21JB A21JB A21JB	1251-6932 1251-8091 03577-61639 8150-2150 8150-2153	3 5 7 2 5	3 1 1 0	CONN-POST TYPE 2.5-PIN-SPCG 3-CONT CONN-POST TYPE 2.5-PIN-SPCG 2-CONT CBL-ASM DSC MHSG/STP 985MM ML WIRE 12AWG G 600V PVC 65X30 105C WIRE 12AWG BK 800V PVC 65X30 105C	27264 27264 28480 J01037 J01037	22-11-1031 22-11-1021
A21J10 A21L1 A21L2 A21L3 A21L4	1261-6310 03577-60334 03577-60338 03577-60333 03577-60337	1 7 1 6 0	1 1 1	CONN-UTIL METMAT 6-CKT 6-CONT IND TOROID-SW 50UH 21A IND TOROID SW 200UH 5A IND TOROID SW 60UH 5A IND TOROID SW 200UH 2A	00779 29490 29490 29490 29490	207583-5 03577-60334 03577-60338 03577-60333 03577-60337
A21L5 A21L6 A21L7-L8 A21MP21 A21MP22	03577-60332 03577-60336 03577-60335 2110-0643 2110-0643	5 9 8 4 4	1 2 3	IND POT CORE FIX 62UH 1.5A IND TOROID SW 2.5MH .6A IND TOROID SW 580UH 1A FUSEHOLDER-CLIP TYPE 15A 250 V FUSEHOLDER-CLIP TYPE 15A 250 V	28480 28480 28480 E01120 E01120	03577-60332 03577-60336 03577-60335 FH-8000 FH-8000
A21MP23 A21Q1-Q2 A21Q12 A21Q13 A21Q13	2110-0643 1855-0536 1853-0086 1205-0250 1854-0263	4 1 2 9	2111	FUSEHOLDER-CLIP TYPE 15A 250 V TRANSISTOR MOSFET N-CHAN E-MODE TO-3 SI TRANSISTOR PNP SI PD=310MW FT=40MHZ THERMAL LINK SQL TO-5-JTO-39-CS TRANSISTOR NPN 2N3019 SI TO-39 PD=800MW	E01120 04713 04713 05820 04713	FH-9000 STM3007 SPS3322 2604 TH 5E ST1481
A21Q14 A21Q15 A21Q21 A21Q22 A21Q35-Q38	1853-0320 1854-0210 1853-0203 1854-0019 1854-0019	7 6 5 3	1 1 1	TRANSISTOR PNP 2N4032 SI TO-5 PD-800MW TRANSISTOR NPN 2N2222 SI TO-18 PD-500MW TRANSISTOR PNP SI PD-380MW FT-700MHZ TRANSISTOR PNP SI TO-18 PD-380MW TRANSISTOR NPN SI TO-18 PD-360MW TRANSISTOR NPN SI TO-18 PD-360MW	07263 04713 04713 07263 07263	\$44044 \$T1289 \$55651 \$-8516 \$-6516
A21Q37 A21Q38 A21R3 A21R4 A21R6	1853-0086 1854-0087 0699-1167 0683-2025 0699-1187	2 5 3 1 3	1 2 2	TRANSISTOR PNP SI PD=310MW FT=40MHZ TRANSISTOR NPN SI PD=360MW FT=75MHZ RESISTOR-FUSE 18 0HM +1%; .5W AT 70 DEG RESISTOR 2K 5%, 25W OF TC=0-400 RESISTOR-FUSE 18 0HM +-1%; .5W AT 70 DEG	04713 13606 91637 77902 91637	SPS3322 T-1260 CMF60-64 R-25J CMF60-64
A21R6 A21R7-R8 A21R9-R10 A21R12 A21R13	0683-2025 0698-3624 0686-4725 0683-2725 0683-1025	1 9 8 6 9	1 1 5 3	RESISTOR 2K 5% .25W CF TC=0.400 RESISTOR 150 5% 2W MO TC=0+200 RESISTOR 4.7K 5% .5W CC TC=0+647 RESISTOR 2.7K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0.400	77902 102360 01121 77902 77902	R-25J GS-3 EB <i>1</i> 725 R-25J R-25J
A21R14 A21R15 A21R16 A21R17 A21R18	0757-0465 0757-0280 0698-3558 0698-3382 0683-3035	6 3 8 6 5	1 5 1 1	RESISTOR 100K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100 RESISTOR 4.02K 1% .125W F TC=0+-100 RESISTOR 5.45K 1% .125W F TC=0+-100 RESISTOR 30K 5% .25W CF TC=0-400	19701 19701 19701 19701 77902	SFR25H SFR25H SFR25H SFR25H R-25J
A21R19 A21R20 A21R21 A21R22 A21R23	0683-4725 0683-1225 0683-7515 2100-3252 0683-1535	2 1 4 6	4 8 1 1 2	RESISTOR 4.7K 5% .25W CF TC=0.400 RESISTOR 1.2K 5% .25W CF TC=0.400 RESISTOR 750 5% .25W CF TC=0.400 RESISTOR 7FMR 5K 10% C TOP=ADJ 1-TRN RESISTOR 15K 5% .25W CF TC=0.400	77902 77902 77902 77902 32997 77902	R-25J R-25J R-25J 3386P-Y46-502 R-25J
A21R24 A21R25 A21R26 A21R27 A21R28	0693-4325 0683-2035 0683-1235 0683-3025 0683-1045	83333	1 2 1 2 1	RESISTOR 4.3K 5% .25W CF TC=0-400 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 12K 5% .25W CF TC=0-400 RESISTOR 3K 5% .25W CF TC=0-400 RESISTOR 100K 5% .25W CF TC=0-400	77902 77902 77902 77902 77902	R-25J R-25J R-25J R-25J R-25J
A21R29-R30 A21R31 A21R32 A21R33 A21R34	06B3-1335 06B3-1035 06B3-5635 0698-5439 0699-0033	4 1 5 8 0	3 8 1 2 2	RESISTOR 13K 5% .25W CF TC=0.400 RESISTOR 10K 5% .25W CF TC=0.400 RESISTOR 56K 5% .25W CF TC=0.400 RESISTOR 1K .25% .125W F TC=0+.50 RESISTOR 56.84K .25% .125W F TC=0+.50	77902 77902 77902 77902 19701	R-25J R-25J R-25J 5033R 5033R
A21R35 A21R36 A21R37 A21R38 A21R39	0698-5439 0699-0033 0683-3625 0683-3035 0683-1225	8 0 9 5 1	В	RESISTOR 1K .25% .125W F TC=0+-50 RESISTOR 56.84K .25% .125W F TC=0+-50 RESISTOR 3.6K 5% .25W CF TC=0-400 RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 1.2K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	5033R 5033R R-25J R-25J R-25J
A21R40 A21R41 A21R42 A21R50 A21R51	0698-4499 0698-3572 0693-1535 0757-0198 0693-1035	8 6 6 2	2 2	RESISTOR 54.9K 1% .125W F TC=0+-100 RESISTOR 80.4K 1% .125W F TC=0+-100 RESISTOR 15K 5% .25W CF TC=0-400 RESISTOR 100 1% .5W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400	91637 19701 77902 19701 77902	CMF-65-1, T-1 SFR25H R-25J 5053R R-25J
A21R52 A21R53 A21R54 A21R55 A21R56	06B3-3035 0757-0433 06B3-1035 06B3-4725 06B3-1325	5 8 1 2 2	1	RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 3.32K 1% .125W F TC=0+100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 4.7K 5% .25W CF TC=0-400 RESISTOR 1.3K 5% .25W CF TC=0-400	77 9 02 19701 77 9 02 77 9 02 77 9 02	R-25J SFR25H R-25J R-25J R-25J

See introduction to this section for ordering information * Indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
A21R57 A21R80-R81 A21R83 A21R84 A21R85	069B-3332 0663-2725 0683-6215 0683-1036 0663-2725	6 9 1 8	1	RESISTOR 80.6 1% .5W F TC=0+-100 RESISTOR 2.7K 5% .25W CF TC=0-400 RESISTOR 820 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 2.7K 5% .25W CF TC=0-400	19701 77902 77902 77902 77902 77902	5053R R-25J R-25J R-25J R-25J
A21R86 A21R87 A21R88 A21R89 A21R89	0698-4482 0683-2725 0683-5115 0683-1025 0683-1035	9 8 6 9	1	RESISTOR 17.4K 1% .125W F TC=0+-100 RESISTOR 2.7K 5% .25W CF TC=0-400 RESISTOR 510 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400	91637 77902 77902 77902 77902	CMF-55-1, T-1 R-25J R-25J R-25J R-25J
A21R91 A21R92 A21R93 A21R94 A21R95	0683-3025 0757-0403 0757-0317 0757-0282 0757-0431	3 2 7 5 6	1 1 2 1	RESISTOR 3K 5% .25W CF TC=0-400 RESISTOR 121 1% .125W F TC=0+.100 RESISTOR 1.33K 1% .125W F TC=0+-100 RESISTOR 221 1% .125W F TC=0+-100 RESISTOR 2.43K 1% .125W F TC=0+.100	77902 19701 19701 19701 19701	R-25J SFR25H SFR25H SFR25H SFR25H
A21R96-R97 A21R98-R101 A21R102 A21R103 A21R104	8159-0005 0698-3615 63312-80001 0766-0029 0683-2215	0 8 4 7 1	2 1 1 1	RESISTOR-ZERO OHMS 22 AWG LEAD DIA RESISTOR 47 5% 2W MO TC=0+-200 R-F SENSING .005 RESISTOR 10 2% 3W MO TC=0+-250 RESISTOR 220 5% .25W CF TC=0-400	20940 02360 28480 24546 77902	106 GS-3 63312-80001 FP-3 R-26J
A21R105 A21R106-R107 A21R108 A21R109 A21R110-R111	0698-3618 0698-3618 0767-0444 0757-0429 0698-3633	1 1 1 2 0	1 2 1 1	RESISTOR 82 5% 2W MO TC=0+-200 RESISTOR 82 5% 2W MO TC=0+-200 RESISTOR 12, 1K 1% .125W F TC=0+-100 RESISTOR 1.62K 1% .125W F TC=0+-100 RESISTOR 390 5% 2W MO TC=0+-200	102360 102360 19701 19701 102360	GS-3 GS-3 9FR25H SFR25H GS-3
A21R112 A21R114 A21R115 A21R116 A21R117	0812-0049 0698-3633 0699-1060 0699-1185 0698-3633	0 5 1 0	1 1	RESISTOR 500 5% 2W PW TC=0+-20 RESISTOR 390 5% 2W MO TC=0+-200 RESISTOR .05 1% 3W MFS TC=0+-337 R-F .1 OHM 1% RESISTOR 390 5% 2W MO TC=0+-200	91637 102360 01686 01686 102360	RS-2B-136 GS-3 LO-3-0.05-1 GS-3
A21R118 A21R119 A21R120 A21R121 A21R121	0757-0440 0757-0427 0757-0282 0698-4432 2100-3211	7 0 5 9 7	1 1 1	RESISTOR 7.6K 1% .125W F TC=0+-100 RESISTOR 1.5K 1% .125W F TC=0+-100 RESISTOR 221 1% .125W F TC=0+-100 RESISTOR 2.1K 1% .125W F TC=0+-100 RESISTOR-TRMR 1K 10% C TOP-ADJ 1-TRN	19701 19701 19701 91637 32997	SFR25H SFR25H SFR25H CMF-55-1, T-1 3386P-Y46-102
A21R123 A21R124 A21R125 A21R126 A21R128-R129	0757-0283 2100-0568 0757-0410 0764-0020 0686-7515	6 1 1 4 0	1 1 1 1 2	RESISTOR 2K 1% .125W F TC=0+-100 RESISTOR-TRIMR 100 10% C TOP-ADJ 1-TRN RESISTOR 301 1% .125W F TC=0+-100 RESISTOR 5.6K 5% 2W MO TC=0+-200 RESISTOR 750 5% .5W CC TC=0+529	19701 32997 19701 102360 01121	SFR25H 3386P-Y46-101 SFR25H GS-3 EB7515
A21R130 A21R131 A21R132 A21R133 A21R133	0757-0424 0698-3162 0693-1035 0683-2035 0683-1025	7 0 1 3 9	4	RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 46.4K 1% .125W F TC=0+-100 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 20K 5% .25W CF TC=0-400 RESISTOR 1K 5% .25W CF TC=0-400	19701 19701 77902 77902 77902	SFR25H SFR25H R-25J R-25J R-25J
A21R135 A21R136 A21R137 A21R138 A21R139	0683-1035 0698-3450 0698-3228 0683-1335 0757-0280	1 9 9 4 3	1 1	RESISTOR 10K 5%, 25W CF TC=0-400 RESISTOR 42,2K 1%, 125W F TC=0+-100 RESISTOR 49,9K 1%, 125W F TC=0+-100 RESISTOR 13K 5%, 25W CF TC=0-400 RESISTOR 1K 1%, 125W F TC=0+-100	77902 19701 19701 77902 19701	R-25J SFR25H SFR25H R-26J SFR25H
A21R140 A21R141 A21R142 A21R143 A21R144	0683-3035 0683-3625 0683-1225 0683-1035 0757-0424	5 9 1 1 7		RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 3.6K 5% .25W CF TC=0-400 RESISTOR 1.2K 5% .25W CF TC=0-400 RESISTOR 10K 5% .25W CF TC=0-400 RESISTOR 1.1K 1% .126W F TC=0+-100	77902 77902 77902 77902 19701	R-25J R-25J R-25J R-25J SFR25H
A21R145 A21R146 A21R147 A21R150 A21R151	0757-0442 0698-3279 0698-3488 0898-3572 0757-0424	9 3 6 7	3 2	RESISTOR 10K 1%, 125W F TC=0+-100 RESISTOR 4.99K 1%, 125W F TC=0+-100 RESISTOR 442 1%, 125W F TC=0+-100 RESISTOR 60.4K 1%, 125W F TC=0+-100 RESISTOR 1.1K 1%, 125W F TC=0+-100	19701 19701 19701 19701 19701	SFR25H SFR25H SFR25H SFR25H SFR25H
A21R152 A21R153-R154 A21R155 A21R156 A21R158	0683-3625 0683-3035 0693-3625 0683-1225 0698-4499	9 5 9 1 8		RESISTOR 3.6K 5% .25W CF TC=0-400 RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 3.6K 5% .25W CF TC=0-400 RESISTOR 1.2K 5% .25W CF TC=0-400 RESISTOR 54.9K 1% .125W F TC=0+-100	77902 77902 77902 77902 77902 91637	R-25J R-25J R-25J R-25J CMF-55-1, T-1
A21R159 A21R160 A21R162 A21R163 A21R164	0698-4503 0757-0424 0698-3279 0698-3488 0757-0442	5 7 0 3 9	1	RESISTOR 66.5K 1% .125W F TC=0+-100 RESISTOR 1.1K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100 RESISTOR 442 1% .125W F TC=0+-100 RESISTOR 10K 1% .125W F TC=0+-100	91637 19701 19701 19701 19701	CMF-55-1, T-1 SFR25H SFR25H SFR25H SFR25H

See introduction to this section for ordering information Indicates factory selected values HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

A2H1199	Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
## ASISTRATA 1975-04-45 1	A21R170 A21R171 A21R174	0757-0280 0698-4425 0698-3279	3 0 0	1	RESISTOR 1.54K 1% .125W F TC=0+-100 RESISTOR 1.54K 1% .125W F TC=0+-100 RESISTOR 4.99K 1% .125W F TC=0+-100	19701 91637 19701	SFR25H CMF-55-1, T-1 SFR25H
### AZIRIPA-RIPS 0693-125 1	A21R177 A21R179-R182 A21R103	0757-0444 0693-3035 0693-3625	1 5 9		RESISTOR 12.1K 1% .125W F TC=0+-100 RESISTOR 30K 5% .25W CF TC=0-400 RESISTOR 3.6K 5% .25W CF TC=0-400	19701 77902 77902	SFR26H R-25J R-25J
AZIRZO 0888-4472 / 7 1 ESSITOR 7.88K 19.128W FTO-0-100 91837 CMF-55-1, T-1 CMF-55-1,	A21R196-R198 A21R202 A21R203	0693-1225 0757-0456 0757-0290	1 5 3		RESISTOR 1.2K 5% .25W CF TC=0-400 HESISTOR 43.2K 1% .125W F TC=0+-100 RESISTOR 1K 1% .125W F TC=0+-100	77902 19701 19701	R-25J SFR25H SFR25H
### AZIST 0837-0215 4 1 THERMISTOR-SURGE PTOTR USED AS SURGE 15464 S0-2205 AZIST 1970-0940 0 1 THERMISTOR-SURGE PTOTR USED AS SURGE 15464 C022-250AL-10% C022-250AL-1	A21R207 A21R208 A21R209	0698-4472 0757-0280 0757-0435	3 0	1	RESISTOR 7,68K 1% .125W F TC-0+-100 RESISTOR IK 1% .125W F TC-0+-100 RESISTOR 3.92K 1% .125W F TC-0+-100	91637 19701 19701	CMF-55-1, T-1 SFR25H SFR25H
### A2113 \$100.4362 0 1 TRANSFORMER-SWITCHING GATE DRIVE XFMMR 29480 \$100.4360 6 1 TRANSFORMER-SWITCHING GATE DRIVE XFMMR 29480 \$100.4360 6 1 TRANSFORMER-DVIKER 115/302 47.440412 29480 \$100.4360 6 1 TRANSFORMER-SWITCHING GATE DRIVE XFM LAMINIATE PWR 20181 201	A21RT2-RT3 A21S1 A21SG1	0837-0215 3103-0118 1970-0094	4 4 0	1 1 1	THERMISTOR-SURGE PTOTR USED AS SURGE SWITCH-THRM FXD +221F 15A OPN-ON-RISE TUBE-ELECTRON SURGE V PTOTR	15454 14604 G01114	SG-220S 3450-93-130 CG2-250AL+-10%
A21U2 1826-0138 9 1 4 IC COMPARATOR GP QUAD 14-DIP-P PKG 27014 S124958 A21U3 1826-138 8 1 IC COMPARATOR GP QUAD 14-DIP-P PKG 27014 S124959 A21U4 1826-0138 8 1 IC COMPARATOR GP QUAD 14-DIP-P PKG 34333 S03526.0 A21U5 1826-1040 3 1 IC COMPARATOR GP QUAD 14-DIP-P PKG 34333 S03526.0 A21U6 1826-0402 1 2 2 IC COMPARATOR GP QUAD 14-DIP-P PKG 34333 S03526.0 A21U7 1826-059 2 1 IC COMPARATOR GP QUAD 14-DIP-P PKG 27014 S1.3875 A21U7 1826-0138 8 IC COMPARATOR GP COLD 14-DIP-P PKG 27014 S1.3875 A21U10 1826-057 0 1 IC V ROLTR-AD-POS 12/37 V 10-3 PKG 27014 S1.3938 A21U11 183-0127 8 1 IC V ROLTR-AD-POS 12/37 V 10-3 PKG 27014 S1.3938 A21U11 183-0127 9 1 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3936 A21U11 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U11 122 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967 A21U12 1826-0138 9 IC V ROLTR-AD-POS 12/37 V 10-220 PKG 27014 S1.3967	A21T3 A21T4 A21T5	9100-4364 9100-4360 9100-4370	6 6 8	1 1 1	TRANSFORMER-SWITCHING GATE DRIVE XFMR TRANSFORMER-POWER 115/230V 47-440HZ XFM LAMINATE PWR	28480 28480 C01081	9100-4364 9100-4360 CSI 6733
A21UT 1826-0059 2 1 1 C OP AMP GP TO-39 PKG 27014 SL24958 A21U10 1826-017 0 1 1 C OP AMP GP TO-39 PKG 27014 SL24958 A21U10 1826-017 0 1 1 C V RGLTR-ADJ-POS 1.2/32V TO-3 PKG 27014 SL24958 SH12289 UA79HGKC A21U12 1826-0144 6 1 1 C V RGLTR-ADJ-POS 2.23/24V TO-3 PKG 07263 SH12289 UA79HGKC A21U13 1826-0393 7 1 1 C V RGLTR-ADJ-POS 2.23/24V TO-3 PKG 27014 SL33976 SH12289 UA79HGKC A21U13 1826-0393 7 1 1 C V RGLTR-ADJ-POS 1.2/37V TO-220 PKG 27014 SL33976 SH12289 UA79HGKC A21U15 1826-0412 1 1 C V RGLTR-ADJ-POS 1.2/37V TO-220 PKG 27014 SL33976 A21U15 1826-0412 1 1 C C OMPARATOR PRON DUAL 8-DIP-P PKG 27014 SL33976 SA1U17 1826-0138 9 C COMPARATOR PRON DUAL 8-DIP-P PKG 27014 SL33975 ST61 SL24017 1828-0138 9 C COMPARATOR PRON DUAL 8-DIP-P PKG 27014 SL34959 SA1U17 1258-0224 9 2 CONN_UMMER PROGRAMMING 71279 450-3398-01-03-00 A21W2 1251-1636 4 C CONT-SCTOR-SC_CONT-SKT_04-IN-BSC-SZ RND 71279 460-2398-01-03-00 A21W2 1251-1636 4 C CONT-SCTOR-SC_CONT-SKT_04-IN-BSC-SZ RND 71279 460-2398-01-03-00 A21W2 1258-0224 9 C CAPACTOR-SC_CONT-SKT_04-IN-BSC-SZ RND 71279 460-2398-01-03-00 A21W2 1258-0224 9 C CAPACTOR-SC_CONT-SCTOR-SC_CONT-SC_CO	A21U2 A21U3 A21U4	1826-0138 1820-1289 1826-0138	9 9	4	IC COMPARATOR GP QUAD 14-DIP-P PKG IC DRVR TTL CLK TTL-TO-MOS 1-INP IC COMPARATOR GP QUAD 14-DIP-P PKG	27014 27014 27014	SL24958 SD31013 SL24958
A21U13	A21U7 A21UB A21U10	1826-0059 1826-0138 1826-0677	2 8 0	1	IC OP AMP GP TO-99 PKG IC COMPARATOR GP QUAD 14-DIP-P PKG IC V RGLTR-ADJ-POS 1.2/32V TO-3 PKG	27014 27014 27014	SL160702 SL24958 SL39385
A21W1 1256-0224 8 2 CON-JUMPER PROGRAMING 71279 461-2872-02-03-10 A21W2 1256-0224 8 2 CONECTOR-SG CONT SKT. 04-IN-BSC-SZ RND 71279 461-2872-02-03-10 A21W2 1256-0224 8 2 CONECTOR-SG CONT SKT. 04-IN-BSC-SZ RND 71279 461-2872-02-03-10 A21W2 1256-0224 8 2 CON-JUMPER PROGRAMMING 71279 461-2872-02-03-10 A21W2 A25 03577-66525 0 1 PC BOARD R.F. FILTER 28480 03577-66525 2 2480 035	A21U13 A21U14 A21U15	1826-0393 1826-0527 1826-0412	7 9 1	1	IC V RGLTR-ADJ-POS 1.2/37V TO-220 PKG IC V RGLTR-ADJ-NEG 1.2/37V TO-220 PKG IC COMPARATOR PRON DUAL 8-DIP-P PKG	27014 27014 27014	SL33076 SL35761 SL33675
A31	A21W1 A21W2	1258-0224 1251-1636	8 4		CON-JUMPER PROGRAMMING CONNECTOR-SGL CONT SKT .04-IN-BSC-SZ RND	71279 71279	461-2872-02-03-10 450-3388-01-03-00
A31C1 0180-1794 3 1 CAPACITOR.FXD 22UF+.10% 35VDC TA 13606 150D226X9035R2-DYS A31C2 0180-3847 9 2 CAPACITOR.FXD 1500FF +.5% 300VDC CER 04222 SA105C103KAA A31C5 0180-3847 9 CAPACITOR.FXD 1500FF +.5% 300VDC MICA 00853 A31C5 0180-3847 9 CAPACITOR.FXD 01UF +100-0% 50VDC CER 04222 SA105C103KAA 031C6 0180-3847 9 CAPACITOR.FXD 01UF +100-0% 50VDC CER 04222 SA105C103KAA 031C6 0180-6510 9 1 C.F. 1UF 20% 50V CERMLr 28480 RPE121-978X7R104M50V A31CR1-CR2 1901-0040 1 2 DIODE.SWITCHING 30V 5CMA 2NS DO-35 07263 FDH108B A31J1 1250-1611 3 1 CONN-ROST TYPE 2.5-PIN-SPCG 3-CONT 27284 22-12-1032. A31L1 9100-1819 1 1 INDUCTOR RF-CH-MLD 5.6UH 10% 99901 1537-30 A31L1 9100-1819 3 1 INDUCTOR RF-CH-MLD 5.6UH 10% 99901 1537-30 A31C1 9100-2486 3 1 INDUCTOR RF-CH-MLD 5.6UH 10% 99901 1537-30 A31C1 9140-0238 3 1 INDUCTOR RF-CH-MLD 5.6UH 10% 99901 1537-30 A31C1-Q2 1853-0020 4 1 TRANSISTOR PNP SI PD-300MW FT-150MHZ 04713 SPS3609 A31C1 0757-0442 9 1 RSSISTOR J-FET 2NA332 N-CHAIN D-MODE 04713 SPS3609 SF125H	A25	03577-66525	0	1	PC BOARD R.F. FILTER	28480	03577-66525
A31C2			1 1	1			
A31J1	A31C2 A31C3-C4 A31C5	0160-3847 0160-2222 0160-3847	9 2 9	2	CAPACITOR-FXD .01UF +100-0% 50VDC CER CAPACITOR-FXD 1500PF +-5% 300VDC MICA CAPACITOR-FXD .01UF +100-0% 50VDC CER	04222 00B53 04222	SA105C103KAA SA105C103KAA
A3101-02 1853-0020 4 1 TRANSISTOR PNP SI PD-300MW FT-150MHZ C4713 SPS3609 A3103-04 1855-0396 9 1 TRANSISTOR J-FET 2N4392 N-CHAN D-MODE C4713 SFE1552 A31R1 0757-0442 9 1 RESISTOR 10K 1% .125W FT C2-0+-100 19701 SFR25H	A31J1 A31J2 A31L1	1250-1611 1251-5971 9100-1619	3 8 1	1 1 1	CONNECTOR-RF SMB M PC 50-OHM CONN-POST TYPE 2,5-PIN-SPCG 3-CONT INDUCTOR RF-CH-MLD 5,6UH 10%	98291 27264 99800	51-051-0289 22-12-1032 1537-30
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A31Q1-Q2 A31Q3-Q4	1853-0020 1855-0386	9	1 1 1	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR J-FET 2N4392 N-CHAN D-MODE	04713 04713	SPS3609 SFE1552
		ı					

See introduction to this section for ordering information
* Indicates factory selected values

Replaceable Parts HP 3577A

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	CD	Qty.	Description	Mfr. Code	Mfr. Part Number
A31R3 A31R4-R6 A31R7 A31R8 A31R9	0683-2225 0683-4705 0698-3279 0757-0449 2100-3351	3 B O 6 6	1 3 1 1	RESISTOR 2.2K 5% .25W CF TC=0.400 RESISTOR 47 5% .25W CF TC=0.400 RESISTOR 4.98K 1% .125W F TC=0+.100 RESISTOR 20K 1% .125W F TC=0+-100 RESISTOR-TRIMF 500 10% C SIDE-ADJ 1.TRN	77902 77902 19701 19701 32997	R-25J R-25J SFR25H SFR25H 3386X-Y46-501
A31R10 A31R11 A31R12 A31R13 A31R14	0698-4442 0698-4308 0693-1055 0698-4438 0683-4705	18559	1 1 2 1	RESISTOR 4.42K 1% .125W F TC=0+-100 RESISTOR 16.9K 1% .125W F TC=0+-100 RESISTOR 1M 5% .25W CF TC=0-800 RESISTOR 3.09K 1% .125W F TC=0+-100 RESISTOR 47 5% .25W CF TC=0-400	91637 19701 77902 91637 77902	CMF-55-1, T-1 SFR25H R-25J CMF-55-1, T-1 R-25J
A31R15-R18 A31R17 A31R18 A31U1 A31U2	0696-4453 0683-1055 0683-1035 0980-0465 1826-0026	4 5 1 7 3	2 1 1 1	RESISTOR 402 1% .125W F TC=0+-100 RESISTOR 1M 5% .25W CF TC=0-800 RESISTOR 10K 5% .25W CF TC=0-400 OSC 10.00 MHZ IC COMPARATOR PRON TO-99 PKG	91637 77902 77902 12020 27014	CMF-55-1, T-1 R-25J R-25J OSC 73-52 SL11762
	5040-7278 5041-0376 5041-0093 5041-0095 5041-0202	9 6 4 6 7	8 8 1 1	MOLD KCAP EXT MOLD KCAP-BLANK MOLD KCAP-PLOT MOLD KCAP-SAVE MOLD KCAP ON/OFF	28480 28480 28480 28480 28480	5040-7278 5041-0376 5041-0093 5041-0095 5041-0202
	5041-0309 5041-0720 5041-0726 5041-0775 5041-2894	5 4 0 9 7	1 1 1 1	MOLD KCAP CAP PTY GRAY MOLD KCAP INSTR PRESET MOLD KCAP C-LCL MOLD KCAP REGALL MOLD KCAP DISPLY FCTN	28480 28480 28480 28480 28480	5041-0309 5041-0720 5041-0726 5041-0775 5041-2894
	5041-2695 5041-2696 5041-2697 5041-2696 5041-2699	8 9 0 1 2	1 1 1 1	MOLD KCAP MEASR CAL MOLD KCAP DEFINE MATH MOLD KCAP MKR ARROW MOLD KCAP SWEEP MODE MOLD KCAP TRIG MODE	28480 28480 28480 28480 28480	5041-2895 5041-2896 5041-2897 5041-2898 5041-2899
	5041-2900 5041-2901 6041-2902 5041-2903 5041-2904	8 7 8 9	; 1 1 1	MOLD KOAP AVG MOLD KCAP LENGTH MOLD KCAP TRIG/PESET MOLD KCAP STORE DATA MOLD KCAP SPOL FCTN	28480 28480 28480 28480 28480	5041-2900 5041-2901 5041-2902 5041-2903 5041-2904
	5041-2905 5041-2908 5041-2907 5041-2908 5041-2909	1 2 3 4 5	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	MOLD KCAP TRACE 1 MOLD KCAP TRACE II MOLD KCAP SWEEP TYPE MOLD KCAP ENTRY OFF MOLD KCAP BACK SPACE	29480 28480 28480 28480 28480	5041-2905 5041-2906 5041-2907 5041-2909 5041-2909
	5041-2910 5041-2911 5041-2912 5041-2913 5041-2914	8 9 0 1 2	1 1 2 1 1	MOLD KCAP - MOLD KCAP - MOLD KCAP ARROW UP/DN MOLD KCAP 1 MOLD KCAP 2	28480 28480 28480 28480 28480	5041-2910 5041-2911 5041-2912 5041-2913 5041-2914
	5041-2915 5041-2916 5041-2917 5041-2918 5041-2919	3 4 5 6 7	1 1 1 2 1	MOLD KCAP 3 MOLD KCAP 4 MOLD KCAP 5 MOLD KCAP 6 MOLD KCAP 7	28480 28480 28480 28480 28480 28480	5041-2915 5041-2916 5041-2917 5041-2919 5041-2919
	5041-2920 5041-2922 5041-2923 5041-2924 5041-2925	0 2 3 4 5	1 1 1 1	MOLD KCAP 8 MOLD KCAP 0 MOLD KCAP INPUT MOLD KCAP SCALE MOLD KCAP MKR	28480 28480 28480 28480 28480	5041-2920 5041-2922 5041-2923 5041-2924 5041-2925
	5041-2926 5041-2927 5041-2928 5041-2929 5041-2930	6 7 8 9 2	1 1 1	MOLD KCAP SWEEP TIME MOLD KCAP FREQ MOLD KCAP AMPTD MOLD KCAP RES BW MOLD KCAP ATTEN	29480 28480 28480 28480 28480	5041-2926 5041-2927 5041-2928 5041-2929 5041-2930
	0370-3033 2110-0056 2110-0003 2110-0564 2110-0565	03089	1 1 1 1	KNOB-BASE 1-1/2 JGK .25-IN-ID FUSE 6A 250V NTD 1.25X,25 UL FUSE 3A 250V NTD 1.25X,25 UL5 FUSEHOLDER BODY 12A MAX FOR UL FUSEHOLDER CAP 12A MAX FOR UL	28480 75915 75915 H9027 H9027	0370-3033 312 006 312 003 031.1657 031.1666
	2110-0569 03577-04116 3150-0218 3160-0408 03582-04104	3 5 4 5 8	1 1 1 1	FUSEHOLDER COMPONENT NUT; THREAD M12.7 SHTF GRO-FUSE HLDR PLCR FILTER-AIR 32 STD MESH MET SCREEN FAN-TBAX 90-CFM 19-28VDC SHTF GUARD-FAN SW SCREEN	H9027 26480 28480 C02294 28480	583.0016 03577-04116 LZ60 032274 03582-04104

See introduction to this section for ordering information
* Indicates factory selected values

