Robot Operation Manual

HYUNDAI Robot Hi4

The information presented in the manual is the property of HHI. Any copy or even partial is not allowed without prior written authorization from HHI. HHI reserves the right to modify without prior notification.

Printed in Korea - April/2002. 1st Edition
Copyright 2002 by Hyundai Heavy Industries Co.,Ltd.

- HEAD OFFICE

1, JEONHA-DONG, DONG-GU, ULSAN, KOREA
TEL: 82-52-230-7901~11
FAX: 82-52-230-7900

- SEOUL OFFICE

140-2,GYE-DONG, JONGNO-GU, SEOUL,KOREA
TEL: 82-2-746-4711~5
FAX: 82-2-746-4720

- DAEGU OFFICE

223-5, BUMEO 2-DONG,
SUSUNG-GU,DAEGU,KOREA
TEL : 82-53-746-6232
FAX : 82-53-746-6231

- CHEONAN OFFICE

355-15,DAGA-DONG,CHEONAN-SI, CHUNGCHEONGNAM-DO,KOREA
TEL: 82-41-576-4294~5
FAX: 82-41-576-4296

- 본사

울산광역시 동구 전하동 1 번지
TEL: 052-230-7901~11
FAX: 052-230-7900

- 서울사무소

서울특별시 종로구 계동 140-2 현대빌딩 14층
TEL: 02-746-4711~5
FAX: 02-746-4720

- 대구사무소

대구광역시 수성구 범어 2동 235-5번지 동일산업빌딩 6 층
TEL: 053-746-6232
FAX: 053-746-6231

- 천안사무소

충청남도 천안시 다가동 355-15번지
3층
TEL: 041-576-4294~5
FAX: 041-576-4296

- 광주사무소

광주광역시 서구 농성동 415-12번지
현대빌딩 별관 3 층
TEL: 062-363-5272
FAX: 062-363-5273

Contents

Chapter 1. Safety, Operation panel, Teach Pendant
1.1 Safety 1-2
1.1.1 General 1-2
1.1.2 Relevant safety standard 1-5
1.1.3 Safety training 1-5
1.1.4 Safety marking 1-5
1.1.5 Definition of safety functions 1-7
1.1.6 Installation of robot 1-8
1.1.7 Safety working procedures 1-15
1.1.8 Safety measures for entering safety fence 1-20
1.1.9 Safety measures for maintenance and repair 1-21
1.1.10 Safety function 1-24
1.1.11 Safety related to end effectors 1-28
1.1.12 Liabilities 1-29
1.2 Operation Panel 1-31
1.2.1 External shape of operation panel 1-31
1.2.2 Buttons of operation panel 1-31
1.3 Teach pendant 1-33
1.3.1 External shape of teach pendant 1-33
1.3.2 Screen of teach pendant 1-34
1.3.3 Keys of teach pendant 1-35
Chapter 2. Basic operation of robot
2.1 Basic operation 2-2
2.1.1 Controller's power/motor ON/OFF 2-2
2.1.1.1 Power ON/Motor ON 2-2
2.1.1.2 Power OFF/Motor OFF 2-2
2.1.2 How to initiate the system 2-3
2.1.3 Teaching 2-3
2.1.4 Step and function 2-4
2.2 Basic things for step 2-5
2.2.1 The parameter of STEP command line 2-5
2.2.1.1 Interpolation-locus from between step and step 2-6
2.2.1.2 Pose 2-7
2.2.1.3 Speed 2-8
2.2.1.4 Accuracy 2-8
2.2.1.5 Tool number 2-8
2.2.1.6 Output option 2-8
2.2.1.7 Stop condition 2-9
2.2.1.8 Stop state variable 2-9
2.2.2 Step position validation/modification method 2-10
2.2.2.1 Encoder coordinate system 2-10
2.2.2.2 Base/Robot coordinate system 2-11
2.1.4 Coordinate system 2-13
2.3.1 JOG operation key 2-13
2.3.2 Axis coordinate 2-14
2.3.3 Robot coordinate 2-15
2.3.4 User coordinate 2-17
2.3.5 Tool coordinate 2-18
2.4 Auto tool setting 2-19
Chapter 3. Service menu
3.1 Monitoring 3-4
3.2 Register 3-15
3.2.1 XYZ Shift register 3-16
3.2.2 Shift buffers 3-18
3.2.3 On-line shift register Group 3-20
3.2.4 Palletizing register 3-22
3.2.5 Frequency condition register 3-25
3.2.6 Conveyor data 3-26
3.3 Variable 3-28
3.4 Edit program 3-29
3.4.1 Modify writing condition totally 3-30
3.4.2 Modify speed in record totally 3-31
3.4.3 Modify position in record totally 3-32
3.4.4 Step copy 3-34
HYUNDAI
3.4.5 Step reverse copy 3-36
3.4.6 Edit program in running (Hot edit) 3-38
3.5 File management 3-43
3.5.1 Internal memory file name 3-44
3.5.2 Program first data 3-45
3.5.3 Internal program axis no 3-46
3.5.4 Rename 3-47
3.5.5 Copy 3-51
3.5.6 Delete 3-53
3.5.7 Protect 3-55
3.5.8 Storage media format 3-58
3.5.9 Save/Load (SRAM Card) 3-59
3.6 Program conversion 3-61
3.6.1 Coordinate transformation 3-62
3.6.2 Mirror Image 3-64
3.6.3 Off-Line XYZ shift 3-67
3.7 System checking 3-69
3.7.1 System version 3-70
3.7.2 Run time 3-71
3.7.3 Diagnosis of troubles 3-74
3.7.4 Error logging 3-76
3.7.5 Stop history 3-78
3.7.6 Operation history 3-80
3.8 Date setting (Date, Time) 3-81
Chapter 4. Condition setting
4.1 Cycle type 4-3
4.2 Step go/back max. speed 4-3
4.3 Function in step go/back 4-4
4.4 Speed rate 4-4
4.5 Robot lock 4-5
4.6 Record speed type 4-5
4.7 Interpolation base 4-6
4.8 User coordinate 4-6
Chapter 5. Application condition
5.1 Conveyor operation 5-3
5.2 Search range 5-4
5.3 Search reference position record 5-4
5.4 Spot welding 5-5
5.5 Gun search reference record 5-6
5.6 Output(DO) signal clear 5-7
5.7 Online shift register clear 5-7
Chapter 6. System setting
6.1 User configuration 6-5
6.1.1 Display language 6-6
6.1.2 Pose reocrd type 6-6
6.1.3 Start type 6-7
6.1.4 Change of cursor position in auto mode 6-7
6.1.5 Confirm when the command delete 6-8
6.1.6 WAIT(DI/WI) forcible release 6-8
6.1.7 Dettachment of Teach Pendant 6-9
6.1.8 Power failure detection(Not changeable) 6-9
6.1.9 External program selection 6-9
6.1.10 Using the program strobe signal 6-10
6.1.11 Step set alarm type 6-11
6.1.12 Lowest position proportion of the cursor 6-11
6.1.13 Using the collision sensor 6-12
6.2. Controller parameter 6-13
6.2.1 Input/output signal selection 6-14
1: Input signal logic 6-15
2: Output signal logic 6-16
3: The attribution of output signal 6-17
4: Setting the pulse table 6-18
5: Setting the delay table 6-19
6: Output signal assignment 6-20
7: Input signal assignment 6-21
8: Setting the earlier output 6-23
9: DIO name edit 6-24
10: Setting the field bus 6-26
6.2.2 Serial port 6-31
1: Teach Pendant (CNTP) 6-31
2: Private serial port for I/O board 6-31
3: Serial port \#1 (CNSIO) 6-32
4: Serial port \#2 (OPSIO) 6-33
6.2.3 Robot ready 6-34
6.2.4 Home position registration 6-35
6.2.5 Return to the previous position 6-36
6.2.6 End relay output time 6-37
6.2.7 Interlock error time 6-38
6.2.8 External error output 6-39
6.2.9 Power Saving : PWM OFF 6-42
6.2.10 Shift limit 6-43
6.2.11 Setting the user key 6-44
6.2.12 Coordination system registration 6-46
1: User coordination registration 6-46
2: Pedestal tool coordination system 6-48
6.3 Machine parameter 6-49
6.3.1 Tool data 6-50
6.3.2 Axis Constant 6-54
6.3.3 Soft limit 6-55
6.3.4 Arm interference angle 6-56
6.3.5 Encoder offset calibration 6-57
6.3.6 Accel./Decel. speed parameter 6-59
6.3.7 B축 axis dead zone 6-60
6.3.8 Accuracy 6-61
6.3.9 Speed 6-64
6.3.11 Additional load per each axis 6-65
6.4 Application parameter 6-67
6.4.1 Spot \& Stud 6-68
1: Welding parameter 6-69
2: Servo gun parameter 6-71
3: Spot welding data(condition, sequence) 6-76
4: Equalizing parameter 6-81
6.4.2 Arc 6-83
6.4.3 Palletizing 6-85
1: Palletizing pattern register 6-86
2: Pallete dip angle measurement 6-90
6.4.6 Conveyor 6-91
1: Conveyor constant setting 6-92
2: Automatic setting of conveyor parameter 6-95
6.4.7 Speed proportion voltage output 6-96
6.5 System format 6-98
6.5.1 System format 6-99
6.5.2 Robot type selection 6-100
6.5.4 Use setting 6-103
6.5.5 Positioner group setting 6-104
6.6 Automatic constant setting 6-106
6.6.1 The optimization axis constant 6-107
6.6.4 Positioner calibration 6-109
Chapter 7. R code
7. 1 (1) R0 Step counter reser 7-5
7. 2 (2) R5 External start selection 7-5
7. 3 (3) R6 External program selection 7-6
7. 4 (4) R10 Run time display 7-7
7. 5 (5) R17 File name display in internal memory 7-10
7. 6 (6) R18 Frequency condition register 7-11
7. 7 (7) R29 Tool number setting 7-12
7. 8 (8) R44 Conveyor data clear 7-13
7. 9 (9) R45 Conveyor register manual input 7-14
7.10 (10) R46 Manual conveyor limit switch on 7-15
7.11 (11) R49 Speed variation setting 7-16
7.12 (12) R55 Palletize counter reset 7-17
7.13 (13) R71 Recorded speed selection 7-18
7.14 (14) R107 Program head data display 7-19
7.15 (15) R115 Program copy 7-19
7.16 (16) R116 Program number modification 7-20
7.17 (17) R117 Program delete 7-21
HYUNDAI
7.18 (18) R123 Robot lock 7-22
7.19 (19) R136 Modify accuracy in steps 7-23
7.20 (20) R137 Modify MX in steps 7-24
7.21 (21) R138 Modify GUN in steps 7-25
7.22 (22) R162 Shift register value change 7-26
7.23 (23) R163 On-line shift cancel 7-26
7.24 (24) R204 Spot welding condition manual output 7-27
7.25 (25) R210 Serovo gun number selection 7-28
7.26 (26) R211 Squeeze force setting 7-28
7.27 (27) R212 Moving-tip consumption preset 7-29
7.28 (28) R213 Fixed-tip consumption preset 7-29
7.29 (29) R219 Equalizerless gun number selection 7-30
7.30 (30) R220 Equalizerless tip consumption preset 7-30
7.31 (31) R245 Monitor mode selection 7-31
7.32 (32) R269 Memory protection setting 7-32
7.33 (33) R286 Software version display 7-33
7.34 (34) R310 Manual output of GO-signal 7-34
7.35 (35) R320 Set max. speed of step go/back 7-35
7.36 (36) R323 Robot interrupt function record 7-36
7.37 (37) R341 Execution code back-up 7-40
Chapter 8. Programming
8.1 Edit step 8-3
8.2 Summary of operation keys 8-4
8.3 Edit command 8-6
8.4 Example - move sentence 8-7
8.5 Variable, numerical formula and string edit 8-13
8.6 Line number edit 8-17
8.7 Block edit 8-18
Chapter 9. Quick open function
9.1 Function summary 9-2
9.2 Move - step position 9-4
9.3 Welding start con. - execution at ASF\#=X 9-5
9.4 Welding end con. - execution at AEF\#=X 9-7
9.5 Welding aux. con. - retry 9-9
9.6 Welding aux. con. - restart 9-11
9.7 Welding aux. con. - auto. wire stick release. 9-14
9.8 Weaving condition file 9-15
9.9 Program edit in running 9-17
9.10 Spot welding function 9-18
9.10.1 Welding condition 9-18
9.10.2 Welding sequence 9-19
Chapter 10. Menu tree
10.1 MENU LIST 10-2
10.2 MOTION I/O 10-3
10.3 FLOW CONTROL 10-5
10.4 ETC. 10-7
10.5 ARC 10-8
10.6 SUSTITUTIAL STATEMENT 10-10
Chapter 11. Robot language explanation
11.1 BASIC ELEMENTS 11-3
11.1.1 LINE 11-3
11.1.2 CHARACTER 11-3
11.1.3 ADDRESS 11-3
11.1.4 CONSTANT 11-4
11.1.5 ROBOT CONFIG. INFORMATION 11-5
11.1.6 VARIABLE 11-6
11.1.7 OPERATOR 11-10
11.1.8 FORMULA 11-10
11.2 COMMAND LINE 11-11
11.2.1 SUSTITUTIONAL 11-11
11.2.2 ROBOT CONTROL 11-12
11.2.3 INPUT/OUTPUT 11-14
11.2.4 PROGRAM FLOW CONTROL 11-16
11.2.5 COMMENT 11-21
11.2.6 ARC WELDING 11-21
11.3 OTHERS 11-25
HYUNDAI
11.4 FUNCTION 11-40
11.4.1 ARITHEMATIC FUNCTION 11-40
11.4.2 STRING FUNCTION 11-41
11.4.3 ROBOT LANGUAGE SUBTITUTION OF OLD MIT FUNCTION CODE 11-42
Chapter 12. Signal connection
12.1 EXTERNAL INPUT SIGNAL (BD430/BD431) 12-2
12.2 EXTERNAL OUTPUT SIGNAL (BD430/BD431) 12-7
12.3 BD481 CIRCUIT 12-17

Chapter 1.Safety, Operation panel, Teach pendant

Contents

1.1 Safety 1-2
1.1.1 General 1-2
1.1.2 Relevant safety standard 1-5
1.1.3 Safety training 1-5
1.1.4 Safety marking 1-5
1.1.5 Definition of safety functions 1-7
1.1.6 Installation of robot 1-8
1.1.7 Safety working procedures 1-15
1.1.8 Safety measures for entering safety fence 1-20
1.1.9 Safety measures for maintenance and repair 1-21
1.1.10 Safety function 1-24
1.1.11 Safety related to end effectors 1-28
1.1.12 Liabilities 1-29
1.2 Operation Panel 1-31
1.2.1 External shape of operation panel 1-31
1.2.2 Buttons of operation panel 1-31
1.3 Teach pendant 1-33
1.3.1 External shape of teach pendant 1-33
1.3.2 Screen of teach pendant 1-34
1.3.3 Keys of teach pendant 1-35

Chapter 1. Safety, Operation panel, Teach Pendant

1.1 Safety

1.1.1 General

The pr imary purpose of this Chapter is to def ine the safety of the user and operating personnel when using Hyundai Industrial Robots i. e. HR series and HX series robot together with Hi-4 Controller (Hereinafter referred to "the Robotics System").

This manual covers any functions and safety measures required for the operation and maintenance of the Robotics System itself. However, this manual does neither cover how to design, install and operate a complete work cell, nor all per ipheral equipment and tooling which can influence the safety of the complete work cell.

This manual enumerates the safety instructions and/or recommendations for robot manipulator and control ler in strict ly accordance wi th the Amer i can Nat ional Standard Safety Requirements for industrial robots "ANSI/RIA R15.06-1999".

The technical description and installation method of the Robotics System are presented in detail at this Operation Manual and the relevant specifications for the robot manipulator and controller.

All personnel who intend to install, operate, program, repair, adjust, maintain or otherwise use the Robotics System must be trained in an approved Hyundai Robotics training course and have a good understanding and knowledge of this Operat ion Manual and the Maintenance Manual, and further pay their special attention and observation to the articles marked with the symbol which are of paramount importance among the articles in this Chapter 1 "Safety".

Installation, replacement, adjustment, operation, maintenance and repair of the Robot ics System must be performed by the personnel who was duly trained in an approved Hyundai robotics training course and become familiar with the proper operation of the Robotics System according to the instructions specified in Operation and

Maintenance Manual. Hyundai maintains its various application-specific training courses for domestic and foreign customers respectively.

All owners, employers or users of the Robotics System have the responsibility to review and observe any appliable safety laws and regulations in each country and to take the necessary steps to guarantee the correct design, installation and operat ion of all safety devices which can secure safety of all personnel in the workplace.

In accordance wi th the Amer i can Nat ional Standard Safety Requirements for industrial robots "ANSI/RIA R15.06-1999", the dangerous zones of the Robotics System, i. e. the working range in which the robot together with tools, accessories and additional equipment moves, must in all cases be safeguarded to prevent persons or objects from enter ing the dangerous zones or to ensure that the robot system is immediately shut down by Emergency Stop system if a person or object should nevertheless enter a dangerous zone. All owners, employers or users of the Robotics System have the responsibility to take all necessary steps to make correct installation, examinat ion and operation of the relevant safety equipments.

This manual provides specific information regarding the operation of Hyundai $\mathrm{Hi}-4$ Controller together with the following robot manipulator models for the possible application usages as mentioned below;

Available manipulator Type

> HR006F(floor mount ing type, 6kg)
> HR006V(wall mount ing type, 6kg)
> HR015F(floor mounting type, 15kg)
> HR015V(wall mounting type, 15 kg)
> HR050F(floor mounting type, 50 kg)
> HR050V(wall mounting type, 50 kg)
> HR100P(for palletizing application, 100kg)
> HR130IIF(floor mounting type, 130kg)
> HR130IIV(wall mounting type, 130kg)
> HR120S (shelf mounting type, 120kg)
> HR150S (shelf mounting type, 150kg)
> HX130F (floor mounting type, 130kg)

> HX130V (wall mounting type, 130 kg)
> HX130S (shelf mounting type, 130 kg)
> HX165F (floor mounting type, 165 kg)
> HX165V (wall mounting type, 165 kg)
> HX165S (shelf mounting type, 165 kg)

Possible Application Usages

The Robot ics System is a standard six-axis but additional axis available industrial robot for installation on the floor, on the wall or on the shelf. It is suitable for both point-to-point and continuous-path controlled tasks.