HP 3577A Replaceable Parts

Table 5-3. Replaceable Parts

Reference Designation	HP Part Number	C	Qty.	Description	Mfr. Code	Mfr. Part Number
	03577-61608 03577-61609 03577-61610 03577-61611 03577-61601	0 1 4 5 3	1 1 1 1	KEYBOARD CABLE 330MM GY OVEN CABLE 570MM ML FAN CABLE 475MM ML POP/TRIG CABLE 460MM ML CABLE ASSEMBLY FRONT PANEL 69MM	28480 28480 28480 26480 98291	
	03577-61639 03577-61612 03577-61615 03577-61616 03577-61617	6 6 9 0 1	1 1 1	CABLE ASSY 180MM MI. 15V SUPPLY CABLE 400MM MI. EXTERNAL TRIG CABLE 270MM WH PRIOBE POWER CABLE - SHORT 270MM MI. PROBE POWER CABLE - MEDIUM 285MM MI.	26480 26480 26480 26480 26480	
	03577-61618 5060-0487 03577-61619 1251-8628 1345A # C16	263B6	131	PROBE POWER CABLE - LONG 315MM ML PLST CONNECTOR PROBE TEST ST CONN CBL 48MM ML REAR PANEL CONNECTOR 4-PIN CRT MONITOR	28480 28480 28480 82389 28480	5060-0467 TB4M 1345A # C16
	03577-29301 03577-61603 03577-61201 9135-0225 03577-61614	2 5 9 7 0	1 1 1 1	LENSE-CRT FILTER,SMOKED:3577A DISPLAY POWER CABLE 730MM ML SHTF BRKT-UPR DSPLY LINE FILTER POWER SWITCH CABLE ASSEMBLY 750MM ML	22670 28480 28480 05245 28480	03577-61201 F3071E
	3101-2749 5061-8008	7 9	† 1	POWER SWITCH RPG CABLE ASSEMBLY	101021 28490	N30 5061-8008

See introduction to this section for ordering information * Indicates factory selected values

Parts (Common to All Cabinet Depths Qty.	Part No.		Parts	Common to All Cabinet Depths Qty.	Part No.
1.	Front Frame	5021-5807		7.	Tilt Stand	1460-1345
	Screw, Front Frame	0515-0657		8.	Front Cap, Strap Handle 2	5041-6819
	Screw, Attaches to CRT Bezel 4	0515-0889		9.	Rear Cap, Strap Handle 2	5041-6820
2.	Rear Frame	5021-5808			Screw, Strap Handle 4	0515-1132
	Screw, Corner Struts/Front and			11	Rack Mt Flange with	
	Rear Frames 16	0515-1331			Front Handle 2	5020-8876
	Caution Label	7121-2527		12.	Side Gussett	5001-0434
3.	Front Handle Assy 2	5060-9901		13.	Side Trim, Front Frame w/o	
4.	Trim, Front Handle	5020-8898			Front Handle 2	5001-0441
5	Top Trim, Front Frame 1	5040-7202		14.	Rack Mt Flange w/o Front Handle 2	5020-8864
6	Foot 4	5040-7201				
Parts	Unique to Each Cabinet Depth		Qty.	2	3"	
15.	Corner Strut, w/Tapped Holes		. 4	5020	P-8823	
15a.	Corner Strut, w/o Tapped Holes			5021	-5838	
16.	Top Cover		.1	5061	-9436	
17	Bottom Cover		1	5061	-9448	
17a.	Bottom Cover, Perf		1	5060	-9994	
18.	Side Cover, w/Handle Recess		2	5060	-9889	
18a.	Side Cover, Perf. w/Handle Recess		2	5060	-9948	
19.	Strap Handle		2	5060	-9805	
Parts	Unique to Each Instrument		Qty.			
20	Front Dress Panel		1	03577	-04301	
21.	Front Sub Panel		1	03577	-00202	
	Rear Panel			03577		

[†] Optional

Figure 5-1. Cabinet Parts, Exploded View

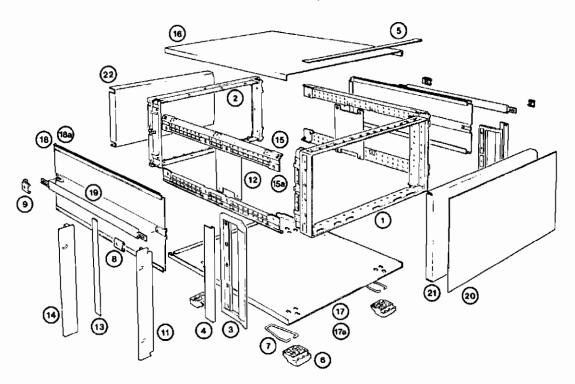


Figure 5-2. Cabinet Parts, Exploded View

5-49/5-50

SECTION VI MANUAL BACKDATING

Table of Contents

6-1	Introduction
6-2	Manual Change Sheets6-2
6- 3	Manual Change Instructions 6-2

SECTION VI MANUAL BACKDATING

6-1 INTRODUCTION

The revision of this manual applies directly to instruments in the serial number range indicated on the title page. Earlier versions of this instrument (serial numbers lower than shown on the title pate) differ slightly in design and in some cases appearance. To adapt this manual to your instrument, refer to Table 6-1 and make all of the changes listed opposite your instrument serial number.

Table 6-1 Manual Changes.

Instrument Serial Number	Make Manual Changes
2333A10101 to	A through W
2333A10150	
2333A10151 to	B through W
2333A10185	
2333A10186 to	C through W
2333A10210	
2333A10211 to	D through W
2333A10222	
2333A10223 to	E through W
2333A10239	
2333A10240 to	F through W
2333A10284	
2333A10285 to	C through W
2333A10315	
2333A10316 to	H through W
2333A10389	
2333A10390 to	I through W
2333A10459	
2333A10460 to	J through W
2333A11054	
2333A11055 to	K through W
2333A11071	
2333A11072 to	į through W
2333A11392	

Table 6-1 Manual Changes.

Instrument Serial Number	Make Manual Changes
2333A11393 to	M through W
2333A11420	
2333A11421 to	N through W
2333A11490	
2333A11491 to	O through W
2333A11701	
2503A11702 to	P through W
2503A11931	
2503A11932 to	Q through W
2503A11970	
2503A11971 to	R through W
2503A12050	
2503A12051 to	S through W
2503A12239	
2503A12240 to	T through W
2503A12271	
2503A12272 to	U through W
2503A12446	
2503A12247 to	V and W
2702A12798	
2702A12799 to	w
2702A12977	٧٧

6-2 MANUAL CHANGE SHEETS

As Hewlett-Packard continues to improve the performance of the HP3577A, corrections and modifications to the manual may be required. Required changes are documented by a yellow "MANUAL CHANGES" supplement and/or revised pages. In order to keep the manual up to date, one should periodically request the most recent supplement which is available from the nearest Hewlett-Packard sales and service office. Any changes shown on the supplement sheet which apply to your instrument (identified by serial number), should be implemented into the manual.

6-3 MANUAL CHANGE INSTRUCTIONS

CHANGE A

Replaceable Parts List, Table 5-3:

Delete A5C77 and A5L77.

Delete A6CR34, A6R31, and A6R124.

Change the part numbers and values of A6R27 to 0698-4480, 15.8K; A6R32 to 0698-3558, 4.02K; A6R35 to 0683-3035, 30K; and A6R36 to 0757-0439, 6.81K.

Delete A11C44, A11R17-R22, and A11U61.

Add A11C35 and A11C36, 0160-3847, .01 μ F; A11L3, 9100-3560, 5.6 μ H; A11R16, 0683-1025, 1K; and A11R17, 0683-3025, 3K.

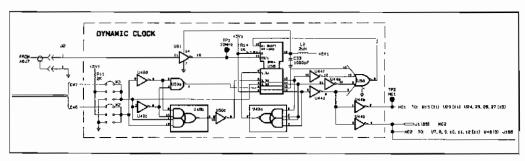
Delete A16U10 and A16U19.

Change the part number and value of A16U20 to 1820-1144, IC GATE TTL LS NOR QUAD 2-INP.

Page 8-47/48, Figure 8-8.

Below the 300.25 MHz VCO block delete the $\pm 12V3$ supply (C77 and L77). Change the supplies in the 300.25 MHz buffer, mixer divider, and mixer buffer blocks from $\pm 12V3$ to $\pm 12V2$.

Page 8-55/56, Figure 8-9.


In the 10MHz Reference VCXO block, change the value of R27 to 7.8K and C8 to 320 pF.

Page 8-103/104, Figure 8-15.

Delete the following 4.7K pull-up resistors: R21 in the Read/Write Control block; R22 in the Timing block; and R17-R19 at the inputs to U23 in the Micro Program Sequencer block.

Page 8-105/106, Figure 8-16.

In the Dynamic Clock block, change the circuit feeding TP1 as shown in the following figure. Delete U61 information from the table on the apron page.

Page 8-147/148, Figure 8-22.

Replace the A16 schematic in the Service section with the A16 backdating schematic.

CHANGE B

Replaceable Parts List, Table 5-3:

Change the part number and value of A7C108 to 0180-2817, 47 μ F.

Page 8-69/8-70, A7 Component Locator.

Delete R46 from the component locator.

Page 8-71/8-72, Figure 8-11.

In the 5V regulator section, change the value of C108 to 47 μ F.

Page 8-73/8-74, Figure 8-12.

In the Fraction N Control block, add an inverter (U21c) in the FDAT(not) line to U19 pin 26 (EXT CLK).

CHANGE C

Replaceable Parts List, Table 5-3:

Change the part number of A1R44 to 2100-3356. The value does not change.

CHANGE D

Replaceable Parts List, Table 5-3:

Add A82C63 and A8C264, 0160-4380, 1 pF.

Delete A8R88.

Change the part numbers and values of A8C260 to 0160-3872, 2.2 pF and A8R72 to 0699-1188, 100 Ω_{\cdot}

Change the part numbers of the following resistors on the A8 board: R73 and R75 to 0699-1189; R74 to 0699-1190; R76 and R78 to 0699-1191; R77 to 0699-1192; R79, R81, R82, R84, R85, and R87 to 0699-1193; and R80, R83, and R86 to 0699-1194. The values for R73 through R87 remain the same, but the newer parts are less inductive than the old parts, which have TRW markings. If any of the old parts are changed, all 15 resistors must be replaced with the new parts and the capacitors C260-C264 changed to the new layout. The parts for R73-R78 must be installed with glass beads (4330-0496) on the leads.

Page 8-83/8-84, Figure 8-13.

In the output of the 15dB amplifier block, delete R88 and change the value of R72 to 50 Ω .

Page 8-85/8-86, Figure 8-14.

In the 60dB Attenuator block move the positive end of C260 to the connection between R74 and R74. Move the positive end of C261 to the connection between R77 and R78. Move the positive end of C262 to the connection between R80 and R81. Add C263 from the connection of R83 and R84 to ground. Add C264 from the connection of R86 and R87 to ground. The value of all five capacitors (C260-264) should be 1 pF.

CHANGE E

Replaceable Parts List, Figure 5-3:

Change the part number and description of A13U86 to 1820-1208, IC GATE TTL LS AND QUAD 2-INP.

Page 8-131/8-132, Figure 8-18.

At the right edge of the Fast Bus Interface block, change U86 to an AND gate and connect pin 1 to \pm 5V1 instead of ground.

Page 8-133/8-134, Figure 8-19.

Delete the OR gate between U59 and the VPA input to U1. Pin 6 of U59 should connect directly to pin 21 of U1. In the Trigger block, change the output gate U86 to an AND gate and connect pin 4 to +5V1 instead of ground.

Page 8-135/8-136, Figure 8-20.

Below the Display Interface block, delete the connection from U59 pin 1 to INTO(not) U59(6). Connect U59 pin 1 to U2 pin 6. U52 pin 13 should connect to U51 pin 13 rather than pin 12.

CHANGE F

Replaceable Parts List, Table 5-3:

Change the parts numbers and values of A16C4-C7, C10-C12, C16-C23, C26-C29, and C33-36 to 0160-3879, .01 μ F.

Change the part numbers and values of A16R1, R6, and R7 to 0683-2225, 2.2K; and A16RP1-RP6 to 1810-0219, 220 ohm.

Delete A16C41 and A16U3.

CHANGE G

Page 8-151/8-152.

In the upper left corner of the circuit-side component locator change the color label of the WHT/BLU under "TO OVEN" to read WHT/BLK.

CHANGE H

Replaceable Parts List, Table 5-3:

Change the part number and value of A5C66 and A5C67 to 0180-0553, $0.1~\mu F$.

Delete A5C110 and A5C111.

Page 8-47/8-48, Figure 8-8

In the \pm 12 V supplies, change the value of C66 and C67 to 0.1 μF and delete C110 and C111.

CHANGE I

Replaceable Parts List, Table 5-3:

Change the part number and value of A6C69 to 0160-0576, 0.1 μF .

Page 8-55/8-56, Figure 8-9

In the 300 MHz VCO, change C69 to 0.1 µF, non-polarized.

CHANGE J

Replaceable Parts List, Table 5-3:

Cable W7 must be replaced with part number 03577-61607 to be compatible with the display used in these serial numbers. Rev D of the A13 board was also effected at this time.

A21CR17, CR85, CR93, CR96, CR101, CR104, and CR107 may be loaded with part number 1884-0052 (GE,C103YY,TO-18 package). This part is no longer available and has been replaced with 1884-0317 (GE,C203YY,TO-92 package). The parts are interchangeable but 1884-0317 must be turned 180° from the orientation of 1884-0052.

A5U42 may be loaded with part number 1820-1432. If this part is replaced with 1820-1420, C4 may need to be padded to meet the 300.25 MHz VCO specification. Padding parts are 0160-4887 (25 pF) or 0160-4774 (24 pF).

CHANGE K

Replaceable Parts List, Table 5-3, and page 8-141/8-142, Figure 8-21.

If A15 is Rev A, delete R3-R6

CHANGE L

Replaceable Parts List, Table 5-3:

The 5V supply cable (01377-61613) used in these instruments has been replaced by cables 03577-61638 and 03577-61639. The parts are not interchangeable. To repair Rev A or Rev B boards, refer to the Service Note for instructions and parts to be ordered.

CHANGE M

Replaceable Parts List, Table 5-3:

Delete A8C350, A8C351, A8C352, A8C353, A8C354, A8C355, A8L250 and A8L251

Page 8-83/8-84, Figure 8-13.

In the Mixer Buffer block, delete C350, C351, C352, C353, C354, C355, L250, and L251.

CHANGE N

Replaceable Parts List, Table 5-3:

Delete A4J12, A4W7, A4L201, A4C203, A4C205, A4C202, A4R201, A4R202, A4R203, and A4R204. Change the part number and value of A4C167 to 0160-3558, 0.1 μ F; A4C53, A4C63, A4C73, and A4C93 to 0180-2794, 3.3 μ F. Add A4R28, 0698-7205, 51.1 Ω .

Page 8-39/8-40, Figure 8-6.

In the 10 dB Buffer, delete R201, R202, and R203.

Page 8-41/8-42, Figure 8-7.

In the first 20 dB Amplifier, delete L201, C202, C203, C205 and R204. Between the 20 dB Amplifier and the Leveling Loop, delete J12 and W7. In the 20 dB Amplifiers at the output, change the value of C53, C73, and C93 to 3.3 μ F. In the leveling loop, change the value of C167 to 0.1 μ F and add resistor R28, 51.1 Ω from C167 to ground. In the second 20 dB Amplifier, change the value of C63 to 3.3 μ F.

CHANGE O

Page 1-4, Paragraph 1-5, OPTIONS

Change the part numbers of the Front Handle Kit (Option 907) to 5061-0091, Rack Mounting Kit (Option 908) to 5061-0079, and Front Handle and Rack Mount Kit (Option 909) to 5061-0085.

MANUAL BACKDATING MODEL 3577A

Page 5-49/5-50, Figure 5-1.

Change the part numbers of the Front Frame to 5020-8807; Rear Frame to 5020-8808; Front Cap, Strap Handle to 5040-7219; Rear Cap, Strap Handle to 5040-7220; Corner Strut, w/o Tapped Holes to 5020-8838; Top Cover to 5060-9836; Bottom Cover to 5060-9848; Screw, Attaches to CRT Bezel to 0515-0218; Screw, Front Frame to 0515-0657; Screw, Corner Struts/Front and Rear Frames to 2510-0192; and Screw, Strap Handle to 2680-0172.

CHANGE P

Replaceable Parts List, Table 5-3:

Change the part number of A15RPG (also listed at the end of the table as RPG) to 03585-61630.

CHANGE O

Replaceable Parts List, Table 5-3:

Delete A20C1 and A20C2.

CHANGE R

Replaceable Parts List, Table 5-3:

Change the part numbers and values of A1RP2 to 1810-0398, 22 k; A1R46 to 0683-4725, 4.7 k; A1R47 to 0683-3935, 39 k; A1R49 to 0683-4735, 47 k. Delete A1R201 and A1R202.

Page 8-29/8-30, Figure 8-5.

Delete R201 and R202 from the Sample and Hold/Variable Gain Amplifier. Also change the value of RP2 to 22 k, R46 to 4.7 k, R47 to 39 k, and R49 to 47 k.

CHANGE S

Replaceable Parts List, Table 5-3:

Delete A4C207 and A4C208.

Page 8-41/8-42, Figure 8-7.

In the first 14 dB Amplifier, delete C207 and C208.

CHANGE T

Replaceable Parts List, Table 5-3:

Delete A6C128.

Page 8-55/8-56, Figure 8-9.

In the 10 MHz Reference VCXO, delete C128

CHANGE U

Replaceable Parts List, Table 5-3:

Change the part numbers and values of A6C24 to 0160-6525, 47 pF; A6R8 to 0698-3226, 6.49 k; A6R9 to 0698-3155, 4.6 k.

Page 8-55/8-56, Figure 8-9.

In the 10 MHz Reference VCXO, change the value of C24 to 47 pF, R8 to 6.49~k, and R9 to 4.6~k.

CHANGE V

Replaceable Parts List, Table 5-3:

Delete A25.

Page 5-51/5-52, Figure 5-3.

Delete Filter board and Filter to LO Cable. Change Ref to Filter Cable to Ref to LO Cable. Alter Figure 4-5 to reflect these changes.

Page 2-27/2-28, Figure 2-4.

At the A6J3 connector, change the TO location from A25J1 to A4J1.

Page 2-29/2-30, Figure 2-5.

Delete the A25 board and label the input of the A4J1 connector FROM A6J3.

CHANGE W

Replaceable Parts List, Table 5-3:

Change the part numbers and values of A4R13 and A4R15 to 0689-7223, 287 Ω ; A4R14 to 0699-2030, 17.8 Ω .

Page 8-39/8-40, Figure 8-6.

In the 1.7 dB pad, change the value of R13 and R15 to 287 Ω and R14 to 17.8 Ω_{\cdot}

6-9/6-10

SECTION VII CIRCUIT DESCRIPTIONS

Table of Contents

7-1	Introdu	duction 7	
7-2	A1	Input Board	
7-3	A4	Local Oscillator Board	
7-4	A5	250 kHz Offset Board	
7-5	A6	Frequency Reference Board	
7-6	A7	Synthesizer Board	
7-7	A8	Output Board	
7-8	A11	Fast Processor Board	
7-9	A12	Trace Memory Board	
7-10	A13	Main Processor-Controller Board7-14	
7-11	A15	Keyboard	
7-12	A16	HP-IB Board	
7-13	A20	Motherboard	
7-14	A21	Power Supply Board	
7-15	A31	Oven Board	
7-16	1345A	Digital Display 7-20	

SECTION VII CIRCUIT DESCRIPTIONS

7-1 INTRODUCTION

MODEL 3577A

This section provides circuit descriptions to be used along with the schematics of Section VIII (Service). This information should be used after isolating faults to the functional block level. The descriptions here and the schematics in Section VIII provide information for fault isolation inside each functional block. The technician's expertise is then relied upon to isolate the faulty component(s) within the functional block.

If more general information is desired, the overall instrument operation description in Section II (Fault Isolation) gives a broader explanation of the instrument's operation.

7-2 A1 INPUT BOARD

Circuit Board Description

The input board (A1) is a tuned, low noise receiver. The input board is tuned to the source output (A8) frequency and tracks it as the source is swept. The receiver can be tuned from 5 Hz to 200 MHz with tuning bandwidth of 1 Hz to 1 kHz in decade values. This board processes the input signal using both analog and digital signal processing. The analog processing includes input impedance, input attenuation, and frequency conversion from the source frequency to a 10 kHz intermediate frequency (IF) with amplitude and phase information preserved. The digital signal processing includes sampling the 10 kHz IF at an 8 kHz rate, creating a 2 kHz digital IF. The real and imaginary phasor components are extracted using quadrature mixing via the digital filters. These filters also set the receiver tuning bandwidth.

50/1M Ohm Input Attenuator

Relay K1 selects the receiver input impedance. The relaxed state for the relay is the 1M ohm position. Relays K2 and K3 select the input attenuation, 0 or 20 dB. Each impedance path has its own 20 dB attenuator. The relaxed state for relays K2 and K3 are in the 0 dB attenuation position. Relays K2 and K3 are always switched together. The 1M ohm path also has a buffer amplifier which is used as an impedance converter. It converts from a 1M ohm to a 50 ohm environment where the rest of the instrument operates.

Buffer Amplifier

The unity gain buffer amplifier consists of a 12 dB amplifier and a 12 dB attenuator. Both the amplifier and the attenuator are used to increase isolation between the first mixer and the "outside world." The buffer amplifier consists of Q1, Q2, Q3, and Q29. U42 is used in a dc servo loop to compensate for mixer feedthrough.

CIRCUIT DESCRIPTION MODEL 3577A

First Mixer

The first mixer down converts the 5 Hz to 200 MHz source frequency to a 250 kHz IF using the 0.25 MHz to 200.25 MHz local oscillator signal from the local oscillator board (A4).

Overload Detection

Diodes CR11 and CR12 detect the positive and negative peaks of the input signal. If the input signal is greater than ± 1.1 V peak, the comparators will signal an overload. This sets the input impedance relay to the 1M ohm position and signals the main processor-controller board (A13) that an overload has occurred.

250 kHz Bandpass Filter

The 250 kHz bandpass filter rejects all higher frequency mixer products from the first mixer. This filter also provides a zero at 230 kHz. The zero is to cancel any signals at 230 kHz, which is the image frequency for the next IF (10 kHz). At the beginning of this section there is an IF buffer used (A1Q4). This buffer presents a good 50 ohm load to the mixer. A good load is required in order to obtain a flat frequency response at the output of the mixer.

Second Mixer

The second mixer down converts the 250 kHz first IF frequency to the 10 kHz second IF. The local oscillator signal (240 kHz) is obtained from the frequency reference board (A6). L14, L12, and C106 are used to drop the gain of the mixer at input frequencies other than 250 kHz (Note: the two inductors provide magnetic field cancellation to reduce receiver-to-receiver cross talk).

IF Amplifier

The second IF amplifier provides isolation between the second mixer and the 10 kHz bandpass filter. It also sets the overall receiver gain to unity for both the 50 ohm and 1M ohm impedance positions.

10 kHz Active Bandpass Filter

The 10 kHz active bandpass filter cancels all upper frequency second mixer products. It also provides a zero at 14 kHz to cancel the 254 kHz first mixer feedthrough when the source is programmed for 4 kHz.

Sample and Hold

The sample and hold circuit samples the 10 kHz IF at an 8 kHz rate. This sampling action effectively down converts the 10 kHz IF to a 2 kHz digital IF. The 2 kHz signal is a stairstep output.

Variable Gain Amplifier

This section is a programmable 8-bit binary amplifier. The gain of the amplifier is variable between 1 and 128 in octave steps. The gain of the amplifier is set by the Analog to Digital converter. The A to D makes an 8-bit conversion with the amplifier set to a gain of 1.1. The conversion value is then used to program the amplifier for an A to D input voltage as close as possible to the A to D full scale input. This amplifier gives the A to D seven more bits of dynamic range.

MODEL 3577A CIRCUIT DESCRIPTION

Analog to Digital (A - D) Converter

The Analog to Digital converts the analog 2 kHz stairstep signal to a 2 kHz digital IF. The A to D first sets the gain of the variable gain amplifier with an 8-bit conversion, and then makes a 12-bit conversion on the amplified signal. This 8-bit/12-bit cycle is repeated for every stairstep on the digital 2 kHz IF signal.

Look Up Table Variable Gain Amplifier

This section provides optimum gain settings stored for a given 8-bit conversion in one-half of the ROM (A1U8). The other half of this section provides the number of zeros the digital filters should append to the 12-bit conversion result.

Digital Filters

The quadrature digital filters process the A to D output values by digitally mixing the values with the 2 kHz signal from the fast processor board (A11). The output is simultaneously mixed with two filters. One of the mixers is fed with the equivalent of a 2 kHz sine wave, the other with a cosine wave. The output of the filters is a digital representation of the "real" and "imaginary" components of the input. These values are then fed to the fast processor (A11) for storage and processing.

32 µS Timer

The timer is used for timeouts in the operation of the algorithmic state machine.

Algorithmic State Machine

This is a ROM based state machine. U31 & U32 latch present state and qualifier information, which is used by the ROM (U3) to determine the next state. The multiplexer (U1) determines which qualifiers will be used in making a decision.

Look Up Table For Control

The ROM (U25) is used to decode state information into various control signals.

I/O Port

The bidirectional latch handshakes data to the fast processor board (A11) via the Fast Data Bus.

NOTE

There are three (3) identical input boards (A1). Receivers: R, A, B

7-3 A4 LOCAL OSCILLATOR BOARD

Circuit Board Description

The local oscillator board (A4) is used to provide a signal (0.25 to 200.25 MHz) for mixing into the first IF conversion section of the input board (A1). This section has two input signals: a 300 MHz signal from the frequency reference board (A6) and a VCO signal (300.25 to 500.25 MHz) from the synthesizer board (A7).

CIRCUIT DESCRIPTION MODEL 3577A

10dB/20dB Buffer

These sections are used to provide amplification and isolation between the frequency reference (A6) and synthesizer board (A7) respectively.

300 MHz LPF

The 300 MHz low pass filters are used to reduce high frequency harmonic distortion.

Mixer

The mixer multiplies the signals from the frequency reference board (A6) and the synthesizer board (A7) to produce a signal ranging from 0.25 to 200.25 MHz.

200 MHz LPF

The 200 MHz low pass filters are used to remove all but the difference frequency produced by the mixer.

20dB/14dB Amplifiers

These sections are used to amplify the signal (0.25 to 200.25 MHz) by 48dB.

Leveling Loop

The leveling loop is used to maintain a constant amplitude level regardless of the incoming frequency. The signal (0.25 to 200.25 MHz) is first sent to a 10dB buffer amplifier via a power splitter. This signal is then peak detected. This sensed signal is then compared with a reference voltage by the servo amplifier. When an error signal has been sensed, the servo amplifier increases or decreases the current drive to the limiting mixer to maintain a constant output level.

20dB Amplifier/Power Splitter

These sections take the signal from the leveling loop and amplify it by 20dB. This signal is then distributed into three-ways by the power splitter.

20dB Amplifiers

The 20dB amplifiers provide amplification and isolation from the input boards (A1).

NOTE

There are three (3) identical input boards (A1). Receivers: R, A, B

7-4 A5 250 KHZ OFFSET BOARD

Circuit Board Description

The 250 kHz offset board (A5) offsets the 300 MHz signal from the frequency reference board (A6) to 300.25 MHz. The 300.25 MHz signal converts the 300.25 to 500.25 MHz synthesizer board (A7) signal to the 5 Hz to 200 MHz output board (A8) frequency.

MODEL 3577A CIRCUIT DESCRIPTION

6 MHz Divider

The 6 MHz from the frequency reference board (A6) is divided-by 24 to yield the 250 kHz offset frequency. This 250 kHz is the reference frequency for this board. The INIT line is from the main processor-controller board (A13) to insure that the divide by 24 signal is properly synchronized.

Phase Detector/Loop Filter/Oscillator Unlock Detector

The phase detector compares the 250 kHz reference signal from the 6 MHz divider and the 250 kHz difference frequency from the mixer. The loop filter integrates the phase detector output to create a dc tuned signal. The output of the loop filter is monitored by the oscillator unlock detector. When the loop filter output is a negative voltage or is greater than +9 volts, the unlock detector trips and sets the oscillator unlock to an active low line signal. The main processor-controller board (A13) then displays an error message ("OSCILLATOR UNLOCKED, Assembly A5, A6 or A7").

250 kHz Filter

This low pass filter removes any 250 kHz harmonics feedthrough from the phase detector and loop filter. Any feedthrough shows up as residual FM on the 300.25 MHz output.

300.25 MHz VCO

The 300.25 MHz VCO produces a 300.25 MHz signal phase locked to the 250 kHz reference signal. Phase locking is accomplished with the phase detector and varactor diode tune voltage.

300.25 MHz Buffer

The 300.25 MHz buffer drives the output board (A8) with the 300.25 MHz phase locked signal. The 6 dB pad and 10 dB amplifier isolate the offset board (A5) from the output board (A8).

Mixer Driver

The mixer driver amplifies the 300.25 MHz signal to drive the LO port of the mixer. A strong LO signal is required for good mixer translation.

Mixer Buffer

The buffer filter and pad provide additional isolation between the 300.25 MHz VCO and mixer.

300 MHz Buffer

The 300 MHz buffer amplifies the 300 MHz frequency reference board (A6) signal and provides isolation between the frequency reference board and the 250 kHz offset board (A5).

CIRCUIT DESCRIPTION MODEL 3577A

Mixer

The mixer multiplies the 300.25 MHz VCO signal (LO port) and the frequency reference board (A6) 300 MHz signal (RF port). The 250 kHz difference signal (IF port) is used to phase lock the 300.25 MHz VCO to the 250 kHz reference signal described earlier.

250 kHz Amplifier

This section amplifies the 250 kHz difference signal from the mixer. The signal is then used by the phase detector to lock the 300.25 MHz VCO to the 250 kHz reference.

7-5 A6 FREQUENCY REFERENCE BOARD

Circuit Board Description

The frequency reference board (A6) generates all of the reference frequencies used in the HP 3577A. It will lock to an external frequency reference of 10 MHz/N, where N=1,2,3,... and the external frequency reference is ≥ 100 kHz. This board is always connected to the oven board (A31). However, when an external frequency reference is connected, the oven board will then be turned off automatically so that the frequency reference board may lock to the external frequency reference. When the instrument is first turned on, the oven assembly is cold. During this time, the frequency reference board will free run on its own 10 MHz VCXO.

External Reference Path, Oven Path, and Differentiator

This section squares the signal from the external reference input or the oven (A31) input. This square wave is then fed to a differentiator which generates narrow pulses. This process is necessary in order for a 10 MHz harmonic to be generated when a sub-harmonic of 10 MHz is used as the external reference.

External Reference Detector

The square wave generated in the previous section is sensed by the external reference detector. The detector drives an LED on the frequency reference board (A6) to indicate that an external reference is present. The external reference detector also passes this information to the main processor-controller board (A13) via the EXT REF line which also drives an LED on the front panel. This same line is used to shut down the oven board (A31) output when an external reference signal is detected.

Phase Detector and Switchable Loop Filter/Reference Lock Detector

The phase detector is used to compare the external reference input signal or the oven (A31) input signal with the 10 MHz reference VCXO signal. The phase error signal generated by the phase detector is monitored by the reference lock detector. Whenever an ac signal is present at the phase detector output, this will indicate that the phase-locked loop is unlocked. During this time, the reference lock detector senses this condition and switches the switchable loop filter into a wide band configuration. The phase-locked loop captures the frequency reference by switching the loop filter to the wide band configuration. Once the loop is locked, the reference lock detector allows the switchable loop filter to switch back to a narrow band

MODEL 3577A CIRCUIT DESCRIPTION

configuration. Whenever the loop is unlocked (and consequently, whenever the loop is in the wideband configuration), the detector lights up the unlock LED on the frequency reference board (A6). The reference lock detector pass this information to the main processor-controller (A13) via the REF LOCK line and displays on the front panel "OSCILLATOR UNLOCKED, Assembly A5, A6 or A7."

10 MHz Reference VCXO

The output of the switchable loop filter is fed into the 10 MHz reference VCXO and then the output is buffered and fed back to the phase detector, thus closing the loop.

10 MHz Buffers

This section buffers the 10 MHz output from the phase-locked loop. This signal is then fed to the HP 3577A rear panel, "10 MHz OUT, 0 dBm" connector. This section also provides an additional separate 10 MHz signal for the HP-IB board (A16).

100 kHz Dividers

This section takes the output of the 10 MHz phase-locked loop and divides the frequency by 100 to generate the 100 kHz signal used in the synthesizer board (A7).

Phase Detector and Loop Filter/300 MHz Lock Detector

This section is very similar to the phase and lock detectors shown in the 10 MHz phase-locked loop section. The only difference is that the 300 MHz lock detector indicates whether or not the loop is locked (i.e., it does not switch any bandwidths in the loop filter).

300 MHz VCO

This section takes the output of the phase detector and uses it to control the frequency of the 300 MHz VCO. This frequency is then fed to the 250 kHz offset (A5) and output (A8) board.

Prescaler

The output of the 300 MHz VCO is divided down in two stages. The first stage divides the 300 MHz VCO signal down to 30 MHz. This signal is then sent to the fast processor board (A11). The second stage takes the 30 MHz signal output and divides it down to 10 MHz. This signal is then fed back to the phase detector to close the loop.

\div 2.5, \div 5, \div 3, \div 2 Dividers

The output of the first stage of the prescaler (30 MHz) is divided down appropriately to generate the necessary reference frequencies used in the HP 3577A.

÷ 50 & ÷ 30 Dividers and Phase initialization

The phase initialization circuitry operates in conjunction with the divide by 15 counter to produce an 8 kHz signal. This is done by loading a start count once when the HP 3577A is initialized and thereafter allowing the counter to operate normally. Phase may be offset in 30° increments by configuring a switch in the phase initialization circuitry to change the count that is loaded initially.

CIRCUIT DESCRIPTION MODEL 3577A

7-6 A7 SYNTHESIZER BOARD

Circuit Board Description

The synthesizer board (A7) generates a signal in the frequency range of 300.25 to 500.25 MHz with 0.001 Hz resolution. This board uses the Fractional-N synthesis technique which will not be discussed in this manual. For a full explanation of Fractional-N, refer to the following Hewlett-Packard Service Manuals: 3325A Synthesizer/Function Generator, 3336A/B/C Synthesizer/Level Generator, and 3586A/B/C Selective Level Meter. The only input to this board is the 100 kHz signal from the frequency reference board (A6). This signal is used as a frequency reference by the synthesizer for phase-locked loop capabilities. The output signal of this board is sent to the source output board (A8) and the local oscillator board (A4).

Fractional N Control

The data and control latches of this section provide the Fractional-N chip (U19) with the appropriate data bus commands from the main processor-controller (A13). The following signal names are used:

- 1. FDAT loads the data for the Fractional-N.
- 2. FINST is used as an instruction load for the Fractional-N.
- FHOLD tells the Fractional-N to hold until trigger. This signal is used for synchronizing the start of a sweep.
- 4. STATWR is a main processor-controller status interrupt. This signal is used to synchronize the start of a sweep. This signal comes from the fast processor board (A11).
- The 8 kHz signal is used for final start-of-sweep. This insures that the Fractional-N, input board (A1), and the fast processor board (A11) are synchronized properly so that the appropriate data is taken.

Fractional N

The Fractional-N chip (U19) is the "heart" of the frequency synthesis technique. This chip controls the divide by N counter and the API & Bias Current Sources. The FRACLMT signal is the sweep limit control which comes from the main processor controller board (A13). This signal is used to interface with a sweep input on the Fractional-N chip. The FRACFLG signal is a sweep limit flag which goes to the output (A8) and main processor-controller board (A13). This signal indicates that the sweep frequency has exceeded the value in the limit register in the Fractional-N chip.

+ N Counter

The $\div N$ counter consists of the following sections:

- MSD ÷10 (Max)
- 2nd MSD ÷ 10 (Max)
- Least Significant Digit ÷ 5 (Max)
- 9's Complement of N Storage
- Preload One Shot
- PreLoad
- Pulse Remove Logic

- Pulse Remove Sync
- Dual Modulus Divider
- Chip Clock and Cycle Start
- VCO/N.F. Reclock

The purpose of the $\div N$ counter (where N is an integer from 300 to 500) is dividing the prescaled VCO (VCO/10) by some number (N) and producing the 100 kHz signal required by the phase detector.

API (Analog Phase Interpolation) & Bias Current Sources

The API & Bias Current Sources consist of the following sections:

- API & Bias Current Control
- Bias Current Source
- Current Sinks

These current sources discharge the integrator after it has been charged by the phase detector. By discharging (subtracting) current from the integrator, this insures that the dc control voltage from the sample and hold maintains a steady dc state.

Phase Detector

The phase detector compares the 100 kHz from the frequency reference (A6) with the \div N counter output (VCO/N.F.). The output of the phase detector is a series of pulses of equal width. The width of the pulses depends on the phase difference detected between the 100 kHz reference and the VCO/N.F.

Integrator/Sample and Hold

The integrator and sample and hold convert the phase detector output pulses, with the help of the API correction currents, to the dc control voltage required to drive the 300.25 to 500.25 MHz VCO.

PLL Unlock Detector

This section determines if the phase-locked loop (PLL) is unlocked. When the detector senses an out-of-range dc control voltage, it turns on an internal LED and interrupts the main processor-controller board (A13). A message will then appear on the display. Refer to the Section II (Fault Isolation) for further details.

500 kHz Filter

This section reduces sidebands of 100 kHz and its harmonics induced by the sample and hold.

300.25 - 500.25 MHz VCO

The dc control voltage produced by the sample and hold controls the output frequency (300.25 to 500.25 MHz) of the VCO. The output frequency signal of this section is inversely proportional to the dc control voltage from the sample and hold. The output frequency of the VCO is distributed to the output board (A8), the local oscillator board (A4), and the prescaler section.

CIRCUIT DESCRIPTION MODEL 3577A

Prescaler

Before the output frequency of the VCO is sent to the $\div N$ counter, the VCO is first divided by 10 (prescaled).

+5 API Supply

This section provides the APIs with an isolated +5 voltage supply.

7-7 A8 OUTPUT BOARD

Circuit Board Description

The output board provides a sinusoidal signal with a frequency range of 5 Hz to 200 MHz and a amplitude level range of \pm 15 dBm to \pm 49 dBm. This output signal is generated by mixing the 300.25 to 500.25 MHz signal of the synthesizer board (A7) with the 300.25 signal from the 250 kHz offset board (A5).

Mixer Buffer

The 10 dB amplifiers and 3 dB pad provide isolation between the synthesizer board (A7) and the mixer (A8U11).

Variable Limiter

This section varies the amplitude of the 300.25 MHz signal coming from the 250 kHz offset board (A5) depending on the level signal generated by the Amplitude Leveling section.

300 MHz Low Pass Filter

This section reduces high frequency harmonic distortion.

Mixer

The mixer multiplies the frequency signals from the 250 kHz offset board (A5) and the synthesizer board (A7) to produce a signal with a frequency range of 0 to 200 MHz.

200 MHz Low Pass Filters/20dB Amplifiers

The output signal from the mixer (U11) is first filtered to reduce harmonic distortion, amplified by 40dB, and then it is filtered again to reduce any harmonic distortion induced by the 20dB amplifiers.

15dB Amplifier

The output signal level of this section is maintained between 11.0 to 15.0 dBm, with 0.1 dB of resolution. At low frequencies (approximately 5 Hz and below), the DC Servo senses the dc component of that waveform. This dc signal is then sent to the Low Frequency Gain Error Correction section. Note that for frequencies above 5 Hz the DC Servo is no longer in the feedback loop.

Low Frequency Gain Error Correction

For frequencies below 100 kHz, negative feedback is used to stabilize the gain of the amplifiers. The feedback path comes from the output of the 15 dB Amplifier and through a 60 dB voltage divider formed by R191 and R193. U190 compares the feedback signal to the output signal from the 200 MHz Low Pass Filter. The difference from these two signals drives the 20 dB Amplifier. In addition, the signal from the DC Servo is added to the input of the 20 dB Amplifier via R192 and U190.

Amplitude Leveling

For frequencies below 100 kHz the main processor-controller board (A13) signals the Amplitude Leveling, via the Control Bus, to turn off. This is done by setting the voltage at U20(8) to zero, thereby forcing U20 to act like an voltage-follower. During this frequency range, the output of this section has a referenced dc voltage which is independent of the output frequency from the 15 dB Amplifier. This section obtains its dc reference from the Amplitude Reference.

For frequencies equal to and above 100 kHz, the dc reference from the Amplitude Reference is compared with the amplitude output level from the 15 dB Amplifier. This is done by peak detecting the amplitude output level from the 15 dB Amplifier and opening the switch Q180.

Amplitude Reference

The Amplitude Reference is controlled by the main processor-controller board (A13) via the Control Bus. This section provides the Amplitude Leveling with a dc referenced signal. This dc referenced signal, compared with the amplitude output level from the 15 dB Amplifier, provides the necessary information to maintain an amplitude output level between 11.0 to 15.0 dBm with 0.1 dB of resolution.

60 dB Step Attenuator

This section attenuates the amplitude output level from the 15 dB Amplifier (11.0 to 15.0 dBm with 0.1 dB of resolution) by 60 dB. The attenuator works in the following binary sequence:

 K1:
 4 dB

 K2:
 8 dB

 K3:
 16 dB

 K4&K5:
 32 dB

K6: OVERVOLTAGE PROTECTION

For example, if an output level between 11.0 and 15.0 (inclusive) is desired, the signal would go straight through without any attenuation. A chart is shown in Section VIII (Service) under the output board schematic demonstrating the operation of the relays pertaining to a given programmed output level. This section also provides overvoltage protection. When a voltage of 4 Vdc or greater is sensed at A8J3, the relay K6 will trip to disconnect the instrument from the "outside world." The 60 dB Step Attenuator receives its control data from the main processor-controller board (A13) via the Control Bus.

CIRCUIT DESCRIPTION MODEL 3577A

Private 5 Volt Supplies

This section provides the output board (A8) with ± 5 volts. Voltage regulators are used to monitor the ± 5 supplies, U5a & Q82 and U5b & Q81, respectively.

7-8 A11 FAST PROCESSOR BOARD

Circuit Board Description

The fast processor board (A11) is a floating point processor. The main purpose of this board is to perform floating point and fast numerical calculations (number crunching). This is done by taking data from the input boards (A1; Receivers R, A, B) and controlling the sweep timing of the HP 3577A. This board contains its own firmware (Micro Program ROMs), Micro Program Sequencer, and a Bit/Slice ALU (Arithmetric Logic Unit). The ROMs provide microcodes which define the instruction steps for the fast processor board. The Micro Program Sequencer contains a microprogram controller which handles program flow. The Bit/Slice ALU provides 16-bits of data. This is where floating point and fast numerical calculations are performed.

Input Data Buffer

The buffer provides isolation which has data from the input (A1), trace memory (A12), and main processor-controller board to the Bit/Slice ALU.

Data immediate

This section provides data to the Bit/Slice ALU when performing arithmetric constant calculations.

Dynamic Clock

This dynamic clock is used as the system clock for the fast processor. It is controlled by the microprogram controller. The frequency of the dynamic clock is a function of the instructions executed by the fast processor.

Bit/Slice ALU (Arithmetric Logic Unit)

This section is the "heart" of the floating point processor. The ALU provides a 16-bit word length. The functions that are performed in the ALU are:

- 16-Bit Adder/Subtractor
- 16-Bit x 16 Word RAM
- 16-Bit (Q) Register
- Shift Registers
- Multiplexers

Output Data Registers

These tri-state registers provide isolation between the Bit/Slice ALU and the Fast Data Bus.

MODEL 3577A CIRCUIT DESCRIPTION

Read/Write Control

This section is used to read and write data to the input (A1), trace memory (A12), and the main processor-controller board (A13). For example, the signal name BUSGNT (Bus Grant) is used to notify the main processor-controller (A13) that the Fast Data Bus is now available.

Micro Program ROM

This section provides the fast processor with a 2k x 48-bit program storage capabilities.

Micro Program Sequencer

The sequencer controls the program flow for the fast processor.

Timing

This section provides the sweep control counter and the digital filters on the input board (A1) with a 4 kHz and 2 kHz reference signal, respectively.

Sweep Control Counter

This section is used as a loadable counter. This counter controls the input board's (A1) sweep time and settling time.

7-9 A12 TRACE MEMORY BOARD

Circuit Board Description

The trace memory board (A12) is used to provide non-volatile storage capabilities. At turn-on a ROM chesksum and a marching ones for the RAM test is performed. A more exhaustive test can be summoned using the SPCL FCTN (SPECIAL FUNCTION) hardkey as shown in Section II (Fault Isolation), under Service Diagnostics.

Read/Write Memory (RAM)

Blocks 1 through 4 (U5, U12, U6, U13, respectively) are used to store data from the input receivers (A1; R, A, B) and as a scratch pad memory for the fast processor board (A11). The remaining blocks are used to store data in registers D1 through D4. For this reason, only the first four blocks are tested at turn-on.

Read Only Memory (ROM)

This section contains the coefficients corresponding to trigonometric and logarithmic functions for the fast processor board (A11).

Battery Backup

This section provides power backup for the RAMs. If the voltage at test point 1 (+VDD) drops below 3 volts, the battery (BT1) supplies power. Chip Select and Read/Write Control (DECODING)

This section insures that the data is received and sent by the appropriate RAM/ROM chips.

CIRCUIT DESCRIPTION MODEL 3577A

7-10 A13 MAIN PROCESSOR-CONTROLLER BOARD

Circuit Board Description

The central or main intelligence of the HP 3577A Network Analyzer is the main processor-controller board (A13). The "heart" of the main processor is a 16-bit microprocessor which runs at 8 MHz. This board contains its own firmware (ROM) and RAM. The main processor bus on this board provides all interfacing between the microprocessor and other portions of the instrument. This interfacing includes the I/O (Input/Output), Display Interface, and Fast Bus Interface. The I/O section includes the Keyboard Bus, HP-IB Bus, Control Bus, and Status Bus. The Display Interface section provides all display functions. The Fast Bus Interface ties the main processor-controller's communication port with that of the Fast Data Bus. The following boards communicate via the Fast Data Bus: input (A1), fast processor (A11), and trace memory (A12).

Interrupt Encoding

This section is used to interrupt the microprocessor when the HP-IB (A16) is requesting service or when the front panel INSTRument PRESET key is pressed. This section is also used as a timer and fast processor (A11) interrupt.

Reset

This section ensures that the microprocessor (A13U1) begins its program at a initial (known) state.

Data/Address Bus Buffer

These 16-bit buffers provide the microprocessor (A13U1) isolation from the rest of the board.

Trigger

This section is used to trigger the sweep on the fast processor board (A11) whenever an external trigger signal is connected on the rear panel or whenever the user wants to trigger off the ac line. If neither of these two conditions are used, the fast processor board will then free run.

Address Decoding

The address decoding is used to read/write and send control data to various boards throughout the instrument.

Beeper

The beeper is used to inform the user that attention is required. For example, when an error message is displayed the beeper will alert the user that the main processor-controller (A13) has detected an unsatisfactory operating condition.

8 MHz Clock Phase-Locked Loop (PLL)

This section provides an 8 MHz clock signal necessary to run the microprocessor (A13U1). This is done by multiplying the 1 MHz signal, which comes from the frequency reference board (A6), by sixteen (16), and then dividing it by two to

MODEL 3577A CIRCUIT DESCRIPTION

produce 8 MHz. If the 1 MHz is not present, the 16 MHz PLL will free run in order to turn-on the microprocessor. An error message will then appear on the display.

Display Interface

This section is a 16-bit bidirectional data buffer. The signal name "DISCONNECT SENSE" is used to show the display's test pattern.

I/O

The I/O port contains the Control Bus, Keyboard Bus, HP-IB Bus, and Status Bus.

ROM/RAM

The ROM/RAM provide the main processor-controller (A13) with 16-bits of data.

Fast Bus Interface

This section provides the main processor-controller a means of communicating with the fast processor (A11), trace memory (A12), and input (A1; Receivers R,A,B) boards. In order for the main processor-controller to communicate with the trace memory and input boards, the fast processor must grant the bus. The latches and buffers used in this section are bidirectional.

Battery Back-up

This section provides power backup for the RAMs. If the voltage at test point 8 (+VDD) drops below 3 volts, the battery (BT1) located on the trace memory board (A12) supplies power.

7-11 A15 KEYBOARD

Circuit Board Description

The keyboard is responsible for two prime functions:

- To recognize the closure of switches.
- Light up the appropriate LEDs.

The keyboard is constantly being monitored by the main processor-controller (A13) via the keyboard data bus lines (KBO - KB7). If a key is stuck for a period longer than 10 seconds, an error message will then be displayed on the CRT.

Key Matrix

A 7 \times 8 keyboard matrix is used to recognize the closure of switches. This information is then buffered and sent to the main processor-controller board (A13).

Read/Write Control

This section reads the data entered in the key matrix via the main processor-controller board (A13) and sends a command signal to LED annunciators.

LED Annunciators

This section drives the LEDs on the front panel.

CIRCUIT DESCRIPTION MODEL 3577A

RPG Control

The rotary pulse generator (RPG) control is used to enter data or use the marker function capabilities. This section is also buffered from the main processor-controller board (A13).

Instrument Preset

This section is used to set the instrument to its turn-on preset conditions.

7-12 A16 HP-IB BOARD

Circuit Board Description

This board provides an isolated link between the instrument's main processor-controller (A13) and the "outside world." An HP-IB connector is provided at the rear panel of the instrument. This connector is used to connect the instrument to other instruments and controllers which have HP-IB (IEEE 488) capability.

This board also provides electrical isolation between the interface bus and analog sections of the instrument. Isolated power for the interface section of this board is supplied from a separate transformer winding (A21 Main Power Supply Board). All digital signals between the isolated and non-isolated sections of this board are coupled through pulse transformers. The buffer amplifiers drive the pulse transformers and latches which convert pulses to constant signal levels.

HP-IB Interface

The HP-IB interface section implements the IEEE 488 protocol.

Interrupt

This section couples the HP-IB interface circuit signal INT from the main processor bus. The interrupt circuit is activated by the HP-IB interface section whenever it requests main processor-controlled (A13) service.

Reset

This section uses the instrument reset line (INIT) to initialize interaction of hardware.

Register Select

This section couples the register select signals from the HP-IB interface circuitry. This section provides the register select signals necessary to perform sequential data processing.

Read/Write

This section is used to instruct the HP-IB interface to accept incoming or outgoing data.

5 MHz Clock

This section provides a 5 MHz clock signal necessary to run the HP-IB interface circuitry.

MODEL 3577A CIRCUIT DESCRIPTION

Data Input/Output

Each of these sections handles the sequential data being sent from and to the main processor-controller board (A13).

7-13 A20 MOTHERBOARD

Circuit Board Description

The motherboard does not have any active or passive electrical components. The only purpose of this board is to be a common focal point where signals are distributed throughout the instrument. The signal names that are distributed via the motherboard are listed in Section VIII (Service) under the mother assembly number.

7-14 A21 MAIN POWER SUPPLY BOARD

Circuit Board Description

This board is an off line half-bridge switching power supply. The main power supply board provides regulated (+5 Vdc, ±15 Vdc) and unregulated (+8 Vdc) voltages. It also has isolated supplies (HP-IB and Fan Output). MOS FET transistors provide the switching power supply capabilities. The "heart" of this switching power supply is the Pulsewidth Modulator (PWM). In addition, the power supply has the capabilities of sensing output current and overvoltage, monitoring the ac line voltage, and turning off due to excess temperature. For further details on switching power supplies, refer to the HP "Power Supplies, An Introduction" Manual (-hp- part number 5952-0158).

Line Filter

The line filter provides RFI isolation between the ac line voltage and the main power supply.

Turn On

This section is used to signal the Pulsewidth Modulator (PWM) when to turn on. For example, when the instrument has been turned off due to over or under ac line voltage. This section is also used to insure that the power supply turns on in an orderly manner.

Power On Preset (POP)

After the output voltages are up and running, this section presents the micro-processor (A13U1). This section is also used to turn-on the battery back-up circuit on the trace memory (A12) and main processor-controller board (A13).

Bias Supply

The bias supply provides power for the control and protection circuitry. The signal name LINE SYNC synchronizes the fast processor's (A11) sweep triggering with the ac line.

CIRCUIT DESCRIPTION MODEL 3577A

FET Power

In this section the ac line is rectified and filtered to provide a high dc power supply. This high voltage supply is then switched across the primary of the transformer (T1) by Q1 and Q2.

FET Drive

The FET drive takes the signal from the Pulsewidth Modulator (PMW) and develops two anti-phase signals to drive the FETs (Q1 & Q2). These transistors are used to switch the dc high voltage created in the FET power section. This section also provides isolation between the PWM, which is connected to circuit ground, and FET power, which is connected to the ac line.

Pulsewidth Modulator (PWM)

The PWM is the "heart" of the switching power supply (A21). The outputs of the power supply are controlled by the PWM. The PWM takes the error signal from the Loop Shaping section and uses it to control the pulsewidth to the FET drive. The PWM contains its own internal oscillator, which has a frequency of 40 kHz and a +5 voltage reference. The PWM also contains a soft-start circuit to prevent large current surges at turn-on. In addition, the PWM can be turned off by any of the protection circuitry, including the Turn On section, when a fault is detected.

Primary Current Limit (PCL)

The PCL circuit senses the primary current via the transformer (T2) and latches off the Pulsewidth Modulator (PWM) when excess current is detected.

+5V Output

The signal from the FET Drive via the transformer (T1) is first rectified and then filtered to produce a + 5 dc voltage. This section also contains a current sensing resistor for the +5V Current Limit (+5CL) section.

+ 5V Current Limit (+5CL)

This section senses the +5V current and latches off the Pulsewidth Modulator (PWM) when excess current is detected.

Loop Shaping (Loop S.)

The error signal from this section adjusts the pulsewidth of the Pulsewidth Modulator (PWM). This section has two inputs. One of the inputs is the dc loop, from the +5V Output, which provides good steady state voltage accuracy. The second input is the ac loop, also from the +5V Output, which helps improve transient responses.

+15V

The signal from the FET Drive via the transformer (T1) is first rectified and then filtered to produce a ± 15 dc voltage. The regulator (U10) used in this section provides an accurate, low output impedance, ± 15 voltage. This section also contains a current sensing resistor for the ± 15 V Current Limit (LMT) section.

- 15V

The signal from the FET Drive via the transformer (T1) is first rectified and then filtered to produce a -15 dc voltage. The regulator (U11) used in this section provides an accurate, low output impedance, -15 voltage. This section also contains a current sensing resistor for the ± 15 V Current Limit (LMT) section.

Isolated Supply

This section provides a regulated dc supply for the HP-IB and an unregulated dc supply for the fan output. Note that these supplies are fused and are floating from chassis ground.

+8V

This section provides a fused, unregulated +8 dc supply for the synthesizer (A7) and frequency reference board (A6).

±15V Current Limit (LMT)

The $\pm 15V$ Current LMT senses the current from the $\pm 15V$ and $\pm 15V$ supplies and latches off the Pulsewidth Modulator (PWM) when excess current is detected.

Overvoltage

This section senses the voltage from the $\pm 15V$ and $\pm 5V$ supplies and latches off the Pulsewidth Modulator (PWM) when overvoltage is detected.

Hi Temp

This section senses the temperature of CR40 located in the $\pm 5V$ Output section and latches off the Pulsewidth Modulator (PWM) when excess temperature is detected.

Connector (Conn.)

This section distributes the power supplies throughout the entire instrument via the motherboard (A20). This section also provides probe power.

7-15 A31 OVEN BOARD

Circuit Board Description

The oven board generates a stable 10 MHz frequency reference signal, that is controlled by the frequency reference board (A6). When an external reference signal is used on the HP 3577A, the frequency reference board forces the control line "SHUT-DOWN" to go low which turns off the 10 MHz oven output signal.

Threshold Detector

At turn-on before the oven assembly warms up, large heater currents are drawn through L1 by the oven assembly. Regardless of the signal on the control line "SHUTDOWN", U2 senses this current and shuts down the oven output signal at J1 by turning off the switchable filter. During this time, the HP 3577A uses its own VCXO as a frequency reference. After the oven assembly has warmed up (i.e., frequency output is stable), the heater current through L1 is reduced which allows U2

CIRCUIT DESCRIPTION MODEL 3577A

to turn-on the switchable filter and have a 10 MHz signal present at J1. This signal is dependent upon the control input at J2(1) (SHUTDOWN: TTL HIGH = ON, TTL LOW = OFF).

Oven Assembly

When the oven assembly has warmed up, it provides a stable 10 MHz frequency reference signal. The oven assembly takes approximately 10 minutes to warm up from room temperature.

Buffer

The buffer provides isolation between the oven assembly and the switchable filter. In the on state (U2 is high), CR2 acts as a open and allows Q3 and Q4 to be biased separately from Q1. In the off state (U2 is low), U2 effectively grounds the emitter of Q1 and the gates of Q3 & Q4.

Switchable Filter

In the on state, this section provides a 10 MHz low pass filter to reduce harmonic distortion. In the off state, this section provides additional isolation between the buffer and the oven output.

7-16 1345A DIGITAL DISPLAY

The HP 1345A is a 16-bit TTL data bus (positive logic) display. Its input power requirements are +15 Vdc, -15Vdc, and +5 Vdc. The Display Interface section, located on the main processor-controller board (A13), is used as a bidirectional data bus buffer. The signal name "DISCONNECT SENSE" is used to show the display's test pattern. When disconnected, via the SPCL FCTN (SPECIAL FUNCTION) hardkey, the display module turns on its own resident test pattern which test most of its display functions. This test pattern can also be shown by disconnecting the ribbon cable from the main processor-controller board to the display.

NOTE

In order to show the display's test pattern, the display needs to be biased by its proper input power requirements (± 15 Vdc and + 5 Vdc). Refer to the 1345A Operating and Service Manual for further details.

SECTION VIII SERVICE

Table of Contents

8-1	Introduction
8-2	Recommended Test Equipment
8-3	Logic Conventions8-1
8-4	Logic Symbology8-1
8-5	Safety Considerations8-7
8-6	Schematic List
8-7	Service Group A1, Input Assembly8-5
8-8	Service Group A4, Local Oscillator Assembly8-31
8-9	Service Group A5, 250 kHz Offset Assembly8-43
8-10	Service Group A6, Frequency Reference Assembly8-49
8-11	Service Group A7, Synthesizer Assembly
8-12	Service Group A8, Output Assembly8-75
8-13	Service Group A11, Fast Processor Assembly8-87
8-14	Service Group A12, Trace Memory Assembly8-107/8-108
8-15	Service Group A13, Main Processor-Controller Assembly8-111
8-16	Service Group A15, Keyboard Assembly 8-137/8-138
8-17	Service Group A16, HP-IB Assembly
8-18	Service Group A20, Motherboard Assembly
8-19	Service Group A21, Main Power Supply Assembly8-155
8-20	Service Group A31, Oven Assembly8-175
8-21	HP 1345A Display Removal8-179

List of Tables

0-1	General Schematics Notes	
8-2	Function Labels	
8-3	Schematic List	8-8
8-4	Digital Filter Test Waveform Table	
8-5	A1 Circuit Board, Troubleshooting Data	8-17
8-6	A1 Circuit Board, Signature Analysis Data	8-23/8-24
8-7	A4 Circuit Board, Troubleshooting Data	8-33
8-8	A5 Circuit Board, Troubleshooting Data	
8-9	A6 Circuit Board, Troubleshooting Data	8-50
8-10	A7 Circuit Board, Troubleshooting Data	8-62
8-11	A8 Circuit Board, Troubleshooting Data	
8-12	A11 Circuit Board, Troubleshooting Data	8-89
8-13	A11 Circuit Board, Signature Analysis Data (SA1)	8-91
8-14	A11 Circuit Board, Signature Analysis Data (SA2)	8-99/8-100
8-15	A13 Circuit Board, Troubleshooting Data	8-116
8-16	A13 Circuit Board, Signature Analysis Data (SA1)	8 -1 17
8-17	A13 Circuit Board, Signature Analysis Data (\$A2)	
8-18	A16 Circuit Board, Troubleshooting Data	
8-19	A20 Motherboard Signal Table	
8-20	A21 Circuit Board, Troubleshooting Data	
8-21	A31 Circuit Board, Troubleshooting Data	
	<u>-</u>	
	List of Figures	
8-1	Reference Designations	R_2
8-2	Logic Symbology	
8-3	Dynamic Accuracy Troubleshooting Test Set Up	
8-4	A1a Input Board, Analog Schematic	
8-5	A1b Input Board, Digital Schematic	
8-6	A4a Local Oscillator Board, Schematic	
8-7	A4a Local Oscillator Board, Schematic	
8-8	A5 250 kHz Offset Board, Schematic	
8-9	A6 frequency Reference Board, Schematic	0-47/0-40
8-10	Synthesizer Timing Diagram	0-35/0-30
8-11	A7 Synthesizer Board, Analog Schematic	
8-12	A7 Synthesizer Board, Analog Schematic	0.72/0.74
8-13	A7 Synthesizer Board, Digital Schematic	
8-14	A8a Output Board, Schematic	
8-14 8-15	A8b Output Board, Schematic	
8-16	A11a Fast Processor Board, Schematic	
8-17	A11b Fast Processor Board, Schematic	
	A12 Trace Memory Board, Schematic	.8-109/8-110
8-18	A13a Main Processor-Controller Board, Schematic	8-131/8-132
8-19	A13b Main Processor-Controller Board, Schematic	8-133/8-134
8-20	A13c Main Processor-Controller Board, Schematic	
8-21	A15 Keyboard, Schematic	8-147/8-742
8-22	A16 HP-IB Board, Schematic	
8-23	A21 Main Power Supply Board, Schematic	
8-24	A31 Oven Board, Schematic	
8-25	HP 1345A Removal	8.177/R-180

SECTION VIII SERVICE

8-1 INTRODUCTION

This section provides information for troubleshooting and repairing the HP 3577A Network Analyzer. Circuit descriptions are provided in Section VII to explain circuit function to the service technician, so troubleshooting time can be spent troubleshooting and not learning instrument operation.

Troubleshooting voltages and waveforms are provided on or next to the schematic diagram foldout. Parts locators are provided opposite the foldout service sheets.

This section is to be used after isolating the faulty functional block using the Fault Isolation Procedures in Section II. The functional blocks are described in Section VII (Circuit Descriptions). Fault isolation to the sub-block level is accomplished here. Each functional sub-block consists of a small number of components, and the technician's expertise is relied upon for isolating the faulty component.

8-2 RECOMMENDED TEST EQUIPMENT

The recommended test equipment for troubleshooting is listed in Table 1-2. Any item which meets or exceeds the critical requirements can be substituted for the model listed.

8-3 LOGIC CONVENTIONS

Positive logic convention is used in this manual unless otherwise noted. Positive logic conventions define a logic "1" or "High" as the more positive voltage and a logic "0" or "Low" as the more negative voltage.

8-4 LOGIC SYMBOLOGY

The logic symbology used in this manual is based on ANSI Y32.14-1973. The reference designations and general schematic notes are shown in Figure 8-1 and Table 8-1, respectively. Basic logic symbols and examples of symbols are shown in Figure 8-2. Table 8-2 provides an explanation of function labels used in the schematics. Refer to the Logic Symbology Training Manual (-hp- part number 5951-6116) for a full explanation of the logic symbology used in the schematics.

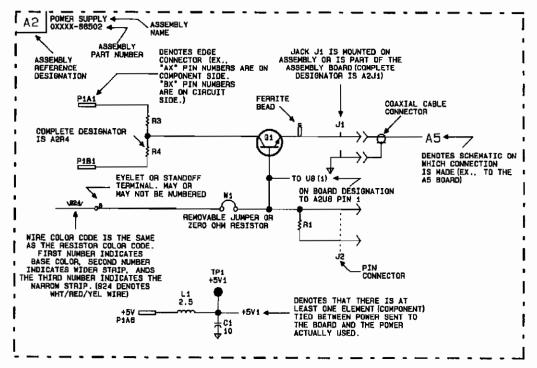


Figure 8-1. Reference Designations

Table 8-1. General Schematic Notes

1.	PREFI	IAL REFERENCE DESIGNATIONS ARE SHOWN. X WITH ASSEMBLY DESIGNATION FOR COMPLETE SNATION.	7.	screwdriver ground
	DESIG	INATION.	8.	DENOTES ASSEMBLY
2.	COMI	PONENT VALUES ARE SHOWN AS FOLLOWS UNLESS		
1	OTHE	RWISE NOTED.	9.	DENOTES MAIN
		RESISTANCE IN OHMS		SIGNAL PATH
		CAPACITANCE IN MICROFARADS INDUCTANCE IN MILLIHENRYS	10	DENOTES FEEDBACK
		INDUCTANCE IN MILLINERETS	10.	PATH
3.		DENOTES EARTH GROUND		(Alli
		USED FOR TERMINALS WITH NO LESS THAN A	11.	DENOTES FRONT PANEL MARKING.
	<u></u>	NO. 18 GAUGE WIRE CONNECTED BETWEEN		
	-	TERMINAL AND EARTH GROUND TERMINAL OF AC POWER RECEPTACLE		
		AC POWER RECEPTACLE	12.	DENOTES REAR PANEL MARKING.
4.		DENOTES FRAME GROUND.		
		USED FOR TERMINALS WHICH ARE PERMANENTLY	13.	DENOTES SCREWDRIVER ADJUST
	m	CONNECTED WITHIN APPROXIMATELY 01 OHM		** **********************************
	,	OF EARTH GROUND.	14.	* AVERAGE VALUE SHOWN, OPTIMUM VALUE
5.		DENOTES GROUND ON PRINTED CIRCUIT	14.	SELECTED AT FACTORY. THE VALUE OF THESE
3,		ASSEMBLY (ELECTRICALLY CONNECTED TO FRAME		COMPONENTS MAY VARY FROM ONE
	Δ	GROUND).		INSTRUMENT TO ANOTHER.
	-	·		ymmig
6.	- 1	DENOTES ISOLATED (I) OR SIGNAL(S)	15.	MENOTES RESHIELD.
	4	CIRCUIT GROUND.		tunnuh
	ΨĪ			

Table 8-1. General Schematic Notes (Cont.)