The main areas of application are

- Spot welding
- Material Handling
- Assembly
- Application of adhesives, sealants and preservatives
- MIG/MAG welding
- Palletizing and Depalletizing
- Grinding

All owners, employers or users who intend to use the Robotics System for any other purposes than the above-mentioned must request Hyundai's prior consideration and confirmation whether it can be applied without failure and/or problems or not. Please contact our Customer Satisfaction Department or your local distributor in order to check and confirm it before any users implement any special applications of the Robotics System.

Invalid environments

The Robotics System is strictly prohibited to be located, installed, maintained, used or operated in an explosive environment and any areas contaminated by oil, flammable material or chemical material.

1.1.2 Relevant Safety Standards

The Robot ics System is designed as per ISO 10218, January 1992 edition that specifies the Safety Requirements for Industrial Robots and furthermore in strictly accordance with the ANSI/RIA 15.06-1999 Safety Requirements.

1.1.3 Safety Training

All the personnel who intend to teach, operate or examine the Robotics System must be trained in an approved Hyundai Robot ics operat ion and safety training course before starting the teaching, operation or examination of the Robotics System.

The objective of the operation and safety training course is to provide information on:

- the purpose of safety devices and their function
- safety procedures for handling the Robotics System
- performances of the robot or the Robotics System and possible hazards
- tasks associated with any specific robot applications
- safety concepts

1.1.4 Safety Marking

1.1.4.1 Safety Symbols

For the purpose of effective safety instructions, the following safety symbols are used in this manual.

means WARNING:

Indicate a potentially hazardous situation which, if not avoided, could result in death or serious injury to personnel and damage to equipment. The special attention to the careful operation and handling must be paid by owner, employer, operator or user.

Indicate the compulsory measures that should be performed by owner, employer, operator and user

means PROHIBTED:

Indicate the prohibited actions and/or operations that should not be performed by

1.1.4.2 Safety Marking

Identification plates, warning labels and safety symbols are attached to the robot manipulator and to the inside and outside of control cabinet. The designation labels and position marks are also attached to the following cables.

- Wire harness between the robot manipulator and the control cabinet
- All the electric cables in and outside both robot manipulator and control cabinet

All of these plates, labels, symbols and marks constitute safety-relevant parts of the Robotics System. They must remain attached to the robot manipulator or control cabinet at their cleary visible positions all the time.

The painted markings on the floor and the signs indicating the dangerous zones must be clearly different in form, color and style from other markings on the machine near to the Robotics System or inside the plant facilities where the Robotics System is installed.

It is forbidden to remove, erase, cover, paint over or alter by way of editing or spoiling the cleary visible identification plates, warning labels, safety symbols, designation labels and cable marks

1.1.5. Definition of Safety Functions

Emergency Stop Function- IEC 204-1,10,7
There is one emergency stop button on the controller and another on the teach pendant. If necessary, additional emergency buttons can be connected to the robot's safety chain circuit. The emergency stop function, which overrides all other robot controls, removes drive power from robot axis actuators, stop all moving parts and disconnect power in order not to use other dangerous functions controlled by the robot.

Safety Stop Function-ISO 10218(EN 775), 6.4.3
When a safety stop circuit is provided, each robot must be delivered with the necessary connect ions for the safeguards and inter locks associated with this circuit. The robot has a number of electrical inputs which can be used to connect external safety equipment, such as safety gates and light curtains. This allows the robot's safety funct ions to be act ivated both by per ipheral equipment and by the robot itself.

Speed Limitation Function-ISO 10218(EN 775), 3.2.17
In manual mode, the speed of robot is strictly limited to 250 mm per second as a maximum. The speed limitation applies not only to the TCP(Tool Center Point), but to all parts of robot. The speed of equipment mounted on the robot can be monitored.

Working Envelope Restriction- ANSI/RIA R15.06-1999

The working envelop of each robot axes can be restricted using software limits. Axis $1,2,3$ can also be restricted by means of mechanical stops.

Operation Mode Selection- ANSI/RIA R15.06-1999

The robot can be operated either manually or automat ically. In manual mode, the robot can be operated by using the teach pendant only, i. e. not by any external equipment.

1.1.6. Installation of Robot

1.1.6.1 Safety Fence
(1) Install Safety Fence away from the working space of robot in order to prevent from any possible collision and inter face between workers and robot dur ing the robot operation.

Any accidents can be take place when any workers or any other persons enter inside the safety fence without protective actions. Safety fence shall be equipped with the emergency stop mechanism that can activate emergency stop of robot if any workers would get into the safety fence for examination of robot and welding equipment and replacement of tip dresser and tip etc. during robot operation.
(2) Safety Fence shall fully cover the working space of robot and be installed to secure the enough space in order to evade any interference with robot dur ing teaching and repair operation of workers within the safety fence. And it shall be
tight ly fixed to the floor and have the relevant structure not to easily get over the safety fence.
(3) Safety fence shall be fixed installation type and have no dangerous elements such as sharp edges and rough profile etc.
(4) Gate shall be installed at Safety Fence. Safety plug shall be attached to gate. Unless unplug the safety plug from gate, gate shall not be opened. In case of unplugging the safety plug, robot shall be motor of f by inter lock signal. It shall be hard-wired to cause motors off the robot whenever the gate is opened. (Please refer to Chapter 12.)
(5) In case of robot operation at the state of unplugging safety plug, it shall be hard-wired to become a low speed playback mode. (Please refer to Chapter 12)
(6) Emergency stop button shall be installed at workers' easily accessible distance.
(7) If there is no safety fence, a photoelectric switch or mat switch instead of safety plug shall be installed at all the spaces within the working range of robot. Whenever workers enter the working range of robot, robot will be automatically stopped.
(8) Working space of robot as the dangerous area shall be clearly marked by paint ing on the floor.
(! 1.1.6.2. Installation of robot and peripheral equipment
(1) Execute the connect ion work after ensur ing the power-off status. There are many risks of receiving electric shock due to the usage of high voltage power source such as $220 \mathrm{~V}, 440 \mathrm{~V}, 80 \mathrm{~V}$ etc. in case of primary power source connection to robot controller or peripheral equipment.
(2) Attach the warning tag "No-Access during Operation" at the gate of safety fence and further educate it as a precaution
(3) Locate controller, inter lock panel and any other operat ion panels outside safety fence.
(4) In case of installation of operation stand, attach emergency stop button on it. Emergency stop shall be available at any time from any locations that can operate the robot.
(5) Execute cabl ing and piping work in proper way for robot manipulator, controller, inter lock panel, timer etc. Any loose or protruded cables and/or wires can cause workers' slippery or disconnection of cable by fork lift.

Δ
(6) Locate robot manipulator, controller and operation stand where workers can clearly see the movement of robot manipulator. When operator do not acknowledge abnormal situation of robot or other workers' working at the robot due to the invisible situation, operator's robot operation can cause a large accident.
(7) Limit the workable space of robot by utilizing soft limit or mechanical stopper etc. when the required work space of robot is smaller than the workable space of robot. In case of abnormal operation, any excessive working out of the workable space can be stopped previously. (Please refer to Operation and Manipulator Maintenance Manual)
(8) Install safety curtain or cover for spatters made during welding work which can cause personal injury or fire accident. In any case, safety curtain or cover shall be installed to allow operator to clearly see the movement of robot manipulator.
(9) Automatic operation and manual operation which mean the actual operation state of robot shall be notified to workers even in the distance by easily visible light or device. Install buzzer or alarming light for sign of starting automatic operation of robot.
(10) Remove any protrusions, sharp edges at equipments, devices around the robot which can cause personal injury or any other accidents.
(11) Input and output of workpiece by inserting worker's hands inside safety fence shall be strictly prohibited due to the risks of pressure or cutting injury accident.
!1.1.6.3. Robot installation

Install robot as per the planning and layout which has been previously reviewed and studied for the optimized performance and functionality of the robot. In case of bad installation situation of robot, the serious problems can take place as follows;

- Error of relative position between robot and workpiece during operation.
- Bad performance quality of robot caused by vibration.
- Shortening lifetime of robot
- Cause of serious accidents

The following lists the safety precautions to which careful consideration must be made by operator, worker or installation persons.

General Safety Precautions

(1) Design and install the robot system in completely compliance with laws, regulations and safety requirements being valid in the country where the robot system is installed.
(2) All the workers for the robot system must have the good knowledge on the informat ion specified in the operation and maintenance manual and also have a good command of operation and maintenance of the robot.
(3) Installation workers of robot must follow the safety requirements when they face any safety problems in installation.
(4) System Supplier must ensure that all the circuits utilizing safety function perfectly perform their functionalities in a safe way.
(5) Install primary power supply which can be disconnected from the place outside the operation area of the robot.
(6) System supplier must ensure that all the circuits utilizing emergency stop function perform their functionalities in a safe way.
(7) For immediate emergency stop, install emergency stop button within operator's easily accessible distance.

Technical Safety Precautions

(1) Remove any interference problems with peripheral equipments considering dimension and operating space of the robot.
(2) Evade the installation of robot at the places where have direct ray of sun, many oil, chemical material, explosives, metal powder or humid and wet atmosphere.
(3) Install at the place where ambient temperature is $0 \sim 45^{\circ} \mathrm{C}$.
(4) Secure sufficient space for facilitation of disassembly and examination of the robot.
(5) Install safety fence with a gate so that no worker can enter into the operating range of robot without permission.
(6) Remove any obstacles out of operating space of robot.
(7) Take the special measure considering heat dynamics in case of installation of robot at the places where have direct ray of sun or near heating equipment.
(8) Take the special measure in case of installat ion of robot at the place where there are a lot of dusty metal powder, chemical dusts in the air.
(9) Install robot not to receive any short circuit from welding gun and equipment. (Insulate robot arm between spot sun completely)
(10) Grounding is very important for prevent ing from abnormal operation or electric shock caused by noise. Observe the following installation method.

- Install exclusive grounding terminal using class 3 or higher grounding method. (In case of input voltage of 400 V or higher, observe special class 3 or higher grounding method.)
- Connect Grounding line into the grounding bus-bar inside the controller.
- In case of direct grounding of the robot by anchoring at floor, two point grounding both by robot manipulator and by controller can produce closed circuit and further cause abnormal operation of the robot on the contrary. In this case, connect the grounding line to the base of robot manipulator and disconnect to the controller. When robot trembles during stopping operation, check and examine the grounding status immediately since the possible main causes are incomplete grounding or closed circuit.
- In using built-in transformer gun, primary power cable can be easily worn out by directly contacting with the gun. In this case, connect the grounding line to the base of robot directly and disconnect to controller in order to protect controller and preventing from any electric shock.

1.1.6.4 Space for robot installation

Install robot manipulator, controller, other peripheral equipment. Be sure that there are sufficient rooms for maintenance on the manipulator, controller and other per ipheral equipment. Install robot manipulator and controller as per the guideline as described in the figure below.

Install controller in order that maintenance work can be easily performed when door open. Secure the maintenance free area whenever robot need to be maintained. Dimension of controller as specified in the above figure can be changed according to the kind of controller.

1.1.7. Safety Working Procedures

Safety working procedures must be observed to prevent from any accidents. Safety device or circuit shall not be modified and disregarded by workers or operators at any time.
Be careful of any possible accidents caused by electric shock. All normal operations in automat ic mode must be executed outside safety fence. Prior to operation, be sure there are no personnel within the manipulator's working envelope.
(! 1.1.7.1. Safety measure for robot operat ion
(1) Have the robot system operators, any workers who is possible to operate or any super intendents attend the training courses held by Hyundai in order that they can have a good command of safety and robot functions. Do not allow workers who do not attend the training courses to operate the robot.
(2) Wear safety helmet, safety glass, safety boots dur ing operation.
(3) 2 workers as a team must work together. One worker must supervise through operat ion panel while another worker make teaching operation. One worker always must be in a position to push emergency stop button while another worker execute operation work inside or outside the operation space of the robot with sufficient cautions. Furthermore, all the workers must have a good knowledge on escaping route before their operation work.
(4) Supply power-on after certainly ensur ing that there is no persons within operat ing space of the robot.
(5) Do teaching work outside the working envelope of the robot, in principle. However, after motor-off, you may execute work within the working envelope of the robot by hand-carrying key switch or safety plug, which will prevent from automatic operation which can be made by any third parties. Furthermore, pay your special attent ion to direction of movements which can be made by abnormal or error situation, if any.
(6) Superintendent must observe the followings;

- Stay at the place where he can see robot entirely and concentrate on his job of super intendence.
- Press emergency stop button if there is any abnormal situation.
- keep any people other than the workers who are working for the robot, away from the working envelope of the robot.
(7) In manual mode, teaching must be made not more than the speed of $250 \mathrm{~mm} / \mathrm{sec}$.
(8) Do the teaching work by laying of "Under Teaching Operation" signboard all the time.
(9) Any workers who enter inside safety fence must unplug and bring the safety plug into the safety fence.
(10) Do not use any equipment which can produce any noise around the place for teaching work.
(11) Do not operate teach pendant by feeling of hand only but operate it by watching the keypads clearly.
Δ
(12) Pay your careful attention to the movement of the robot. Do not work for the robot under the situation the robot is behind yourself.
(13) Watch your step dur ing your teaching work. In case of high ground teaching work more than 2 meters, start your work after secur ing the sufficient safety space for workers' step-on.

Δ
(14) Followings are the counter measures which must be taken in case of any abnormal situations

- Press emergency stop button immediately after finding any abnormal operation.
- When you want to check the abnormal situation after emergency stop, conf irm the stop status of the robot without any fail.
- Robot can stop automatically due to the abnormal power supply. In this case, check
first the stop status of the robot and further invest igate the cause to execute relevant measure.
- When the emergency stop function does not work, disconnect the power supply immediately and further investigate the cause to execute relevant measure.
- No one who have no operation and maintenance training provided by Hyundai can be authorized to do the investigation of the cause for abnormal situations. In the event of emergency stop, re-start of motor must be made by the defined procedure only after implementing the measure as a result of the detailed investigation to the cause for abnormal operation.
(15) Prepare relevant working manual on robot operation, working method and the required action for abnormal situations according to the installation places and working contents. Proceed with any works as per the relevant working manual.
(16) Precautions during the stop of robot

Do not access to the robot even though the robot is just stopping. There can be a ser ious accident caused by sudden movement of robot when you access to the stopped robot without any precaution. Followings are the cases that the robot is under the stop status.

No.	Robot Situation	Motor	Accessible or not
1	Temporary stopping (small problem,Temporary stop switch)	ON	Not accessible
2	Emergency stopping (Ser ious problem, Emergency stop switch, safety gate)	OFF	Accessible
3	Input Signal Stand-by from per ipheral equipment (START INTERLOCK)	ON	Not accessible
4	Dur ing Playback completion	ON	Not accessible
5	During Stand-by	ON	Not accessible

Always, pay your careful attention to the unexpected movement of the robot even though it is the above situation which you can enter to working envelope. Entering to the working envelope of the robot without any preparation for unexpected emergency situation must be prohibited at any time.

Note) As specified in the above table, in case of temporary stopping, access to the working envelope of the robot is not allowed. However, when you try to get inside the working envelope of the robot in order to make corrections for minor problems such as nozzle contact and arc trouble, enter the working envelope of robot only after following the same method as you enter the working envelope for teaching work.
(17) When you finish the operation work of robot, do cleaning work for the area inside the safety fence to remove any tools, oil or foreign material which left on the floor. Contamination of working area by oil and any left tools can cause slippery and personal injury. Please do your cleaning and proper arrangement regularly,
(! 1.1.7.2 Safety Measure for Robot Try-out

Engineering error, Teaching error and manufacturing defects on the total system including teaching program, jig and sequence etc. can be found dur ing try-out of the robot. Therefore, do your try-out operat ion taking your due consideration into the safety matter. Safety related accident can took place due to the combined reasons.
(1) Check first the functions of signals and buttons such as emergency stop button and stop button etc. before robot operation and further check error detection function. Checking of all the signals for stopping the robot is the most important thing. When you can foresee the possible accident previously, the most important thing is to stop the robot.
(2) For the try-out of robot, operate in the lower speed of $20 \% \sim 30 \%$ and further check movement more than 1 cycle repeatedly. When you find any problems, modify them immediately. Afterwards, make speed-up by the order of first 50%, second 75% and final 100% and further check movement more than 1 cycle for each speed set-up respectively. When you make speed set-up of high speed at the beginning, the unexpected accident can take place.
(3) You can not foresee any problems to be made during try-out. Do not enter inside
the safety fence during try-out. Unexpected accidents can take place easily due to the unreliable situations.
(1) 1.1.7.3 Safety measure for automatic operation
(1) Educate all the workers not to get inside the safety fence during the operation while the sign-board "No Access During Operation" must be placed at the gate of safety fence. When robot is stopping, you can get inside the safety fence after careful judgment of the situation.

Δ
(2) First check and confirm whether there are any persons inside the safety fence when you start your automatic operation. There can be any serious personal injury when you operate without checking whether there are any persons inside the safety fence.
(3) Start any automat ic operat ion after conf irming that the conditions such as program No., step No., mode, start selection etc. is relevant for automatic operation. When you make start operation under the selection of the program or step which is not valid for automatic operation, there can be serious accidents which is caused by the unexpected movements of robot.
(4) First confirm whether robot is located at the place where it can be operated in automatic mode. Further confirm whether program No., step No. and robot location are correct. Even though program No. and step No. are correct, the wrong location of robot can cause any serious accident by way of abnormal movement.
(5) You are ready to press emergency stop button during automatic operation. Press emergency stop button immediately when you face any unexpected abnormal robot movement or situations.
(6) Check any errors or abnormal status of moving path, moving situation and moving sound etc. While robot can be failed suddenly, it also can be failed by way of showing certain sympton of failure. Have your good understanding and recognition on the normal operation situations of robot.
(7) When you find any abnormal situations, press emergency stop button immediately
and make the necessary action to the abnormal situations. Unless you make any necessary act ion, there can be a failure which possibly result in ser ious personal accident as well as stop of production.
(8) When you make necessary action for any abnormal situation and check the normal operat ion, you can check in low speed operat ion whether abnormal situat ion is fixed. However, it must not be checked even in low speed operation under the situation that any workers stay inside the safety fence. Since it is not reliable situation, another abnormal situation or any unexpected accident can take place.