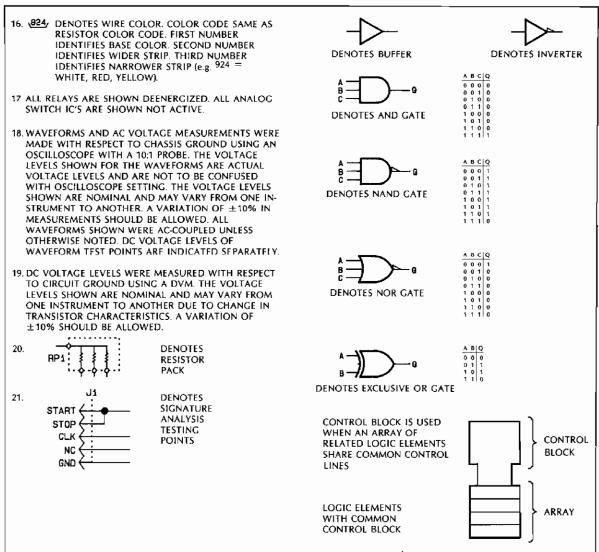


Table 8-2. Function Labels

AMPLIFIER/BUFFER MONOSTABLE MULTIVIBRATOR (ONE-SHOT) AND GATE ≧ 1 OR GATE EXCLUSIVE OR GATE `χ**⊸**γ ENCODER, DECODER $XMAX \rightarrow Y$ PRIORITY ENCODER CNTR COUNTER DEMUX DEMULTIPLEXER FF FLIP FLOP RAM RANDOM-ACCESS MEMORY REG REGISTER ROM READ-ONLY MEMORY SUCCESSIVE APPROXIMATION REGISTER SAR SEL SELECTOR SREG SHIFT REGISTER TX/RX TRANSMITTER/RECEIVER

8-5 SAFETY CONSIDERATIONS

The HP 3577A is a Safety Class 1 instrument (provided with a protective earth terminal). The instrument and manuals should be reviewed for safety markings and instructions before operation. Refer to the Safety Symbol Table in the preface of this manual.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

ECAUTION

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

WARNING

230 Vdc is present in the main power supply board (A21) even with the line switch in the off position and the power cord removed. Be extremely careful when working in the proximity of this area. This high voltage could cause serious personal injury if contacted. To remove this voltage, remove the mains power cord from the rear panel, remove the bottom cover and set the main power supply board (A21) jumpers W1 & W2 to the test position, using insulated pliers, to discharge the capacitors (A21C2 & A21C3) holding this voltage.

8-6 SCHEMATIC LIST

Table 8-3 shows the service groups by assembly numbers. Note that the service group number is the same as the assembly number for each of the circuit boards.

Table 8-3. Schematic List

Assembly Number	Description	Page
A1a	Input, Analog	8-27
A1b	Input, Digital	8-29
A4a	Local Oscillator	8-39
A4b	Local Oscillator	8-41
A5	250 kHz Offset	8-47
A6	Frequency Reference	8-55
A7a	Synthesizer, Analog	8-71
A7b	Synthesizer, Digital	8-73
A8a	Output	8-83
A8b	Output	8-85
A11a	Fast Processor	8-103
A11b	Fast Processor	8-105
A12	Trace Memory	8-109
A13a	Main Processor-Controller	8-131
A13b	Main Processor-Controller	8-133
A13c	Main Processor-Controller	8-135
A15	Keyboard	8-141
A16	HP-IB	8-147
A20	Motherboard	8-153
Λ21	Main Power Supply	8-173
A31	Oven	8-177

8-7 SERVICE GROUP A1, INPUT ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the circuit descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on.

Sweep Type	<i></i> CW
AMPTD	10 dBm
FREQuency	200 MHz

All Oscilloscope waveforms are taken using 10:1 probe and a HP 1980B Oscilloscope. All Spectrum Analyzer waveforms derived from SMB connectors are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10041A 10:1 probe. This probe has 215 Ω of series resistance.

All waveforms in this section were taken with the Receiver under test connected to the 3577A source using a cable from the HP 11851A Cable Kit.

Troubleshooting Hints

- Before troubleshooting this circuit board, be sure that the fault is occurring on this circuit board by checking the following inputs using the settings in Table 2-7 and Table 8-5.
 - a. A4J3,A4J4,A4J5 (depending on R,A, or B) L.O. Input
 - b. A1R10 240 kHz Second L.O. input.
 - c. A1TP10 8 kHz Third L.O. input.
 - d. A1U28 pin 12 2 MHz Reference input.
 - e. A1W4 2 kHz input.

Isolate the problem to either the digital or the analog circuitry by testing the signal at A1TP6 as decribed in step 6 of Table 8-5. If this test passes, then the analog circuitry is good, and the digital circuitry is bad. If the analog circuitry is bad, then half split the analog circuitry by testing the signal at A1TP4 as described in step 5 of Table 8-5. Then continue troubleshooting toward the bad signal. If the digital circuitry is indicated, follow the digital troubleshooting procedure following the troubleshooting hints.

- 3. SYMPTOM: Dynamic Linearity Performance Test fails.
 - a. Use the other channels of the 3577A by setting the 3577A to continuous wave (CW) mode and setting the output frequency to the IF frequency where testing is taking place. Follow the Dynamic Accuracy test procedure in this section.
- 4. SYMPTOM: Crosstalk Performance Test fails.
 - a. Board must be in cardnest and all receiver board screws in place.
 - b. The A1L12 and A1L14 inductors could be coupling from receiver board to receiver board. These components should suspect.
- SYMPTOM: Receiver Noise Performance Test fails.
 - a. Check L.O. signals (all) for proper noise levels. DUT board must be in cardnest and all screws in place.
 - b. Check the + or 13 V power supplies for correct voltage and ripple.
- 6. SYMPTOM: Receiver Level Flatness cannot be adjusted into specification.
 - a. Problem is in first mixer, L.O., input buffer, or impedance switching subblocks.
- 7. SYMPTOM: Receiver Phase Zero and Response out of specification.
 - a. Check Frequency Reference board counter preset switch for proper position if 100 kHz phase zero bad. The proper position will put the phase zero between ± 15 degrees.
 - b. Make sure L.O. ouput phase is good by observing a phase display when swapping the L.O. inputs to the A1 boards. If the display is constant then the L.O. is good. If the display changes, then L.O. is bad.
- 8. SYMPTOM: Receiver Sensitivity Performance Test fails.
 - a. Jumper A1TP6 to ground. This is the Analog/Digital halfsplit. If the receiver passes, then the Analog section is bad. If the receiver fails, then the digital section is bad.
 - b. If the analog circuit is suspect, jumper A1TP4 to ground. This should be used as an Input/10 kHz halfsplit.

Digital Filter Test

- a. Disconnect the main power cord from the rear panel and remove the top cover. Place the suspect A1 receiver board on the 03577-66542 extender hoard
- b. Move the Digital Filter Test jumper W4 to the TEST position. Move the TEST jumper W2 to the TEST position.

c. Press the hardkeys listed below on the left and select the softkey, or enter the data listed on the right.

TRACE 1	
INPUT	Suspect Channel
DISP FCTN	Real
SCALE	
/ Div	100 mV
Ref Pos	60 %
Ref Level	V
TRACE 2	
INPUT	Suspect Channel
DISP FCTN	Imag
SCALE	
/ Div	
Ref Pos	
Ref Level	
SPCL FCTN	
Service Diag	Settling Off
AMPTD	_

d. Press the RES BW and SWP TIME hardkeys and select the values listed for each display shown in Table 8-4. The display is the digital filter step response. if any of these displays do not pass, then the digital filters or the algorithmic state machine are faulty. If both digital filters pass, then the Algorithmic State machine, I/O, and Look Up Tables are all good. If only one digital filter fails, then the failure is probably a bad filter. If both digital filters fail, then the problem is probably a state machine problem and the Signature Analysis tests should be run before replacing the digital filters.

Table 8-4. Digital Filter Test Waveform Table

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	As in step c. Sweep Time 5 sec RES BW 1 Hz	A1 board, W4 Digital Filter Test jumper in TEST position. A1W2 also in TEST position.	Step Response and final settled output value	NEF LEVEL
2	As in step c. Sweep Time.5 sec RES BW 10 Hz	A1 board, W4 Digital Filter Test jumper in TEST position. A1W2 also in TEST position.	Step Response and final settled output value.	REF LEYEL /BIV MARKER 100 000 000 000 000 000 000 000 000 00
3	As in step c. Sweep Time.2 sec RES BW 100 Hz	A1 board, W4 Digital Filter Test jumper in TEST position. A1W2 also in TEST position.	Step Response and final settled output value	REF LEVEL /DIV MARKER 100 000 000 000 000 000 000 000 000 00
4	As in step c. Sweep Time.2 sec RES BW 1 kHz	A1 board, W4 Digital Filter Test jumper in TEST position. A1W2 also TEST position.	Step Response and final settled output value	NEF LEVEL

A/D Test

a. Disconnect the main power cord from the rear panel and remove the top cover. Place the suspect receiver board on the 03577-66542 extender board.

- b. Set the Test jumper W2 to the TEST position. Set the A/D Test jumper W3 to the TEST position. Set the 10 kHz in jumper W8 to the TEST position. All other jumpers should be in their NORMAL position.
- c. Connect the External Power Supply to TP6.
- d. Press the hardkeys listed on the left, and select the softkeys or enter the data listed on the right.

INICED DOCCET	
INSTR PRESET	
DISP FCTN	
SWEEP TYPE	CW
INPUT	
User Defined Input	.K3*(K1*X-K2) X = Suspect
DEF MATH	Channel
K1 real	
K1 imag	0.0 Units
K2 real	
K2 imag	0.0 Units
K3 real	
K3 imag	0.0 Units
SCALE	
/ Div	2 Units

- e. This set up will measure positive input voltages at TP6. Monitor the External Power Supply with the Digital Voltmeter and compare the readings. All readings should agree to within 100 mV. At near 0 V, the reading may jump suddenly to ± 15V. This is normal and is due to the sign bit being toggled. The A/D does this because the trace math is different for the different polarities.
- f. Test the negative half of the A/D by switching the polarity of the external power supply, and setting K2 real in step d to -7.5 Units.
- g. If these tests fail, isolate the fault to the analog or digital sections of the receiver. Run the Digital Filter test in this section. If the digital filter test passes, then the fault is most likely in the A/D converter, sample and hold, or variable gain amplifier. If the digital filter test fails, then a algorithmic state machine, look up table or digital filter is faulty and must be repaired. Repair the components as indicated in the test.

Signature Analysis Tests

- a. This Signature Analysis mode actually uses an Oscilloscope rather than a Signature Analyzer to check the digital sections of the A1 board.
- b. Remove power from the 3577A and place the suspect receiver board on the 03577-66542 Extender board.
- c. Set the following jumpers to their TEST position. All other jumpers must be the NORMAL position.

DIGITAL FILTER TEST W4
A/D TEST W3
BOARD TRI-STATE W5 and W6
SIGNATURE ANALYSIS W1

- Externally trigger the Oscilloscope on the 4 kHz signal on A1TP8.
- e. Check each of the signals as listed in Table 8-6. Expand the Time/Div control and adjust the delaying timebase to view each of the signals listed in the table. If a signal is bad, it will probably show up in the burst of pulses in the first 20 us. Check this time frame first, then expand out to view the second burst at approximately 120 us.
- f. Replace each faulty component as shown from the signature data.

Dynamic Accuracy Troubleshooting

- a. The Dynamic Accuracy Troubleshooting Procedure requires that two of the receivers in the 3577A are operating correctly. By programming the 3577A output frequency for the IF frequency under test, the good receiver is tuned to the IF, and linearity tests can be made. It is assumed the Input Variable Gain Amplifier dc Offset Adjustment was performed and the unit still failed the dynamic accuracy specifications. Also, perform the A/D converter and digital filter tests in this section to isolate the fault to the analog portion of the instrument.
- b. Remove power from the 3577A and place the suspect receiver board on the 03577-66542 extender board. Connect the equipment as shown in Figure 8-3. Use the SMB to BNC cable to connect the suspect receiver board to the Power Splitter. The set up shown is for a faulty R channel board. Adapt the set up as necessary for an A or B circuit board fault.

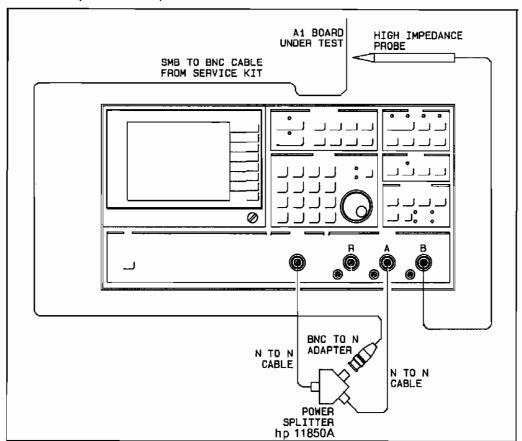


Figure 8-3. Dynamic Accuracy Troubleshooting Set Up

c. Set the 3577A controls by pressing the hardkey on the left and selecting the softkey, or entering the data listed on the right. The input settings below are for an R channel fault with the test set up seen in Figure 8-3. Adapt the control settings for your test set up as required by noting which channel is faulty, which is fed by the bridge and which has the 1:1 probe.

INPUT	A/B
DISP FCTN	Log Mag
SWEEP TYPE	cw
RES BW	10 Hz
ATTEN	
Receiver R	.50 Ω, 20 dB
Receiver A	.50 Ω, 20 dB
Receiver B	$1 M\Omega 20 dB$

- d. If the failure occurs at only one frequency, then the fault is isolated to the first mixer and Local Oscillator buffer amplifier. Check this conversion section by by pressing the FREQ hardkey and entering a FREQUENCY of 250 kHz. Connect the 1:1 10007B Probe to A1R118.
- e. Press the AMPTD hardkey and enter an amplitude of -10 dBm.
- f. Press the MEASR CAL hardkey and select the NORMALIZE softkey.
- g. Press the AMPTD hardkey and enter the amplitude where the suspect receiver fails the dynamic accuracy specifications. Vary the amplitude over the range of the input board. The marker readout should read 0 dB within the dynamic accuracy specifications. These specifications are listed in Table 1-1.
- h. Dynamic accuracy failures will generally be limited to the A/D converter, non-linear amplifiers, and mixers. Test each of the mixers (U24 and U34) and the intermediate amplifiers at their outputs. Test these components from the first mixer back to the A/D. Replace all components that prove to be defective. After each mixer, the 3577A programmed frequency will change. Each of the IF frequencies are listed below.

First IF (mixer is U34) = 250 kHzSecond IF (mixer is U24) = 10 kHz

Variable Gain Amplifier Troubleshooting

- a. These tests assume that the digital self tests have been run on the suspect receiver board. If these tests have not been run, then do the A/D test and the signature analysis test described in this section.
- b. With the suspect receiver on the extender board, place jumpers A1W2, A1W13, and A1W3 into the test position. With the jumpers in this position, A1Q13 should be turned off, and the overall gain of the variable gain amplifier set to negative one. Note that the sample and hold has been disconnected by A1W13.
 - 1. Connect the External Power Supply positive terminal to A1TP14 and the negative terminal to chassis. Monitor the Power Supply voltage with the DC Voltmeter and set it to $5V \pm 5$ mV.
 - 2. Connect the DC Voltmeter to A1TP7 at the variable gain amplifier output. The voltage at A1TP7 should be -5.0 \pm 0.1 V.
 - 3. If this test fails, then the variable gain amplifier or gain determining circuitry is faulty. Among the things to check for are shorted switch FETs, out of tolerance resistor ladder, faulty digital latches or buffer amplifiers. Replace all faulty components. Be sure the Variable Gain Amplifier

- Offset adjustment has been properly performed before replacing components.
- 4. If this test passes, then the gain ladder can probably be assumed to be good. Continue with this procedure.
- c. Test each of the Variable Gain Amplifier gain settings by following this procedure. A dc voltage is fed to the A/D converter which then determines the optimum gain value and turns on the appropriate gain selection FET.
 - 1. Place jumper A1W13 into the test position and jumpers A1W2 and A1W3 into the normal position.
 - 2. Set the External Power Supply to -6.8 V. Connect the positive terminal to A1TP14 and the negative terminal to chassis.
 - Connect the DC Voltmeter positive terminal to A1TP14 and the negative terminal to chassis.
 - 4. Connect the Oscilloscope probe to A1TP7. The amplitude of the square wave at A1TP7 is the voltage at A1TP14 multiplied alternately by -1.1 and by the optimum gain value. If possible, the optimum gain value amplifies the voltage at A1TP7 to the range of +3.75 to +7.5 V or -3.75 to -7.5 V.
 - 5. While monitoring the Oscilloscope, slowly increase the dc voltage at A1TP14. At approximately -3.4 V, a rapid change in the square wave occurs as Q20 turns on. Check all of the ranges in the following chart for a rapid change in the square wave each time the voltage at A1TP14 approaches the next range.

	ate A1TP14 ge Range	Gain Selection FET
Lower	Upper	ON
-6.8	-3.4	Q21
-3.4	-1.7	Q20
-1.7	-0.85	Q19
-0.85	-0.43	Q18
-0.43	-0.21	Q17
-0.21	-0.11	Q16
-0.11	-0.05	Q15
-0.05	+0.05	Q14
+0.05	+0.11	Q15
+0.11	+0.21	Q16
+0.21	+0.43	Q17
+0.43	+0.85	Q18
+0.85	+1.7	Q19
+1.7	+3.4	Q20
+3.4	+6.8	Q21

- 6. If this test fails, check that the gain selection signals are getting through to the FETs and that the FETs are switching. If the signals are not getting through to the FETs, check for pulses to the driver chips (U18 and U17) and the buffer chip (U16). Note that pulses will be present rather than a steady state since the gain of the variable gain amplifier is first set to -1.1 and then to the optimum gain value.
- 7. If this test passes, run the signature analysis test to verify that the digital circuitry is operational. Also verify all clock signals entering the board.

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A1R106 Press INSTR PRESET AMPTD - 20 dBm Sweep Type CW Freq 100 Hz Atten 1 MΩ 0 dB Connect source to receiver under test	Spectrum Analyzer Start 50 Hz Stop 1 kHz Res BW 10 Hz VBW 10 Hz Ref Level 0 dBm dB/Div 10 dB	100 Hz Carrier, noise.	START 58 H7 RES BN : 0 Hz VEN 18 F2 SNP 30 sec
1 Cont	Test at A1R106 Press INSTR PRESET AMPTD - 20 dBm Sweep Type CW Freq 10 MHz Atten 1 M\O 0 dB Connect source to receiver under test	Spectrum Analyzer Start 5 MHz Stop 50 MHz Res BW 100 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	10 MHz Carrier, noise.	START 5.8 PH2 STOP 50.8 MHz RES SM 188 LN2 VSH 3 kHz SHP 508 msec
1 Cont	Test at A1R106 Press INSTR PRESET AMPTD - 20 dBm Sweep Type CW Freq 200 MHz Atten 1 M\O 0 dB Connect source to receiver under test	Spectrum Analyzer Start 100 MHz Stop 700 MHz Res BW 300 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	200 MHz Carrier, noise.	START IDD NH-Z STOP 700 NHz RES BH 300 AHz VBH 3 kHz SkP 2.0 sec
2	Test at A1R10 Press INSTR PRESET Freq start 5 Hz	Oscilloscope CH1 Coupling AC CH1 V/Div 10 mV Time/Div 1 us Trigger CH1	Waveshape period, noise.	CHI CPLG-AC CHI = 10 mV/DIV

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
3	Test at A1R117 Press INSTR PRESET AMPTD — 20 dBm Sweep Type CW Freq 100 Hz Atten 1 M\Omega 0 dB Connect source to receiver under test	Spectrum Analyzer Start 50 Hz Stop 1 kHz Res BW 10 Hz VBW 10 Hz Ref Level 0 dBm dB/Div 10 dB	100 Hz Carrier, noise.	STRRT SO He STOP 1.000 kHz RES BH 10 Hz VSH 10 Hz SHP 30 sec
3 Cont	Test at A1R117 Press INSTR PRESET AMPTD - 20 dBm Sweep Type CW Freq 10 MHz Atten 1 M\Omega 0 dB Connect source to receiver under test	Spectrum Analyzer Start 5 MHz Stop 50 MHz Res BW 100 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	10 MHz Carrier, noise.	STIRRE S. O. O. D. M. STOP SO. O. M.
3 Cont	Test at A1R117 Press INSTR PRESET AMPTD — 20 dBm Sweep Type CW Freq 200 MHz Atten 1 MΩ 0 dB Connect source to receiver under test	Spectrum Analyzer Start 100 MHz Stop 700 MHz Res BW 300 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	200 MHz Carrier, noise.	RCF .0 dDm
4	Test at A1R118 Press INSTR PRESET AMPTD -4 dBm Sweep Type CW Freq 20 Hz Atten 50 \Omega 20 dB Connect source to receiver under test	Spectrum Analyzer Start 100 kHz Stop 3.85 MHz Res BW 3 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	250 kHz first IF amplitude, distortion and noise.	REF .8 dBm ATTEN 10 dB 10 dB/ STRN 1 00 bl/z STOP 3.85 MHz RES BH 3 kHz VRH 3 kHz SNP 1.5 sec

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform	
4 Cont	Test at A1R118 Press INSTR PRESET AMPTD -4 dBm Sweep Type CW Freq 50 kHz Connect source to receiver under test	Spectrum Analyzer Start 100 kHz Stop 3.85 MHz Res BW 3 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	250 kHz Carrier, amplitude, intermod- ulation, noise	START JOB 4HZ VOM 3 KHZ SHP 1.5 SEC	
4 Cont	Test at A1R118 Press INSTR PRESET AMPTD -4 dBm Sweep Type CW Freq 250 kHz Connect source to receiver under test	Spectrum Analyzer Start 100 kHz Stop 3.85 MHz Res BW 3 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	250 kHz Carrier, amplitude, intermod- ulation, noise	START IBB kHz VBW 3 kHz SWP 1.5 sec	
5	Test at A1TP4 Press INSTR PRESET AMPTD -4 dBm Sweep Type CW Freq 50 kHz Connect source to receiver under test	Spectrum Analyzer Start 100 kHz Stop 3.85 MHz Res BW 3 kHz VBW 3 kHz Ref Level 0 dBm dB/Div 10 dB	250 kHz Carrier, amplitude, intermod- ulation, noise	START 180 AHz NLS BM 3 KHZ VBM 3 KHZ VBM 3 KHZ SMP 1.5 pec	
5 Cont	Test at A1TP4 Press INSTR PRESET AMPTD -4 dBm Connect source to receiver under test	Spectrum Analyzer Start 100 kHz Stop 3.85 MHz Res BW 30 kHz VBW 1 kHz Ref Level 0 dBm dB/Div 10 dB	250 kHz Carrier, noise.	START 188 KH2 STOP 3.85 MH2 RES BN 38 KH2 VEN 1 KHE SHO 580 msec.	

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
6	Test at A1TP6 Press INSTR PRESET Sweep Type CW Freq 50 Hz Amptd -10 dBm Connect source to receiver under test	Spectrum Analyzer Center 10 kHz Span 968 Hz Res BW 10 Hz VBW 10 Hz Ref Level 5 dBm dB/Div 10 dB	10 kHz IF, intermod- ulation, and noise	REF 5.8 dRm RTTEN 28 dB 10 kHz IF 10 kHz IF +2 f input 10 kHz IF +2 f input CENTER 18.868 kHz SPRN 988 Hz RCS BH 18 IIz VBH 18 Hz SPRN 988 Hz
6 Cont	Test at A1TP6 Press INSTR PRESET Sweep Type CW Freq 20 kHz Amptd -10 dBm Connect source to receiver under test	Spectrum Analyzer Start 5 kHz Stop 100 kHz Res BW 1 kHz VBW 100 Hz Ref Level 5 dBm dB/Div 10 dB	10 kHz IF, intermod- ulation, and noise	TART 5.0 kHz VBN 180 Hz SVP 3.0 sec
6 Cont	Test at A1TP6 Press INSTR PRESET Sweep Type CW Freq 20 kHz AMPTD – 10 dBm Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 100 mV Time/Div 20 us Trigger CH1	Period, noise	CHI CPLG-DC CHI- 188 my/Div MT-Ch I Main- 28 us/Div
7	Test at A1TP5 Press INSTR PRESET Sweep Type CW Freq 100 MHz Amptd -4 dBm Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 20 mV Time/Div 20 us Trigger CH1	Period, noise	CHI CPLI-DC CHI= 20 aV/Div HT-Ch ! Main= 20 us/Div

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
8	Test at A1R13 Press INSTR PRESET Sweep Type CW Freq 20 kHz AMPTD4 dBm Connect source to receiver under test	Spectrum Analyzer Start 0 Hz Stop 100 kHz Res BW 300 Hz VBW 100 Hz Ref Level 0 dBm dB/Div 10 dB	10 kHz IF, intermod- ulation, and noise.	REF .0 dBm
9	Test at A1TP10 Press INSTR PRESET Connect source to receiver under test	Oscilloscope CH1 Coupling AC CH1 V/Div 100 mV Time/Div 50 uS Trigger CH1	Pulse Shape and noise	CHI CPLG=RC CHI = 188 eV/D; v HT-ch 1 Main= 58 vs/D; v
10	Test at A1TP14 Press INSTR PRESET Sweep Type CW Freq 200 MHz Amptd - 10 dBm Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 100 mV Time/Div 50 us Trigger CH1	Waveshape noise	CHI CPLG=BC CHI= 180 mV/DIV HI=Ch I Nain= 50 us/Div
11	Test at TP7 Press INSTR PRESET Sweep Type CW Freq 200 MHz Amptd - 10 dBm Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 200 mV Time/Div 50 us Trigger CH1	Waveshape, noise NOTE This will shift in time due to trigger level	CHI CPLG-DC CHI = 280 mV/Drv HI = 7 m m m m m m m m m m m m m m m m m m

Table 8-5. A1 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
12	Test at A1U28 Pin 12 Press INSTR PRESET Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 100 mV Time/Div 200 nS Trigger CH1	Waveshape, noise	CHI CPLG-DC CHI - LOB mW/DIV MI-Ch 1 Main- 200 ns/Div
13	Test at TP11 Press INSTR PRESET Connect source to receiver under test	Oscilloscope CH1 Coupling DC CH1 V/Div 100 mV Time/Div 50 uS Trigger CH1	Waveshape, noise	CHI CPLG-DC CHI- 100 mV/DIV MT-Ch 1 Main- 50 us/DIV

8-8 SERVICE GROUP A4, LOCAL OSCILLATOR ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on.

Sweep Type	CW
AMPTD	49 dBm
FREQuency	200 MHz

All Oscilloscope waveforms are taken using 1:1 probe and a HP 1980B Oscilloscope. All Spectrum Analyzer waveforms connected to an SMB connector are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10007B 1:1 probe. This probe has 215 Ω of series resistance.

Troubleshooting Hints

- Before troubleshooting this circuit board, be sure that the fault is occuring on this board by checking the following inputs using the settings in Table 2-7 in the Fault Isolation Section.
 - a. A6J7 300 MHz reference output.
 - b. A7J1 300.25 to 500.25 MHz output.

If these signals check out as being good, then the problem is on the A4 Local Oscillator board.

- 2. SYMPTOM: Output Frequency is not correct...
 - a. The problem is due to improper conversion in the first mixer, or improper frequency input signals.
- 3. SYMPTOM: Output Level or harmonic/spurious distortion.
 - a. These problems could be anywhere on the circuit board. Begin troubleshooting at A4J11. Compare the Spectrum Analyzer reading with the information in Table 8-7 following this description. If the signal is good, then the fault is after J11, if it is bad, then the fault is before J11. Continue with this "half splitting" procedure until the faulty functional block is found. Compare all measured signals with the information given in Table 8-7.

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A4J6 Press INSTR PRESET	Spectrum Analyzer Start 150 MHz Stop 1000 MHz Res BW 300 kHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	300 MHz amplitude harmonics.	REF . 0 dBm RTTEN 10 dB 10 dB/ 1
2	Test at A4J7 Press INSTR PRESET	Spectrum Analyzer Start 150 MHz Stop 1500 MHz Res BW 300 kHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	300 MHz amplitude harmonics.	STRRT 150 MHz STOP 1500 MHz RES BM 300 kHz VBM 10 kHz SHP 1.5 sec
3	Test at A4J9 Press INSTR PRESET Sweep Type CW Freq 100 MHz	Spectrum Analyzer Start 100 kHz Stop 550 MHz Res BW 1 MHz VBW 30 kHz Ref Level -10 dBm dB/Div 10 dB	100.25 MHz mixed, RF feedthrough, intermod- ulation.	REF -18.0 dBm ATTEN 18 dB 18 dB/ MINED R.F LOUR F Intermoduliation Distortion U.O. START 188 kHz STOP 558 MHz RES BN 1 MHz VBN 38 kHz SNP 75 msec
4	Test at A4C13 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 290 MHz Stop 1500 MHz Res BW 1 MHz VBW 30 kHz Ref Level 0 dBm dB/Div 10 dB	300.25 MHz synthesizer output amplitude harmonics.	REF 0.0 dBm

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
4 Cont	Test at A4C13 Press INSTR PRESET Sweep Type CW Freq 10 MHz	Spectrum Analyzer Start 290 MHz Stop 1500 MHz Res BW 1 MHz VBW 30 kHz Ref Level 0 dBm dB/Div 10 dB	310.25 MHz synthesizer output amplitude, harmonics.	START 298 HHZ VBH 38 KHZ SHP 121 maec
4 Cont	Test at A4C13 Press INSTR PRESET Sweep Type CW Freq 200 MHz	Spectrum Analyzer Start 290 MHz Stop 1500 MHz Res BW 1 MHz VBW 30 kHz Ref Level 0 dBm dB/Div 10 dB	500.25 MHz synthesizer output amplitude, harmonics.	REF 0.0 dBm
5	Test at A4J10 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 250 kHz Stop 1500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	250 kHz amplitude, harmonics, noise	START 250 AHZ SHP 50 SEC
5 Cont	Test at A4J10 Press INSTR PRESET Sweep Type CW Freq 200 MHz	Spectrum Analyzer Start 250 kHz Stop 1500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	200.25 MHz amplitude, harmonics, noise	START 250 kHz RES BN 30 kHz VBN 3 kHz SHP 58 esc

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
6	Test at A4J11 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 250 kHz Stop 1500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	250 kHz amplitude, harmonics, noise	START 250 kH2
6 Cont	Test at A4J11 Press INSTR PRESET Sweep Type CW Freq 200 MHz	Spectrum Analyzer Start 250 kHz Stop 1500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	200.25 MHz amplitude, harmonics, noise	REF - 10.0 d8m
7	Test at A4U23 Pin 8 Press INSTR PRESETW Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 250 kHz Stop 500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	250 kHz amplitude, harmonics, noise	START 250 kMg VSN 3 kHz SHP 15.0 sec
7 Cont	Test at A4J11 Pin 8 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 250 kHz Stop 500 MHz Res BW 30 kHz VBW 3 kHz Ref Level -10 dBm dB/Div 10 dB	200.25 MHz amplitude, harmonics, noise	START 250 km. PTEN 10 dB

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
8	Test at A4R41 and R42 Junction Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Center 250 kHz Stop 20 kHz Res BW 300 Hz VBW 300 Hz Ref Level -26 dBm dB/Div 1 dB	Absolute Level	REF -28.0 dBm ATTEN 10 dB L dB/ L dB/ CENTER 258.0 kHz SPAN 28.0 kHz RES BH 300 Hz VBM 300 Hz SMP 1.0 sec
8 Cont	Test at A4R41 and R42 Junction Press INSTR PRESET Sweep Type CW Freq 10 MHz	Spectrum Analyzer Center 10.25 MHz Stop 20 kHz Res BW 300 Hz VBW 300 Hz Ref Level -26 dBm dB/Div 1 dB	Absolute Level	REF -26.8 dBm RTTEN 18 dB 1 dB/
8 Cont	Test at A4R41 and R42 Junction Press INSTR PRESET Sweep Type CW Freq 200 MHz	Spectrum Analyzer Center 200.25 MHz Stop 20 kHz Res BW 300 Hz VBW 300 Hz Ref Level -26 dBm dB/Div 1 dB	Absolute Level	REF -26.0 dBm RTTEN 10 dB 1 dB/
9	Test at A4U25 Pin 2 Press INSTR PRESET Sweep Type CW Freq 100 MHz	Oscilloscope CH1 Coupling AC CH1 V/Div 2 mV Time/Div 20 ns Trigger CH1	100 MHz Feedthrough on leveling signal.	CHI CPLG-RC CHI - 2 aV/Div

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
10	Test at A4U25 Pin 6 Press INSTR PRESET Sweep Type CW Freq 100 MHz	Oscilloscope CH1 Coupling AC CH1 V/Div 2 mV Time/Div 30 ns Trigger CH1	100 MHz Feedthrough on leveling signal.	CHI CPLG=RC CHI= 2 mV/Drv MT-Ch 1 Main= 30 ms/Brv
11	Test at A4R109 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Center 250 kHz Span 20 kHz Res BW 300 Hz VBW 300 Hz Ref Level -21.5 dBm dB/Div 1 dB	Amplitude	CENTER 298.8 kHz RES BH 388 Hz VBH 380 Hz SKP 1.0 sec
11 Cont	Test at A4R109 Press INSTR PRESET Sweep Type CW Freq 10 Hz	Spectrum Analyzer Center 10.25 MHz Span 20 kHz Res BW 300 Hz VBW 300 Hz Ref Level -21.5 dBm dB/Div 1 dB	Amplitude	CENTER 10.2580 MHz SPAN 20.0 MHz RES BN 386 Mz VRN 365 Hz ShP 1.0 sec
12	Test at A4J3 Press INSTR PRESET Sweep Type CW Freq 5 Hz	Spectrum Analyzer Start 220 kHz Stop 10 MHz Res BW 30 kHz VBW 300 Hz Ref Level 10 dBm dB/Div 10 dB	250 kHz amplitude, harmonics, noise	DIAM 250 km STOP 10.00 MHz RES 8M 30 km VSM 388 M2 SMP 3.8 sec

Table 8-7. A4 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
12 Cont	Test at A4J3 Press INSTR PRESET Sweep Type CW Freq 1 MHz	Spectrum Analyzer Start 1 MHz Stop 50.5 MHz Res BW 100 kHz VBW 1 kHz Ref Level 10 dBm dB/Div 10 dB	1 MHz amplitude, harmonics noise	START 1.8 NH2 STOP 50.5 NHz RES BH 100 kHz VBN 1 kHz SHP 1.5 sec
12 Cont	Test at A4J3 Press INSTR PRESET Sweep Type CW Freq 200 MHz	Spectrum Analyzer Start 200 MHz Stop 1500 MHz Res BW 1 MHz VBW 10 kHz Ref Level 20 dBm dB/Div 10 dB	200 MHz amplitude, harmonics, noise	REF 20.0 dBm ATTEN 30 dB 10 dB/

8-9 SERVICE GROUP A5, 250 kHz ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the circuit descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on.

Sweep Ty	рe	 ٠.		 			 							 -	 			.CW	1
AMPTD .		 	. ,						 		 			 		 _ 4	49 d	dBm	ì
FREQuenc	cy.	 	 	 	 			 		 					 	 . 20)O N	νНz	_

All Oscilloscope waveforms are taken using 1:1 probe and a HP 1980B Oscilloscope. All Spectrum Analyzer waveforms connected to an SMB connector are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10007B 1:1 probe. This probe has 215 Ω of series resistance.

Troubleshooting Hints

- Before troubleshooting this circuit board, be sure that the fault is occuring on this board by checking the following inputs using the settings in Table 2-7 in the Fault Isolation Section.
 - a. A6J4 300 MHz reference output
- Test the signals listed in Table 8-7 to troubleshoot the circuit to the faulty functional sub-block. The phase locked loop can be can be opened by removing jumper W2. This allows troubleshooting of the phase detector and VCO.

Table 8-8. A5 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A5W3 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 500 mV Time/Div 50 ns Trigger CH1	Pulse shape and distortion	CHI CP_G=RC CHI = 580 mV/D)v MT=Ch 1 Ha·n= 50 ns/Div
2	Test at A5TP42 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 1 V Time/Div 1 us Trigger CH1	Pulse shape and distortion	CHI CPLG=RC CHI = 1 V/D:V
3	Test at ASTP31 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 500 mV Time/Div 1 us Trigger CH1	Pulse shape and distortion	CH1 (PLG-AC CH1= 520 mV/D1v HT=Ch Main= us/D1v
4	Test at A5U20 Pin 1 Press INSTR PRESET	Spectrum Analyzer Start 0 Hz Stop 1500 MHz Res BW 100 kHz VBW 10 kHz Ref Level -26 dBm dB/Div 10 dB	300 MHz amplitude, and harmonics.	REF -25. D d8m

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
5	Test at A5J1 Press INSTR PRESET	Spectrum Analyzer Start 0 Hz Stop 1500 MHz Res BW 100 kHz VBW 10 kHz Ref Level 10 dBm dB/Div 10 dB	300.25 MHz amplitude and harmonics	START 8 Hz STOP ISB8 MHz RES BW 188 kHz VBW 18 kHz SWP 5.8 zec
6	Test at A5U50 Pin 12 Press INSTR PRESET	Oscilloscope CH1 Coupling DC CH1 V/Div 200 MV Time/Div 1 us Trigger CH1	Pulse shape and distortion	CH: CPLG=DC CH:= 280 mV/D;v HT=Ch:: Main=:: us/D;v
7	Test at A5Q1 collector Press INSTR PRESET Connect external power supply to W1 and GND	Counter	Correct Frequency	Frequency should be <300.25 MHz with 0 V input should be >300.25 MHz with 12 V in.

8-10 SERVICE GROUP A6, FREQUENCY REFERENCE ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on.

Sweep Type	
AMPTD	49 dBm
FREQuency	

All Oscilloscope waveforms are taken using 1:1 probe and a HP 1980B Oscilloscope. All Spectrum Analyzer waveforms connected to an SMB connector are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10007B 1:1 probe. This probe has 215 Ω of series resistance.

Troubleshooting Hints

- Before starting to troubleshoot this circuit board, be sure the fault is on this board by checking the following input signals. The signal information is listed in Table 2-7 in the Fault Isolation Section.
 - a. A31J1 Oven Reference Output

NOTE

The 3577A A6 Frequency Reference board will free run on its own 10 MHz VCXO if the A31 Oven signal is not present. The oven signal will not be present if the oven is not adequately warmed up.

2. Check the signal at A6J2 and A6J7 to determine in which third of the circuit the fault has occured. Refer to Table 8-9 for the proper signal levels at the various test points listed.

Table 8-9. A6 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A6U22 Pin 1 Press INSTR PRESET	Oscilloscope CH1 Coupling DC CH1 V/Div 900 mV Time/Div 50 ns Trigger CH1	Pulse Shape, p-p amplitude.	CH1 CPLS=DC CH1 = 982 av/Div
2	Test at A6TP1 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 100 mV Time/Div 50 ns Trigger CH1	Pulse Shape, p-p amplitude.	CTI CPLOFAC CTI : RR eV/CTIV MT-Ch I Main- 58 ns/ETV
3	Test at A6TP2 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 10 mV Time/Div 90 ns Trigger LF REJ, CH1	Noise on VCO control voltage	CHI CPLG-RC CHI - 18 MV/DIV MT-Gh I LF REJ Fain- 92 ns/DIV
4	Test at A6U2 Pin 14 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 10 mV Time/Div 90 ns Trigger LF REJ,CH1	Noise on VCO control voltage	CHI CPLG-HL CHI- 10 TV/DIV MT-CH : LF REJ Main- 50 ms/Div

Table 8-9. A6 Circuit Board, Troubleshooting Data

	Table 8-9. As Circuit Board, Troubleshooting Data						
Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform			
5	Test at A6TP3 Press INSTR PRESET	Oscilloscope CH1 Coupling DC CH1 V/Div 900 mV Time/Div 50 ns Trigger CH1	Pulse Shape, p-p amplitude.	CH) CPLG-DC CH1= 920 mV/DIV MI=Ln 1 Main= 50 ns/DIV			
6	Test at A6J5 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 20 mV Time/Div 3 us Trigger CH1	Pulse Shape, p-p amplitude.	CHI OPLS=RC CHI = 28 mV/D·v HT-Ch 1 Main= 3 us/Div			
7	Test at A6TP2 Press INSTR PRESET Trigger, × 1 on A6TP1	Oscilloscope CH1 Coupling DC CH1 V/Div 150 mV Time/Div 50 ns Trigger EXT × 1	Clean Sinewave	DHI CPIG=IR CHI= (50 mV/D) v MT=Ext, x1, HGTPI Mayor 50 ns/D) v			
8	Test at A6TP4 Press INSTR PRESET	Oscilloscope CH1 Coupling DC CH1 V/Div 900 mV Time/Div 50 ns Trigger CH1	Pulse p-p amplitude, period	CHI CPLG-DC CHI = 900 aV/DIV HT-Ch I Main= 50 ns/Div			

Table 8-9. A6 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
9	Test at A6R70 Press !NSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 8 mV Time/Div 1.5 us Trigger HF REJ,CH1	Noise on VCO control voltage.	CH1 CPLG-PC CH1= 8 mV/DIV MT-Cn 1 HF REJ Main= 1.5 us/Div
10	Test at A6J2 Press INSTR PRESET	Spectrum Analyzer Start 0 Hz Stop 100 MHz Res BW 300 kHz VBW 1 kHz Ref Level 0 dBm dB/Div 10 dB	Harmonics and noise on 10 MHz output.	STRRT 8 Hz RES BH 300 kHz VBH 1 kHz SKP 1.0 esc
11	Test at A6J7 Press INSTR PRESET	Spectrum Analyzer Start 0 Hz Stop 500 MHz Res BW 300 kHz VBW 300 Hz Ref Level +10 dBm dB/Div 10 dB	Harmonics and noise on 30 MHz output.	START B Hz STOP 500 PHz RES BH 300 kHz VBH 300 Hz SHP 15 sec
12	Test at A6J3 Press INSTR PRESET	Spectrum Analyzer Start 75 MHz Stop 1500 MHz Res BW 1 MHz VBW 30 kHz Ref Level 0 dBm dB/Div 10 dB	Harmonics and noise on 300 MHz output	REF .0 dBm ATTEN 10 dB 18 dB/ CTORT 75 Mits CTOR ISSO MHs RES BM 1 MHz VBN 36 MHz SMP ISS most

Table 8-9. A6 Circuit Board, Troubleshooting Data

Table 6 7. 7to circuit sould, frouncing sould							
Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform			
13	Test at A6J4 Press INSTR PRESET	Spectrum Analyzer Start 75 MHz Stop 1500 MHz Res BW 1 MHz VBW 30 kHz Ref Level 0 dBm dB/Div 10 dB	Harmonics and noise on 300 MHz output.	STRRT 72 MHz STOP 1500 MHz RES DH 1 MHz VDN 30 MHz SWP 150 mean			
14	Test at A6R22	Oscilloscope CH1 Coupling DC CH1 V/Div 1 V Time/Div any Trigger AUTO	See TTL Toggle	Oscilloscope should show U2b toggle when an External Reference is connected and disconnected.			

8-11 SERVICE GROUP A7, SYNTHESIZER ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

weep TypeCW
MPTD
REOuency

All Oscilloscope waveforms are taken using 1:1 probe and an HP 1980B Oscilloscope. All Spectrum Analyzer waveforms connected to an SMB connector are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10007B 1:1 probe. This probe has 215 Ω of series resistance.

All troubleshooting in this section takes place with the synthesizer diagnostics turned on. To turn on this diagnostic, press the SPCL FCTN hardkey and toggle the SYN DIAG to the ON mode. This causes the 3577A to display directly in synthesizer frequency rather than output frequency.

Troubleshooting Hints

- 1. Before starting to troubleshoot this circuit board, be sure the fault is on this board by checking the following input signals. The signal information is listed in Table 2-7 in the Fault Isolation Section.
 - a. A6J5 100 kHz reference signal.
 - b. Run Service Diagnostics section in the Fault Isolation Section to verify that the digital circuits are operational.
 - c. This circuit board regulates the main power supplies input to it. When the fault has been isolated to a functional sub-block, first check the supplies associated with that circuit.

- SYMPTOM: Synthesizer output frequency is bad or noisy.
 - a. Isolate whether the analog or digital circuitry is faulty by checking the signal at A7J1 with the Spectrum Analyzer. Power the instrument up with the Reset button pushed on the A13 Main Processor-Controller board. This keeps the main processor from programming the synthesizer, and makes the output VCO free run at the top of its frequency range. By releasing the main processor reset switch and disconnecting the 100 kHz reference signal at A7J3, the VCO will free run at the bottom of its frequency range.
 - b. If the VCO oscillates at both the top and bottom of its range, the VCO is probably operating correctly. The important aspects of these signals are the frequency range and amplitude at both frequency extremes. There must be adequate signal level for the VCO to drive the associated circuitry. If the signals are good, begin troubleshooting the digital section of this board.
 - If the VCO does not oscillate at all, repair the VCO circuit before continuing.
 - d. If the VCO frequency range is not wide enough, then troubleshoot the oscillator transistor and the associated bias circuits.

Analog Troubleshooting

- Connect the Spectrum Analyzer to A7J1 and then A7J2. Set A7W1 to the right and left positions. The output signals for both connectors should be -1 dBm ± 1.5 dB for both frequency extremes.
 - a. If the signal is at A7J1 only, then the buffer circuits in the 300.25 MHz to 500.25 MHz VCO are faulty.
 - b. If 200 MHz of tuning range is available, but not centered correctly, then the adjustment of this tuning range is required. See the appropriate adjustment in Section IV.
 - c. If 200 MHz of tuning range is not available, then check all components in the schematic and physical vicinity of the oscillator transistor, A7Q161. Placement and mounting of these components is critical.
- If the counter circuit is operational as described in the digital troubleshooting section, and the VCO is still not tuning correctly, then test for the correct signal at A7TP10. Sample waveforms for this test point are shown in step 3 of Table 8-10.
 - a. If the waveform is slightly distorted or rounded, then check for proper operation of the sample and hold. Be sure the sampling FETS are not leaky. Start troubleshooting at the sample pulse input at A7TP20.

- b. If the waveform is good, then check the following circuits in the order given to isolate the faulty functional sub-block.
 - 1. The phase detector output at A7TP9 should look like the waveforms in step 2 of Table 8-10.
 - The voltage at A7R45 should be approximately -13.5 V.
 - 3. The voltage at the junction of A7R40 and A7R46 should be between -7 and -8 V.
 - 4. The outputs generating the Bias and API signals should be toggling for a swept synthesizer output. If they are not present, make sure the Fractional-N IC is generating them and that the latch clock is present. There should be 14 latch clock cycles for each reference cycle.
- 3. If the above circuitry checks as good, then the fault lies in the API and Bias sub-blocks. Care should be taken when troubleshooting this circuitry as all the signals are small currents which are difficult to detect. Note that if the VCO locks correctly, but there are large spurious signals present on the output, then check the diodes A7CR3,4,8,9 for opens, shorts, or excessive leakage.

Digital Troubleshooting

- Always check to be sure the main processor is talking to the synthesizer properly. Connect the Oscilloscope to A7TP12. Press the SWEEP TYPE hardkey and select the CW softkey. Press the FREQ hardkey and enter a FREQUENCY of 1 MHz. Note on the Oscilloscope display that three pulses are sent to the Fractional-N IC after the MHz softkey is pressed. Repeat sending new frequencies to the A7 board until you are sure the data is present or not.
 - a. If the data is latching through from the main processor-controller and motherboard to the A7 board, then the fault is on the A7 board. Continue the digital troubleshooting.
 - b. If the data is not latching through, the input instruction decoding latches are faulty, or the main processor-controller signals are bad or missing.
- Disconnect the jumper A7W1 and connect the External Power Supply to the A7W1 pins. Set the power supply for approximately 2 V. Monitor the VCO output frequency with the spectrum analyzer and adjust the power supply for a 400 MHz output signal. Press the SWEEP TYPE hardkey and select the CW softkey. With the Synthesizer Diagnostics on, press the FREQ hardkey and enter a FREQUENCY of 400 MHz. Monitor A7TP13 with the Oscilloscope while the VCO is manually tuned. If the frequency at TP13 approaches 100 kHz (10 μS) as the output frequency approaches 400 MHz, then the entire counter digital section is working correctly. Note that this frequency will approach 100 kHz for every N number programmed into the 3577A and tuned for at the VCO output.

a. If this test passes, and the faults appear to be digitally related, check to make sure the API current sources are getting the correct signals and are not leaky.

MODEL 3577A

b. If this test fails, troubleshoot the counter subblocks and repair as necessary. Refer to the counter troubleshooting procedure.

API Troubleshooting

Overall API Troubleshooting

This procedure checks the entire API current source programming section. This can be used when the API circuit in general is suspect and will determine if the digital programming or the analog current sources are faulty.

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A7 board on an extender board and connect A7J3 to A6J5. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Set the HP 3577A as follows:

Sweep Type	
SPCL FCTN	
SERVICE DIAG	toggle SYN DIAG to ON
FREQ	450.000001 MHz

NOTE

SYN DIAG mode ON cannot be saved in the instrument state register.

c. In this mode, the Fractional-N counter is running to correct the phase detector error for the 1 Hz offset. In this mode, the programming pattern for the API's repeats at the following rate.

API NUMBER	LOCATION	RATE
1	U5 PIN 9	10 s
2	U4 PIN 15	1 s
3	U4 PIN 12	100 ms
4	U4 PIN 10	10 ms
5	U4 PIN 7	· 1 ms

d. Using an oscilloscope, check for the programming pattern at the outputs of A7U4 and A7U5. If these pulses are present, then the digital section is probably operational.

Individual API Troubleshooting

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A7 board on an extender board and connect A7J3 to A6J5. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the HP 8568B Spectrum Analyzer 10 MHz REF OUT to the HP 3577A EXT REF IN using a BNC cable. The EXT REF LED on the HP 3577A front panel should be lit.
- Connect the spectrum analyzer to A7I1.

NOTE

SYN DIAG mode ON cannot be saved in the instrument state register.

e. Set the spectrum analyzer as follows:

INSTR PRESET

Center Frequency	400.1 MHz
Frequency Span	1 kHz
Ref Level	. +5 dBm
Resolution Bandwidth	10 Hz
Sweep Time	
dB/Div	10 dB
CF Step Size	10 kHz

- f. Wait one complete sweep, then press PEAK SEARCH on the spectrum analyzer. Turn the Δ function ON and step the center frequency up to 400.11 MHz using the † key. Wait one complete sweep, then press PEAK SEARCH.
- g. The Δ amplitude reading on the spectrum analyzer should be <-50 dB. If it is not, then troubleshoot API 1.
- h. Set the frequency on the HP 3577A to 400.01 MHz.
- i. Set the center frequency on the spectrum analyzer to 400.01 MHz. Wait one complete sweep, then press PEAK SEARCH on the spectrum analyzer. Toggle the Δ function until the marker Δ reading is 0 Hz, 0 dB. Step the center frequency up to 400.02 MHz using the \uparrow key. Wait one complete sweep, then press PEAK SEARCH.
- j. The Δ amplitude reading on the spectrum analyzer should be < -50 dB. If it is not, then troubleshoot API 2.
- k. Set the frequency on the HP 3577A to 400.001 MHz.
- Set the center frequency on the spectrum analyzer to 400.001 MHz. Wait
 one complete sweep, then press PEAK SEARCH. Toggle the Δ function
 until the marker Δ reading is 0 Hz, 0 dB. Step the center frequency up to
 400.011 MHz using the ↑ key. Wait one complete sweep, then press
 PEAK SEARCH.
- m. The Δ amplitude reading on the spectrum analyzer should be < -50 dB. If it is not, then troubleshoot API 3.
- n. Set the frequency on the HP 3577A to 400.0001 MHz.
- o. Set the center frequency on the spectrum analyzer to 400.0001 MHz. Wait one complete sweep, then press PEAK SEARCH. Toggle the Δ function until the marker Δ reading is 0 Hz, 0 dB. Step the center frequency to 400.0101 MHz using the ↑ key. Wait one complete sweep, then press PEAK SEARCH.
- p. The Δ amplitude reading on the spectrum analyzer should be < -50 dB. if it is not, then troubleshoot API 4.

Counter Troubleshooting

a. Set the 3577A for a CW frequency at 300 MHz (the synthesizer diagnostics must be turned on). This sets the synthesizer for an integer counter divide value. Test for the proper frequencies on the nodes labeled both on the schematic and in step 9 of Table 8-10. Replace all faulty components as indicated.

Table 8-10. A7 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important	Waveform
1	Test at A7J1 Press INSTR PRESET Set A7W1 to +5V	Spectrum Analyzer Start 0 Hz Stop 1500 MHz Res BW 3 MHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	Frequency, Amplitude, Harmonics	REF .0 dBm ATTEN 10 dB 10 dB' START 0 Hz STOP 1500 MHz RES BW 3 MHz VBW 10 kHz SWP 130 exec
1 Cont	Test at A7J1 Press INSTR PRESET Set A7W1 to GND	Spectrum Analyzer Start 0 Hz Stop 1500 MHz Res BW 3 MHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	Frequency, Amplitude, Harmonics	REF .8 d9h ATTEN 18 dB 10 d8/ STOP 1500 MHz RES BH 3 MHz VBN 18 kHz SMP 150 mspc
1 Cont	Test at A7J1 Press INSTR PRESET Set A7W1 open	Spectrum Analyzer Start 0 Hz Stop 1500 MHz Res BW 3 MHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	Frequency, Amplitude, Harmonics	START & Hz STOP 1388 MHz RES BM 3 MHz V8H 10 kHz SHP 150 mago
2	Test at A7TP9 Press INSTR PRESET Sweep Type CW Freq 5 Hz Press SPCL FCTN toggle STN DIAG to OFF mode	Oscilloscope CH1 Coupling AC CH1Volts/Div 300mV Time/Div 2 us Trigger CH1	Top pulse width and reset.	CHI CPLG-PC CHI= 308 mV/Div MT-Ch 1 Main= 2 us/Div

Table 8-10. A7 Circuit Board, Troubleshooting Data

Table 8-10. A/ Circuit Board, Troubleshooting Data					
Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform	
2 Cont	Test at A7TP9 Press INSTR PRESET Sweep Type CW Freq 50 MHz Press SPCL FCTN Toggle SYN DIAG to OFF mode	Oscilloscope CH1 Coupling AC CH1 Volts/Div 300mV Time/Div 2 us Trigger CH1	Top pulse width and reset.	CH1 CPLG-RC CH1 = 388 mV/Drv HT-Ch 1 Hain= 2 us/Drv	
2 Cont	Test at A7TP9 Press INSTR PRESET Sweep Type CW Freq 200 MHz Press SPCL FCTN Toggle SYN DIAG TO OFF mode	Oscilloscope CH1 Coupling AC CH1 Volts/Div 300mV Time/Div 2 us Trigger CH1	Top pulse width and reset.	CHI CPLG-RC CHI= 302 mV/Div MT=Ch: Main= 2 us/Div	
3	Test at A7TP10 Press INSTR PRESET Sweep Type CW Freq 0 Hz Press SPCL FCTN Toggle SYN DIAG to OFF mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 2 V Time/Div 2 us Trigger CH1	Pulse height and reset.	CHI CPLC-DC CHI- 2 V/DIV MT-Ch 1 Hain- 2 us/Biv	
3 Cont	Test at A7TP10 Press INSTR PRESET Sweep Type CW Freq 50 MHz Press SPCL FCTN Toggle SYN DIAG to OFF mode.	Oscilloscope CH1 Coupling DC CH1 Volts/Div 2 V Time/Div 3 us Trigger CH1	Pulse height and reset.	CHI CPLC-DC CHI = 2 V/DIV HT-Ch 1 Hann= 3 us/Div	

Table 8-10. A7 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
3 Cont	Test at A7TP10 Press INSTR PRESET Sweep Type CW Freq 200 MHz Press SPCL FCTN Toggle SYN DIAG to OFF mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 2 V Time/Div 3 us Trigger CH1	Pulse height and reset.	CH1 CPLG=BC CH1= 2 V/Biv
4	Test at A7W11 Press INSTR PRESET Press SPCL FCTN Toggle SYN DIAG TO OFF mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 2 V Time/Div 100 ms Trigger CH1	Pulse height and linear ramp	CH1 CPLG=BC CH1- 2 V/DIV Start Sweep Retrace 0 Hz Start Frequency 200 MHz Stop Frequency HT-Ch 1 Main= 188 ma/Div
4 Cont	Test at A7W11 Press INSTR PRESET Sweep Type Log Press SPCL FCTN Toggle SYN DIAG to OFF mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 2 V Time/Div 200 ms Trigger CH1	Pulse height and logarith- mic ramp	CH1 CPLG-DC CH1- 2 V/DIV TT-Ch 1 Hain- 288 ms/Div.
5	Test at A7TP13 Press INSTR PRESET Sweep Type DC Freq 300 MHz Press SPCL FCTN Toggle SYN DIAG to ON mode.	Oscilloscope CH1 Coupling DC CH1 Volts/Div 400mV Trigger CH1 Time/Div Top 2 us Bottom 20 ns	Frequency, Pulse height and width.	CHI CPLG-DC CHI= 408 mV/DIV ADD VALUE HT-Ch 1 Hain= 2 ux/Div

Table 8-10. A7 Circuit Board, Troubleshooting Data

lable 6-10. A7 Circuit board, froubleshooting Data					
Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform	
6	Test at A7TP4 Press INSTR PRESET Sweep Type CW Freq 300 MHz Press SPCL FCTN Toggle SYN DIAG to ON mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 1 V Trigger CH1 Time/Div Top 2 us Bottom 20 ns	Frequency, pulse height and width.	CH1 CPLG-DC CH1- 1 V/Div AQQ W NT-Ch 1 Hain- 2 us/Div	
7	Test at A7TP16 Press INSTR PRESET Press SPCL FCTN Toggle SYN DIAG TO ON mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 500mV Trigger CH 1 Time/Div Top 2 us Bottom 20 ns	Frequency, Pulse height and width.	CHI CPLC-DC CHI- 500 mV/Dv OG T	
8	Test at A7TP20 Press INSTR PRESET Sweep Type CW Freq 300 MHz Press SPCL FCTN Toggle SYN DIAG to ON mode	Oscilloscope CH1 Coupling DC CH1 Volts/Div 800mV Time/Div 2 us Trigger CH1	Frequency, pulse height and width.	CHI CPLG=DS CHI= 808 mV/D·V MT-Ch 1 Main= 2 cc/Div	
9	Digital Section Tests Press INSTR PRESET Sweep Type CW Freq 300 MHz Press SPCL FCTN Toggle SYN DIAG to ON mode.	Counter	Frequency at each test location	U11 (1,9,10,15)=100 kHz U14 (3,4,6)=100 kHz U14 (1,9)=200 kHz U15 (3)=100 kHz U15 (5,7,10,15)=100 kHz U18(5)=6 MHz	

8-12 SERVICE GROUP A8, OUTPUT ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

All measurements are ± 10 percent unless otherwise specified.

Troubleshooting Hints

 Before troubleshooting this circuit board, be sure that the fault is occurring on this board by checking the following signals using the parameters in Table 2-7.

A7J2 Swept Synthesizer Output

A5J1 300.25 MHz Offset Signal Amplifier

Troubleshooting Procedure

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A8 Source board on an extender board. Connect the instrument to the power line, and turn the POWER switch ON.
- Set the HP 3325A Synthesizer to a frequency of 100 kHz and an amplitude of -40 dBm.
- c. Move A8W5 to the top right position and connect the synthesizer to A8J8.
- d. Set the HP 3577A as follows:

 Sweep Type
 .CW

 AMPTD
 +15 dBm

e. Measure the level at A8J3 with an HP 8568B Spectrum Analyzer. The level should be approximately +14.3 dBm. If it is not, use Table 8-11 to determine the faulty amplifier. These levels may be measured with an HP 8568B Spectrum Analyzer and an HP 10020A 20:1 resistive divider probe, or an oscilloscope and a 1:1 probe.

Table 8-11 A8 Circuit Board, Troubleshooting Data

Junction of Q5 and Q6	0.07 V peak-to-peak	-45 dBm
Junction of Q25 and Q26	0.64 V peak-to-peak	-27 dBm
Junction of Q45 and Q46	6.6 V peak-to-peak	-6 dBm
Output side of R72*	3.4 V peak-to-peak	-12 dBm

^{*} Connect a 50 Ω load from J3 to ground.

- f. The drop across R72 should be exactly 6 dB. If it is not, then troubleshoot the relays in the 60 dB Step Attenuator.
- g. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

Low Frequency Gain Error Correction Troubleshooting Procedure

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Lift one side of R194. Place the A8 Source board on an extender board. Connect the instrument to the power line, and turn the POWER switch ON.
- Set the HP 3325A Synthesizer to a frequency of 100 kHz and an amplitude of -40 dBm.
- d. Move A8W5 to the top right position and connect the synthesizer to A8J8.
- e. Set the HP 3577A as follows:

SWEEP TYPE	 	 	CW
AMPTD		+15	dBm

- f. Connect an oscilloscope to A8J3 and set its input impedance to 50 ohms.
- g. Adjust the DC offset on the synthesizer until the sine wave viewed on the oscilloscope is centered around 0 volts.
- h. If the source trips before the synthesizer can be adjusted, lift one side of R115 to disable the overload sense circuit.
- i. The synthesizer DC offset should not be greater than ± 25 mV and the output at J3 should be a 3 V peak-to-peak sine wave (non-clipped). If it is not, then the problem is in one of the amplifier stages and the bias levels at each stage should be checked.
- i. Re-install R194 and R115.
- k. Return the synthesizer DC offset to zero.
- 1. Lift one side of R193 and the side of R331 connected to U4 pin 6.
- m. Set an external DC power supply to zero volts. Using the hole left by R331, connect the power supply through a 10 k Ω resistor to U4 pin 6.
- n. Monitor the junction of R181 and R182 with a DC voltmeter.
- o. Adjust the power supply output until the DC voltmeter reads 0 ± 0.1 V. If unable to obtain the correct voltmeter reading, check the outputs of U4 and U190 for voltages that vary with the power supply.
- p. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

Peak Detetector (CR161 and CR160) Troubleshooting Procedure

Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A8 Source board on an extender board. Connect the instrument to the power line, and turn the POWER switch ON.

- Set the HP 3325A Synthesizer to a frequency of 100 kHz and an amplitude of -40 dBm.
- c. Move A8W5 to the top right position and connect the synthesizer to A8J8.
- d. Set the HP 3577A as follows:

Sweep Type	
AMPTD	 + 15 dBm

- e. Measure the output at A8J3 with an HP 8568B Spectrum Analyzer. Adjust the synthesizer for an output reading of \pm 15 dBm \pm 0.1 dB.
- f. With an oscilloscope and a 10:1 probe, check the DC level at the junction of R149 and R150. It should be +3.5 V.
- g. Decrease the amplitude of the synthesizer by 4 dB.
- h. The DC level on the oscilloscope should be +2.5 V.
- i. If this test failed, suspect CR160 or CR161.
- j. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

Amplitude Leveling Troubleshooting Procedure

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover. Place the A8 Source board on an extender board. Connect A7j2 to A8j1 and A5j1 to A8j2 using extender cables. Connect the instrument to the power line, and turn the POWER switch ON.
- b. Set the HP 3577A as follows:

SWEEP TYPE CW	/
FREQ 100.001 kH:	Z
STEP SIZE 2 H:	Z
AMPTD +11 dBn	n
STEP SIZE 4 dI	3

- c. Adjust Level Cal 1 (R144) for approximately 1.93 V at U20 pin 2.
- d. Increase the HP 3577A amplitude to +15 dBm by pressing AMPTD 1.
- e. Adjust Step Cal 1 (R142) for approximately 3.12 V at U20 pin 2.
- f. Ground one side of L125 and turn R156 and R157 fully clockwise.
- g. Decrease the HP 3577A frequency to 99.999 kHz by pressing FREQ ↓ and decrease the amplitude to +11 dBm by pressing AMPTD ↓.
- h. The DC voltage at U21 pin 3 should be approximately -0.275 V.
- i. Increase the HP 3577A amplitude to +15 dBm by pressing AMPTD 1.
- j. The DC voltage at U21 pin 3 should be approximately -0.437 V.
- k. Remove the ground from L125.
- If this test passed, then the amplitude leveling loop works. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state. Perform adjustment 4-19, Source Amplitude and Step Adjustments.
- m. Decrease the HP 3577A amplitude to +11 dBm by pressing AMPTD ↓ (the frequency should be 99.999 kHz).

n. Check each of the following op amp stages:

The voltage at U20 pin 3 should be the same as the reference voltage on U21 pin 12.

The output of U20 pin 3 should be constant.

The output of U20 pin 4 should be approximately -2 V.

The output of U21 pin 10 should be 0 V.

The Anode of CR171 should be 0.5 V.

The output of U21 pin 4 should be +0.24 V.

- o. Ground one side of L125. The output of U21 pin 3 should now be -0.24 V providing the output of U21 pin 4 was +0.24 V.
- p. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state. Perform adjustment 4-19 Source Amplitude and Step Adjustments.