11.1.8. Safety Measures for Enter ing Inside the Safety Fence

The robot is extremely heavy and powerful, even at low speed. When entering inside working envelope of the robot, the applicable safety regulations of the country concerned must be observed.

Operators must be aware of the fact that the robot can make unexpected movements. A pause(stop) of robot in pattern of movements may be followed by a movement at high speed. Operators must be aware of the fact that external signals can affect robot programs in such a way that a certain pattern of movement change without warning. Dur ing programming and testing, the enabling device must be released as soon as there is no need for the robot to move.

The programmer must always take the teach pendant with him/her when enter ing through the safety gate to the robot's working envelope so that no-one else can take over control of the robot without his/her knowledge. Hang up the sign-board "Under robot operation work" in front of the controller.

When you enter inside the working envelope of the robot, keep in mind the following considerations.
(1) Any workers other than programmer must not be allowed within the working envelope of the robot.
(2) The operation selector on the teaching pendant must be in the teach lock mode
position.
(3) The operat ing mode selector on the controller must be in the manual mode position to block operation from remote control panel.
(4) Always wear approved work clothes(no loose fitting clothes).
(5) Do not wear gloves when operating the Controller.
(6) Do not allow underwear, shirts, or neckties to hang out from the work clothes.
(7) Do not wear large jewelry, such as earring, rings, or pendants.
(8) Always wear protective safety equipment such as helmets, safety shoes(with slip-proof shoes), face shields, safety glasses, and safety gloves as necessary.
(9) Before operating the manipulator, confirm that the emergency stop circuit is functioning by pressing the emergency stop button on the operation panel and teach pendant, and confirm that MOTOR lamp is turned off.
(10) Always view the manipulator from the front when you execute any work.
(11) Follow the predetermined operating procedure.
(12) Always have an escape method and place in mind in case the manipulator comes toward you unexpectedly.

1.1.9. Safety Measures for Maintenance and Repair

(! 1.1.9.1. Safety measures for Maintenance and Repair of Controller
(1) Have all the workers who wish to maintenance and repair work of the robot at tend the special maintenance training course held by Hyundai.
(2) Proceed with all the work according to the maintenance and repair procedures.
(3) Check safety conditions around the workers and secure the escaping route and place in case of any dangerous situat ion before start ing maintenance and repair work.
(4) Turn OFF the power supply when you start regular maintenance or repair, part replacement work. To prevent anyone inadvertently turning ON the power supply during maintenance, put up a warning sign such as "DO NOT TURN ON THE POWER" at the primary power supply.
(5) Always use the designated part for the replacement of failed part.
(6) Turn OFF when you open the door of Controller.
(7) After turning OFF, wait at least 3 minutes to start any work.
(8) Do not touch the SERVOPACK heat sink and the regeneration resistor since they become very hot.
(9) After maintenance is completed, carefully check that no tools are left inside the controller and that the doors are firmly closed.
1.1.9.2 Safety Measures for Maintenance and Repair of robot systems and manipulators
(1) Refer to the safety measures for maintenance and repair of controller.
(2) Proceed with any maintenance or repair work of robot system and manipulator strictly in accordance with the established procedures.
(3) The main power switch on the robot controller must be "OFF". To prevent from power ON caused by any unauthorized persons, put up the warning sign such as "DO NOT TURN ON THE POWER" at the primary power supply.
(4) Do your maintenance or repair work after fixing the robot arm in order that you
can be safe from any possible accidents caused by falling down or unexpected moving of robot arm.
! 1.1.9.3 Necessary Actions after Completion of Maintenance and Repair
(1) Check there are no abnormal ly connected cables or assembled parts of Controller.
(2) After maintenance is completed, carefully check that no tools are left inside the Controller and that the door is firmly closed.
(3) Do not turn on the robot if you discover any problems or potential hazards.
(4) Prior to turning $O N$ the power, be sure that there is no one within the working envelope of manipulator, and be sure that you are in a safe place yourself.
(5) Turn ON the main circuit breaker on the control panel.
(6) Check current position and status of the robot
(7) Operate the manipulator at low speed.

1.1.10. Safety Functions

1.1.10.1 Safety Control Chain of Operation

The robot's safety system is based on a two-channel safety circuit that is continuously monitored. If an error is detected, the power supply to the motors is switched off and the brakes engage. To return the robot to MOTORS ON mode, the two identical chains of switches must be closed. As long as these two chains differ, the robot will remain in the MOTORS OFF mode. Furthermore, when safety cuicuit is disconnected, interrupt ing call will be sent automatically to the Controller to find out the reason for the inter ruption.

The safety control chain of operation is based on dual electrical safety chains which interact with the robot controller and the MOTORS ON mode.

Electrical safety chain consist of several switches connected in such a way that all of them must be closed before the robot can be set to MOTORS ON mode. MOTORS ON mode means that drive power is supplied to the motors.

If any contact in the safety chain of operation is open, the robot always reverts to MOTORS OFF mode. MOTORS OFF mode means that dr ive power is removed from the robot 's motors and the brakes are applied. MOTORS OFF mode means the status that there is no power supply to motor of robot while brake of motor is woking. The status of the switches is displayed on the teach pendant (Refer to the I/0 monitoring screen of Service Menu in Chapter 6).

The Safety Chain of Operation

The emergency stop buttons on the operator's panel and on the teach pendant and external emergency stop buttons are included in the safety chain of operation. You are recommended to install safety devices such as safety plug and safety stop device while entering inside the working envelope etc. which can be operated in the AUTO operat ing mode. You can connect the general safety stop devices that is active in all operating modes.

No workers/persons can enter inside the working envelope of robot in automatic operat ion mode due to the unconditional operation of the safety devices(door, safety mat, safety plug etc.). In manual mode, maximum speed of robot is completely restricted to $250 \mathrm{~mm} / \mathrm{s}$. The aim of this safeguarded stop function is to make the area around the manipulator safe while still being able to access it for maintenance and programming.

When the robot is stopped by a limit switch, it can be moved from this position by jogging it with the move key in CONSTANT mode(refer to the Parameter Setting 1 of Chapter 9). Status indication is available on the teach pendant display.

The safety chains must never be bypassed, modified or changed in any other way.

1.1.10.2. Emergency Stop

An emergency stop should be act ivated when people or equipment is located at dagerous area. Built-in emergency stop buttons are located both on the operator's panel of the robot controller and on the teach pendant.

External emergency stop devices(buttons, etc.) can be connected to the safety chain with the applicable standards for emergency stop circuits.

All controls, such as emergency stops, the control panel and control cabinet, must be located outside working envelope and easily accessible at any time.

Status of Emergency stop

When you press the emergency stop button,

- Robot stops immediately in any cases
- Power of the robot servo system turn off
- Motor brake of the robot is activated.
- Message of emergency stop is displayed on screen

1.1.10.3. Operating Speed

To program the robot, the operat ing mode switch must be turned to MANUAL position. Then the maximum velocity of robot is limited to $250 \mathrm{~mm} / \mathrm{s}$.

1.1.10.4. Connection of Safety Device

External safety devices such as light, curtains, light beams or sensitive mats which can be adapted by the system builder execute interlocking the Controller by way of connecting with safety chain of operation within the Controller. The above devices are used for safety device during execution of normal program in automatic mode.

1.1.10.5 Limitation of Working Envelope

When robot is not necessary to reach certain area for specific applications, working envelope of the robot can be limited to secure the sufficient safety working area. This will reduce the damage or loss in case of robot's collision with external safety arrangement such as safety fence, etc.

Movement about axes 1, 2 and 3 can be limited with adjustable mechanical stops or by means of electrical limit switches. If working space is limited by means of stops or switches, the corresponding software limitation parameters must also be changed.

If necessary, movement of the three wrist axis can also be limited by the central processing unit. Limitation of working envelope for all the axes must be carried out by the user. Hyundai Robot is delivered to customer as the status of full working envelope setting.

Manual mode : Maximum speed is $250 \mathrm{~mm} / \mathrm{s}$
The manual mode must be selected whenever anyone enters the robot's safeguarded space.
Auto mode : The robot can be operated via a remove control device. All safety equipments such as safety gates, safety mats, etc., are active. No one can enter the robot's safeguarded space.

1.1.10.6. Monitoring Function

1) Motor Monitoring Function

The motors are protected against over load by means of temperature sensors in the motor windings.
2) Voltage Monitoring Function

For the protection of power devices such as transistor etc. the servo amp module automatically triggers off the power switch when the voltage is too low or high.

1.1.11 Safety Related to End Effectors

1.1.11.1 Gripper

(1) When a gripper is used to grip a workpiece, the relevant measure for preventing from the unexpected dropping of the loaded workpiece due to loose gripper design must be taken by users.
(2) When any end effectors or devices are installed on robot arm, the followings must be observed by users.

- Use the required size and quantity of bolt.
- Securely fasten as per the required torque by using torque wrench.
- Do not use the bolt which have rust or dirt.
(3) End effector must be designed and manufactured not to exceed the maximum al lowable load at the wrist of robot. Even though power or air supply stop, the gripped workpiece must not be dropped from the gripper. In order to remove any risks and problems which cause personal injury and/or physical damage, the sharp edge and projection part of end effector must be made dull and smoothly.

1.1.11.2. Tools and Workpiece

(1) It must be possible to replace tools, such as milling cutters, etc., in a safe manner. Make sure that safety devices are working correctly unt il the cutters stop rotating.
(2) Grippers must be designed to keep on gripping workpiece securely even though a power failure or a control failure take place. It must be possible to release workpiece from the gripper in manual mode.
1.1.11.3 Pneumatic and Hydraulic Systems
(1) Design and install pneumatic and hydraulic system according to the safety regulations.
(2) Since, after stop of robot, residual energy of pneumatic and hydraulic systems can be still remaining, particular care and attention must be paid by user. Pressure must be removed whenever you start repair work of pneumatic and hydraulic systems.

1.1.12. Liabilities

The robot system has been built in accordance with the latest technical standards and safety rules. Nevertheless, the ser ious accidents such as death or personal injury of operators/workers can take place due to the collision between the robot system and peripheral equipment.

The robot system must be used by operator who has perfect technical knowledge and good understanding on its designated use and also pay his careful attention to the possible dangers and risks involved in its operation. Use of the robot system is subject to compliance with these operating instructions and the Operation and Maintenance Manual supplied together with the robot system. The safety related functions of the robot system must not be used for any purposes other than safety.

When you use the robot system for any other or additional purpose than its designated usage, at first, you must review whether it is valid in accordance with design criteria. The manufacturer can not be held liable for any damage or loss which resulted from such misuse or improper use.
The user, operator, workers shall have the full responsibility for the risks caused by such misuse or improper use. When you use and operate the robot system for its designated use, you must have a good command of all the information contained at these operating instructions as well as the maintenance manual.

The robot system may not be put into operation until it is ensured that the functional machine or plant into which the robot system has been integrated conforms to the specif icat ions of the EC direct ives 89/392 EWG dated 14 June 1989 and 91/368 EWG dated 20 June 1991.

The following harmonized standards in particular were taken into account with regard to the safety of the robot system:

IEC 204-1, 10.7
ISO 11161,3.4
ISO 10218(EN 775), 6.4.3
ISO 10218(EN 775), 3.2.17
ISO 10218(EN 775), 3.2.8
ISO 10218(EN 775), 3.2.7

User must take the full responsibility for any accident caused by his negligence or non-observance of these instructions. When the user provides any peripheral equipment or other equipment which are not included in the scope of supply of Hyundai robot system, HHI will not take any liabilities and responsibilities for any damages or losses caused by the mis-use or malfunction of the such equipments provided by user. User must take the full liabilities and responsibilities for any risks and damages which can take place due to the above peripheral equipments or other equipments provided by user.

1.2 Operation Panel

1.2.1 External Shape of Operation Panel

1.2.2 Buttons of Operation Panel

[ERROR]
LED(Light-emitting Diode) indicating Synthetic Error. It flickers when system errors such as servo alarm, limit switch interference and arm interference etc.

[MOTOR ON]

Button for Operation Standby "ON". This button is used for connecting servo power to the motors of robot. When operation standby is the state of "ON", [MOTOR ON] lamp is turned on.

[EMERGENCY STOP]

Button for Operation Standby "OFF" in case of emergency stop and etc. This button is used for disconnect ing servo power to the motors of robot. When operation standby is the state of "OFF", [MOTOR ON] lamp is turned off.

[START]

Button for starting operation. This button is used for making playback of program. When operation start, [START] lamp is turned on and [STOP] lamp is turn off.

[STOP]

Button for stopping operation. This button is used for stopping playback of program. When operation stop, [STOP] lamp is turned on and [START] lamp is turned off.

[AUTO/MANUAL]

Key for selecting between automatic and manual operations. Selection state of this key, the state of safety plug and JogEnable of Teach Pendant are the indispensable factors for determining whether starting operation is ready or not. Please refer to the following table.

AUT0/	MANUAL		AUT0	
	JogEnable-ON	JogEnable-0FF	JogEnable-ON	JogEnable-0FF
Release	Impossible to Motor-ON Possible to operate JOG Possible to Step Forward and Feedback	Impossible to Motor-ON Impossible to Operate Jog Impossible to Step forward and Feedback		
Locking	Impossible to Motor-ON Possible to operate JOG Possible to Step Forward and Feedback	Impossible to Motor-ON Impossible to Operate Jog Impossible to Step forward and Feedback	Impossible to Motor ON	Possible to Motor ON, Impossible to normal speed operation

1.3 Teach Pendant

1.3.1 External Shape of Teach Pendant

1.3.2 Screen of Teach Pendant

The following is an example display of teach pendant screen in case of manual mode.

	\leftarrow Title Frame
$\begin{aligned} \mathrm{S} 2 & \text {. } \mathrm{MOVE} \mathrm{~L}, \mathrm{~S}=50 \%, \mathrm{~A}=0, \mathrm{~T}=0 \\ & \text {. WEAVON WEV\#=1 } \\ & \text {.ARCON ASF\#=1 } \end{aligned}$	\leftarrow Edit Frame
$\begin{aligned} & \text { S3 } \text { MOVE } \mathrm{L}, \mathrm{~S}=40 \mathrm{~cm} / \mathrm{min}, \mathrm{~A}=0, \mathrm{~T}=0 \\ & \text { ARCOF AEF\#=1 } \\ & \text { WEAVOF } \\ & \text { S4 } \text { MOVE L, } \mathrm{S}=50 \%, \mathrm{~A}=0, \mathrm{~T}=0 \end{aligned}$	cill
Select PF menu	- Guide Frame
P-	\leftarrow Input Frame
Service System Rel.WAIT Cond Set	Menu Frame

Screen description

■ Title Frame: Current time (Hour: Minutes: Second:), Mode, Accuracy Level and Manual Speed are displayed.

■ Edit Frame: Program No., Step No., Function No., Speed, command message, position, condition file and etc. are displayed. Robot pattern, No. of axes and total step Nos. are displayed, in case of Step 0 .

■ Guide Frame: Provide guide or instruction for user's operation. Errors or output messages of teach pendant is displayed.

■ Input Frame : The status of the data input from the teach pendant is displayed. Also, the range of the data to be input by user is displayed.

■ Menu Frame: It can be changed subject to any situations. Select one of the function keys from [PF1] to [PF5].

Reference

Highlighted message of S3 above means that current step No. is 3. '.' in front of each command before Step No. 3 means the command which was already implemented. Any commands after Step No. 3 mean not yet implemented.

1.3.3 Keys of Teach Pendant

The followings are the explanation to any keys of teach pendant.

[E. STOP]

Use for emergency stop. When you press this key, motor will be off. For re-start operation, you can start only after making motor-on.

[PF Keys]

Use for select a menu at the menu-frame on the screen. Press [PF1] to select the $1^{\text {st }}$ menu item of the menu-frame on the screen.

[COORD]

When you press an axis operation key, the coordinate system (axis, cartesian or user, tool) which move robot is selected. The Coordinate System which is currently being selected is displayed on the upper LED.

[AUX AXIS]

You can select auxiliary axis operation. When you press [Left] [Right] [Front] [Rear] [Up] [Down] during light-up of LED, the auxiliary axis $1 / 2 / 3$ are operated to the direction of front or rear.
[CONTI / JOG ON]
Select it when you want to operate robot in manual mode. When you press it after pressing [Motor-ON] Key of the operation panel, robot can be operated in manual mode and step go/back is also possible. When you press it together with [Shift(FAST)] simultaneously, you can select whether you want to implement it step by step or continuously during step go/back. The currently selected status is displayed at the upper LED.
[GUN (Arc on)]
After your step recording work, you can decide whether you will record the signal of GUN1 or not. When you press it together with [Shift(FAST)] simultaneously, the signal output of GUN1 is manually made. For Arc welding application, light-up of the same LED in playback mode means the actual arc welding operation is under processing. During turning-off the same LED in playback mode, no actual arc welding operation but the confirmation of the teached tracks is made.
[ACC / INTP]
You can select interpolation type(OFF, Linear, Circular) to be recorded during input of move command. The currently selected interpolation type is displayed at the upper LED. When you use it together with [Shift(FAST)] simultaneously, you can select position making level ($0-3$) to be recorded during the record of MOVE command. It is displayed at the upper
right position of Title Frame.

[SHIFT(FAST)]

You must use it only together with any of other keys. In order to implement the fuctions indicated in sky blue color at the upper part of keys, it must be pressed together with any of the sky blue color keys. When you press it together with Step Go/Back key simultaneously, the high speed moving function is implemented.

[ESC]

You can use it if you want to cancel any key input or any status processing. And it also have further function to switch to upper level of PF Menu.

[Axis Operation Key]

You can use it for the operation of axis.

[Direction Key]

You can use it for changing Step or Function. When ' + 'mark at the right side of PF5 Menu is flickering, select the PF Menu at next page. When ' + ' mark at the right side of PF5 Menu is not indicating, move cursor of word within the below command. When you press it together with [Shift(FAST)] Key simultaneously, you can scroll the fixed display.