Limiting Mixer (U13) Troubleshooting Procedure

- a. Turn OFF the instrument's power switch, remove the power cord, and remove the top cover.
- b. Lift the side of L125 connected to CR164. Using the hole left by L125, connect the DC supply through a 10 k Ω resistor to CR164.
- c. Place the A8 Source board on an extender board. Connect A5J1 to A8J2 using extender cables. Connect the instrument to the power line, and turn the POWER switch ON.
- Move A8W1 to the top left position and connect the HP 8568B Spectrum Analyzer to A8J4.
- e. Adjust the DC supply to -4 V.
- f. The 300.25 MHz signal on the spectrum analyzer should be approximately -33.7 dBm.
- g. Change the DC supply voltage to -7 V.
- The 300.25 MHz signal on the spectrum analyzer should be approximately -29 dBm.
- i. If this test failed, replace the U13 mixer.
- j. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

8-13 SERVICE GROUP A11, FAST PROCESSOR ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

INSTR PRESET

All Oscilloscope waveforms are taken using a 1:1 probe and a HP 1980B Oscilloscope. All signatures are taken using a HP 5006A Signature Analyzer.

NOTE

When running all signature analysis routines, keep the signature analyzer and the HP 3577A physically far from each other to prevent digital signal coupling.

Troubleshooting Hints

a. Self Tests and Diagnostics

Use the power on self tests and the service diagnostics described in Section II to isolate all problems. First verify that the problem encountered is on the A11 Fast Processor circuit board and not the A13 Main Processor-Controller board by running the power on self tests. Note which tests fail and troubleshoot the indicated circuit using the SA1 routine described below. The service diagnostics will test the Fast Processor and Main Processor-Controller communication, and will make the Fast Processor run a self test. Again, note the indicated circuit and test it using the SA1 routine.

All signatures for the A11 Fast Processor assembly are taken with the Main Processor-Controller (A13) and Trace Memory (A12) boards removed and all three Receiver (A1) boards disconnected from the fast bus by placing A1W5 and A1W6 into the Tri-State position. These jumpers are available from the top of the instrument without removing the Receiver boards.

 SA1 Signature Analysis Rou
--

The SA1 signature Analysis routine is the general purpose signature analysis routine. Use SA1 to isolate the fault as narrowly as possible. After the 3577A is placed into SA1 mode (set W1 to the SA1 position) and power is applied, the fast processor must be reset by momentarily shorting INIT (A11TP6) to ground.

SA1 consists of ten different subtests. Due to the Fast Processor clock frequencies involved, different test configurations are required for stable, repeatable signatures. The test configuration for the first subtest is described below. At the beginning of each test, first set the signature analyzer as described below, then make any changes indicated by the subtest.

Signature Ana	lysis \$A	.1 Routine	Test Set	Up
---------------	-----------	------------	----------	----

lock
Qualify No Connection
tart A11J3 pin5
top

Signature Analyzer Set Up

ock	
ialify	١
art	-
on	•

```
+5 V signature = 7A70
GND signature = 0000
```

c. SA2 Signature Analysis Routine

The SA2 Signature Analysis routine is to be used only after SA1 has been used to narrow down faults to the components covered in SA2. Move W1 to the SA2 position and set the Signature Analyzer as described below.

Signature Analysis SA2 Routine Test Set Up

Clock	Cl
Qualify No Connection	Q
Start	St
Stop A11J3 pin4	St

Signature Analyzer Set Up

Clock	 -
Qualify	 N/A
Start	
Stop	

```
+5 V signature = 9515
GND signature = 0000
```

The SA2 mode is software driven, so the fast processor must be reset after moving the jumper to SA2 mode. To reset the fast processor, momentarily short INIT (A11TP6) to ground. Verify a good reset by watching for a toggle on the Signature Analyzer gate LED.

Table 8-12. A11 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A11P1B30 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 100 mV Time/Div 150 ns Trigger CH1	Risetime, Period, noise.	CHI - 188 mV/DIV
2	Test at A11P1B3 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 2 V Time/Div 150 us Trigger CH1	Risetime, Períod, noise.	CH1 CPLC-RC CH1- 2 V/Biv MT-Ch I Main150000 ns/Div
3	Test at A11P1A7 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 2 V Time/Div 150 us Trigger CH1	Risetime, Period, noise.	CHI - 2 V/DIV CHI - 2 V/DIV HT-Ch Hain158888 os/Div
4	Test at A11TP4 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 2 V Time/Div 30 us Trigger CH1	Risetime, Period, noise.	CH1 CPLG-AC CH1- 2 V/DIV HT-Ch 1 Maight - 30000 cs/Div

Table 8-12. A11 Circuit Board, Troubleshooting Data

	Table 6-12. ATT Circuit Board, Proubleshooting Data				
Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform	
5	Test at A11P1B5 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 700 mV Time/Div 80 ns Trigger CH1	Risetime, Period, noise.	CHI CPLG-AC C-1= 788 mV/Div HT-Ch I Main=-88 na/Biv	
6	Test at A11TP1 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 700 mV Time/Div 80 ns Trigger CH1	Risetime, Period, noise.	CHI CPLG=RC CHI = 780 mV/Div HT=Ch 1 Maine=RR ns/Div	
7	Test at A11TP1 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 500 mV Time/Div 10 ns Trigger CH1	Clean signal for TTL level transition	CHI CPLC-AC CHI = SAR eV/DIV MI=Ch 1 Hain= 18 na/Div	
8	Digital Tests Press INSTR PRESET Set A11W1 to SA1 A11W2 to mid A11W3 to mid	Oscilloscope CH1 Coupling AC CH1 V/Div 1 V Time/Div 100 us Trigger CH1	Squarewave frequency.	A11U60 pin 5 12 kHz pin 9 12 kHz A11U35 pin 14 12 kHz pin 13 6 kHz 12 kHz = 83.3 us 6 kHz = 166.7 us	

Table 8-13a. A11 Circuit Board, Signature Analysis Data (SA1)

Component	Pin	Signature	Component	Pin	Signature
U1 to U6	1	0772	U6	9	48CU
	2	4U2A		10	FH4C
	3	4442		11	26HU
	4	P030		13	HF26
	5	H0AA		14	C9P0
	6	HA07		15	9P5H
	7	C21A		16	8UF5
	8	H62A		17	384A
	18	7A70	U7	2	40F2
	21	U424		5	40PF
	22	1734		6	A884
	23	9635		9	5667
U1	9	8185		11	0000
	10	81H9		12	8U70
	11	P1A4		15	9482
	13	9070		16	U706
	14	A795	ļ	19	U0H2
	15	AFFU	∪8	2	479P
	16	HU98		5	F950
	17	PPOF		6	U8C2
U2	9	8U3H		9	7954
	10	92A0		11	0000
	11	8A94		12	F6AP
	13	8H5H		15	77HA
	14	PUC4		16	7∪48
	15	U2A9	U9	2	C886
	16	U164		5	5C55
	17	∪P91		6	F7A0
U3	9	710F		9	74HA
	10	C6AC		11	0000
	11	62C0		12	12AA
	13	2554		15	98P5
	14	31FC		16	642F
	15	P9C5		19	3158
	16	8U40	U10	2	7CPC
	17	46F8		5	1929
U4 .	. 9	U7H7		6	H1UA
	10	3252		9	P4HU
	11	61A6		11	0000
	13	8HP6		12	81CC
	14	10C7		15	885C
	15	F9CP		16	UF1H
	16	2H79	U11	2	973F
	17	76AA		5	4P0A
U5	9	2P78		6	2F26
	10	9F15		9	8589
	11	CHFH		11	0000
	13	08P9		12	0474
	15	0C12		15	PF1C
	16	584H		16	F43C
	17	8877			

Table 8-13a. A11 Circuit Board, Signature Analysis Data (SA1) Cont.

U12	
6	
9	
11	
12	
15	
15	
16	
U13	
14	
U14 7 7A70 37 14F6 14 7A70 38 548H U15 14 4FUU 39 09HF 31 0000 U27 15 0000 U16 3 3HPP 23 U00C 12 479P 29 C2F3 13 0C61 36 20C3 U17 1 784U 37 CF8C 2 4HU1 38 9690 3 C00P 39 56U3 15 7066 U28 4 9H9F U18 15 6069 5 9539 U21 1 7449 10 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 5C55 12 2H4C 10 C886 10 C886 12	
14	
U15 14 4FUU 39 09HF 31 0000 U27 15 0000 U16 3 3HPP 23 U00C 12 479P 29 C2F3 13 0C61 36 20C3 U17 1 784U 37 CF8C 2 4HU1 38 9690 3 C00P 39 56U3 15 7066 U28 4 9H9F U18 15 6U69 5 9539 U21 1 7449 10 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 53F5 8 2P6U 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 U23 3 HPH3 13	
U16	
U16 3 3HPP 23 U00C 12 479P 29 C2F3 13 0C61 36 20C3 U17 1 784U 37 CF8C 2 4HU1 38 9690 3 C00P 39 56U3 15 7066 U28 4 9H9F U18 15 6U69 5 9539 U21 1 7449 10 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 53F5 8 2P6U 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 U23 3 HPH3 13 3158 U24 15 0000 12 3F7C 15 0000 12 3F7C	
12	
13	
U17 1 784U 37 CF8C 2 4HU1 38 9690 3 C00P 39 56U3 15 7066 U28 4 9H9F U18 15 6U69 5 9539 U21 1 7449 10 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 53F5 8 2P6U 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 U23 3 HPH3 10 FP6H U24 15 0000 12 3F7C U24 15 0000 12 3F7C U24 15 0000 12 3F7C UHUU 15 0000 <	
2	
15	
U18	
U18 15 6U69 5 9539 U21 1 7449 10 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 53F5 8 2P6U 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 U23 3 HPH3 10 FP6H U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 36 370C 9 C41H	
U21 1 7449 U29 1 2P6U 2 1602 U29 1 642F 3 2374 2 642F 4 AA37 3 1P5F 9 53F5 8 2P6U 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 U23 3 HPH3 10 FP6H U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 36 370C 9 C41H	
1602 U29 1 642F 3	
3	
A	
9 53F5 8 9 5C55 11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 18 4HU1 U30 5 PU50 19 26U8 10 FP6H U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
11 H32H 9 5C55 12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 18 4HU1 U30 5 PU50 19 26U8 10 FP6H U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
12 2H4C 10 C886 13 C2F3 11 4C28 14 P658 12 3158 15 4417 13 3158 15 4417 13 3158 18 4HU1 U30 5 PU50 19 26U8 10 FP6H 10 FP6H 11 U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
13 C2F3 14 P658 15 4417 13 3158 15 4417 13 3158 18 4HU1 U30 5 PU50 19 26U8 10 FP6H 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
14 P658 12 3158 15 4417 13 3158 16 4417 14 10 13 3158 18 4HU1 U30 5 PU50 19 26U8 10 FP6H 10 FP6H 11 U24 15 0000 12 3F7C 12 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
U23	
U23 3 HPH3 4HU1 U30 5 PU50 FP6H U24 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
18	
19 26U8 10 FP6H 15 0000 12 3F7C 22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
U24	
22 UHUU 15 0000 23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
23 207U U31 2 P91U 29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
29 53F5 3 7A70 31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
31 784U 4 936U 33 4HU1 6 936U 36 370C 9 C41H	
33 4HU1 6 936U 36 370C 9 C41H	
36 370C 9 C41H	
1 10 1000	
38 7066 11 7A70	
39 784U U35 2 4U2A	
13 7UAP	
14 4858	
U36 1 0496	
5 HPH3	
U43 7 05HP	
9 4858	

Table 8-13a. A11 Circuit Board, Signature Analysis Data (SA1) Cont.

Component	Pin	Signature	Component	Pin	Signature
U44	1	0000	U48	3	0000
	2	0000		5	245U
	3	0000		6	5P2U
	4	0000		8	9FH9
	5	7A70		9	P6A5
U45	5	C2F3	U49	8	F2UA
U46	15	207U	U50	3	40H0
	17	UHUU		8	C88A
U47	3	U15U	U56	6	7A70
	5	U00C	U57	6	7PP6
	-		U59	9	U424
			U60	3	7A70
				5	UAUU
				9	4858

Table 8-13b. A11 Circuit Board, Signature Analysis Data (SA1)

Move Signature Analyzer QUAL lead to A11U33 pin 11. Set QUAL mode to LOW.

+5 V Signature = 001U Momentarily ground TP6

Component	Pin	Signature
U33	1	0009
	4	001U
	5	0000
	9	0009
	10	0009
	1 1	0000
	13	001U
	14	001U
	15	0009
U34	1	0009
	4	001U
	9	0009
	10	0009
	13	001U
	15	0009
U41	1	0009
	4	001U
	9	0009
	10	0009
	13	001U
	15	0009
U42	1	0009
	9	0009
	10	0009
	15	0019

Table 8-13c. A11 Circuit Board, Signature Analysis Data (SA1)

Move Signature Analyzer QUAL lead to A11U12 pin 19. Set QUAL mode to LOW.

+5 Signature = CH38

Component	Pin	Signature	
U37	4	0000	
03,	5	0000	
	7	AAPC	
U38	1	6C05	
		U282	
	2 3	75AC	
	5	3U80	
	12	017A	
	13	3159	
	14	7095	
	15	8C8P	
U39	4	0000	
	6	3A68	
	7	H540	
	9	6A83	
	11	7CF9	
U40	1	3U80	
	3	82C8	
	5	CH38	
	6	CH38	
	8	75A5	
	11	CH38	
	12	0000	

Table 8-13d. A11 Circuit Board, Signature Analysis Data (SA1)

Move the Signature Analyzer QUAL lead to A11U12 pin 6. Set QUAL mode to LOW.

+5 Signature = F4AU

Component	Pin	Signature	
U51	1	0000	NOTE: These signatures are
	2	91H9	valid for both sides o
	3	C024	A13RP3 and A13RP4
	4	C014	
	5	9388	
	6	91A5	
	7	C3HP	
	8	C014	
	9	918H	
	11	A97A	
	12	9321	
	13	C3PP	
	14	C3HP	
	15	93A0	
	16	91 A 5	
	17	C3HP	
	18	C3HP	
	19	93A0	
U52	1	0000	
	2	H3U8	
	3	C014	
	4	C3HP	
	5	H351	
	6	92HP	
	7	C014	
	8	C3HP	
	9	F986	
	11	A97A	
	12	HF2P	
	13	C0H5	
	14	2A7U	
	15	F056	
	16	PACP	
	17	C7H8	
	18	СЗНР	
	19	UA05	

Table 8-13e. A11 Circuit Board, Signature Analysis Data (SA1)

Move Signature Analyzer CLOCK lead to A11U19 pin 1. Set QUAL mode to LOW.

+5 Signature = 8132

Component	Pin	Signature	
U19	3	53A1	NOTE: All buffer output
	3 5	4898	signatures are the sai
	7	UF13	as input signatures.
	9	34P0	
	12	PPA7	
	14	H90C	
	16	9051	
	18	2UH0	
U20	3	A1UH	
	5	9C81	
	7	PAU6	
	9	C8PU	
	12	5178	
	14	467C	
	16	3A9F	
	18	09P4	

Table 8-13f. A11 Circuit Board Signature Analysis Data (SA1)

Move the Signature Analyzer CLOCK lead to A11U22 pin 1.

Set QUAL mode to LOW.

+5 Signature = 6PF5

Component	Pin	Signature
U22	3	6516
	4	6516
	5	6516
	6	6516
	7	PCPC
	9	U050
	11	6516
	12	958P
	13	HU2H

Table 8-13g. A11 Circuit Board Signature Analysis Data (SA1)

Move the Signature Analyzer QUAL lead to A11U24 pin 6. Set QUAL mode to HIGH.

+5 Signature = 6692

Component	Pin	Signature	
U24	8	F4PP	
	9	3U1C	
U25	8	3U1C	
l	9	UC73	
U26	8	UC73	
	9	UA54	
U27	8	UA54	
	9	HA91	

Table 8-13h. A11 Circuit Board Signature Analysis Data (SA1)

Move the Signature Analyzer QUAL lead to A11U32 pin 1. Set QUAL mode to LOW.

+5 Signature = CH38

Component	Pin	Signature	
U32	3	0000	
	5	0000	
	7	75A5	

Table 8-13i. A11 Circuit Board Signature Analysis Data (SA1)

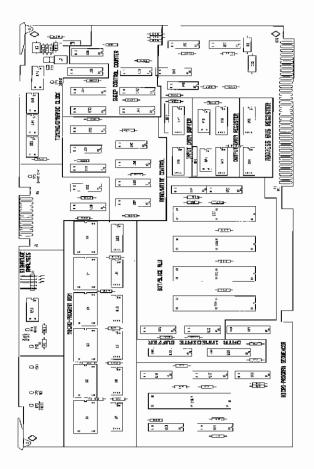
Move the Signature Analyzer QUAL lead to A11U53 pin 1. Set QUAL mode to HIGH.

+5 Signature = 6PF5

Component	Pin	Signature
U53	2	U084
	3	6PF5
	7	C0C6
1	9	H786
	14	PCPC

Table 8-13j. A11 Circuit Board Signature Analysis Data (SA1)

Move the Signature Analyzer QUAL lead to A11U54 pin 1. Set QUAL mode to LOW.


+5 Signature = CH38

Component	Pin	Signature
U54	2	97HC
	3	8CF9
	4	024H
	5	92H2
	6	97F0
	7	2FP4
	8	H8FP
	9	1958
	11	82C8
	12	17H3
	13	P90C
	14	6HH8
	15	97F0
U55	2	H565
	3	01AH
	4	76AC
	5	75AC
	6	6C05
	7	2261
	8	U7U9
	9	U282
	11	82C8
	12	5A15
	13	U655
	14	7631
	15	6958
	16	5HH3
	17	8918
	18	43A3

Table 8-14. A11 Circuit Board Signature Analysis Data (SA2)

Component	Pin	Signature	Component	Pin	Signature
	•				
U19	3	AC37	U25	15	0000
	5	56CA		36	876F
	7	56CA		37	122F
	9	AC37		38	8264
	12	5HUF		39	10F8
	14	AP3U	U26	15	0000
	16	AP3U		36	876F
1,120	18	5HUF		37	122F
U20	3	AP3U		38	8264
	5	5HUF		39	10F8
	7	AP3U	U27	15	0000
	9	AC37		36	876F
	12	56CA		37	122F
	14 16	5HUF 56CA		38	8264
	18	AC37	1145	39	10F8
U21	1	2PAF	U45	2	5HHF
021	2	2U1A		3 5	9515 0020
	3	2PAF		10	0020
	4	2U1A		11	0000
	9	CCC9 U59	1159	9	AF44
	11		0.33	9	A144
	12	CCC9			
	13	0020			
	14	2PAF			
	15	2U1A			
U24	1	A352			
	2	967C			
	3	FU97			
	4	50C8			
	5	H5C0			
	6	0000			
	7	U5P2			
	11	01C6			
	12	U76H			
	13	7FU0			
	14	СГ95			
	15	0000			
	17	A170			
	18	9U2U			
	19	2FU6			
	20	46A5			
	26	CA76			
	27	3U4A			
	28	F9AP			
	31 26	10F8			
	36 37	876F 122F			
	37 38	8264			
	38 39	8264 10F8			

8-99/8-100

8-14 SERVICE GROUP A12, TRACE MEMORY ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

INSTR PRESET

All Oscilloscope waveforms are taken using a 1:1 probe and a HP 1980B Oscilloscope.

Troubleshooting Hints

a. The A12 Trace Memory board can be fully tested from the front panel without removal of the instrument covers. Press the SPCL FCTN hardkey and select the SERVICE DIAG softkey. Press the TRC MEM TEST softkey to test the A12 circuit board. Replace all components as indicated in the selftest.

NOTE

The A11 Fast Processor must be operational for the trace memory self test to operate. To verify that the Fast Processor is operating correctly, run the FASTPROC TEST and the FAST BUS INT TEST. If both of these tests pass, then the Fast Processor is not causing false Trace Memory failures.

b. If the battery back-up is suspect of being bad, connect the Oscilloscope to A12TP1. With power applied to the HP 3577A, the voltage should be approximately 5 V. With the 3577A power turned off, the voltage should read approximately 3 V. Repeat the above for A21U19 pin 6. With power applied, the voltage should be approximately 0 V. With the power removed the voltage should be approximately 3 V.

8-107/8-108

8-15 SERVICE GROUP A13, MAIN PROCESSOR-CONTROLLER ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

INSTR PRESET

All Oscilloscope waveforms are taken using a 1:1 probe and a HP 1980B Oscilloscope. All signatures are taken using a HP 5006A Signature Analyzer.

NOTE

When running all signature analysis routines, keep the signature analyzer and the HP 3577A physically far from each other to prevent digital signal coupling.

Troubleshooting Hints

- a. This procedure assumes the initial Fault Isolation procedure listed in Section II has been followed and has indicated running these procedures. If the Fault Isolation Procedures have not been run, perform them now to make sure that the fault is resident on the Main Processor-Controller circuit board.
- Clock signal waveforms are shown in Table 8-15. Check these waveforms as described in Table 8-15.

c. The following procedure is to be used as a general troubleshooting procedure when a fault exists on the A13 Main Processor-Controller board. Refer to the Digital Block Diagram in Section II when performing these tests as it shows the interaction of all the bus in the instrument.

- 1. Disconnect the mains power cord from the rear panel and remove the top cover. Reconnect the mains power cord and turn the instrument on.
- 2. Allow about 2 minutes for the display to warm up.
- 3. If the display does not operate, be sure that the display is not causing the problem by running the Fault Isolation procedures in Section II.
- With the instrument properly warmed up, press the RESET pushbutton (A13S1) through the shield over the A13 board. Watch the ROM and RAM test LEDs.
- 5. If the ROM test LED extinguishes after approximately 5 seconds, then the ROM test has passed. This test verifies the ROM checksums and the first buffer on the main processor address and data bus.
- 6. If the RAM test LED extinguishes after approximately 10 seconds, then the RAM test has passed. This test verifies the RAM with a marching ones test, and the second buffer on the main processor address and data bus. Note that all periferal devices (fast processor, display, HP-IB, etc) are tied to this bus, so if any of these buffers are loading the bus, the RAM will not pass the self test. This self test verifies all RAM except that which have non-volatile requirements. The non-volatile memory stores the saved instrument states. If the instrument does not operate correctly when a saved state is recalled, then perform the total RAM test as described in the Power On Self Tests in Section II.
- Run the Service Diagnostics for the periferal devices. To run these diagnostics, press the SPCL FCTN hardkey and select the SERVICE DIAG soft-key. All service diagnostics to be run, and any special instructions for running them, are listed below
 - a. TEST PATTERN: This test requires no external interaction with the user. The display test pattern as documented in the HP 1345A manual supplied with this instrument. This will verify the display buffer and the display operation. To exit from this test mode, press the INSTR PRESET hardkey.
 - b. TRC MEM TEST: This test performs a marching ones test on the A12 Trace Memory board. This test requires no external interaction with the user and is fully documented in Section II of this manual. Please note that the main processor talks to the trace memory through the fast processor bus. If the fast processor does not operate correctly, it may cause the trace memory test to fail, even though the trace memory is good.

c. FASTPROC TEST: This test has the main processor command the fast processor to perform a self test, and send the results back to the main processor. This verifies the main processor, fast processor buffers and the fast processor logic.

- d. FAST BUS INT TEST: This test has the main processor write to one of the main processor, fast processor buffers, then read the data from the other. The test is then repeated write to the other buffer and reading from the first. The fast processor decoding logic must be operational for this test to pass.
- e. DISP MEM TEST: This test verifies the memory board in the HP 1345A display. The display buffer is also verified in this test. This is fully documented in Section II of this manual.
- f. DISP HP-IB: This test makes the HP-IB circuit read the HP-IB control and data lines at the rear panel. Note that HP-IB protocol will not be followed in this test. To run this test, the operator should ground each of the HP-IB control and data lines to the connector shield. As the lines are grounded, a dot should appear in the slot for it drawn on the display. To exit from this test mode, press the INSTR PRESET hardkey.
- 8. Run the confidence test for each of the inputs. The confidence test is run by presssing the SPCL FCTN hardkey and the CONF TEST softkey. The test requires a cable to connect the source to the channel under test. This test will verify that the instrument control bus is working properly, along with any hard analog failures.
- d. Due to the interaction of the circuits on this board, it is impossible to have a troubleshooting tree which would catch all cases of error. If the procedure in step c does not lead you to the fault, then perform each of the signature analysis routines listed below. Run the SA1 routine first, as it is the most general test. SA2 is to be used when ambiguity remains after running SA1.

SYMPTOM: Unit fails ROM self test.

- a. Check the $\pm 5V$ supply on the A13 board at A13TP2. The reading should be $5V \pm 0.2V$. If the voltage is bad, replace the faulty components.
- b. Check for the clock signal at TP3 with the oscilloscope. The signal should look like the one in step 3 of Table 8-15. With the signal on the oscilloscope, press the Line pushbutton, off then on. With the power on, the 8 MHz phase locked loop will free run. The frequency of the free run should be between 6 and 8 MHz. If the frequency is outside these limits, the microprocessor may not reset correctly, and will hang up. When the POP line goes high, then the signal should phase lock to the 1 MHz input signal from the A6 reference board. If either of these tests fail, then replace the faulty components.

c. Run the SA1a signature analysis routine. If the SA1a tests pass, then run the SA1b signature analysis routine. This tests the ROM as a total unit. If this test fails, run SA1c to test the individual ROM components.

SYMPTOM: Unit fails RAM self test.

- a. If only one RAM shows up as bad, then it is most likely a RAM chip failure. If half or all of RAM fails, then it is most likely a bus or an address decoder, A13U9 or U10, failure. Replace all faulty components.
- b. Look at each data bus line with the oscilloscope while the RAM test is in progress. Each data line should toggle. If any data line does not toggle, then one of the buffers tied to this bus is most likely loading it down. Replace all faulty components.
- c. Run the SA2b signature analysis routine on the data bus buffers. If +5V signature is bad, then look in the Address Decoding functional sub-block for failures. If the +5V signature is good, then check all the buffers tied to the RAM bus.

SA1 Signature Analysis Routine

This routine is the general signature analysis routine for the Main Processor-Controller board. Run this test first when led to the Main Processor-Controller from the Fault Isolation procedures. Remove the Fast Processor (A11) and the Trace Memory (A12) boards. Disconnect all three Receiver (A1) boards from the fast bus by placing A1W5 and A1W6 into the TriState position. The SA1 test set is described below.

Signature Analysis SA1 Routine Test Set Up

Clock														 											Α1	3)	2
Start														 											Α1	3)	2
Stop																									A1.	3 J	2
Qualif	y		 		 												 	1	V	o	(Co	n	ın	ect	io	n

Signature Analyzer Set Up

Clock				,			,		,	,	,	,		,		,		,					\mathcal{L}
Start .																							\mathcal{L}
Stop .								,		,									-				
Qualit	fγ.			,						,													N/A

+5 V signature = UP73 GND signature = 0000

Set the signature analysis jumper A13W1 to the TEST position and connect the Signature Analyzer to the SA test connectors. Press the reset switch A13S1 to start the SA mode.

10. SA2 Signature Analysis Routine

This routine is used primarily to test the "kernal" and isolating functional sub-blocks from each other. This is done in the SA mode by setting all the tri-state buffers to read mode only. Run this after completing the Main Processor-Controller SA1 Signature Analysis Test and a functional sub-block is suspect. Remove the Fast Processor (A11) and the Trace Memory (A12) boards. Disconnect all three Receiver (A1) boards from the fast bus by placing A1W5 and A1W6 into the Tri-State position. The SA2 test set up is described below.

Signature Analysis SA2 Routine Test Set Up

Clock	
Start	 A13TP4
Stop	 A13TP4
Qualify	 No Connection

Signature Analyzer Set Up

Clock									,													_	/	•
Start .			,																			_	_	•
Stop .	, .																					_	_	-
Oualif	٧.										_											Ν	11	١

+5 V signature = AU47 GND signature = 0000

Set the signature analysis jumper A13W2 to the TEST position and connect the Signature Analyzer to the SA test connectors. Press the reset switch A13S1 to start the SA mode.

Table 8-15. A13 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A13U77 Pin 8 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 1.5 V Time/Div 70 us Trigger CH1	Risetime, Period	CH) CPLG-RC CH1= 1.5 V/DI> MT-Ch 1 Hain=-78880 ng/Div
2	Test at A13P2A30 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 1.5 V Time/Div 300 ns Trigger CH1	Risetime, Period	CHI CPLG-RC CHI- t.5 V/Div The test of th
3	Test at A13TP3 Press INSTR PRESET	Oscilloscope CH1 Coupling AC CH1 V/Div 1.5V Time/Div 50 ns Trigger CH1	Risetime, Period	CHI CPLG-RC CHI - 1.5 V/Div AT-Ch 1 Main-S8 ns/Div

Table 8-16a. A13 Circuit Board, Signature Analysis Data (SA1a)

This signature analysis test is used to test the microprocessor and all functional sub-blocks. This test should be run first, after fault isolation to the A13 board is performed.

+5V Signature = UP73

ponent	Pin	Signature	Component	Pin	Signature
Ų1	9	UP73	U6	2	F3U8
	10	0000		3	FA75
	12	UP73		4	FAF6
	13	UP73		5	85U4
	17	UP73		6	55H1
	18	UP73		7	334U
	21	UP73		8	0U16
	22	UP73		9	00UP
	26	UP73		11	00UP
ļ	27	UP73	1	12	0U16
	28	0000		13	33 4 U
	29	55H1		14	55H1
	30	334U		15	85U4
	31	0U16	} }	16	FAF6
	32	00 UP		17	FA75
	33	UUUU		18	F3U8
	34	34P0	U7	3	0000
	35	0U52	0/	5	UP73
ľ	36	48C6	1	6	UP8H
- 1	37	HAP7		7	0U16
	38	85U4		8	
	39	FAF6			334U
	40	3HPH		9	55H1
	41	U1U8		11	55H1
	42			12	334U
	42	FA75		13	OU16
	43	C5F0		14	UP8H
		F3U8		15	UP73
- 1	45	55H1		16	0000
	46	33U4		18	0000
,	47	0U16	U9	1	3HPH
2	8	H06U		2	U1U8
_	12	H06U		3	FA75
5	2	C5F0	}	4	UP8H
J	3	U1U8		5	0000
	4	ЗНРН		6	0U16
	5	48C6		7	F402
	6	HAP7		9	6C58
	7	0U52		12	CHU3
	8	34P0		13	F120
	9	U UU U		14	05PA
	11	UUUU	[]	15	0766
	12	34P0			
	13	0U52			
	14	HAP7			
	15	48C6			
	16	3HPH			
	17	U1U8			
)	18	C5F0			

Table 8-16a. A13 Circuit Board, Signature Analysis Data (SA1a)

Component	Pin	Signature	Component	Pin	Signature
U10	1	ЗНРН	U51	1	UP73
	2	U1U8		2	UP73
	3	FA75		3	UP73
	4	UP8H		4	UP73
'	5	0000		6	9U6A
	6	0∪16		9	UP73
ļ	12	CHU3		10	9U6A
	13	F120		12	9U6A
	14	05PA	U52	1	U P 73
	15	0766		6	0000
U12	1	F3U8		7	0000
2.2	2	55H1		8	0000
	3	334U		9	UP82
	4	UP8H		10	4U05
	5	0U16		11	H06U
	6	UP73	\	12	UP73
	7	AC80		13	9U6A
	9	AC90		14	9U6A
	10	5595	1156		
		55C5	U56	11	47H7
	11			12	47H7
	12	A9CU		13	UP73
	13	A9UU	U57	1	UP73
	14	51PC		2	231A
	15	516A		3	231A
U13	1	U67C		8	231A
	2	8H9U		9	0P26
	3	8A66		10	H34U
	4	H34U	U58	1	6C58
	5	0P26		2	HAP7
	6	13UU		3	59 PP
	7	H06U		11	UP73
	8	2P54		12	UP82
	9	47H7		13	UP73
	10	4U05			
	11	4518	U59	3	UP73
	18	F402		4	UP73
	19	0000		5	0000
	20	HAP7		6	UP73
	21	48C6	ĺ	8	0UU1
	22	0U52		9	8A66
	23	34P0		10	8H9U
U31	12	231A		11	U67C
	19	231A	U64	1	UP82
	24	UP73		2	00U1
U32	12	231A		3	UP73
	19	231A		4	0000
	24	UP73		8	U182
U37	1	0P26		9	0001
	13	H34U	U66	3	UP73
U44	1	13UU	U67	5	UP73
	19	13UU	007	6	0000
U45	1	13UU		"	0000
	19	1300			
U47	1	2P54]
· · ·	19	0000			
, •	••				

Table 8-16a. A13 Circuit Board, Signature Analysis Data (SA1a)

Component	Pin	Signature	Component	Pin	Signature
U68	1	UP73	U69	4	0000
	2	UP82		5	0000
	3	UP73		6	UP73
	4	UP73		11	UP82
I	5	00U1		12	UP73
	6	UP73		13	00U1
	8	UP73	U79	13	47H7
	9	UP73	U85	5	UP73
	10	0000		6	UP73
	11	UP82	U86	1	0000
	12	0U16		2	UP8H
	13	UP8H		3	UP8H

Table 8-16b. A13 Circuit Board, Signature Analysis Data (SA1b)

This signature analysis test is used to isolate the ROM functional sub-block. This tests the ROM as a total unit. SA1c tests the individual ROM components

+5 V Signature = 000 U

Сотролен	Pin	Signature
U83	2	HA2C
	4	C06H
	6	2412
	8	002F
	11	5755
	13	6U8H
	15	654U
	17	FUUH
U84	2	237C
	4	IFCC
	6	0APC
	8	6269
	11	U717
	13	HF81
	15	88FS
	17	7U35

Table 8-16c. A13 Circuit Board, Signature Analysis Data (SA1c)

This signature analysis test checks the individual ROM components in the ROM functional sub-block, and should be run after SA1b. Each ROM is isolated from the others by the Start and Stop SA pins to the ROM under test.