[SPEED]

You can select not only the moving speed in manual operation but also the speed dur ing recording MOVE command. Speed can be selected among totally 8 levels. When you press it together with [Shift(FAST)] simultaneously, shifting to highest or lowest speed is made.
[STEP FWD/BWD]
You can use it when you want to move forward or backward step by step in manual mode. When you press it together with [Shift(FAST)] simultaneously, move the high moving speed previously assigned at condition assignment.

[User Key]

The functions allocated by f-key arrangement are implemented.

[QuickOpen]

When you press it on the specific command, the "QuickOpen function" is implemented. The "QuickOpen function" is the function that can check and edit position data or any condition file on welding condition and weaving condition etc. (Part of QuickOpen Function - Refer to the Chapter 9) During the palyback mode, the shifting to Hot edit is made.

[?]

Provide the relevant help message according to the each situation.
[LCD]
When you press it together with $[\uparrow / \downarrow]$ Key simultaneously, you can control the brightness of LCD display.
$[\leftarrow]$ is BackSpace Key which can delete one by one the letters in front of the cursor. If you press this key during selection of any factors for editing command, the figures of factor selected will be deleted.
[Number Keys] : Input numbers.
[REFP] : Insert Reference Point Command
[I, V Change] : In Automatic Mode, first check welding current and voltage and further change it if necessary.
[GasChk]: Check whether gas gushes out actually.
[ARCON]: Insert the command of ARCON
[WEAVON]: Insert the command of WEAVON
[Inching]: Feed the welding wire.
[ARCOF]: Insert the command of ARCOF
[WEAVOF]: Insert the command of WEAVOF
[Retract]: Rewind the welding wire.
[DEL]: Delete any commands or factors. Program will be deleted at the position of program header (Step 0, Function 0).
[R. . (NO)]: Use this key to input R Code or in need of "RESET" function or to select negat ive answer(No.) in case of requesting "Yes or No" answer.
[SET(Yes)]
Use this key to input command or in case of completion of data input. Contents of the input frame will be reflected to the Editing Frame. Also use this key to select positive answer "YES" in case of requesting "Yes or No" answer. As an additional function, you can use this key to modify the command in manual mode. When you press this key, the cursor covering the sentence will be changed the cursor covering word and at this time you can
edit the factor. If you press this key while cursor is located at row number, the number of row can be modified.
[Pose MOD/REC]
Use this key to add "MOVE" command. The "MOVE" command to be recorded consists of the hidden PAUSE. (Refer to the Language Explanation Section in Chapter 11) When you press it together with [Shift(FAST)] key simultaneously, you can modify the position of the hidden pause MOVE command. For modifying factors other than position, you must use command modification.
[Ch/Var/Fn/CMD]
Use this key to insert command. When you press it together with the Key[Shift(FAST)] simultaneously, you can input letters, variables or functions.

[STOP/MANOUT]

Use this key to make output of "DO" Signal manually. When you press it together with [Shift(FAST)] key simultaneously, you can stop the implementation of payback mode.
[PROG/STEP]
Use this key to stop the step. When you press it together with [Shift(FAST)] key simultaneously, any programs will be selected.
[History]
Use this key to see the previous display.

Chapter 2. Basic operation

Contents

2.1 Basic operation $2-2$
2.1.1 Controller's power/motor ON/OFF 2-2
2.1.1.1 Power ON/Motor ON 2-2
2.1.1.2 Power OFF/Motor OFF 2-2
2.1.2 How to initiate the system 2-3
2.1.3 Teaching 2-3
2.1.4 Step and function 2-4
2.2 Basic things for step 2-5
2.2.1 The parameter of STEP command line 2-5
2.2.1.1 Interpolation-locus from between step and step 2-6
2.2.1.2 Pose 2-7
2.2.1.3 Speed 2-8
2.2.1.4 Accuracy 2-8
2.2.1.5 Tool number 2-8
2.2.1.6 Output option 2-8
2.2.1.7 Stop condition 2-9
2.2.1.8 Stop state variable 2-9
2.2.2 Step position validation/modification method 2-10
2.2.2.1 Encoder coordinate system $2-10$
2.2.2.2 Base/Robot coordinate system 2-11
2.1.4 Coordinate system $2-13$
2.3.1 JOG operation key $2-13$
2.3.2 Axis coordinate 2-14
2.3.3 Robot coordinate $2-15$
2.3.4 User coordinate $2-17$
2.3.5 Tool coordinate $2-18$
2.4 Auto tool setting $2-19$

Chapter 2. Basic operation of robot

2.1 Basic operation

Industrial robot is defined $『$ The machine that is capable of physical operation and manipulation by means of the automatic control and used by the industry by programming in the various tasks(JIS)』.

Most of the industrial robot uses Teaching and Playback mode. Teaching means " To instruct robot of the operation task" and Playback means " To carry out instructed work repeatedly". The operation method combining these two (Teaching and Playback) is also called as "Teaching \& Playback Method".

2.1.1 Controller's power/motor 0N/OFF

2.1.1.1 Power ON/ Motor ON

1. Confirm nobody in safety fence and no dangerous machine within robot's working area.
2. Turn power switch located at the upper left corner of the controller's front side to CW direction.
3. Push [Motor ON] switch on the operation panel.
4. Confirm whether [Motor ON] lamp is lighting up.

2.1.1.2 Power OFF/ Motor OFF

1. Push [STOP] button on the operation panel.
2. Turn [AUTO/MANUAL] switch on the operation panel to the MANUAL.
3. Push [Emergency Stop] button on teaching pendant or operation panel.
4. Turn power switch located at the upper left corner of controller's front side to CCW direction.

2.1.2 How to initiate the system

1. At manual mode, select " System" [PF2] \rightarrow 5: System format \rightarrow 1. System format. If you initialize the system, not only controller parameter file, machine parameter file, but also all kinds of files shall be deleted. Do not use it except system installation at first time.
2. Select the type of robot connected controller.
3. In case of additional axis, key in the number of axis and decide that whether conveyor synchronizing is "ON" or "OFF" and vibration control mode is "ON" or "OFF".
4. Turn the controller's power switch to "ON" form "OFF".
5. At manual mode, select "System"[PF2] \rightarrow 3: Machine parameter \rightarrow 5: Encoder offset calibration, then execute encoder offset calibration.
6. At motor "ON" status, after move robot to basic position, execute encoder offset calibration once more. This position data shall be used for encoder resetting when you change the motor .
7. Select program number 9999 and record one position step.
8. After selecting "MANUAL" mode and teaching automatic constant setting program, carry out optimizing axis constant and tool length function.

2.1.3 Teaching

1. Select "MANUAL" mode.
2. Select program number by pressing [Shift(FAST)]+[Prog].
3. Push [Motor On] key on the operation panel.
4. Push [JOG ON] key on the teaching pendant and confirm the LED is lighting up..
5. Move the robot using axis operation buttons and setup the moving condition such as record speed, interpolation type, accuracy etc.
6. Press [REC] key at the position that to be remembered.
7. Record the function.

2.1.4 Step and Function

The position which is remembered by [REC] key or defined by a variable position data is named "STEP".

Working cannot be done by robot moving only. To carry out certain work, a signal communication which is confirming peripheral equipment's status and transmitting robot condition between robot and per ipheral equipment is required. This kind of means for controller's signal exchange and handing is named "Function".

2.2 Basic things for step

Step is a word indicating robot's certain position (or tool's end position).

Robot basically, move to other step from this recorded step and carry out any other function.

Move command "MOVE" is a command language instructing robot's moving and it is a most basic command language in the robot programming. The position of tool end is recorded also various item such as speed, interpolation, accuracy are designated.

2.2.1 The parameter of STEP command line

2.2.1.1 Interpolation - locus from between Step and Step

The interpolation method of [step n] decides the locus from between [step $n-1$] and [step n]..

■ P - interpolation off (point to point)
It is used the section which is not concerning for the locus form of the tool-end (control point) movement to task point.

■ L - linear interpolation
Move linear locus form between two step. It is used such as welding section which needs linear locus form. Tool and moves and changes the wrist pose automatically like in the bellow's drawing.

Reference

1) Pose interpolation impossible condition

- Near the deadzone of B axis
- When the sign of B axis is changed.
- When the angle variation of R1, R2 axis is over 180 deg.
\Rightarrow It is varied according to interpolation execution method = <position interpolation, error stop> of B axis deadzone's designated item.
- When the center of B axis or the end of tool is passing the circle center of S axis. \Rightarrow Locus form tolerance or error can be occurred.
- When the angel variation of S axis is in excess of 180 deg . \Rightarrow Error is occurred certainly.

■ - circle interpolation
Move with circle locus form between two step. To make circle, 3 points are to be indicated. The standard is as follows.

If the interpolation type is circle "C" when move to [step n+1] form [step n], look at next step [step $n+2$]. If the interpolation type of [step $n+2$] is also circle " C ", the circle is made with [step n], [step n+1] and [step n+2]. Also robot moves following to arc of [step n] ~ [step n+1] section. If the interpolation type is not circle interpolation, the circle is made with [step n-1], [step n] and [step n+1] refer to previous step [step n-1].

In case of an exception, if the interpolation type of [step 2] is "C" and the interpolation type of [step 3] is not "C", the last step [step n] must be referred to make circle.

If you use the above explanation's standard, you can do programming using double registration of same point even in case of continuous circle.

Like this, you can make program whatever your want. if your use double registration and decide the interpolation type of step considering the locus form to be made.

2.2.1.2 Pose

It is the parameter to record robot's position. In case of input of [MOVE] sentence using [CMD] key, you have to user pose parameter surely. In case of input of [MOVE] sentence pressing [REC] key, pose is not shown (hidden pose). In this case, the robot's position would be recorded as soon as you press [REC] key.

Pose : (X, Y, Z, Rx, Ry, Rz, Cfg) \{coordinate system\}

$$
\begin{aligned}
\text { \{coordinate system\} } & \\
& \mathrm{R}=\text { Robot coordinate system } \\
\mathrm{E} & =\text { Encoder }
\end{aligned}
$$

■ Shift : (X, Y, Z, Rx, Ry, Rz) \{coordinate system\}*) R1~R8 is same as in-line resister.
\{coordinate system\} : ' ' = Base coordinate system

$$
\begin{aligned}
& \mathrm{R}=\text { Robot coordinate system } \\
& \mathrm{T}=\text { Tool coordinate system }
\end{aligned}
$$

2.2.1.3 Speed

Designate the speed of tool end. There are $\mathrm{mm} / \mathrm{sec}, \mathrm{cm} / \mathrm{min}$, sec, \% etc n a unit. Sec designate speed as moving time, \% is the ratio base on maximum speed.

2.2.1.4 Accuracy

Decide precision to pass the step (approach grade to recorded position) when the robot follow to recorded step. When the end of tool moves to object step, if the difference is uniform(accuracy 0.K) between present position and recorded position, the robot moves to next step. Here, the difference is named accuracy. Accuracy 0 is most precision and accuracy 3 has the largest difference. This value can be defined in distance the number of bit at "System" [PF2] \rightarrow 3: Machine parameter \rightarrow 8: Accuracy.

2.2.1.5 Tool number

The position of robot is decided by the pose and position of tool end. Designate the number of tool to be used.

2.2.1.6 Output option

G1, G2 - gun signal. - for spot welding.
MX1, MX2 - Maximum open. - for spot welding.
BM - block mark: At f key setting, speed 5\% increase/decrease can be designated, when it if only adapted to move command designated BM.

2.2.1.7 Stop condition

Execute next command (step or function) after stop robot's movement if satisfy the condition formula following UNTIL.

MOVE ... UNTIL I2=1

2.2.1.8 Stop state variable

Store the result value of stop condition formula. It shows whether the MOVE mot ion is completed or not in accordance with condition formula.

2.2.2 Step position validation/modification method

After move robot with axis operation keys, if press [REC] key on teach pendant can verify or modify robot's posture.

2.2.2.1 When the coordinate system is set as encoder

At manual mode, check the type of pose record from 'SYSTEM' [PF2] $\rightarrow 1$: User parameter \rightarrow 2 : Default Pose. If the MOVE command's pose type is in a state of encoder, press then following screen will be displayed. For encoder setting robot posture, validation of location only can be done. You cannot modify position data.

14:39:38 *** Step Pose Data *** A:0 S:4	
POSE OF CURRENT STEP	
S : [00400000]	T1: [00400000]
H: [00400000$]$	T2: [00400000]
$\mathrm{V}:[00400000]$	T3: [00400000]
R2: [00400000]	
B : [00400000]	
R1: [00400000]	
Coordination : <Base, Robot, Encoder>	
Press [Shift]+[<-][->] Kev.	
\gg	
	Save

2.2.2.2 When the coordinate system is set as Base or Robot

At manual mode, check the type of pose record from 'SYSTEM' [PF2] $\rightarrow 1$: User parameter $\rightarrow 2$: Default Pose. If the MOVE command's pose type is in a state of Base or Robot, press then following screen will be displayed. It shows that the robot configuration is designated as 'Define'.

Reference
(1) Robot Configuration : When it need to record robot's position, there are multiple solutions can be happened. To specify specific solution you should choose specific data about robot style.
bit 0: (0 : Define , 1 : Self-Cfg)
bit 1 : (0 : Front , 1 : Rear)
bit $2:(0: U p, 1:$ Down $) \rightarrow$ refer to following figure
\Rightarrow related with H-axis and V-axis, all our robots are 'Up'.

bit $4:(0:$ Left , $1:$ Right $) \rightarrow$ on screen it will displayed as
($|\mathrm{S}|<180,|\mathrm{~S}|=180)$
\Rightarrow All our robots are 'Left'.
bit $5:(0:|\mathrm{R} 2|<180,1:|\mathrm{R} 2|>=180) \rightarrow$ It shows the location of R2-axis
bit $6:(0:|R 1|<180,1:|R 1|>=180) \rightarrow$ It shows the location of R1-axis
bit 7~9: (0 : base, 1 : robot, 2 : reversed, 3 : encoder)
\rightarrow All those are about coordinate system for reference, It shall not be calculated.
\Rightarrow For customer's convenience, coordinate systems are shall be added on the very end of letter.
Base coordinate $=(X, Y, Z, R x, R y, R z, c f g)$
Robot coordinate $=(X, Y, Z, R x, R y, R z, c f g)$
Encoder $=(S, H, V, R 2, B, R 1)$

If the robot composition style is not set, the screen will be displayed as follow.

2.3 Coordinate system

2.3.1 JOG operation key

The following chart shows that the robot's moving direction in accordance with operation of JOG key for each Axis coordinate, Robot coordinate, User coordinate and Tool coordinate. It need to understand robot's movement according to coordinate system.

Action	[Coordinate System]			
	Axis coord.	Robot (Robt coord.)	Robot (User coord.)	Tool coord
Left (S+)	S [Left]	Xr (-)	Xu (-)	Xt (-)
Right (S-)	S [Right]	Xr (+)	Xu (+)	Xt (+)
Front (H-)	H [Front]	Yr (+)	$\mathrm{Yu}(+)$	Yt (+)
Back 후 (H+)	H [Back]	Yr (-)	Yu (-)	Yt (-)
$\mathrm{Up}(\mathrm{V}+$)	V [Up]	Zr (+)	$\mathrm{Zu}(+)$	Zt (+)
Down(V-)	V [Down]	Zr (-)	Zu (-)	Zt (-)
$\mathrm{Rx}+(\mathrm{R} 2+$)	R2 [+]	Rxr (+)	Rxu (+)	Rxt (+)
Rx-(R2-)	R2 [-]	Rxr (-)	Rxu (-)	Rxt (-)
Ry+(B+)	B [+]	Ryr (+)	Ryu (+)	Ryt (+)
Ry-(B-)	B [-]	Ryr (-)	Ryu (-)	Ryt (-)
Rz+(R1+)	R1 [+]	Rzr (+)	Rzu (+)	Rzt (+)
Rz-(R1-)	R1 [-]	Rzr (-)	Rzu (-)	Rzt (-)

2.3.2 Axis coordinate

On the state of Motor ON at manual mode, please check the JOG ON LED is lighted or not. When press down Coordinate system key on teach pendant, if the light is on at axis it can be move as operation of key. For the operation key, please refer to chart of 2.3.1 JOG operation key.

Axis Coord.

2.3.3 Robot coordinate

On the state of Motor ON at manual mode, please check the JOG ON LED is lighted or not. When press down Coordinate system key on teach pendant, if the light is on at cartesian it can be move as operation of key. For the operation key, please refer to chart of 2.3.1 JOG operation key.

Robot Coord.

Reference

The following figure shows that how to determine the robot coordinate system. Stretch out left hand's three fingers ; thumb, point finger and middle finger at a right angle. It means that when the point finger's direction is aligned with Y-direction of robot coordinate, thumb's direction is pointing Z and point finger's direction is pointing X.

Axis direction

Rotation direction

2.3.4 User coordinate

Select user coordinate from 'System'[PF2] $\rightarrow 2$: Controller parameter $\rightarrow 12$: Coordinate setting $\rightarrow 1:$ User coordinate, and then set the selected coordinate. After that play the program under state of completion key in 'Cond Set'[PF5] $\rightarrow 8$: Select user coordinate, then robot shall move as following figure.

2.3.5 Tool coordinate

On the state of Motor ON at manual mode, please check the JOG ON LED is lighted or not. When press down Coordinate system key on teach pendant, if the light is on at tool. it can be move as operation of key. For the operation key, please refer to chart of 2.3.1 JOG operation key.

Tool coord.(with torch)

It shows that the robot is operating without tool.

Tool coord.(without tool)

2.4 Auto tool setting

You can make the same program to the previous program by calibrating automatically the tool constant without teaching when the teaching point in the previous program is different from the previous teaching point resulting in changing, modification of the tool.

You can get angle, length of new tool if executing the function after moving the setting tool in the step that taught previously. At this time, The position data of the step that is taught is recorded as the pose data, accurate.

Press 'SYSTEM'[PF2] $\rightarrow 1:$ User parameter $\rightarrow 2:$ Default Pose then following screen will be displayed.

14:39:38 ***AUTO TOOL SETg*** A:0 S:4
*) By jogging, place the tool-tip at the point of reference step, with the If the pose is not certain, execute 'Angle Setting' after this function.
$\begin{aligned} \text { Program No. } & =\left[\begin{array}{ll} {[} & 0 \end{array}\right] \\ \text { Step No. } & =\left[\begin{array}{ll} 0 \end{array}\right] \\ \text { Tool No. } & =\left[\begin{array}{ll} 0 \end{array}\right] \end{aligned}$
Select and Enter number. Press [SET]
$>$ [1-999]

Chapter 3. Service Menu

Contents

3.1 Monitoring 3-4
3.2 Register 3-15
3.2.1 XYZ Shift register 3-16
3.2.2 Shift buffers 3-18
3.2.3 On-line shift register Group 3-20
3.2.4 Palletizing register 3-22
3.2.5 Frequency condition register 3-25
3.2.6 Conveyor data 3-26
3.3 Variable 3-28
3.4 Edit program 3-29
3.4.1 Modify writing condition totally 3-30
3.4.2 Modify speed in record totally 3-31
3.4.3 Modify position in record totally 3-32
3.4.4 Step copy 3-34
3.4.5 Step reverse copy 3-36
3.4.6 Edit program in running (Hot edit) 3-38
3.5 File management 3-43
3.5.1 Internal memory file name 3-44
3.5.2 Program first data 3-45
3.5.3 Internal program axis no 3-46
3.5.4 Rename 3-47
3.5.5 Copy 3-51
3.5.6 Delete 3-53
3.5.7 Protect 3-55
3.5.8 Storage media format 3-58
3.5.9 Save/Load (SRAM Card) 3-59
3.6 Program conversion 3-61
3.6.1 Coordinate transformation 3-62
3.6.2 Mirror Image 3-64
3.6.3 Off-Line XYZ shift 3-67
3.7 System checking 3-69
3.7.1 System version 3-70
3.7.2 Run time 3-71
3.7.3 Diagnosis of troubles 3-74
3.7.4 Error logging 3-76
3.7.5 Stop history 3-78
3.7.6 Operation history 3-80
3.8 Date setting (Date, Time) 3-81

Chapter 3 Service Menu

When you press the "Service [PF1]" on the Manual or Auto Mode. the following display contents appear.

```
14:39:38 ** Service contents ** A:0 S:4
1: Monitoring [R245]
2: Register setting
3: Variables
4: Program modify
5: File manager
6: Program conversion
7: System checking
8: Date setting(Day, Time)
Use [Number]/[Up][Down] and press [SET]
\(>\)

\subsection*{3.1 Monitoring}

Out line

It displays encoder value of each axis, degrees of angle, coordinates value data in/output condition. It is same as the code "R245 : Monitor mode selection"

Screen display
\begin{tabular}{|c|}
\hline 14:39:38 *** Nonitoring *** A:0 S:4 \\
\hline \[
\begin{aligned}
& \text { 0: Monitor OFF } \\
& \text { 1: Axis data } \\
& \text { 2: Private input } \\
& \text { 3: Private output } \\
& \text { 4: } \operatorname{DIO(~} 1-24) \\
& \text { 5: } \operatorname{DIO}(25-48) \\
& \text { 6: } \operatorname{DIO}(49-72) \\
& \text { 7: } \operatorname{DIO}(73-96) \\
& \text { 8: } \operatorname{DIO}(97-120) \\
& \text { 9: } \operatorname{DIO}(121-144) \\
& \text { 10: } \operatorname{DIO}(145-168)
\end{aligned}
\] \\
\hline ```
11: \(\operatorname{DIO}(169-192)\)
12: DIO(193-216)
13: DIO(217-240)
14: DIO(241-256)
15: Spot welding input/output monitor
16: Brake slip count
17: DIO Name display
18: Conveyor data(with axis data)
19: Analog data
20: Servo GUN data
21: Palletize register
``` \\
\hline \begin{tabular}{l}
22: Equalizerless GUN data \\
23: DSP analog monitor
\end{tabular} \\
\hline Use [Number]/[Up][Down] and press [SET]. \\
\hline \\
\hline Line Previous Next \\
\hline
\end{tabular}

\section*{Reference}

■ When you select the "Line[PF1]", you can change the number of lines of monitoring function on the display screen.
\begin{tabular}{l}
14:39:38 \(* * *\) Monitoring \(* * * \quad\) A:0 S:4 \\
How many monitoring lines? [7] \\
\\
\hline Enter the number of line and press [SET] \\
\hline\(>[2-7]\) \\
\hline
\end{tabular}

■ Input the number of Line of Monitoring screen display by number key, press [SET]. After you input the number and press the "Complete[PF5]" the display screen returns back the " Monitoring "
■ You can see the following display screen when you select the number of Line " 2 " in Manual Mode.

■ You can see the following display screen when you select the number of Line " 5 " in Manual Mode.

3.1.0 Monitor OFF

Out line

It cancel the function of Monitoring that you already select.

\subsection*{3.1.1 Axis Data}

Out line

It displays present encoder value of each axis, setting encoder value, degrees of angle, coordinates value. When you press the [Shift] \(\downarrow\) key, it displays the hidden item.

Screen display

\subsection*{3.1.2 Private Input}

\section*{Out line}

It displays the status of the fixed input signal. When you input the present fixed input signal, it displays reverse indication. When you press the [Shift] \(\downarrow\) key, it displays the hidden item.

Screen display

\subsection*{3.1.3 Private Output}

Out line

It displays the status of the fixed output signal. When you input the present fixed output signal, it displays reverse indication. When you press the [Shift] key, it displays the hidden item.

Screen display

3.1.4 DIO(\(1-24\))
3.1.14 DIO(241 - 256)

Out line

It displays the status of common Input/Output.

Screen display

The following screen displays when you select "4;DIO(\(1-24\))".

Reference

■ "System" [PF2] \(\rightarrow\) 2 2. Controller parameter \(\rightarrow\) 1. Setting input \& output signal \(\rightarrow\) 7: Input signal assigning, 6: Output signal assigning Allocated signal displays small letter.
※ Not allocated signal : 05 , I14
※ Allocated signal : o5 , i14

\subsection*{3.1.15 Spot welding Input/Output Monitor}

\section*{Out line}

It displays the status of the welding condition signal, GUN signal, MX signal, Welding finish Input signal in spot welding..

Screen display

\subsection*{3.1.16 Break Slip Count}

Out line

You can select/ display the slip count value over the range and initialize it when you use in stud welding(Break ON type). You must select "System[PF2]" -> 5. System format -> 4: Setting usage of the robot, set the menu Stud in GUN1 or GUN2.

Screen display

\subsection*{3.1.16.1 Slip Count display/setting}

Outline

It displays the number of the break slip count in each axis and it is set the slip count by user. You must select " System[PF2] \(\rightarrow\) 5 . System format \(\rightarrow\) 4: Setting usage of the robot, set the menu Stud in GUN1 or GUN2.

Screen display

Operation method

Input the number of slip count by number key and press the [SET]. When the slip count of each axis are input, press the "Complete[PF5]"

\subsection*{3.1.16.2 Slip Count reset}

Out line

It initialize slip count in all axis.

Screen display

The following message displays on the screen.

Operation method

When you select (YES), the slip count of all axis are 0 and initializes. When you select (NO), it cancels.

\subsection*{3.1.17 DIO name display}

Out line

It confirms the Input/Output signal name. Monitoring of DIO name display is "System" [PF2] -> 2. Controller parameter \(->\) 1. Setting input \& output signal \(->9\). Editing DIO names, Write DIO name in DIO name edit.

Screen display

\section*{Operation method}

When you select the page you want, the following screen displays the DIO name monitoring.

3.1.18 Conveyor Data (Included axis data)

Out line

When you use the conveyor, it displays the present encoder value of each axis, setting encoder value, angle, coordinates, conveyor pulse count, conveyor register, conveyor speed. Monitoring of Axis \& Conveyor is "System"[PF2] \(\rightarrow>5\). System format \(->2\). Selecting type of the robot select and effective to use conveyor.

Screen display

3.1.19 Analog Data

\section*{Out line}

It displays the input voltage, output voltage, speed of analog output for analog port.

Screen display

\subsection*{3.1.20 Servo GUN Data}

Out line

When you use the servo GUN, it displays the encoder value, current, welding force data for servo GUN, real inspection welding force in welding operation, distance and wear amount between moving electrical pole and fixed electrical pole. You must register the servo gun for additional axis for Servo gun axis data monitoring.

Screen display

\subsection*{3.1.21 Palletize Register}

Out line

It displays the status of palletizing operation. It displays the status of palletizing, pattern register number, counter, number of workpieces, and size of workpiece. You must register the Palletizing for GUN2 for palletizing data monitor ing. "System" [PF2] -> 5. System format \(\rightarrow\) 4. Setting usage of the robot: GUN2: Palletizing

Screen display

Reference
(1) When you press the [Shift] \(\downarrow\), [Shift] \(\rightarrow\) key, it displays the hidden item.

\subsection*{3.1.22 Equalizeless GUN Data}

Out line

When you use the eqaulizeless GUN, it displays the welding condition no., welding force, 2 -stroke data, in/output of welding- finish and wear amount of fixed electrical pole. and fixed electrical pole. You must register the equalizeless gun for GUN1 or GUN2 for equalizeless gun data monitoring. "System" [PF2] --> 5. System format \(\rightarrow\) 4. Setting usage of the robot : GUN1 or GUN2: Spot and Air-GUN1 or Air-GUN 2 : EQ' less

Screen display

\subsection*{3.2 Register}

Out line

It displays / changes the XYZ shift register, Shift buffer, On line shift register group, Palletize register, Frequency condition register.

Screen display

\subsection*{3.2.1 XYZ Shift Register}

Out line

It is keeping the tool angle of point that is already taught and a parallel movement in XYZ dimension. XYZ register reserves 3 dimension of shift data.

Screen display

Operation method

■ After moving the cursor to changing the position, and press [SET] after inputting the numeric value with a numeric key.

■ If setting is ended, press 'Complete"[PF5] and the data is saved. If press 'Cancel" and it is canceled.

\section*{Reference}
(1) Playback of XYZ shift function

You must set the length in the direction of \(X, Y\), and \(Z\) axis to the GUN -end exact ly because translation is keeping the GUN angle.
(2) Application of XYZ shift function

In case of translating the work parallel from the points \(A, B, C\) and \(D\) to the points a, b, c and d.

\subsection*{3.2.2 Shift buffers}

\section*{Out line}

It is a parallel movement with keeping up the tool angle that already taught.

Screen display

\section*{Reference}
(1) Parallel movement shift

When the point of \(A, B, C, D\) and the points of \(a, b, c, d\) is a parallel movement relationship between its two positions. If playback to a position of \(\mathrm{a}, \mathrm{b}, \mathrm{c}\) and d from the program of \(A, B, C\) and \(D\) with keeping up regularly the tool angle to a extent of different between the point and the point A from the external.

(2) Angle calibration shift

A parallel movement shift is a parallel movement with preserving the tool angle but an angle calibration shift make a shift while calibration correctly the tool angle on the basis of a deviating angle in the robot coordination system from the external. It can be playback regularly what is the tool angle for workpiece "A" is the point "c" as is the tool angle for workpiece "a" to the point "c".

\subsection*{3.2.3 On-line shift register Group}

Out line

On-line shift register group is a register that is set each axis length the palletize turning number, shift data to be received from the external unit. There are total 8 units. It can be set double register.

Screen display
14:39:38 *** Register *** A:0 S:4
1: 0 N -1 ine shift register 1
2: ON-line shift register 2
3: ON-line shift register 3
4: ON-line shift register 4
5: ON-line shift register 5
6: ON-line shift register 6
7: ON-line shift register 7
8: ON-line shift register 8

Operation method

Select register group to set. If register group 1 selected, it displays as follow;

\section*{Screen description}

■ Request port No. : Input the number of serial port to be inputted from vision equipment

■ Input value : If the shift value from vision equipment inputted and changed position data, it changes to "1".

Reference

■ If set the on-line shift register clear as <ENBL>, from "Cond Set[PF5] AppliCnd[PF1] - 7. Shift register clear" the value of on-line shift register shall be cleared to '0'.

\subsection*{3.2.4 Palletizing register}

Outline

It can be set freely the content of a palletizing register.
It can be selected GUN2 from "System"[PF2] -> 5. System format -> 4. Setting usage of the robot.

Screen display

\subsection*{3.2.4.1 Palletizing Register}

Out line

Set manually the shift data for palletizing.

Screen display
\begin{tabular}{|c|c|}
\hline 14:39:38 *** Register *** & A:0 S:4 \\
\hline \# Palletizing register & \\
\hline 1. Palletize shift data & \\
\hline \(\mathrm{X}=[0.0] \quad \mathrm{Y}=[0.0] \quad \mathrm{Z}=[\) & \(0.0] \mathrm{mm}\) \\
\hline \(A X=\left[\begin{array}{ll}\text { 0.00] }\end{array}\right] \mathrm{AY}=\left[\begin{array}{l}\text { 0.00] }\end{array}\right] \mathrm{AZ}=[\) & 0.00]dg \\
\hline 2. Picking up shift data & \\
\hline \(\mathrm{X}=\left[\begin{array}{lll}0.0\end{array}\right] \quad \mathrm{Y}=\left[\begin{array}{ll}0.0\end{array}\right] \quad \mathrm{Z}=[\) & \(0.0] \mathrm{mm}\) \\
\hline Select and Enter number. Press & SET \(]\) \\
\hline \(>\) [-3000.0 - 3000.0] & \\
\hline & Comnlete \\
\hline
\end{tabular}

Screen description

■ Palletize Shift Data : Input shift data for palletizing.

■ Picking up Shift Data : Input shift data when lifting work piece.
※ To save changed data, press 'Complete'[PF5]. If press, [CANCEL], the data shall not be saved

\subsection*{3.2.4.2 Palletizing Preset}

Out line

Preset the start number of the palletizing workpiece in advance.
It is the function to start robotic palletizing, under the state of pallet No. palletizing pattern register No. and start No. are completed set by user.

Screen display

Screen description

■ Palletize Pallet No : The number of pallet which will start work.

■ Palletize Pattern Register No. : Input number of pattern register which will start work.

■ Start Count : When it start work, input the counted number of workpiece among the total number of workpiece on the current pallet.

\subsection*{3.2.4.3 Palletizing Reset}

Out line

Reset the value of the counter, palletizing register forcibly.

Operation method

If select "Palletizing Reset" item, it will be appeared on the screen as followings

- If setting is ended, press [SET] key, it will be appeared on the screen as followings

■ If press [YES] key, it initialize the palletizing information, or press [NO] to cancel the work to do.

\subsection*{3.2.5 Frequency condition register}

Out line

It sets freely the content of frequency condition register.

For example, when use those functions such as Step jump, Step call, Step return, Function assigned step jump, Program call, Program jump, Function jump, Target program call, etc. it compares with the value of frequency condition register to decide whether continue work or not.

Screen display

Operation method

■ After moving the cursor to changing position with direction key and press [SET] key after inputting a numeric value with a numeric key.

■ If press 'End'[PF5] key, changed data shall be stored. If press [CANCEL] key, the inputted data shall be cleared.

\subsection*{3.2.6 Conveyor Data}

Out line

You can set the CR parameter and simulation speed for conveyor simulation and you can check the conveyor data manual reset or quantity of workpiceses inline. You can set the conveyor data when you select "System"[PF2] -> 5. System format \(->2\). Selecting type of the robot and select the Conveyor synchronization \(=<0 N\rangle\).

Screen display

\subsection*{3.2.6.1 Conveyor Simulation Data}

\section*{Out line}

You can set the conveyor register(CR) and conveyor speed(CS) when you play the program in the simulation.

Screen display

Screen Description

■ Register(CR) : Input the number of conveyor register.

■ Speed(CS) : Input the number of conveyor speed.
※ If press 'Complete'[PF5] key, changed data shall be stored. If press [CANCEL] key, the inputted data shall be cleared.
3.2.6.2 Conveyor Data Reset

Out l ine

Initialize the conveyor data register.

Screen display

■ If you select the [YES], then you can initialize the conveyor data, and if you select [NO], then cancel it.
3.2.6.3 Monitoring for workpiece numbers on the conveyor

Out line

When there are many workpieces on the conveyor, you can monitor the number of workpieces.

Screen display
\begin{tabular}{|l|l|}
\hline 14:39:38 & *** Register *** A:0 S:4 \\
Works entered the CV line \(=[3]\) \\
\\
\\
\hline
\end{tabular}

\subsection*{3.3 Variable}

Out line

You can check or modify the present data of main variable and sub variable. Please refer to the "11. Robot Language \(\rightarrow\) 11.1.3. Variable" for more details.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38*** Var. Monitoring *** A:0 S:4} \\
\hline Select variable & type to display. \\
\hline Global & Local \\
\hline Integer V\% & LV\% \\
\hline Real V! & LV! \\
\hline String V\$ & LV\$ \\
\hline Pose P & LP \\
\hline Shift R & LR \\
\hline \multicolumn{2}{|l|}{Select Var Tvpe. Press [SET] or [PF5]} \\
\hline \multicolumn{2}{|l|}{>} \\
\hline & Index \\
\hline
\end{tabular}

Operation Method

■ When you select the variable type by cursor and press the [SET]. The following display content is for selecting the constant variable type.

■ When you input the number of variable by keying the number and press the [SET].

\subsection*{3.4 Edit Program}

Select the "Program modify" and then displays as follows.
\begin{tabular}{l}
14:39:38*** Program modify *** A:0 S:4 \\
\hline 1: Condition modify \\
2: Speed modify \\
3: Step position modify \\
4: Step copy \\
5: Reverse step copy \\
6: Hot edit \\
\\
\hline Use [Number]/[Un][Down] and press [SET]. \\
\hline Previnul Next \\
\hline
\end{tabular}

\subsection*{3.4.1 Modify writing condition totally}

Out line

You modify the condition in record of many steps in one program.

Screen display

Display content

■ Program No: It is used to modify the condition in record in step. First value is present program number. Input the value when you need to modify it.

■ Start Step: It is the first step to modify the condition in record. First value of Start Step is set by 1. Input the value when you need to modify it.