+ 5V signature = 755U

Component	Pin	Signature
U19	11	9FC0 Start and Stop to U19 pin20
019	12	F2P1
	13	90H3
	15	8245
	16	7F81
	17	P2A8
	18	60P3
	19	C977
U20	11	294A Start and Stop to U20 pin20
020	12	4526
	13	IF7F
	15	6A30
	16	
	17	896C
		OFHC
	18	C4UA
	19	09P8
U21	11	2P12 Start and Stop to U21 pin20
	12	ACCU
	13	CFF4
	15	F120
	16	FA8F
}	17	7F4F
	18	8A74
	19	HHSC
U22	11	IH52 Start and Stop to U22 pin20
	12	HHFS
	13	P774
	15	41HP
	16	93F8
	17	4113
	18	2651
	19	600H
U23	11	OFC6 Start and Stop to U23 pin20
	12	52 4 9
	13	55AU
	15	AF35
	16	C718
	17	CP59
	18	F4P4
	19	05 H3

Table 8-16c. A13 Circuit Board, Signature Analysis Data (SA1c) Cont.

Component	Pin	Signature
U24	11	9AC2 Start and Stop to U24 pin20
	12	01CA
	13	HU5U
	15	13H7
	16	6905
	17	P897
	18	993C
	19	1827
U25	11	9A4A Start and Stop to U25 pin20
	12	44AH
	13	FF45
	15	46AH
	16	F273
	17	3U39
	18	8300
	19	H4UP
U26	11	PHF4 Start and Stop to U26 pin20
	12	FA8C
	13	859A
	15	UUF9
	16	ABPU
	17	UPPF
	18	8413
	19	U14U

Table 8-16d. A13 Circuit Board, Signature Analysis Data (SA1d)

Move Signature Analyzer Start and Stop leads to A13TP6. Press A13S1 Reset switch.

This signature analysis test checks the Bus Error Detection circuitry for faults.

+5 V Signature = 6PCP

151.	Jigilatare	— 01 Ç1	
Component	Pin	Signature	
U1	50	91FC	
	51	3CPF	
	52	F9C2	
U55	1	9P5H	
	1 2 3	3CPF	
		F9C2	
Ų58	1 2 3 4 5	06AU	
	2	FP47	
	3	9336	
	4	6PCP	
	5	9P5H	
	6	6PCP	
	11	6PCP	
	12	2P3F	
	13	6PCP	
U66	8	9P5H	
	9	6PCP	
	10	UOP3	
	11	U0P3	
	12	6PCP	
	13	9P5H	

Table 8-17a. A13 Circuit Board, Signature Analysis Data (SA2a)

This signature analysis test is primarily used to test the "kernal" and to isolate functional sub-blocks from each other. This test should be run after completing the A13 SA1 test.

+5 V Signature = AU47

nponent	Pin	Signature	Component	Pin	Signature
U2	8	C471	U35	1	0000
-	9	P1H5	055	2	467A
	11	P1H5		3	5626
	12	C471		4	6755
U7	5	P1H5		5	HFA2
	15	P1H5		6	08U5
J13	1	247A		7	8570
	2	4096		8	3438
	3	3775		9	8A70
	4	2852		11	8A70
	5	3580		12	3438
	6	AUF6		13	8570
	7	C471		14	08U5
	8	AU47		15	HFA2
	9	U459		16	6755
	10	9299		17	5626
	11	67HA		18	467A
	18	5F0H		19	0000
	19	0000	1136	1	0000
	20	9U01	U36	2	9U01
	20 21	5626		4	9001 UP15
	21 22	HFA2		6	
	23	8570		7	UP15
14	1 1	5CP0		8	H519
4	2	8HP7		9	U34A
	3	95H1		11	H519
	4	1363		12	H519
	5			I	U34A
		16F4		13	H519
	6	9917		14	UP15
	9	1309		16	UP15
	10	9F7P		18	9U01
	11	AU47		19	0000
	13	10P0	U38	4	0894
	14	6668		9	8U38
	15	0894		11	67HA
	16	8CC0	U47	7	97P2
	17	5F19		9	C1P6
	18	8914		11	C1P6
	19	P1H5		13	97P2
	20	9U01	U50	1	AU47
	21	5626		3	5F19
	22	HFA2		4	AU47
	23	8570		5	C1P6
31	12	C295		9	97P2
	19	C295		10	AU47
	24	10P0		11	8CC0
32	24	10P0		13	AU47

Table 8-17a. A13 Circuit Board, Signature Analysis Data (SA2a)Cont.

Component	Pin	Signature	Component	Pin	Signature
U51	1	AU47	U59	1	23P7
	2	AU47		2	AU47
	3	AU47		3	AU47
	4	AU47		4	5 7 P2
	6	26P8		5	U8A5
	9	AU47		6	AU47
	10	26P8		8	UFHP
	12	26P8		9	3775
	13	26P8	1	10	4096
U52	1	AU47		11	247A
0.52	6	0000		12	8FA0
	7	0000		13	AU47
	9	U6UP	∪61	1	8U38
	10	9299	061	2	9299
	11	C471		3	
	12	AU47		4	9299
	13				P1H5
	14	26P8		5	AU47
1100		26P8		6	AU47
U53	1	AU47		8	98UU
	3	6668		9	4P92
	4	AU47		10	9299
	5	U807		11	98UU
	9	F4U8		12	98UU
	10	AU47		13	0000
	11	6668	U62	1	0000
i	13	AU47	002	2	P1H5
U55	5	U807		3	
	8	0000		4	P1H5 467A
	9	F4U8		5	0000
1	10	6CCU		6	
i	11	6CCU		7	6755
U56	8	9F7P		8	388C
	9	AU47		12	08U5
	10	9F7P		13	08U5
U57	1	AU47		14	388C
	2	C295			6755
	3	C295		15	0000
	8	C295		16	467A
	9	3580		17	P1H5
	10	2852		18	P1H5
U58	1	8914		19	0000
	2	9U01	U64	1	U6UP
	3	0021		2	59C9 .
	4	0000		3	AU47
	8	P1H5		4	0000
	9	0000		5	AU47
	10	P1 H5		6	0000
				8	5399
				9	UFHP
				12	4P92
				13	P1H5

Table 8-17a. A13 Circuit Board, Signature Analysis Data (SA2a) Cont.

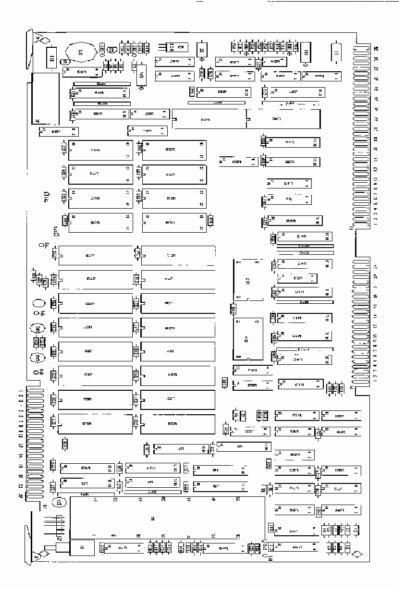
mponent	Pin	Signature	Component	Pin	Signature
U66	2	AU47	U79	1	9F7P
l	3	AU47		2	0000
	4	AU47		3	0000
	5	A7AF		4	13C9
	6	08PC		5	0171
U68	1 1	0000	U80	1	26P8
000	2	U6UP		2	9299
	3	U6UP		3	AU47
	4	0000		4	P1H5
				5	26P8
	5	59C9			199C
	6	59C9		6	
	8	0000	<u> </u>	8	26P8
	9	0000	i l	9	0000
	10	0000		10	26P8
	11	UPU6		11	P1H5
	12	H519		12	0000
	13	23P7		13	P1H5
U69	4	388C	U85	5	U838
	5	0000		6	U838
	6	AU47	U86	1	0000
	8	AP36		2	23P7
	9	0171		3	23P7
	10	AU47			25
	11	U6UP			
	12	P1H5			
	13	59C9			
U70		AU47	1 1		
070	1	A840			
	2				
	3	08PC			
	4	AU47		ì	
	6	3223			
	8	3223			
	10	AU47			
	11	08PC			
	12	1663			
	13	AU47			

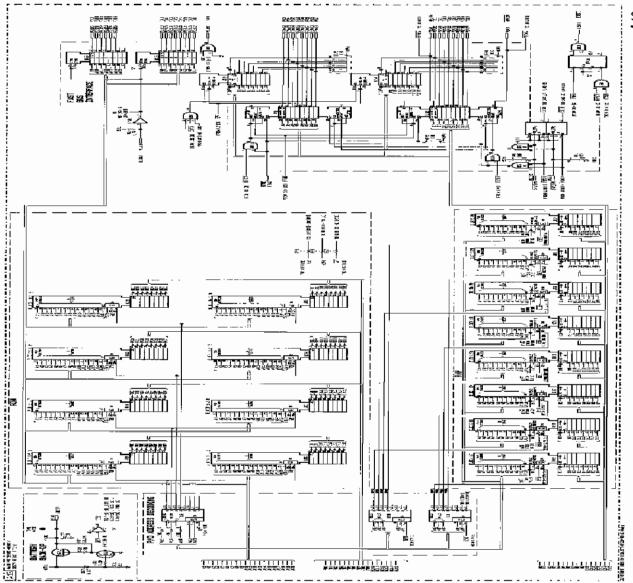
Table 8-17b. A13 Circuit Board, Signature Analysis Data (\$A2b)

Set Qualify to ___ and connect Signature Analyzer lead to component pin as specified below.

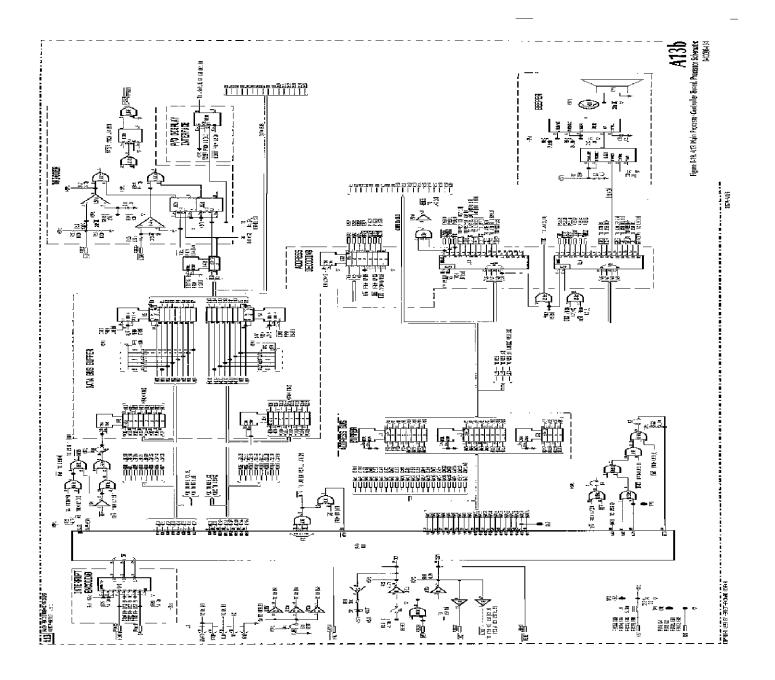
This signature analysis test check the buffers which connect the microprocessor to the rest of the digital portions of the instrument. Use this routine to troubleshoot the appropriate buffers.

+5 V Signature = 9515

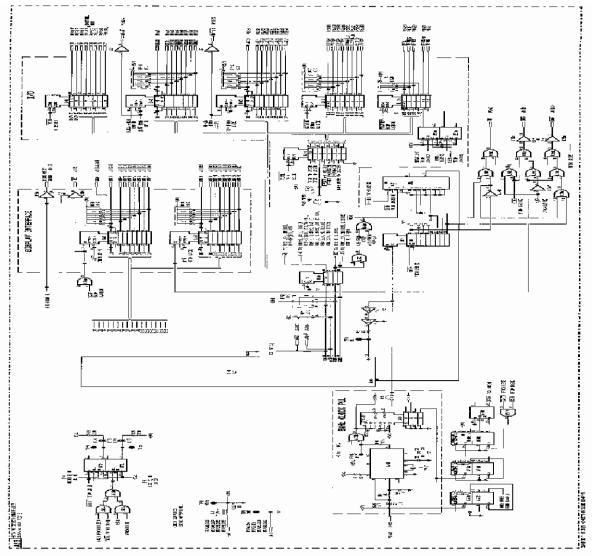

Component	Pin	Signature	
U33	1	5U9U	Qualify to U33 pin 19
	2	F5AF	
	3	6CU9	
	4	3752	
	5	8P05	
	5 6	UFAC	
	7	19U7	
	8	H34P	
	9	463F	
	11	4 63F	
	12	H34P	
	13	19U7	
	14	UFAC	
	15	8P05	
	16	3752	
	17	6ĊU9	
	18	F5AF	
U34	1	5U9U	
		AF05	
	3	ÇBAÇ	
	4	91U7	
	5	F34P	
	6	663F	
	7	2FH9	
	8	C913	
ľ	9	9286	
	11	9286	
	12	C913	
	13	2FH9	
	14	663F	
	15	F34P	
	16	91U7	
	17	C8AC	
	18	AF05	


Table8-17b. A13 Circuit Board, Signature Analysis Data (SA2b) Cont.

Component	Pin	Signature	
U39	1	5U9U	Qualify to U39 pin19
	2	9286	+5 V Signature = 9515
	3	AF05	+3 v Signature = 3313
	4	C8AC	
	5	C913	
	6	2FH9	
Ì	7	663F	
	8	F34P	
	9	91U7	
	11	9 1 U7	
	12	F34P	
	13	663F	
	14	2FH9	
	15	C913	
	16	C8AC	
	17	AF05	
	18	9286	
U40	1	5U9U	
	2	F5AF	
	3	463F	
	4	6CU9	
	5	H34 P	
	6	3752	
	7	19U7	
	8	8P05	
	9	UFAC	
	11	UFAC	
ļ	12	8P05	
	13	19U7	
	14	3752	
	15	H34P	
ļ	16	6CU9	
	17	463F	
U41	18	F5AF	0 17 1 1141 5:40
041	1	0000	Qualify to U41 pin19
	2	5FP9	+5 V signature = PCU5
	3 4	AP74	
	5	Н73A 6С9Н	
	6	C5FP	
	7	5AP7	
	8	2H73	
	9	96C9	
	11	96C9	
	12	2H73	
	13	5AP7	
	14	C5FP	
	15	6C9H	
	16	H73A	
	17	AP74	


Table 8-17b. A13 Circuit Board, Signature Analysis Data (SA2b) Cont.

Component	Pin	Signature	
U42	1	PH5U	Qualify to U42 pin19
	2	F28U	+5 V signature = 4C63
	3	UAC7	1 3 1 Signature 1003
	4	66AC	
	5	A8A5	
	6	4UA2	
ļ	7	3F21	
	8	05PO	
	9	9900	
	11	9900	
	12	05 P O	
	13	3F21	
	14	4UA2	
	15	A8A5	
	16	66AC	
	17	ŲAÇ7	
	18	F28U	
U43	1	14AA	Qualify to U43 pin19
	2	PF9A	+5 V signature = P733
	3	P8C2	
	4	PAA6	
	5	6CAF	
	6	2C29	
	7	0C6C	
	8	1C4A	
	9	135A	
	11	135A	
	12 13	1C4A	
	14	0C6C 2C29	
	15	6CAF	
	16	PAA6	
	17	P8C2	
	18	PF9A	
U45	1	0000	Qualify to U45 pin19
	3	0 001	+ 5 V signature = 0001
	5	0001	10134
	7	0000	
	9	0 001	
	12	0001	
	14	0000	
	16	0001	
	18	0001	
U85	2	0001	
	3	0001	
	4	0000	
	5	0000	
	6	0000	
ļ	8	0001	
	9	0001	
	10	0000	
	11	0001	
	12	0001	
	13	0000	



	333	2 2 3	23	38	3	;	999:		===				222555	S EEE	3.	2 3		=	==	=	++		11.0	
4	ទូតស	នគា	링윤	8 5	ź	8	5 4 9 ;	686 6	085		868	E.R	пьяцики	e man	mi	i 5	. 26	2	86	13	E 6	650	68	888
ı	표를		99	<u> =</u>		14 54 5	- 14 14 -	-2 -1 -1 -1		3050		<u> </u>	13 = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	æ ≝- <u>∃</u>	<u> </u>	- -		- 3	- 7.5 - 5	∮≘	5	프블롱	- }g	55
l	_					æ	क क ज												=	=	-	~	* *	5
l	≝ n ×	92	-1 H			Pa	,		E E E E	- 10		a 3	更喜欢的的的	<u> </u>	≨ 2≥=,	<u> </u>	See er r	:- 26	의 선 · 및	#	5 F		-	n a + 5
-				_		- 10					8 2 5		विवादित्यस्त्र		- · - · · · · · · · · · · · · · · · · ·	m	888888				7 P -	25 = 5	= M & S	

2 -	,	<u>.</u>			_;	، ت	د د			_	ے ت	دد	_ =	==	===	3		z z	ZZZ		e e	ZZ:	FEE	Z .	2 Z Z		Ξ	=	8	2 2	=	2	2	=		ਕ ਡ	= =	,		ə
	1	¥ ē	T 27	23	-ej	F9 1	e e			rc	ĦĦ	ti ti	ಹಕ	8 6	688	5		33	556		6 6	登世:	ತಿ ಕೆ ಕೆ	C	6 E Z		8	6	5	3 8	E	29	ð	凸	3	9 9	E E	F	998	8
14		E	1	٠,-	≟	≟ :	ij-			·						· 🖺 ==	읔 누	حر د	e- jj	7,	← <	000		:	5 - 5	<u>=</u>	 =	-		 - 5	·- ‡ ·	- F M	· 🚝	5		~ •	EE	3 - 5		= 다 를 막
Ė											44																						=			T T			T 75	
																				3 E				≡		≠:		₹ •	=						4			Ψ.		
탶	1	Ť	3 53	ন	Œ	٦.	7 =	===	2 12	4.7	•		ৰ শ	m m				4.2	nn S	= =	F3 F3	13 14 1	400	⊒ -	., = =	=		= =		 	- n:		* *		= =			₽.	-	

8-16 SERVICE GROUP A15, KEYBOARD ASSEMBLY

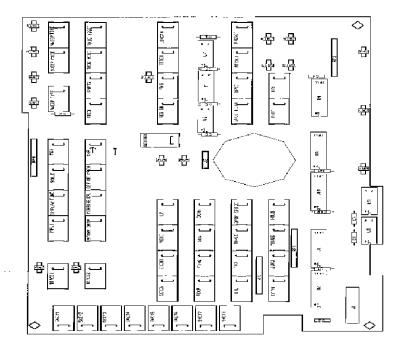
The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

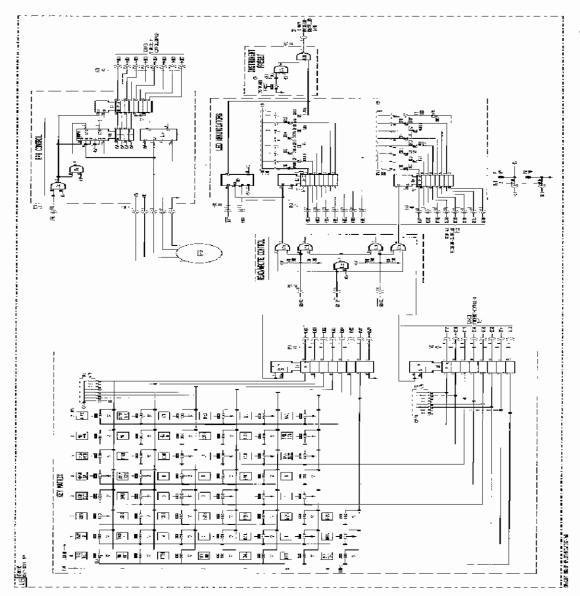
Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions


Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

Press INSTR PRESET


All Oscilloscope waveforms are taken using a 1:1 probe and an HP 1980B Oscilloscope.

Troubleshooting Hints

 Troubleshoot at each side of the latches separating the suspect key, LED, or the RPG from the keyboard connector J1. Key closure is indicated by TTL ground.

._

8-17 SERVICE GROUP A16, HP-IB ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

Press INSTR PRESET

All Oscilloscope waveforms are taken using a 1:1 probe and a HP 1980B Oscilloscope. All signatures were taken using a HP 5006A Signature Analyzer.

NOTE

When running all signature analysis routines, keep the signature analyzer and the HP 3577A physically far from each other to prevent digital signal coupling.

Troubleshooting Hints

NOTE

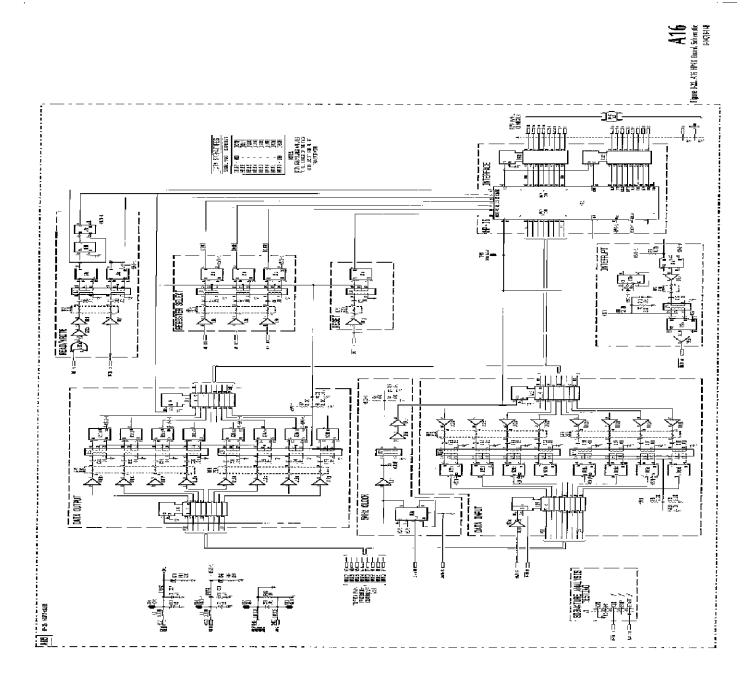
The HP-IB signature analysis routine is run from the Main Processor-Controller. Faulty +5VI and GNDI signatures would indicate Main Processor-Controller and HP-IB communication fault.

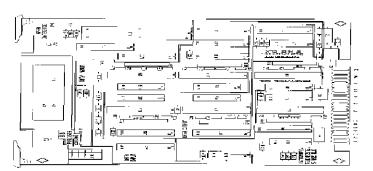
 Run the DISP HP-IB test routine under the SPCL FCTN hardkey and SERVICE DIAG softkey. Using a small jumper, short each of the control pins to HP-IB connector ground. When each pin is grounded, the appropriate pin shown should have a dot in it.

If this test passes, and there is still an HP-IB fault, then the fault would either be in either the HP-IB chip or in Main Processor-Controller servicing of the HP-IB circuit. All signal paths and buffers are checked using the above procedure.

If this test fails, then all components are still suspect. Run the HP-IB Signature Analysis routine under the SPCL FCTN hardkey and SERVICE DIAG soft-key. If the Signatures are correct and there is still an HP-IB fault, then there is probably a firmware fault, and the Main Processor-Controller ROMs should be checked as described in the Power-On Selftest section of Section II.

 To run the HP-IB signature analysis routine, press the SPCL FCTN hardkey and select the HP-IB SA softkey. Connect the Signature Analyzer to the HP 3577A as described below.


Clock		 	 ,		٠.	,							. A16J	3 pi
Qualify				, ,								 N	o Conr	ecti
Start		 	 			,							A16J	a pi
Stop		 	 										A161	3 pi


+5VI signature = P672 GNDI signature = 0000

Test for correct signatures as noted on Figure 8-22, HP-1B Schematic. All data path signatures are identical.

Table 8-18. A16 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Test at A16TP5 (Clock signal)	Oscilloscope CH1 Coupling DC CH1 V/Div 1V Time/Div 60 ns Trigger CH1	Risetime, Period	CHI CPLG=RC CHI = I V/D>V H7-Ch } Hein=-6P ns/01v

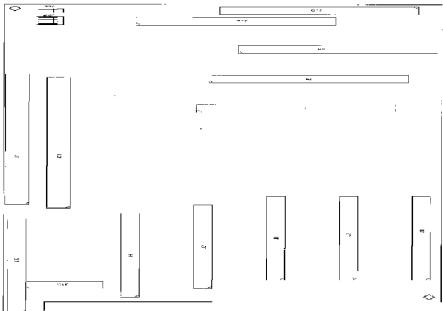
20	5	ë	an n	55
€ 25	75	15	88 8	87 69
ය	를 기를			- B. F. F
海	8 2	ij. #		88
異 豊		##돌 漢 ~	8855	-
E 22			និគគ	E
- =	ভাৰা কাল ব কালা -	电阻电阻空室监督		2955

8-18 SERVICE GROUP A20, MOTHERBOARD ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.


Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

NOTE

This circuit board contains no active or signal conditioning components. All signal paths shown in Table 8-19 can be checked for continuity using an ohmmeter.

How to Use Table 8-19

All signal names are listed vertically with each of the circuit boards listed horizontally. When a signal is connected to a circuit board, the edge connector pin number is entered in the table at the intersection point of the signal name and the circuit board in the matrix. All circuit board connections for a specific signal can be seen by looking left to right in the signal name row. All signals connected to a circuit board can be seen by looking up and down in the circuit board column.

								-				i																							manual June State of	
20:= E		r•					-												İ.																Legis II &	
Šankina E			٠.			-																													9	5 5
275 / <u>2</u> 46 / 446 444	9,2						E = t-			•									12	: La															2	2
<u>E</u> == <u>=</u>								S (2)																												
현장에 가 쓰는지수를 설득하는 -			Ì					5 -d 5 5 7/10																												
3		İ								. T. E																										
90 0 = 0- 9==		等 E	₩ A	≅ ⊭		택보	1			: 윤 - 연명	Eti	i																								
ž ·		Fare		÷ =		· =	¥		≤ ¥ 5	日田	# 7 E	•																								
ā e Āoran		マロマロ 東田田田		25 E			35			: #£	링크 발표 (· 🖂																								
물		98	=										2 <u>2</u>	73			• T																			
<u> </u>		通 H 登 展		E									4 E	- -	99 30	25. 25.	• 5 E	7 £ £																		
	<u>*</u>	¥	<u> </u>			F	ਫ						툽					충	9	3																
	30°C		_																all full.																	
40 日本	ENG TO: +	\$ 150. \$ 150.	6.00			Î	Ē.					ļ	2					53	alian altrum																	
 _													- 1	!									-													
€																			i												-	-				
덩~~~ 프 로 : #																			i																	
5,4 4557 F																			!										-			1				
g							'								르느				i							m	ŀ		1			- 1	e z. e • .•	12		
₹4								l					1				<u>a</u>		1.				-	P P -		₽- <u> </u>	当	İ	<u>.</u>	:3 Ġ				크부	2 2 7 2	:
garana. Garana	海海	经库司分生	· ·	ᆂ	÷	23 7.	7 7	v	=	E 7	<u> </u>	2	i						1,	****	r ar 14		₩:		F			3 م	į							
Actor Fedical																	E	= 2	4							=	23	-		7.			. . 		in a r	,
E		# # # # # #	==	<u> =</u>	X	29		_																									2 24			
5- 5-	12 RS	2 2				F F	=		#E	£=		23	占	24	¥ 25	Ę	# 3 = 3	3								⊊ £i							e neare e	æ		
图=												=	=													÷ =						=	2 E : 2	=		
중=포 >= ··		£ 22					-				-			_2		-	===	na is	å :							==		-	,				= =			
중사기보고사 및 참 기본 사 및	= m	=			'		-4							5		ä		5 : 5 :	ė							E#						- 1	2 = =			
<u> </u>	55 L.	2222	355	Fi	Æ	BASIC Section		ΙĒ	ĮΖ		Ēŧ	3		e g	3 5	200	Ħ			5 5 5 5	歪 盖	盖层	[er	4	- 1	≅ ≥	F.	Ē Ī	2 =	<u> </u> 7						
						ιİ	1_	_			豆		ļ														i '	- I.			}					
	崖			_	CIRCLE DECRUID	36.1	MI SE SELEN	PERMIT	THE BEHINDS IN C		- STRICE STRICE Sealer legitif				=		15	22	ĕ.	=					5		贈.	STEMBALLY STEET IN STREET		ALCH ROUND AT PA	TEST OF PRODUCT	3				
50 Albers	9M (1M)			04:14 —	TIESTE .	SPERMEN.		E (1)	聖	-COCHETECH -CHATHER				5 H H H	14 E	3180	111. 102 pt.	Mentagy:					15	- Halling All	DVI S		(1) (1) (1)	STEP BIGUE	28.4	S S S C S	ES C. M.	101 t 15	į			
- e			1	1									Ĺ												1] !	1		Ϊ,			Ì				I
E																										Ì	i		İ,		! ;					
Sorma is					ł	l																														
受っても 100 100 100 100 100 100 100 10																																				İ
±	T =0	****	٠.	-		⊕ ≅	E =					{														Ι.			=							
grades and see	40 000	43 ~~~	_				т-	i	2	보			ļ.,		9.5	.		. क क क		근모품:	eer	- 65 - 61	888	د ده الدا	اه	_	_ _	7	أيا	- A						
₹= <u>.</u>				7				: 19			ER	٠															-									
[] ** ** * * * * * * * * * * * * * * * *				Ī.									1					ংশমন ংগাতাত		eee:						Ε	- -	E-		= <u>-</u>		4 3	20.1	g	7 ap at	
<u> </u>					.									-1 -1 -4	-1 -2		~ ~ ~									_	_		ľ	-		- -				_
<u> </u>									7.5	2.5		= T E														i I		!		·	13					
سار									-			÷ <u>=</u>	!																							
8-0 5-2 8-											ĺ		75.1	ತಪಶ	분들	25																i	æ	E	ᠽ	æ
w switt														5 A 5												IJ				;			<u>:.</u>	17.	4	盂
ā	2 m	yazşşı	<u>.</u>		£ =	至元		: 15	묲	¥.	<u></u>	¥		ERE SHA			T # #	5888	12	<i>ភាពកាត</i>	ត្រូវ	क्षा इंटिक	- -	三星 星 星		lä Iä	 	E	怪	¥ 8	经基	<u>≗</u> ≨ 3	면호	5 S	조취	호 왕
		++		-				1	=	=	H.	¥3.56							~	<i>ተ</i> ና ምን					į.		 [€	E	1		l_				-acmi	-1
				TOTAL DESIGNATION IN THE	N Mainfill k.ps-Ell	JES .					±	e e	_							鱼					_		. 84			ALTERCATION OF ALTER	AHEOGRAPHICAL MAINE		i			ビ
*	_		45 COMMON COMPANY	1		STOREGO STAN	ŧ	PAT MEDIT		TEMO EST	DEN TERM TEN	001 LICES - 100E	PATROSSON N							SSECTATE STOCKE USA					# NIC 350 230	AD N FEET END IN ON	A 182320 V	<u>55</u>	l İ.	16887	ES ESCENTA		5-	Ė.,		COLOTT NUTTHE
英			1		7	1	ā	로	¥	ETP.	É	900 UK	ESTR							Į.					*	18 E	€ €	SHEET A	Ę			130		HERMITANI ADMAR	33	

8-19 SERVICE GROUP A21, MAIN POWER SUPPLY ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

ECAUTION 3

Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

WARNING

230 Vdc is present in the Main Power Supply board (A21) even with the line switch in the OFF position and the power cord removed. Be extremely careful when working in the proximity of this area. This high voltage could cause serious personal injury if contacted. To remove this voltage, remove the main power cord from the rear panel and remove the bottom cover. Using insulated pliers, set the Main Power Supply board (A21) jumpers W1 and W2 into the TEST position. The capacitors (A21C2 and A21C3) holding this voltage will discharge to a relatively safe level after approximately two minutes.

NOTE

All power supplies in the HP 3577A are driven by the FET DRIVE circuit and transformer T1. The +5 volt supply is the reference for the PULSEWIDTH MODULATOR, and must be operating correctly for the other supplies to be in regulation.

InItIal Conditions

The following conditions apply to all procedures in this section:

Turn OFF the instrument's power switch, and remove the power cord before removing the bottom cover.


The +5 V supply must be loaded by at least the A11 Fast Processor and the A13 Main Processor boards. The voltage levels and circuit conditions in these procedures may not be correct if these boards are not inserted.

The +15V and -15 V supplies must have no load. Disconnect J1, J2, J3, J4, and J5.