■ End Step: It is the last step to modify the condition in record. First value of End Step is set by last step number of present program. Input the value when you need to modify it.

■ Accuracy, Tool, GUN1, GUN2, MX, MX2: Select the First Step and End Step by your request.

\subsection*{3.4.2 Modify speed in record totally}

Out line

You modify the speed in record of many steps in one program.

Screen display
\begin{tabular}{l}
14:39:38** Speed Modification **A:0 S:4 \\
Prog No. : [99] \\
Step :[1] To [9] \\
Mode :<Assign, Scale, Alter Unit> \\
Range:<All, Welding, Air-Cut, PTP, INT-On> \\
Unit :<mm/sec, cm/min, sec, \%> \\
Spd/Rat io \(=[100.00]\) \\
Select and Enter number. Press [SET] \\
\hline\([1-999]\) \\
\hline
\end{tabular}

Display content

■ Program No.: It is used to modify the speed in record. First value is present selected program number. Input the value when you need to modify it.

■ Step: It is the step range to modify speed in record. Range value of Step is First Step to Last Step. Input the value when you need to modify it.

■ Mode: Determine the mode of speed select
(1) Assign: Modify the speed in record totally.
(2) Scale: Modify the \% value of speed in present step when the speed and the unit are same totally.
(3) Alter Unit: Modify the unit of speed in record totally.

■ Range: Determine the range for modifying step

■ Unit: Modify the unit of speed in Speed Select and Unit Conversion. Modify the \% value in Magnification Select.

Spd/Ratio: Modify the speed in Speed Select, and \% value in Magnification Select.

\subsection*{3.4.3 Modify position in record totally}

Out line

You modify the position in record of many steps in one program.

Screen display
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{14:39:38 ** Position modifv ** A:0 S:4} \\
\hline Program: [99] & \multicolumn{2}{|l|}{Step:[1] ~ [9]} \\
\hline \multicolumn{3}{|l|}{Coord.fmt.: <Cartesian,Axis>} \\
\hline \multicolumn{3}{|l|}{(Hidden pose of the step is shifted.)} \\
\hline \(\mathrm{X}=\left[\begin{array}{l}\text { [}\end{array}\right.\) & T1=[&]deg \\
\hline \(\mathrm{Y}=\left[\begin{array}{l}\text { [}\end{array}\right.\) & T1 \(=\) [&]deg \\
\hline \(\mathrm{Z}=\left[\begin{array}{l}\text { [}\end{array}\right.\) & T1 \(=\) [&]deg \\
\hline \(\mathrm{RX}=[\quad 0] \mathrm{deg}\) & T1=[&]deg \\
\hline \(\mathrm{RY}=[0] \mathrm{deg}\) & T1=[&]deg \\
\hline \(\mathrm{RZ}=[\quad 0] \mathrm{deg}\) & T1=[&]deg \\
\hline \multicolumn{3}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{3}{|l|}{>[1-999]} \\
\hline & & \\
\hline
\end{tabular}

Display content

■ Program: It is used to modify the position in record. First value is present selected program number. Input the value when you need to modify it.
- Step: It is the step range to modify position in record. Range value of Step is First Step to Last Step. Input the value when you need to modify it.

■ Coord. fmt. : Select the Cartesian type or Angular type to modify the position data recorded in step.
(1) Cartesian: Modify the position data in record according to the Cartesian type. Input the value in \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}, \mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\).
(2) Axis : Modify the position data in record according to the angular type. Input the value in \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \mathrm{RX}, \mathrm{RY}, \mathrm{RZ}, \mathrm{T} 1, \mathrm{~T} 2, \mathrm{~T} 3, \mathrm{~T} 4, \mathrm{~T} 5, \mathrm{~T} 6\). When you select the Angular type, Display contents as follows.
\begin{tabular}{l}
14:39:38** Position modify ** A:0 S:4 \\
\hline
\end{tabular}

\subsection*{3.4.4 Step Copy}

Out line

You can copy the part of program or same program in the other program. This function make you can copy the function in the recorded step, The step numbers that selected by Jump or Call command are also changed automatically.

Example

This chart shows you can copy Step1 to Step 5 of the Program No. 1 in the Step 2 of the Program No. 2.

Screen display

\section*{Reference}
(1) The end step No. of the program to copy is bigger than the start step No.
(2) Input step No. of the program to be copied is the former step No.
(3) When you copy the steps included the End point, the End function is also copied, On your request, you need to delete the end step.
(4) You cannot copy the programs of Memory-protect or Program-protect.
(5) When the Step-Jump, Call function are exist out of the range of the program to be copied, The Step No. are not changed. You must change the step No. after Copy-finish.

\subsection*{3.4.5 Step Reverse-Copy}

Out line

You can copy the part of program or same program in the other program reversibly. This function make you can reverse-copy the function in the recorded step. The step numbers that selected by Jump or Call command are also changed automatically.

Example

This chart shows you can reverse-copy Step1 to Step 5 of the Program No. 1 in the Step 2 of the Program No. 2.
\begin{tabular}{|c|c|c|}
\hline \multirow[b]{2}{*}{before copy} & & start step end step \\
\hline & \begin{tabular}{l}
Source program (program 1) \\
Destination program (program 2)
\end{tabular} & \\
\hline after copy & Program 2 & \\
\hline
\end{tabular}

Screen display

\section*{Reference}
(1) The end step No. of the program to copy is bigger than the start step No.
(2) Input step No. of the program to be copied is the former step No.
(3) When you copy the steps included the End point, the End function is also copied, On your request, you need to delete the end step.
(4) You cannot copy the programs of Memory-protect or Program-protect.
(5) When the Step-Jump , Call function are exist out of the range of the program to be copied, The Step No. are not changed. You must change the step No. after Copy-finish.

\subsection*{3.4.6 Edit program in running (Hot Edit)}

Out line

You can edit the program in the running mode like manual mode.
- This function operates when the Robot is operating.

■ When you use this function if it is not the running mode, the following message is occurred.

Reference

You can modify the program in running mode and you can operate the robot by the request to accept modify the program, The robot moves as the modified program directly. You must carefully the keep the attention not to break the jig by wrong modifying program.

\subsection*{3.4.3.1 In process}

Out line

You can proceed in to the Hot Edit mode by 2 methods as follows. You can edit the program in running program.

■ "Service"[PF1] -> 4. Program modify \(\rightarrow\) 6. Hot edit
- Push the
 key in robot running

Screen display

\subsection*{3.4.3.2 Edit type}

Out line

It is same as the manual mode, but the following functions are not used. When you push the key, it does not' t operate.

■ Jog key
■ [Record] key (Record of Hidden Pose MOVE)
■ [Pose Mod] key
■ [Delete] key in the program header

\subsection*{3.4.3.3 Accept}

Out line

For the safety in Hot Edit, Permit the edit of the COPY PROGRAM instead of ORIGINAL PROGRAM.

- ORIGINAL PROGRAM is copied to the TEMP1 file and be modified by user. When user push the " OK" [PF5] key , TEMP1 is copied to TEMP2 and displays the request of Accept. Accept of ORIGINAL PROGRAM is proceeded by exchanging files between TEMP2 and ORIGINAL PROGRAM.

■ Accept are occurred to the following chart.
\begin{tabular}{|c|l|l|}
\hline & \multicolumn{1}{|c|}{ Description } & \multicolumn{1}{c|}{ Accept time } \\
\hline \multirow{2}{*}{\begin{tabular}{c}
Job \\
process \\
ing
\end{tabular}} & \begin{tabular}{l}
Practice the job \\
Job requested by CALL
\end{tabular} & \begin{tabular}{l}
The other Job \\
(Accept the all files)
\end{tabular} \\
\cline { 2 - 3 } & The & On the request \\
\hline
\end{tabular}

■ Hot Edit cannot operates except running mode, But when the Stop function occurs by the user's request or other interrupt, it is possible to Request of Accept. But it is impossible to proceed Accept unless it starts by Re-cycle request.
- When user push the [CMD] or [SET], [Delete] key in manual mode, the message occurs as follows. Do you want to proceed the Hot Edit at first? [Y/N]

■ When you select the (YES), It is accepted. When you select the (NO), cancel the accept request and delete the TEMP2 file. If you select the Accept, it doesn't means new start of re-cycle. the present Job and content of job in stack are totally changed When you call the program, the problem can be occurred. The Call stack is cleared and the following message occurs.

■ When you operate the PLAY in the condition of Call Stack cleared, it can be abnormal operation of CALL function.

\subsection*{3.4.3.4 Confirm, Accept, Cancel}

Out line

There are 3 types of Confirm, Accept, Cancel in PF menu in Hot Edit.

Function

■ When you push the "OK" [PF5], the message occurs "Do you want to Save?" When you push (YES), Contents of Hot Edit is accepted Original file and Hot Edit is finished.

■ When you push the "Apply"[PF4], the message occurs "Do you want to Save?" When you push (YES), Contents of Hot Edit is accepted Original file.

■ When you push the "Escape"[PF3], the message occurs "Do you want to Cancel?" When you push (YES), Hot Edit is finished.

\subsection*{3.4.3.5 Program Counter Information}

Out line

No. 2 frame(3rd paragraph) of Teaching Pendant Display are displayed as follows.

■ HotE : position of cursor to use edit in the Hot Edit mode. (program no., step no., function no.)

■ PB : program counter in playback mode
(program no., step no., function no.)

■ ' * ' Modify or Not-Modify status from Original file

■ 『' : Request or Not-Request from Original file
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & *** & Hotedit & *** & A: \\
\hline \multicolumn{2}{|l|}{\multirow[b]{2}{*}{HotE:022/3/1}} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\hline \text { SR:100\% Cont } \\
*>P B: 022 / 4 / 0
\end{gathered}
\]}} \\
\hline & & & & \\
\hline S1 MOY & P, \(\mathrm{S}=\) & , \(\mathrm{A}=1, \mathrm{~T}\) & & \\
\hline
\end{tabular}

\subsection*{3.4.3.6 Select other program}

Out line

When you push the [Program] key, you can select the other program.

■ When the program selected is not exist or the axis selected is different, the error message is occurs and the operation is stopped. When the program selected is exist and the program is modified, the message " Do you want to Save?" When you push (YES), the program is saved and call the selected-program and display it. When you push (NO), the program is not saved and call the selected-program and display it.

■ You can not select the no-existing program, and the following message of No Program is displayed in No. 2 Frame.
\begin{tabular}{|lr|}
\hline \(14: 39: 38 \quad * * *\) Hot eidt & \(* * * \quad\) A:0 S:4 \\
\hline HotE:011[] & \(*>\mathrm{PB}: 022 / 4 / 0\) \\
\hline
\end{tabular}

\subsection*{3.5 File Management}

When you select File management, the following display occurs.

\subsection*{3.5.1 Internal memory file name}

Out line

It displays file name, file content, no. of step in the internal memory.

Operation method

When you select the file name, the following message occurs.

■ When you select (YES) key, you can see the information of all files. And when you select (No), you can see the program file only. The following display are occurs when you select the (Yes).

\section*{Display content}

■ File name: Program file, Integer file, History of event Program name is consisted of robot type and program no.

■ File content: When the remark of step 0 is exist, the contents of remark is displayed. When there is not the content of remark, it is displayed '???'

■ No. of step: The number of total steps in program file.

\subsection*{3.5.2 Program first data}

Out line

It displays the remark of step 0 ., And when there is not remark data in step 0 , it displays the remark content of step 1.

Screen display

\subsection*{3.5.3 Internal program axis no.}

Out line

It displays the integer, history in internal memory and robot name, no. of axis, total steps, file content in Program file

Screen display

■ When you "1. Internal memory", the following display occurs.

\subsection*{3.5.4 Rename}

Out line

You can use this function to change the file number. Rename can be changed all the internal memory and file of SRAM card and all information (date, type...) are exist. You can change the Rename about the protected files.

Screen display

■ When you "1. Internal memory", the following display occurs.
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & \multicolumn{3}{|l|}{*** Rename(RAM) ***} & A:0 S:4 \\
\hline H120 & 991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & :34 \\
\hline H120 & . 994 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 995 & 31 & 2001-07-09 & 13:34 \\
\hline R0BOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[1/ 21} \\
\hline \multicolumn{5}{|l|}{\(>\)} \\
\hline Select & Cancel & Pre & ious Next & Execute \\
\hline
\end{tabular}

Operation Method

■ Select the file, Push "Execute"[PF5]. Refer to select the file as follows. For example, Select "991" program and Push the "Execute"[PF5] is as follows.

■ Input new no. and Press [SET]

File Select Method
1) Individual select

Select the file individually. When you move the file by cursor and press [SET] key, the file is selected or canceled reversibly.
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & & Rename(RA & (RAN) ** & A:0 S: \\
\hline H120 & . 991 & 31 2001 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 2001 & 2001-07-09 & 13: \\
\hline H120 & . 993 & 31 2001 & 2001-07-09 & 13:34 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[1/2]} \\
\hline \multicolumn{5}{|l|}{\(\geq\)} \\
\hline Selent & Canc & Previnuld & nuld Next & Fxerute \\
\hline
\end{tabular}

And Next Display, when you press [SET] key, '*' of "H120.991" selected file appears.

2) Group Select

Select the file by group. When you press "Select"[PF1] or "Cancel"[PF2\} key, it is displayed the "Kinds of Group select". When you press "Select"[PF1], you select "Group select". When you press "Cancel"[PF2], you select "Select Cancel". The following displays Group Select.

\title{
Use PF Kev and select \\ All fileAll ProgAll_LogSeparateComplete \\ ■ When you select " All file"[PF1], you can select all files.
}

\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & & Re & (RAM) *** & \(\mathrm{A}: 0 \mathrm{~S}: 4\) \\
\hline H120 & *991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & *992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & *993 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & *994 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & *995 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & .C00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[\(1 / 21\)} \\
\hline \multicolumn{5}{|l|}{>} \\
\hline Select & Cance & 1 Pra & inud \(\mathrm{Nex} \dagger\) & Fxerute \\
\hline
\end{tabular}

When you select " All log"[PF3], you can select all history files..
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & & Re & e(RAM) *** & S:4 \\
\hline H120 & . 991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 994 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 995 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & *E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & *IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & *S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & *TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[1/21} \\
\hline \multicolumn{5}{|l|}{\(\geq\) l} \\
\hline \multicolumn{5}{|l|}{Selert Cancel Previnud Next Exerute} \\
\hline
\end{tabular}

■ When you select " Separate"[PF4], you can select '1) select' select.
3) Direct input

You input the direct program No. and select it. If you know the program no. to be selected, you press [Shift] [Program/Step] key and input the program no.. Then press [SET] key, you can select or cancel the program file.

\subsection*{3.5.5 Copy}

Outline

File can be copied from storage device to the others or to itself. File that has been copied does not have attribute. Time of file being copied is current time (Date can not be copied) Copy can be possible for the file of internal memory and SRAM card.

Screen display
\begin{tabular}{l}
14:39:38 *** Copv *** A:0 S:4 \\
\hline 1: Internal memory \\
8: SRAM card \\
\\
\\
\\
\hline
\end{tabular}

Operation method

■ 1: The following is displayed as selecting internal memory.

■ Select file and press" Execute" [PF5]. Refer to the above method to select file. Example is when selecting program "991"and pressing "Execute"[PF5].
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38} & *** Co & (RAM) *** & A:0 S:4 \\
\hline H120 & *991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{Where? (1: Internal Memory / 8:SRAM Card} \\
\hline \multicolumn{5}{|l|}{>} \\
\hline Selert & Can & ncel & revinus Ne & xt Exclit \\
\hline
\end{tabular}

■ Select either internal memory or SRAM card, Press [SET]key. The following is displayed as selecting internal memory

■ Enter new number and press [SET] to execute copy.

\subsection*{3.5.6 Delete}

Out line

Function to delete selected file. File delete can be carried out for the all files of internal memory and SRAM card. However files of full or partial protection can not be deleted.

Screen display

■ Select internal memory or SRAM card and Press [SET] key. The following is displayed as selecting internal memory.
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & \multicolumn{3}{|l|}{*** Delete(RAM) ***} & A:0 S:4 \\
\hline H120 & . 991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & . CO 0 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[1/2]} \\
\hline & & & & \\
\hline \multicolumn{5}{|l|}{Select Cancel Previnuc Next} \\
\hline
\end{tabular}

■ Select file and press" Execute" [PF5]. Refer to the above method to select file. Example is when selecting program "991"and pressing "Execute"[PF5].
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{14:39:38 *** Delete(RAM) *** A:0 S:4} \\
\hline H120 & *991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:3 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:3 \\
\hline ROBOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & . E 01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{H120 . 991 : Delete? [Yes(All=1)/No]} \\
\hline \multicolumn{5}{|l|}{\(\gg\)} \\
\hline Selert & Can & 1 P & evinuc \({ }^{\text {Next }}\) & \\
\hline
\end{tabular}

■ The selected file is deleted as pressing (YES) key or cancelled by pressing (NO)key.

■ Press [1] key to delete all selected file, the following is displayed as pressing number [1] key.
\begin{tabular}{l}
\hline Delete all the selected files? [YES/NO] \\
\hline Select Cancel Previous Next \\
\hline
\end{tabular}

■ All selected file is deleted as pressing (YES) key or cancelled as pressing (NO) key.

\subsection*{3.5.7 Protect}

Out line

Important program can be protected from modification or deletion. Files can be protected from any modification or deletion in full protection setting, only position can be editable in partial protection. playback staring from 0 step or step forward action is protected in playback protection.

Notation
\begin{tabular}{|lc|ll|}
\hline- & \(:\) No protection & \(W_{-}\) & \(:\)Full protect \\
\hline WP & \begin{tabular}{l}
\(:\) \\
Full protect \\
Playback
\end{tabular} & \(S_{-}\) & : Partial protect \\
\hline SP & \begin{tabular}{l}
: Partial protect + \\
Playback
\end{tabular} & P & : Playback protect \\
\hline
\end{tabular}

Screen display

\section*{Operation Method}

■ Select either internal memory or SRAM Card and Press [SET] key. The following is the window as selecting internal memory.
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{14:39:38 *** Protect (RAM) *** A:0 S:} \\
\hline H120 & . 991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & . CO 0 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & . E 01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S 01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15file. 31351 Block free. Page[1/2]} \\
\hline \multicolumn{5}{|l|}{\multirow[t]{2}{*}{}} \\
\hline Selert & & & & \\
\hline
\end{tabular}

■ Select file and press "Execute"[PF5]. Refer to the above method to select file. The following example is when selecting program 991 and pressing "Execute"[PF5].
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{14:39:38 *** Protect (RAM) *** A:0 S:4} \\
\hline H120 & *991 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & 31 & 2001-07-09 & 13:34 \\
\hline ROBOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{Protect or Release? (1:Protect/Release)} \\
\hline \multicolumn{5}{|l|}{>} \\
\hline Selert & Canc & 1 - & evinuc \({ }_{\text {Next }}\) & \\
\hline
\end{tabular}

■ Select either protect or release and press [SET] key. The following message is displayed as selecting protect. Protect is protecting file and Release is releasing the protected file.

■ Select desired type of protection. The following message is displayed as selecting full protection.
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & *** & Pro & t(RAN) *** & A:0 \\
\hline H120 & . 991 & 31 & 2001-07-09 & \(3: 34 \mathrm{~W}=\) \\
\hline H120 & . 992 & 31 & 2001-07-09 & 13:34 \\
\hline H120 & . 993 & & 2001-07-09 & 13:34 \\
\hline ROBOT & . C 00 & 78 & 2001-06-30 & 11:12 \\
\hline ROBOT & . C 01 & 67 & 2001-06-30 & 11:12 \\
\hline ROBOT & .E01 & 93 & 2001-06-30 & 11:12 \\
\hline ROBOT & . IM0 & 10 & 2001-06-30 & 11:12 \\
\hline ROBOT & . S01 & 561 & 2001-06-30 & 11:12 \\
\hline ROBOT & .TR0 & 101 & 2001-06-30 & 11:12 \\
\hline \multicolumn{5}{|l|}{15 file. 31351 Block free. Page[\(1 / 2\)} \\
\hline \multicolumn{5}{|l|}{} \\
\hline Selert & Canc & 1 P & nevinus Nex & \\
\hline
\end{tabular}

\section*{Reference}
(1) Constant file is in full protection mode even though partial protection is set.
(2) File that is not program file can not set for playback protect.
(3) Partial protection is identical to full protection when file is not the program file.
(4) Each history files is upgraded even though full protection is set
(5) Program can be executed from step 1 because playback protect checks step 0.
(6) Full protect(W) and Partial Protect(S) can not be assigned together. Playback protect(P) can be assigned with either full protect(W) or partial protect(S) together.

\subsection*{3.5.8 Storage Media Format}

Outline

All the data in external storage device (SRAM Card Etc) can be deleted and DOS file system is activated.

Screen display

Operation method

The following is displayed as selecting 8: SRAM Card and Pressing [SET] key.

■ Format is executed as selecting storage capacity of SRAM card in the current board and pressing "Execute" [PF5]

\subsection*{3.5.9 Save/Load (SRAM Card)}

Out line

System files and program files in memory of controller can be all saved or loaded to
SRAM card

Screen display

Operation method
1) All file Save (Memory -> SRAM)

■ The following is displayed as selecting 1: Save all files to the SRAM card.

■ The following is displayed by pressing "Create[PF1]" in teaching pendant

■ Enter the name of directory with arrow keys and press : "Complete" [PF5]. Cursor moves 5 section as pressing [Shift]key with arrow key.
2) All file Load (SRAM \(\rightarrow\) Memory)

■ The following is displayed as selecting 2: Load all files form the SRAM card.

- The following is displayed by pressing any key in teaching pendant

■ Enter the name of directory with arrow keys and press : "Select" [PF5].
Cursor moves 5 section as pressing [Shift] key with arrow key.

Reference
(1) File can not be loaded or saved individually from the directory created from All Save/Load (SRAM card)
(2) Overwrite is not possible for the existing directory.
(3) Notebook or PC card reader/writer device is needed in order to delete or rename directory created within SRAM card

\subsection*{3.6 Program Conversion}

\section*{Out line}

Program transformation is creating new program out of current existing program.

Screen display
\begin{tabular}{l}
14:39:38 *** Conversion *** A:0 S:4 \\
\hline 1: Coordinate transfer \\
2: Mirror Image \\
3: Off-Line XYZ shift \\
\\
\\
\\
\hline
\end{tabular}

\subsection*{3.6.1 Coordinate transformation}

Out line

After teaching the program, in case of moving a target a workpiece in case of having many same workpiece, it is possible to use new workpiece to convert original program.

Example

< Figure \(1>\)

< Figure \(2>\)

After teaching the program<Program 1> in the position of figure 1, it makes the program without teaching the entire steps in order to work the same workpiece of the position of figure 2 .

It is possible to convert another program after setting the reference step to teach the step 1 to 3 of the converting program and (Program B) and the step 1 to 3 of original program (Program A)

Program A

Program 1
Object program

Conversion

It calculates the transfer data from the 3 reference step of Program A and B..

Screen display

Contents of window

■ Source 3 points program : Program number where the program has 3 steps that are reference steps and needed for coordinate conversion. (Example <Program A>)

■ Dest in 3 points program : Program number where the program has 3 steps that are needed to define destination coordinate. (Example <Program B>)

■ Source program : Enter the number of program where the actual teaching job is recorded (Example <Program 1>)

■ Dest inat ion program : Enter the program number which converts program having teaching point. (Example <Program 2>)

\section*{Reference}
(1) The accurate teaching to the 3 reference point has great effect on the accuracy of the coordination transfer.
(2) Please do not move on a large degree the posture of the wrist axis when you teach the 3 reference point.
(3) The distance between the 3 reference point shall have a great distance way as far as possible.

\subsection*{3.6.2 Mirror Image}

Out line

It makes the program with the position data that is the symmetry toward to the plane passing through the line straight line being made by the \(S\) axis reference position of the robot when a certain robot program is given. It makes a new program that is symmetry to the position of wrist axis and the position of S-axis on the center of Y-Z plane to the position of \(0^{\circ}\) axis of the robot.

Example

This function makes the best use in the work, request to the same movement for the two robots in the right and left side. At this time, at first it teaches the work for the one robot not the right side or left side, if it executes to transfer the program by the mirror image.

[Original Program \(\rightarrow\) Mirror Image Transferred Program]

Screen display

\section*{Contents of window}

■ Source Program : Enter the program number which has teaching points.

■ Destination Program : Enter the program number which convert the taught program as mirror image program

■ Additional Axes : Additional axes applicable to mirror image can be valid

\section*{Reference}
(1) Displays overrange in soft limit that is checked in each step during conversion and displayed step number in over range step section.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38 *** Mirror Image *** A:0 S:4} \\
\hline \multicolumn{2}{|l|}{Source Program = [999]} \\
\hline \multicolumn{2}{|l|}{Destination Program = [999]} \\
\hline \multicolumn{2}{|l|}{Additional axes} \\
\hline \multicolumn{2}{|l|}{7Axis = <DSBL, ENBL>} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
======== Limit over(step\#) ========== \\
4, 7, 11, 16, 23, End
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(In case of language-type program, only HIDDEN-POSE steps will be converted.)}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Enter number and press [SET]} \\
\hline \multicolumn{2}{|l|}{\(\geq[1-999]\)} \\
\hline & Fiverute \\
\hline
\end{tabular}

At this time, "End" means that the step being out of the range of the soft limit isn't in the existence and larger \(\Rightarrow\) means that a greater number of step being out of the range of the soft limit is in the existence
(2) After conversion, in case of having step out of soft limit, you must check which axis is out of soft limit.
(3) The same type of robot must be used on right and left side for mirror image
(4) The reference position of the encoder and 0 degree position of each axis set equally to the robot of the right side and left side.
(5) Attach so that the same Gun with Hand or Gun with Hand being symmetry it may be symmetry to the right and left side or Gun with Hand being symmetry of the right and left side uses in each robot
(6) The cable of Gun or Hand attach soft limit may be symmetry to the right and left side.

\subsection*{3.6.3 Off-Line XYZ Shift}

Out line

It shifts the step of the teaching completed within program and to make other program

\section*{Example}

[Parallel transfer of the workpiece]

■ In case of moving the workpiece from the position A to the position B, Set the moving distance and execute " Off-Line XYZ shift", then program is transferred to program B

[Case where there are many workpiece with the same spec]

■ In case that there are several workpieces with the same spec, after teaching for the workpiece 1 , for the workpiece \(2 \sim 5\), execute \(0 f f-l i n e\) shift to the taught program.

Screen display
\begin{tabular}{|c|}
\hline 14:39:38 * Off-Line XYZ Shift * A:0 S:4 \\
\hline Source Destination \\
\hline Program = [999] Program = [999] \\
\hline Start step \(=[1] \quad\) End step \(=\) [10] \\
\hline Shift X=[0.0] Y=[0.0\(] \mathrm{Z}=\left[\begin{array}{ll}0.0\end{array}\right]\) \\
\hline Coordinate \(=<\) ROBOT, , TOOL \(>\) \\
\hline User coordinate NO. = [0] \\
\hline (In case of language-type program, only HIDDEN-POSE steps will be converted.) \\
\hline Enter number and press [SET] \\
\hline >[1-999] \\
\hline \\
\hline
\end{tabular}

Contents of window

■ Source program : Enter the program number which has taught steps.

■ Destination program : Enter the program number which converts taught program through Off-Line XYZ Shift.

■ Start step : Enter the first step to start shift.

■ End step : Enter the last step to end shift.

■ Shift : Enter values of X, Y, Z direction.

■ Coordinate : Select either robot coordinate or tool coordinate as shift reference

■ User coordinate No. : Enter the User coordinate number if assigned.

\subsection*{3.7 System Checking}

Following is displayed in system checking menu.
\begin{tabular}{l}
14:39:38 *** System checking *** A:0 S:4 \\
\hline 1: System version \\
2: Running time \\
3: Diagnosis of troubles \\
4: Error logging \\
5: Stop logging \\
6: History of operation \\
\\
\hline
\end{tabular}

\subsection*{3.7.1 System version}

Out line

Displays software version of controller

Screen display

\subsection*{3.7.2 Run time}

Outline

It displays operating time of robot.

Screen display

3.7.2.1 Run time display

Screen display

Contents of window
(1) Run time : It displays the time till turning off after the start lamp turns on.
(It resets automatically after 24 hours in turning it ON.)
(2) Cycle time : Number of the cycle played during the operation time. it is counted at the step 1. And through the robot is stopped during operation, counting is continued. (It is reset as exceeding 255 times)
(3) GUN ON Time : Gun signal output time per one cycle during operation. (After the lamp is on, it is reset after 24 hours)
(4) GUN ON count: Gun On signal output per 1 cycle in the operation. (After the lamp on, it is reset as exceeding 65535 times.)

\subsection*{3.7.2.2 Total Run time}

Out line

Total amount of the operat ion time after power on. Total cycle time, total GUN ON time, and total Gun On count are as above, too.

Screen display

\subsection*{3.7.2.3 Operation time reset}

Out line
(1) Clear all data All data is cleared
(2) Clear run time Total work time is cleared.
(3) Clear cycle count Total cycle time is cleared
(4) Clear gun data Total GUN ON time and count are cleared.

Operation method

The following is displayed as selecting 3: Clear all data, 4: Clear run time, 5: Clear
cycle count, 6: Clear gun data, 7: Clear I wait data, 8: Clear Timer wait data.

■ Data is cleared as selecting (YES) and following is displayed.

\subsection*{3.7.3 Diagnosis of troubles}

Out line

Displays the error diagnosis method of the robot.
When error occurs in the robot, it helps to main

Screen display

Operation method

■ In the diagnosis of the displayed error, select "YES"[PF1] key or "NO"[PF2]key for the question to the check point.

■ When you diagnosis the error with the exception of the displayed one, specify the error number and press [SET] key, and then "Execute" [PF5]key.

■ Or when your diagnose a trouble, select the item of the extraordinary using \(\uparrow\), \(\downarrow\) key and press [SET] key, then following is displayed.
\begin{tabular}{|c|c|c|}
\hline 14:39:38 & *** Phenomenon *** & A:0 S:4 \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
Phen1:Some axes do not move \\
Phen2: Malfunction of teaching pendant \\
Phen3:PLYBCK Pts mismatch recorded Pts \\
Phen4:Variation of playback point
\end{tabular}} \\
\hline \multicolumn{3}{|l|}{Use โUP][Downlkev and press [PF5]} \\
\hline & & \\
\hline
\end{tabular}

■ Use the arrow \(\uparrow, \downarrow\) key to highlight the item about the state of the robot and press
" Check!" [PF5] key. Then answer to the displayed check point item by "Yes"[PF1] key
or "No" [PF2] key.

■ When you press " Yes" [PF1] or " No" [PF2]key by mistake, press " Return" [PF3]key to return to the previous item.

\subsection*{3.7.4 Error logging}

Out line

It displays the occurred error until now. It makes the restoration work, the occurring cause of error judge correctly by referring to the history of error until now.

Screen display

Operation Method

■ Following is displayed as selecting 1: W0005 25 10:27.

■ When you select either of followings, General Input/Output, Axis data, Fixed Input/Output, state condition of each signals or data at the error occurrence.

Reference

■ Following is displayed in guide frame as selecting" Refresh?" [PF1]key.
\begin{tabular}{|ll|l|}
\hline Refresh the recorded data? & [VES/NO] \\
\hline\(>\) & \\
\hline Refresh? & Previous & \\
\hline
\end{tabular}

■ If (Yes)Key is selected, error history up to current list is all cleared If (No)Key is selected, it is cancelled.

\subsection*{3.7.5 Stop History}

Outline

It displays the stop history of the robot until now. It helps to maintain the robot recording the status of input, output, axis data, step number, program no of input content, stop time, a point of stop time in case of inputting the operating motor-off or stop command while operating

Screen display

Operation method

■ Following is displayed as selecting 1: F-01 25 10:36.

■ When you select either of followings, General Input/Output, Axis data, Fixed

Input/Output, state condition of each signals or data at the stop occurrence.

Reference

■ Following is displayed in guide frame as selecting" Refresh?" [PF1] key.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Refresh the recorded data? [YES/NO]} \\
\hline > & & \\
\hline Refresh? & Previous & \\
\hline
\end{tabular}

■ If (Yes) Key is selected, error history up to current list is all cleared If (No)Key is selected, it is cancelled.

\subsection*{3.7.6 Operation History}

Out line

It displays an operation history until now. Stop command during operation or input in case of operation ready off, time of stop, program number, step number, axis data and input/output state at the stop are recorded to help maintenance of robot.

Screen display

Contents of window
(1) The names of keys operated on the teaching pendant
(2) The keys on OP Panel) is as follow
- Emergency stop
- Motor-ON/Off
- Start
- Stop
(3) Auto/Manual Switch
(4) Safety plug

Reference

■ Following is displayed in guide frame as selecting" Refresh" [PF1] key.
\begin{tabular}{|lll|}
\hline Refresh the recorded data? & [YES/NO] \\
\hline\(>\) & \\
\hline Refresh? \(\quad\) Previous & \\
\hline
\end{tabular}

■ If (Yes) Key is selected, error history up to current list is all cleared. If (No) Key is selected, it is cancelled.

\subsection*{3.8 Date setting (Date, Time)}

Out line

Date setting (Date, Time) can change date/time of controller.
\begin{tabular}{l}
14:39:38 *** Date/Time set *** A:0 S:4 \\
Date \(=2001-07-25\) \\
Time \(=10: 30: 02\) \\
\\
\\
\hline Select and Enter number. Press [SET] \\
\hline\([1980-2079]\) \\
\hline
\end{tabular}

Operation method

■ Use arrow key to move the cursor on items, and enter the value and press [SET] key to insert input value.

■ Modified data is stored as pressing "Complete"[PF5] key, Cancels as pressing [ESC] Key.

\section*{Chap 4 Condition Setting}

\section*{Contents}
4.1 Cycle type 4-3
4.2 Step go/back max. speed 4-3
4.3 Function in step go/back 4-4
4.4 Speed rate 4-4
4.5 Robot lock 4-5
4.6 Record speed type 4-5
4.7 Interpolation base 4-6
4.8 User coordinate 4-6

\section*{Chapter 4 Condition Setting}

Press "Cond Set"[PF5] key in either playback mode or manual mode.

Screen display

\section*{Modification method}

Locate highlight bar on the item. Enter the values in input frame when value is needed to be entered. After entering numeric data keys, press [SET] for completion.

In case of selecting one of items in \(<>\), press [SHIFT]+[\(\rightarrow\)] [\(\leftarrow\)] to move highlight bar and for execution.

\section*{Reference}
1) Condition setting is stored in (ROBOT.COO).
2) (ROBOT.COO) file can be modified even though it is in full protection.

\subsection*{4.1 Cycle type}

\section*{Out line}

Decide method of playback for the program.
(1) 1Step : 1step is executed while pressing start button. (Execution of step is completed and robot stops as releasing the start button.)
(2) 1Cycle : Program is executed in one cycle and stop after pressing start button(Robot stops when program reaches to the End command.)
(3) Continue : Program is continuously executed. (Robot stop if external stop is activated)

Reference

Following is displayed in accordance with setting for operation cycle.

\subsection*{4.2 Step go/back max. speed}

Out line

In manual mode, regardless of speed set in the program, speed of robot is operated between \(1 \sim 250 \mathrm{~mm} / \mathrm{s}\) at step go/back.

\subsection*{4.3 Function in step go/back}

\section*{Out line}

Decide activation of function at step go/back in manual mode.
(1) Off : Ignores other function except END function
(2) On : Execute all functions stored in step
(3) I On : Execute Input delay function and END function only.

Reference
(1) At Step Back, Wait (I On) is only executed.

\subsection*{4.4 Speed rate}

Out line

During the playback, speed recorded in step can be varied in setting rate within [1~100]\% of robot movement speed
- Gun Step
(1) Disable : Speed variation can not be applied for the step of GUN 1 or GUN2.
(2) Enable : Speed variation can be applied for the step of GUN 1 or GUN2.