Unless otherwise noted, all jumpers, test pins, and components referred to in these procedures are located on the A21 Main Power Supply board.

Troubleshooting Hints

Symptom: The HP 3577A does not power up when the line switch is turned on.

Symptom: The +5 V supply cannot be adjusted to the correct value.

If the voltage is too high, troubleshoot the listed circuits in the following order:

FET Drive Loop Shaping/Pulsewidth Modulator 5 V Control Loop

If the voltage is too low, troubleshoot the listed circuits in the following order:

FET Drive FET Power Loop Shaping/Pulsewidth Modulator 5 V Control Loop

Symptom: A supply other than the +5 V is bad.

If the ± 5 V supply is properly loaded and adjusted to $\pm 5.10 \pm 0.02$ V, troubleshoot from the secondary of T1 to the output. Remember that the output of T1 is a 40 kHz square wave (the reason for the large LC filters on the rectifier output).

Protection Circuits

The A21 Main Power Supply protection mechanisms (except fuses) are as follows:

Primary protection circuits Turn On/Pop Circuits Primary Current Limit

Secondary protection circuits

+5 V Current Limit

+15 V Current Limit

-15 V Current Limit

+5 V Overvoltage

+15 V Overvoltage

-15 V Overvoltage

Hi Temp

If TP3 is a TTL low, the pulsewidth modulator is shut down. The only protection circuit without a warning LED is the Turn On/Pop circuit. Check this circuit first if TP3 is a TTL low and there are no warning LEDs lit.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury. These voltages will discharge to a relatively safe level after approximately two minutes, provided the jumpers are installed in the TEST position.

To distinguish between a real overvoltage or overcurrent situation and a protection circuit problem, turn OFF the instrument's power switch, and remove the power cord. Place W1 and W2 into the TEST position using insulated pliers. Connect the instrument to the power line and turn the POWER switch ON. If the fault indication persists, the problem is most likely in the protection circuit itself.

Turn On/Pop Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- b. Connect the oscilloscope's channel A to TP25.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. The signal on the oscilloscope should stay low for approximately 2.4 seconds and then go high.
- e. If this test failed, continue this procedure.
- f. Connect the voltmeter positive terminal to TP24 and negative terminal to chassis ground. The voltage should read $\pm 27 \pm 3 \text{ V}$.
- g. If this test failed, troubleshoot from the diode bridge (CR110) back to the line filter.
- h. If this test passed, troubleshoot the TURN ON/POP circuits.

Primary Current Limit Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury. These voltages will discharge to a relatively safe level after approximately two minutes, provided the jumpers are installed in the TEST position.

- Using insulated needlenose pliers, move jumpers W1 and W2 into the TEST position. Short TP16 to TP15.
- c. Connect the instrument to the power line, and turn the POWER switch ON. The yellow primary current limit LED (CR22) should not be lit.
- d. Turn the POWER switch OFF. Remove the short between TP16 and TP15, and short TP16 to TP14
- e. Turn the POWER switch ON. The yellow primary current limit LED (CR22) should be lit.
- f. If this test failed, troubleshoot the primary current limit circuit.

- g. If this test passed, continue this procedure.
- h. Turn OFF the instrument's power switch, and remove the power cord.
- i. Move W1 and W2 into the NORMAL position using insulated needlenose pliers. Turn the +15 V, -15 V, and +5 V adjustment pots fully counter clockwise. Verify that J1, J2, J3, J4, and J5 are not connected.
- Connect the instrument to the power line, and turn the POWER switch ON.
 The yellow primary current LED (CR22) should not be lit.
- If this test failed, the fault is most likely between T1 and the secondary current limit sense resistors.

NOTE

Intermittent connections in the +5 V output area(L1, C71, and the +5 V connector) can cause a primary current limit.

 If the fault cannot be located with an ohmmeter, begin isolating portions of the secondary by lifting the diodes leading to the secondary outputs. DO NOT REMOVE CR40. DAMAGE TO THE FETS MAY RESULT.

NOTE

The primary current limit circuit is much faster than the secondary current limit circuits. Therefore it is possible for a secondary load following the current sense resistor to cause a primary current limit.

- m. If the primary current limit LED is not lit after lifting a diode, troubleshoot the components in the associated area.
- n. If the cause of the primary current limit does not appear to be in the secondary circuitry, first verify that the FET drive waveform is correct and then troubleshoot the primary circuits.

NOTE

Quite often, when one or both FETs are shorted, several other parts are damaged; notably those in the gate circuit. Occasionally, T1 itself has been known to cause a primary current limit. Also, the problem may be related to the primary current limit transformer T2 and diodes CR23 and CR24 which are not tested in steps a through e.

 If the above procedure fails to uncover the cause of the primary current limit, perform the +5 V Control Loop Troubleshooting Procedure.

NOTE

If the supply can be brought up slowly without causing a primary current limit, the problem may be associated with the soft start circuit (C59). The +5 V Control Loop Troubleshooting Procedure can be performed with or without a supply load. If the supply is loaded, a faulty soft start circuit may cause a primary current limit because of surge currents. The soft start circuit insures that the pulsewidth modulator starts out with a low duty cycle and then increases gradually (0.5 second) to the proper value.

+ 5 V Current Limit Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury. These voltages will discharge to a relatively safe level after approximately two minutes, provided the jumpers are installed in the TEST position.

- Using insulated needlenose pliers, move jumpers W1 and W2 into the TEST position. Short TP33 to TP2 (+5 V REF).
- Connect the instrument to the power line, and turn the POWER switch ON.
 The yellow +5 current limit LED (CR14) should not be lit.
- d. Turn the POWER switch OFF. Remove the short connecting TP33 to TP2, and short TP32 to TP2.
- Turn the POWER switch ON. The yellow +5 current limit LED (CR14) should be lit.
- f. If this test failed, troubleshoot the +5 V current limit circuit.
- g. If this test passed, then the fault is most likely in the +5 V output, +5 V loading, or current sensing circuits.

+ 15 V Current Limit Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury. These voltages will discharge to a relatively safe level after approximately two minutes, provided the jumpers are installed in the TEST position.

- Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Verify that J1, J3, J4, and J5 are not connected and that the +5 V supply is properly loaded.
- Connect the instrument to the power line, and turn the POWER switch ON.
 The yellow +15 V current limit LED (CR84) should not be lit.
- d. If this test failed, the fault is most likely the +15 V current limit, +15 V output, or the current sensing circuits.
- e. If this test passed, continue this procedure.
- f. Turn the POWER switch OFF. Short TP35 to TP36.
- g. Turn the POWER switch ON. The yellow +15 V current limit LED (CR84) should not be lit.
- Turn the POWER switch OFF. Remove the short connecting TP35 to TP36, and short TP34 to TP36.
- Turn the POWER switch ON. The yellow +15 V current limit LED (CR84) should be lit.
- j. If this test failed, troubleshoot the +15 V current limit circuit.
- k. If this test passed, then the fault is most likely in the +15 V output, +15 V loading, or current sensing circuits.

-15 V Current Limit Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury. These voltages will discharge to a relatively safe level after approximately two minutes, provided the jumpers are installed in the TEST position.

- Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Verify that J1, J3, J4, and J5 are not connected and that the +5 V supply is properly loaded.
- c. Connect the instrument to the power line, and turn the POWER switch ON. The yellow -15 V current limit LED (CR92) should not be lit.
- d. If this test failed, the fault is most likely the -15 V current limit, -15 V output, or the current sensing circuits.
- e. If this test passed, continue this procedure.
- f. Turn the POWER switch OFF. Short TP39 to TP37.
- g. Turn the POWER switch ON. The yellow +15 V current limit LED (CR84) should not be lit.
- Turn the POWER switch OFF. Remove the short connecting TP39 to TP37, and short TP37 to TP38.
- Turn the POWER switch ON. The yellow -15 V current limit LED (CR92) should be lit.
- If this test failed, troubleshoot the -15 V current limit circuit.
- k. If this test passed, then the fault is most likely in the -15 V output, -15 V loading, or current sensing circuit.

+5 V Overvoltage Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Disconnect the +5 V load (J8). Turn the +5 V adjust (R22) fully counter clockwise.
- c. Connect the voltmeter positive terminal to TP26 and negative terminal to chassis ground.
- d. Connect the instrument to the power line, and turn the POWER switch ON.
- e. Adjust R22 slowly until the +5 V overvoltage circuit trips and the red overvoltage LED (CR100) lights. The overvoltage trip point should be approximately 5.4 V.
- f. If this test passed, then the fault is most likely in the +5 V output, loop shaping, or pulsewidth modulator circuits.

g. If this test failed, continue this procedure.

NOTE

A power supply that can drive 5.5 V into 10 ohms is needed for this procedure. The recommended power supply is an HP 6235A.

- h. Turn OFF the instrument's power switch, and remove the power cord. Move jumpers W1 and W2 into the TEST position using insulated needlenose pliers.
- Connect the voltmeter positive terminal to TP26 and negative terminal to chassis ground.
- j. Connect the variable DC power supply positive terminal to TP26 and negative terminal to chassis ground.
- k. Connect the instrument to the power line, and turn the POWER switch ON.
- Adjust the DC power supply voltage slowly until the +5 V overvoltage circuit trips and the red overvoltage LED (CR100) lights. The overvoltage trip point is approximately 5.4 V.
- m. If this test failed, troubleshoot the +5 V overvoltage circuit.
- n. If this test passed, then the fault is most likely in the +5 V output, loop shaping, or pulsewidth modulator circuits.

+15 V Overvoltage Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Disconnect the +5 V load (J8). Turn the +5 V adjust (R22) fully counter clockwise.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Adjust R122 (+15 V adj) for +15.00 (+0.05, -0.00) V.
- e. Turn the POWER switch OFF. Short TP6 to TP8.
- Turn the POWER switch ON. The red +15 V overvoltage LED (CR95) should not be lit.
- g. Turn the POWER switch OFF. Remove the short connecting TP6 to TP8, and short TP7 to TP8.
- Turn the POWER switch ON. The red, +15 V overvoltage LED (CR95) should be lit.
- i. If this test failed, troubleshoot the +15 V overvoltage circuit.
- If this test passed, then the fault is most likely in the +15 V output, +15 V loading, or the voltage sensing circuits.

-15 V Overvoltage Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Verify that J1, J3, J4, and J5 are not connected and that the +5 V supply is properly loaded. Turn the -15 V adjust (R124) fully counter clockwise.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Adjust R124 (-15 V adj) for -15.00 \pm 0.05 V.
- e. Turn the POWER switch OFF. Short TP4 to chassis ground.
- f. Turn the POWER switch ON. The red -15 V overvoltage LED (CR103) should not be lit.
- g. Turn the POWER switch OFF. Remove the short connecting TP4 to chassis ground, and short TP5 to chassis ground.
- h. Turn the POWER switch ON. The red -15 V overvoltage LED (CR103) should be lit.
- i. If this test failed, troubleshoot the -15 V overvoltage circuit.
- If this test passed, then the fault is most likely in the -15 V output, -15 V loading, or voltage sensing circuits.

HI Temp Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord. After removing the bottom cover, allow about 20 minutes for all components to cool off.

WARNING

- Using insulated needlenose pliers, set jumpers W1 and W2 into the TEST position. Apply cool spray to S4 (mounted on CR40).
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. The red HI Temp LED (CR106) should not be lit.
- e. If this test failed, troubleshoot the HI Temp circuit. (Check for loose hardware holding the temperature switch to the diodes.)

f. If this test passed, then the fault is most likely in the +5 V current limit or +5 V output circuit. The high temp switch monitors CR40's case temperature, which increases with diode current. The high temperature trip point is approximately 105 ° C.

NOTE

A dirty fan screen or improper fan operation may cause a HI Temp condition.

Bias Supply Troubleshooting Procedure

- Connect the instrument to the power line, and turn the POWER switch ON.
- b. Connect the voltmeter negative terminal to chassis ground and positive terminal to TP23. The DC voltage should be $\pm 15 \pm 1 \text{ V}$.
- Move the voltmeter positive terminal to TP22. The DC voltage should be -15 ± 1 V.
- d. If this test failed, troubleshoot the bias supplies back to the line filter.

FET Drive Troubleshooting

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

- Using insulated needlenose pliers, move jumpers W1 and W2 into the TEST position.
- c. Set the oscilloscope to A-B mode and the trigger to external. Connect the external trigger to TP1 using a 1:1 probe. Connect channel A to TP17 and channel B to TP18 with properly compensated 10:1 probes. Connect the probe ground leads to the chassis.
- Connect the instrument to the power line, and turn the POWER switch ON.
- e. The waveform should appear as shown in Table 8-20 step 1.
- f. If this test failed, then the fault is most likely the loop shaping circuit, pulsewidth modulator circuit, or shorted FETs. Check the voltage at TP29 with a DC voltmeter. It should be at approximately +6.0 to +6.6 V. If the voltage is near zero, the loop shaping circuit is probably shutting down the pulsewidth modulator (U5).

NOTE

With W1 and W2 in the TEST position, the loop shaping circuit drives the FETs with a maximum duty cycle in an attempt to raise the output from zero to ± 5 V. This drives TP29 to about ± 6 V. The FETs are not damaged since FET power is removed.

WARNING

After replacing shorted FETs and BEFORE turning the HP 3577A on with the jumpers in the NORMAL position, perform the FET Switching Troubleshooting Procedure.

FET Switching Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

ECAUTION 3

- Using insulated needlenose pliers, move jumpers W1 and W2 into the TEST position.
- c. Set an external DC power supply to approximately 20 V with the current limited to approximately 200 mA.
- d. Connect the power supply positive terminal to the junction of R9 and W1 and negative terminal to the junction of R10 and W2.
- e. Connect the instrument to the power line, and turn the POWER switch ON.
- f. The current meter on the external power supply should indicate < 50 mA.
- g. A current significantly in excess of 50 mA indicates a shorted FET or improper FET drive. To determine if one or both sides of the FET drive circuit is shorted, repeat the remainder of this procedure for both sides of the FET drive (use the locations in parentheses for the other side of the FET drive).
- h. Set the oscilloscope to A-B mode. Connect channel A to TP18 (TP20) and channel B to the junction of W1 and R9 (W2 and R10). A square wave with an approximate 50% duty cycle should be seen.
- i. If this test passed, return to step h and check the other side of the FET drive circuit using the locations in the parenthesis.
- j. If this test failed, continue this procedure to check the gate drive.

NOTE

A Leaky/shorted CR7 or leaky/open C2 or C3 can cause the power FETs to be turned on at an improper time, thus causing the FETs to conduct current simultaneously and draw excessive, if not destructive, currents.

- k. Move channel B to TP17 (TP19) and leave channel A connected to TP18 (TP20). The oscilloscope should display a square wave with an approximate 50% duty cycle.
- If this test passed, the fault is probably a shorted FET.
- m. If this test failed, continue this procedure to determine if the input to the FET drive from the pulsewidth modulator is working properly.
- n. Set the oscilloscope to A-B mode and the trigger to "CHOP". Connect channel A to U3 pin 3 and channel B to U3 pin 12. The oscilloscope should display negative pulses 180 degrees out of phase.
- If this test passed, troubleshoot the FET drive.
- p. If this test failed, troubleshoot the pulsewidth modulator circuit.

FET Power Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

Perform the FET Switching Troubleshooting Procedure before doing this procedure.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Connect the voltmeter negative terminal to TP21 and positive terminal to the positive side of C2(\pm). The DC voltmeter should read \pm 150 \pm 15V.
- e. Move the voltmeter positive terminal to the negative side of C3(-). The DC voltmeter should read -150 \pm 15 V.
- f. If this test failed, troubleshoot the FET power circuit back to the line filter.
- g. If this test passed, continue this procedure.
- h. Set the oscilloscope to A-B mode. Connect channel A to the positive side of C10 and channel B to TP21 using properly compensated 10:1 probes. Connect the probe ground leads to chassis ground. The waveform should appear as shown in Table 8-20 step 2.
- If this test failed, the fault is most likely in the FET drive (including the FETs), pulsewidth modulator, +5 V output, or loop shaping circuits.

+5 V Control Loop Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

NOTE

Use this procedure if FET drive output is good with W1 and W2 in the test position, but the +5 V output cannot be adjusted to $+5.10 \pm 0.02$ V.

CAUTION

When manually controlling the FET drive pulse width, it is very easy to damage (by overdriving) the power MOSFETs. This is especially true if any of the protection circuits have been disabled for troubleshooting purposes. Perform the +5 V Overvoltage Troubleshooting Procedure before continuing.

WARNING

Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

- Using insulated needlenose pliers, place W1 and W2 into the NORMAL position.
- c. Set a positive referenced variable DC supply to 0 V output. Connect the positive terminal to TP28 and negative terminal to chassis ground. Turn the supply on.
- d. Place a short across R32.
- e. Connect the oscilloscope's channel A to the lead of C23 that is physically closest (and electrically connected) to L1 using a properly compensated 10:1 probe.
- Connect the DC voltmeter positive terminal to TP29 and negative terminal to chassis ground.

DO NOT apply power to the HP 3577A unless the external supply is connected, turned on, and set to zero volts output, otherwise damage to the circuit may occur.

- g. Connect the instrument to the power line, and turn the POWER switch ON. Nothing should happen on the secondary side of T1 because the pulsewidth modulator is shut down. The DC voltmeter should read approximately 0 V.
- h. SLOWLY increase the output of the variable DC supply watching the voltmeter and oscilloscope. As the voltage at (TP29) reaches about 0.8 V, narrow pulses should appear on the oscilloscope (C23). See Table 8-20 Step 4.

- Move the voltmeter positive terminal to TP26 (+5 V Output).
- j. Continue increasing the output of the variable DC supply, watching the pulse width and the +5 V output (TP26) increase. When the +5 V output (TP26) is approximately +3.1 V, the pulses on the oscilloscope (C23) should look like the waveform in Table 8-20 Step 5.
- k. If this test failed, troubleshoot back to the pulsewidth modulator or loop shaping circuits.
- I. Reduce the DC supply to 0 volts output. Turn OFF the instrument's power switch, remove the power cord, and return the HP 3577A to its original state.

Loop Shaping/Pulse Width Modulator Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

WARNING

- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the TEST position.
- c. Set an external variable DC power supply to 0 V output. Connect the negative terminal to chassis ground and positive terminal to TP28. Adjust the supply output to between 1 and 2 V.
- d. Short TP27 to chassis ground.
- e. Connect the voltmeter positive terminal to TP29 and negative terminal to chassis ground.
- f. Connect the oscilloscope's channel A to the cathode of CR30 and channel B to the cathode of CR31 using properly compensated 10:1 probes. Connect the external trigger to TP1 using a 1:1 probe. Connect the probe ground leads to chassis ground.
- g. Setup oscilloscope and verify that the waveform is as shown in Table 8-20 Step 3. The two waveforms should be exactly 180 degrees out of phase. This insures that only one of the power MOSFETs is ON at a time.
- h. Slowly decrease the output of the variable supply. When the voltage measured at TP29 reaches about 3 V, the pulse width should start to narrow. When the voltage measured at TP29 reaches about 0.3 V or close to 0 V, the pulsewidth modulator should completely shut down. The external supply should have complete control over the duty cycle up to a maximum of near 50%.
- i. If this test passed, return to Troubleshooting Hints section.
- j. If this test failed, continue this procedure.
- k. Monitor TP29 with the voltmeter. It should vary from 0 to the ±15 V supply rail as the voltage on TP28 varies from 0 to 2 V.
- 1. Check TP29 with a oscilloscope for a clean waveform and a smooth response to the variable DC supply on TP28.

- If this test failed, troubleshoot the loop shaping circuit.
- n. If this test passed and the pulsewidth modulator is still shut down, continue this procedure.
- o. Drive TP29 to about 6 V by adjusting the variable DC supply. This produces a 50% duty cycle in the pulsewidth modulator. Check for 6 V on U5 pin 1.
- p. Measure the voltage at U5 pin 5. A logic low here represents a pulsewidth modulator shutdown. Troubleshoot the protection circuits. If the logic level at U5 pin 5 is high, verify the +5 V Ref (TP2) and +15 V Bias (U5 pin 17).

NOTE

While troubleshooting the pulsewidth modulator, remember that Q35 and Q36 are capable of shutting down the pulsewidth modulator output if either one is turned on or shorted. R86 and C56 externally set the pulsewidth modulator frequency to 40 ± 4 kHz.

+ 15 V and -15 V Output Regulator Troubleshooting Procedure

a. Turn OFF the instrument's power switch, and remove the power cord.

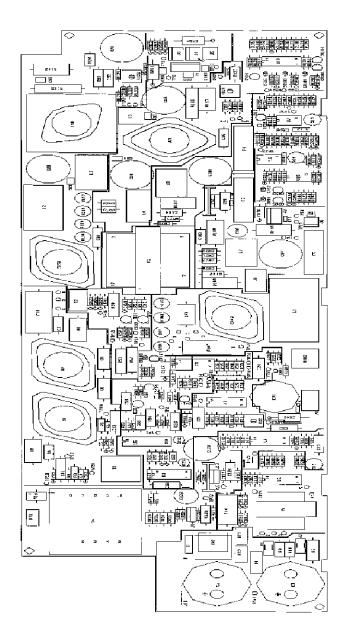
Even with the power removed, there can be sufficient stored energy in some circuits to cause personal injury.

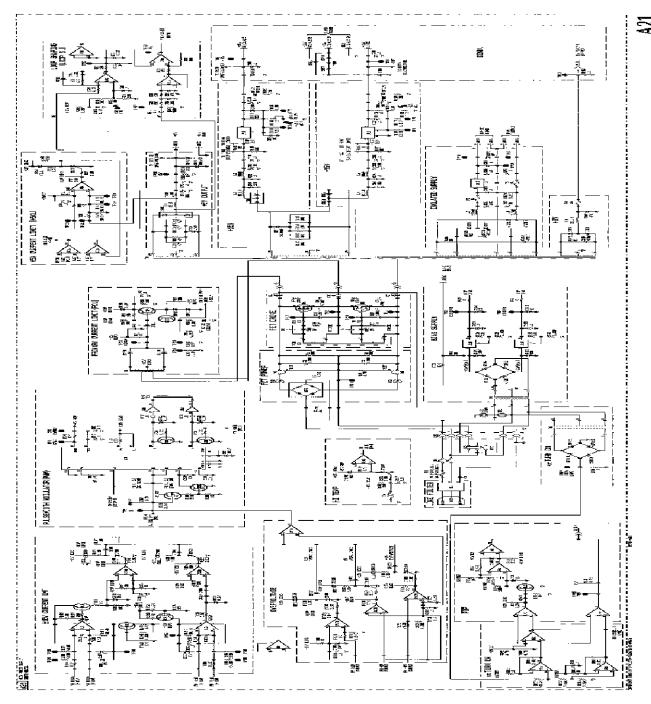
- b. Using insulated needlenose pliers, move jumpers W1 and W2 into the NOR-MAL position. Verify that J1, J3, J4, and J5 are disconnected and that the +5 V supply is properly loaded.
- c. Connect the instrument to the power line, and turn the POWER switch ON.
- d. Connect the voltmeter positive terminal to TP26 and negative terminal to chassis ground. The DC voltmeter reading should be $\pm 5.10 \pm 0.02$ V.
- e. If this test failed, return to the Troubleshooting Hints section.
- f. If this test passed and a 15 V supply cannot be adjusted to the correct value, troubleshoot the 15 V regulator circuits. Trace the proper voltages back through the circuit to the main power transformer T1.

NOTE

The three pin voltage regulators usually require a 3 V to 5 V potential difference between the input and output for proper regulation.

Final Power Supply Adjustments


a. Perform the adjustment in section 4-5, Power Supply Adjustments.


Table 8-20 A21 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
1	Connect CH A to A21TP17 Connect CH B to A21TP18 Externally trigger on A21TP1 Set A21W1 and W2 to TEST	Oscilloscope Mode A-B CH A V/Div 500 mV CH B V/Div 500 mV Time/Div 5 µs Trigger EXT CH A Coupling DC CH B Coupling DC	Pulse shape and duty cycle.	CHI CPLG-3C CHI - 500 my/Div
2	Connect CH A to A21C10 Connect CH B to A21TP21 Set A21W1 and W2 to NORMAL	Oscilloscope Mode A-B CH A V/Div 5 V CH B V/Div 5 V Time/Div 5 µs Trigger INT CH A Coupling DC CH B Coupling DC	Pulse shape and duty cycle	CHI CPLG-BC CHI= 5 V/DV/ CHI= 5 V/DV/ PT-EXT/18 AC CPLG LE REJ Cain= 5 ux/Dv
3	Connect, CH A to A21CR30 Connect CH B to A21CR31 Externally trigger on A21TP1 Jumper TP27 to GND Set A21W1 and W2 to TEST Drive TP28 with external power supply to 1 V	Oscilloscope CH A V/Div 2 V CH B V/Div 2 V Time/Div 5 µs Trigger EXT CH A Coupling DC CH B Coupling DC	Pulse shape, only one signal on at a time (no overlap)	CHI CPLG-DC CH2 198 mV/Div CH2-198 mV/Div CH2-198 mV/Div Thi-Extra DC CPLG R2 LTP1 Main= 5 UZ/Blv
3 cont	Connect CH A to A21CR30 Connect CH B to A21CR31 Externally trigger on A21TP1 Jumper TP27 to GND Set A21W1 and W2 to TEST Drive TP28 with external power supply to 0.5 V	Oscilloscope CH A V/Div 100 mV CH B V/Div 100 mV Time/Div 5 µs Trigger EXT CH A Coupling DC CH B Coupling DC	Pulse shape, only one signal on at a time (no overlap)	CH1 CP1 6-DC

Table 8-20. A21 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform
4	Connect CH A to A21C23 Set A21W1 and W2 to NORMAL Drive TP28 with external power supply to 0.8 V on TP29 Place a short across A21R32	Oscilloscope CH A V/Div 500 mV Time/Div 5 µs Trigger INT CH A Coupling DC	Peak-to-peak voltage	C-II CPLG-DC C-II SAR AVEDIV THE SAR AVEDIV RT=CH Pains Sar Sar Sar Sar Sar Sar Sar Sar Sar Sar
5	Connect CH A to A21C23 Set A21W1 and W2 to NORMAL Drive TP28 with external power supply to 3.1 V on TP26 Place a short across A21R32	Oscilloscope CH A V/Div 500 mV Time/Div 5 µs Trigger INT CH A Coupling DC	Peak-to-peak voltage, pulse shape, duty cycle, DC level	CH1 CM 2-DC CH1 500 MVD

20	P.IE	-:		2	-	-		ω			•		7 .	, -
25	83	F9 d	971	ę	m	ξ.	Ģ.	÷	Æ				품	Ē
	2		=			==	=		=-	-	~		-7	Ľ
¥ §	E .	擊	# 2	1		÷.	- 4		ş				Ę	Ē
-	4	=:	= =	22		3	E		æ 🖹	≣	Ħ	≓	Ħ	≡

8-20 SERVICE GROUP A31, OVEN ASSEMBLY

The information in this section should be used to isolate faulty functional sub-blocks when servicing the HP 3577A. All procedures assume the Fault Isolation procedures of Section II have been used to determine which functional block has failed, and the Circuit Descriptions of Section VII are understood.

WARNING

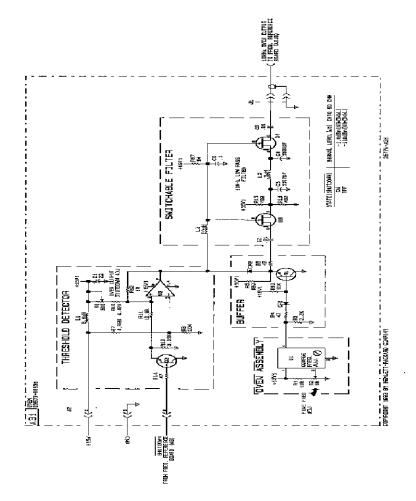
Service procedures described in this section are performed with the protective covers removed and power applied. Energy available at many points can, if contacted, result in personal injury.

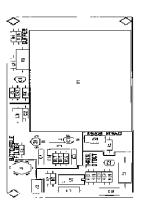
Do not insert or remove any circuit board in the HP 3577A with the line power turned on. Power transients caused by insertion or removal may damage the circuit boards.

Initial Conditions

Unless otherwise stated in the troubleshooting sections of the signal table, set the 3577A as described below, after power on:

Press INSRT PRESET
Disconnect the EXT REF if connected


All Oscilloscope waveforms are taken using a 1:1 probe and a HP 1980B Oscilloscope. All Spectrum Analyzer waveforms connected to an SMB connector are taken through the 03577-84401 Service Kit BNC to SMB cable. All Spectrum Analyzer waveforms taken off component leads are taken through a 10007B 1:1 probe. This probe has 215 Ω of series resistance.


Troubleshooting Hints

- 1. Jumper A31U2 pin 7 to ground. A31Q3 and A31Q4 should turn on and the oven signal should be on at A31J1 at approximately -1 dBm. If the signal is not present, suspect both A31Q3 and A31Q4 as being faulty.
- 2. Connect a jumper across A31R17 shorting it. A31Q3 and A31Q4 should turn off and the oven signal should be < -100 dBm at A31J1. If the signal is higher, suspect both A31Q3 and A31Q4 as being leaky.

Table 8-22. A31 Circuit Board, Troubleshooting Data

Step	HP 3577A Set up	Measurement Set up	Important Parameters	Waveform					
1	Test at A31J1 Press INSTR PRESET	Spectrum Analyzer Start 10 MHz Stop 500 MHz Res BW 300 kHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	10 MHz Amplitude, Harmonics.	STRRT 18 MHz PES BH 300 LHz VBL 10 LHz CAP 500 mage					
2	Test at A31U1 pin 4 Press INSTR PRESET	Spectrum Analyzer Start 10 MHz Stop 500 MHz Res BW 300 kHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	10 MHz Amplitude, Harmonics	STRRE 18 MHz STOP SEB MHz. RES BN 100 kHz VBN 10 kHz SNP 500 megg					
3	Test at A31Q1 emmitter Press INSTR PRESET	Spectrum Analyzer Start 10 MHz Stop 500 MHz Res BW 300 kHz VBW 10 kHz Ref Level 0 dBm dB/Div 10 dB	10 MHz Amplitude Harmonics.	START 10 rths STOP 388 MHz RES BN 308 AHz VBN 10 kHz SNP 500 eacc					
4	Test at A31U2 pin 7	Oscilloscope Volts/Div 1 V Time/Div any Autotrigger	TTL State	Should TTL toggle when EXT REF is connected and disconnected.					

8-21 HP 1345A DISPLAY REMOVAL

The HP 1345A Digital Display is a stand alone digital display which is serviced separately using the HP 1345A service manual included with the instrument. To remove the display for servicing, the only screws requiring removal are those called out in Figure 8-25. With the HP 3577A placed on its side, the internal cables used to connect to the display can be connected to the removed display. Perform the following steps to remove the display.

- Disconnect the mains power cord from the rear panel and remove the top cover.
- Remove both internal shields from over the display unit and A31 Reference circuit board.
- c. Remove the side handle from the left side of the HP 3577A by removing the two screws at the end of each side of the handle.
- d. Remove the side cover by removing the screw which connects the side panel to the rear frame.
- e. Remove the trim strip from top of the front frame.
- f. Remove the front frame and side panel screws as shown in Figure 8-25.
- g. Remove the screw which attaches the display to the instrument bottom deck as shown in Figure 8-25.
- h. The display will pull out of the unit from the front. Disconnect the display power cable and the dislay interface cable.

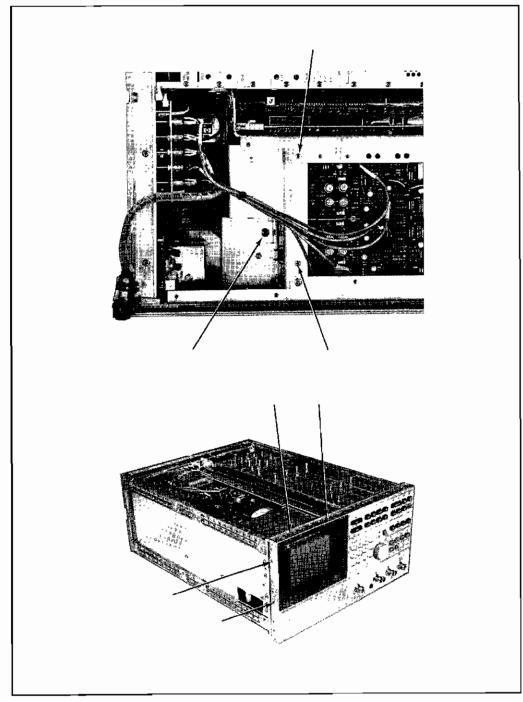


Figure 8-25. HP 1345A Removal

Free Manuals Download Website

http://myh66.com

http://usermanuals.us

http://www.somanuals.com

http://www.4manuals.cc

http://www.manual-lib.com

http://www.404manual.com

http://www.luxmanual.com

http://aubethermostatmanual.com

Golf course search by state

http://golfingnear.com

Email search by domain

http://emailbydomain.com

Auto manuals search

http://auto.somanuals.com

TV manuals search

http://tv.somanuals.com