\subsection*{4.5 Robot lock}

Out line

Program is only executed without robot movement. By doing this peripherals and states of \(\operatorname{In} /\) output and software limit can be checked
" R123 in R code is the same function of Robot Lock.
(1) Disable : Robot Lock function is disabled.
(2) Enable : Robot Lock function is enabled.

Reference

Robot Lock is set as <Enable>, the following is displayed in Manual or Auto mode.

\subsection*{4.6 Record speed type}

Out line

Unit of speed for the step to be recorded is set according to Interpolation condition. R71 in R code "record speed setting method selection" is identical to the Record function.
\begin{tabular}{|c|c|}
\hline (1) Standard & \begin{tabular}{lc}
Interpolation OFF & : Percentage setting[\%] \\
Linear Interpolation & \(:\) Speed setting \([\mathrm{mm} / \mathrm{sec}]\) \\
Circular Interpolation & \(:\) Speed setting \([\mathrm{mm} / \mathrm{sec}]\)
\end{tabular} \\
\hline (2) \([\%]\) & Interpolation ON/OFF : Percentage setting[\%] \\
\hline (3) \([\mathrm{mm} / \mathrm{s}]\) & Interpolation ON/OFF : Speed[mm/sec] \\
\hline
\end{tabular}

\subsection*{4.7 Interpolation base}

\author{
Out line
}

Recording step, Interpolation reference change Interpolation selected automatically. General interpolation method is robot base interpolation so that default value of controller is calculated with respect to robot base.

In order to record interpolation step of fixture, fixture is set as interpolation reference

\section*{Reference}

In order to record step with fixture interpolation reference, Coordinate system of fixture is set. Refer to" System" [PF2] \(\rightarrow\) 2. Controller parameter \(\rightarrow\) 12. Coordinate setting \(\rightarrow 2\) : Stationary tool coordinate.

\subsection*{4.8 User Coordinate}

\author{
Out line
}

In manual operation, select coordinate system in order to activate linear coordinate system. In Manual mode, with jog operation of robot, it is utilized to operate linear coordinate with respect to User coordinate system

The robot executes to act the interpolation coordination system in direction of \(\mathrm{X}, \mathrm{Y}\), and \(Z\) axis of the set coordinate system. When you use the monitoring function in the service of Manual or playback mode, \(X, Y\) and \(Z\) coordinate system of the front head of the tool being output on the screen

\section*{Reference}

In Manual mode, when Number of User coordinate is selected, the following is displayed.

Displaying selected User coordinate number

■ " 0 " is set as number of the user coordinate, it release the action for the user coordinate system and then executes to monitor and act the interpolation coordinate system for the robot coordinate system
- Linear coordinate and monitoring to robot coordinate can be executed even though user coordinate is not defined or registered,

■ Registering User coordinate, refer to " System" [PF2] \(\rightarrow\) 2. Controller parameter \(\rightarrow\) 12. Coordinate setting \(\rightarrow\) 1. User coordinate.

\section*{Chapter 5}

\section*{Application condition}
5.1 Conveyor operation 5-3
5.2 Search range 5-4
5.3 Search reference position record 5-4
5.4 Spot welding 5-5
5.5 Gun search reference record 5-6
5.6 Output(DO) signal clear 5-7
5.7 Online shift register clear 5-7

\section*{Chapter 5 Application condition}

\author{
In" Cond Set" [PF5], Press" AppliCnd" [PF1].
}

Screen display

Operation method

Move the highlight bar on the item. For inserting numeric data, enter the numbers in input frame. After entering the number, press[SET] key to apply.

In order to select item within \(\langle>\), press [SHIFT]+[\(\rightarrow\)][\(\leftarrow\)] to move the highlight bar for selection.
※Press either [Esc] or "Cond Set"[PF5], "Condition setting Manu" is displayed.

\section*{Reference}
1) Application condition data is stored in control constant file (ROBOT.COO).
2) It can be changed event though control constant file (ROBOT.COO) is in full protection.

\subsection*{5.1 Conveyor operation}

\section*{Out line}

It determines the movement of robot when robot handles workpiece on conveyor,
(1) Normal : Robot moves synchronously according to actual movement of workpiece on conveyor .
(2) Simulation : Without operating conveyor, user can operated robot movement by entering conveyor speed. It is useful to check cycle time after teaching.
(3) Test: Like plat test, it is the condition where conveyor is not operated and robot movement can be checked. Different aspects from plan test is that teaching point can be checked at stop condition of workpiece as pulse count is not reset even though executing Program END

\section*{Reference}

■ Depending on setting condition for conveyor movement, the following is displayed in manual or auto mode.

■ Conveyor pulse count not to related move type is only counted by activation of limit switch.

■ In simulation, value calculated from distant is not always correct because pulse counter of conveyor is separated from registry

■ Normally, in playback mode, conveyor speed has actual movement speed of conveyor, but, in plan test operation, plan test speed entered from user is always 0 value.

\subsection*{5.2 Search Range}

\section*{Out line}

Define the range to be searched when you use search function.
\(X\) value can be set between \(0.0 \sim 3.0\) and the range is as follows.

\subsection*{5.3 Search reference position record}

\section*{Out line}

Search reference data is automatically recorded with reference position value of workpiece after 1 cycle playback, as setting search function ON upon the condition that workpiece is placed after the completion of teaching including search function.
(1) Off : Disable search reference position data record function.
(2) On : Enable search reference position data record function.

\section*{Reference}

■ The following is displayed in manual or auto mode as setting search reference position data record "On"

■ 1 cycle playback shall have the same speed of normal playback at recording search reference position data.

\subsection*{5.4 Spot welding}

\section*{Out line}

In servo gun application and activating spot welding function, regardless setting of defined welding sequence, pressurization and current signal output can be disabled. This function is useful for teaching position check and spot point check when no actual welding is performed and peripherals are not equipped.
(1) Wd-On : Execute all welding sequence defined in spot welding function.
(2) Sq-On : It activates pressurization movement and current signal is not output in order to check pressurization point because welding signal is delayed.
(3) Sq0ff : Pressurization and current signal output and welding complete delay are not activated.

\section*{Reference}

The following is displayed in manual or auto mode according to the condition of spot welding output method

■ In playback with SqOff, robot skips to the next step without activating pressurization at welding point.

■ In order to implement welding after checking teaching position, Wd-ON must be set.

\subsection*{5.5 Gun Search reference point record}

\section*{Out line}

In case of using servo gun or equalizer, reference position shall be recorded to reduce wear of electrode.

Refer to Servo gun manual or robot equalizer manual for Gun search operation
(1) Off : Disable function of Gun search reference position record
(2) On : Enable function of Gun search reference position record

\section*{Reference}

■ The following is displayed in Manual or Auto mode, as setting On for Gun search reference position record

■ After installation of system, replace electrode with new and operate one cycle before teaching job.

■" System" [PF2] \(\rightarrow\) 3. Machine parameter \(\rightarrow\) 5. Setting encoder offset 2. Encoder calibration (Data input) must be set and 1 cycle of playback has to be performed to record Gun Search reference point

■ Without recording Gun search reference point, error will occur if spot welding or Gun Search is executed,

\subsection*{5.6 Output(DO) signal clear}

Out line

In executing step 0 , initialization for current general \(\mathrm{I} / 0\) and welding signal has to be set.
(1) Disable : Does not initialize output signal (DO) at the execution step 0.
(2) Enable : Does initialize output signal (DO) at the execution step 0..

\subsection*{5.7 On-line Shift Register Clear}

Out line

Setting to initialize shift register of online shift registry group In executing step0.
(1) Disable : Does not initialize contents of shift register at the execution step 0
(2) Enable : Does initialize contents of shift register at the execution step 0 .

Reference

This function is only used to decide for initialization in contents of online shift register group and does always initialize the contents of XYZ shift register or onl ine shift buffer.

\section*{Chapter 6 System setting}

\section*{Contents}
6.1 User configuration 6-5
6.1.1 Display language 6-6
6.1.2 Pose record type 6-6
6.1.3 Start type 6-7
6.1.4 Change of cursor position in auto mode 6-7
6.1.5 Confirm when the command delete 6-8
6.1.6 WAIT(DI/WI) forcible release 6-8
6.1.7 Dettachment of Teach Pendant 6-9
6.1.8 Power failure detection(Not changeable) 6-9
6.1.9 External program selection 6-9
6.1.10 Using the program strobe signal 6-10
6.1.11 Step set alarm type 6-11
6.1.12 Lowest position proportion of the cursor 6-11
6.1.13 Using the collision sensor 6-12
6.2. Controller parameter \(6-13\)
6.2.1 Input/output signal selection 6-14
1: Input signal logic 6-15
2: Output signal logic \(6-16\)
3: The attribution of output signal 6-17
4: Setting the pulse table 6-18
5: Setting the delay table 6-19
6: Output signal assignment 6-20
7: Input signal assignment 6-21
8: Setting the earlier output 6-23
9: DIO name edit 6-24
10: Setting the field bus 6-26
6.2.2 Serial port 6-31
1: Teach Pendant (CNTP) 6-31
2: Private serial port for I/O board 6-31
3: Serial port \#1 (CNSIO) 6-32
4: Serial port \#2 (OPSIO) 6-33
6.2.3 Robot ready 6-34
6.2.4 Home position registration 6-35
6.2.5 Return to the previous position 6-36
6.2.6 End relay output time 6-37
6.2.7 Interlock error time 6-38
6.2.8 External error output 6-39
6.2.9 Power Saving : PWM OFF 6-42
6.2.10 Shift limit 6-43
6.2.11 Setting the user key 6-44
6.2.12 Coordination system registration 6-46
1: User coordination registration 6-46
2: Pedestal tool coordination system 6-48
6.3 Machine parameter 6-49
6.3.1 Tool data 6-50
6.3.2 Axis Constant 6-54
6.3.3 Soft limit 6-55
6.3.4 Arm interference angle 6-56
6.3.5 Encoder offset calibration 6-57
6.3.6 Accel./Decel. speed parameter 6-59
6.3.7 B축 axis dead zone 6-60
6.3.8 Accuracy 6-61
6.3.9 Speed 6-64
6.3.11 Additional load per each axis 6-65
6.4 Application parameter 6-67
6.4.1 Spot \& Stud 6-68
1: Welding parameter 6-69
2: Servo gun parameter 6-71
3: Spot welding data(condition, sequence) 6-76
4: Equalizing parameter 6-81
6.4.2 Arc 6-83
6.4.3 Palletizing 6-85
1: Palletizing pattern register 6-86
2: Palette dip angle measurement 6-90
6.4.6 Conveyor 6-91
1: Conveyor constant setting 6-92
2: Automatic setting of conveyor parameter 6-95
6.4.7 Speed proportion voltage output 6-96
6.5 System format 6-98
6.5.1 System format 6-99
6.5.2 Robot type selection 6-100
6.5.4 Use setting 6-103
6.5.5 Positioner group setting 6-104
6.6 Automatic constant setting 6-106
6.6.1 The optimization axis constant 6-107
6.6.4 Positioner calibration 6-109

\section*{Chapter 6 System setting}

The following is displayed as selecting " System" [PF2] of initial menu in Manual mode.

Selection method
(1) Use the arrow keys to move the highlight bar to the item to be selected and press[SET]key to enter the next menu
(2) Use the numeric keys to insert item number to be selected and Press [SET]key to enter sub menu.

\subsection*{6.1 User configuration}

The following condition can be set in the window below as selecting user parameter.

Modification method

Place highlight bar on the item. In case of inserting numeric data, insert numeric data in the input frame. After inputting numeric keys and press [SET] key for execution. In case of selecting item within \(<>\), press [ENABLE] \([\rightarrow][\leftarrow]\) to move highlight bar to the item for completion.

Reference

■ User system data is stored in control constant file (ROBOT.COO).

■ Modification or change is not allowed when control constant file (ROBOT.COO) is in full protection. Except, 6.1.1 (Display language) can be changed and initialized when main power is switched to "On".

\subsection*{6.1.1 Display language}

Out line

Select current language at current display on Teaching pendant
(1) 한글 : Displays Korean language on Teaching pendant.
(2) English : Displays English Language on Teaching pendant.

Reference

■ Type of language is automatically selected according to Dip Switch no1. of BD411 board when main power is switched to" ON"

■ Dip Switch No 1 of BD411: On \(\rightarrow\) English, Off \(\rightarrow\) Korean.

\subsection*{6.1.2 Pose Record Type}

Out line

Position of robot is recorded as hidden pose when robot is recorded by pressing REC key after movement. It will decide record type of current step position
(1) Base : Current step position is recorded in the reference of base coordinate system
(2) Robot : Current step position is recorded in the reference of robot coordinate system
(3) Encoder : Current step position is recorded as encoder value

Reference
- Record the position of robot as hidden pose and press key to check or modify the record type of step.

\subsection*{6.1.3 Start type}

Out line

Def ine start ing method of robot system. Same as pressing " R5: external start selection (Enable/Disable) of \(R\) code
(1) Internal : Press start button in OP panel to start the robot
(2) External : Start the robot by receiving external digital signal. Refer to chapter 12 Signal Connection \(\rightarrow\) 1. External start of Standard Input signal.
(3) Remote : Start the robot by receiving command from Central control unit. This is not supported in Hi 4 controller

\section*{Reference}

■ Operator is in the range of robot working range or within safety fence, in case of setting external or remote start for start type, robot might automatically move certainly even though stop lamp in control cabinet is displayed because external or remote start signal can be activated at any time. For safety, start type of robot shall be set as internal start.

\subsection*{6.1.4 Change of cursor position in Auto mode}

Out line

Decide cursor to be moved for step or function with Enable or Disable setting in Auto mode. For safety, manufacturer recommend disable setting.
(1) Disable : Disable cursor movement for Step or Function in Auto mode
(2) Enable : Enable cursor movement for Step or Function in Auto mode

\section*{Reference}

■ As setting cursor position change <Disable>, the following message is displayed when up/down cursor key is pressed in Auto Mode.

\subsection*{6.1.5 Confirm when the command delete}

Out line

This function enables you to use this function by setting "Enable" or "Disable" when you want to conf irm whether it is acceptable for you to delete some command or not before deleting the command.
(1) Disable : If you select this function, It does not ask to you whether it is good or not to delete before you delete the function or step by pressing the [SHIFT]+[DELETE] Key.
(2) Enable : If you select this function, It asks to you whether it is good or not to delete before you delete the function or step by pressing the [SHIFT]+[DELETE] Key.

Reference

■ It is displayed the following massage on the screen when you delete the function or step by pressing the [SHIFT]+[DELETE] Key.
```

Delete(Yes/No)?
> Service

```

■ Delete when press [Yes] key, Cancel when press [No] key.

\subsection*{6.1.6 WAIT (DI/WI) Forcible Release}

Out line

You can set up whether you will release forcibly the signal wait or not when press the "WAIT RELEASE" for waiting the welding completion signal or input signal in the manual mode or auto mode.
(1) Disable : It doesn't release forcibly the wait signal when pressing "WAIT RELEASE" for waiting the welding completion signal or input signal.
(2) Enable : It release forcibly the wait signal when pressing "WAIT RELEASE" for waiting the welding completion signal or input signal

\subsection*{6.1.7 Dettachment of Teach Pendant}

Out line

It playbacks the teaching program after dettaching the teach pendent to protect the program. But, only after completing the teaching.
(1) Disable : It occurs the communication error if you dettach the teach pendent to the controller in case of setting the "Disable".
(2) Enable: You can operate the robot even though you dettach the teach pendent in case of setting the "Enable".

\subsection*{6.1.8 Power failure Detection (Not Changeable)} Out line

If you select this function, After The robot restores the present position in the Memory in the t ime of the Power failure occurrence, You can playback the robot from the position which is restored in the memory when the Power failure supply.
(1) Disable: If you select this function, you can't use this power failure detection.
(2) Enable : In this case, you can use this function.

Reference

■ Because in the present controller Power failure detection sets <Enable>, you can't change <Disable>.

\subsection*{6.1.9 External Program selection}

Out line

It decides the method that select the program you made. It is the same to the "R6 External Program Selection (Enable/Disable) of R6.
(1) Disable : You can select the program by pressing the [SHIFT]+[Program]Key.
(2) Enable: It selects the program after receiving the digital signal from the external device. Chapter 12. the connection of each signal \(\rightarrow 1\). Please refer to the program selection signal of standard input signal.

Reference

■ It is displayed on the screen of Teach pendent in auto mode as following according to compounding " System" [PF2] \(\rightarrow\) 1. User Parameter \(\rightarrow\) 3. START TYPE and 9. External Program Selection.
\begin{tabular}{|c|c|c|}
\hline Start Type & Disablernal Program & Enable \\
\hline Internal & Auto & Auto(Ext.Prog) \\
\hline External & Auto(Ext.Start) & Auto(Ext.P\&S) \\
\hline
\end{tabular}

\subsection*{6.1.10 Using the program strobe signal}

Out line

You can use this function when you want to select the external program by receiving the external digital signal from the external device.
(1) Disable : This function selects a program to be worked by receiving only program selection signal.
(2) Enable : This function selects a program to be worked by receiving the program selection signal in the moment of turning on input signal of program strobe.

\section*{Reference}
- It displays the following massage on the screen in case of the inputting the external start signal without inputting the program selection signal in advance.
\begin{tabular}{l}
\begin{tabular}{l}
The value of Prog Selec Sig input is 0 \\
\hline\(>\) \\
Service \\
\hline
\end{tabular} Svstem Rel. WAIT \\
\hline
\end{tabular}

■ Please refer to the chapter. 12 Signal connection \(\rightarrow\) 1. Program strobe of Standard input signal..

\subsection*{6.1.11 STEP SET ALARM TYPE}

Out line

This is a function that can output the alarm signal (pulse 200msec) when you select the step that is out of the present step.
(1) ONE : This alarm signal comes when you select the step that is different more than

2 step compared to the present step a output signal in manual mode or 1 step(auto mode).
(2) TWO:
- This alarm signal outputs in case of designating the step that is a different step (more than 2step) compared to the present step in manual, auto (1step / 1cycle / continue) mode.
- This alarm signal outputs in case of selecting different program when selecting bigger step than step 0 in the present program in manual, auto (1step / 1cycle / continue) mode.
- This alarm signal outputs in case of designating the same program when selecting bigger step than step 2 in the present program in manual, auto (1step / 1cycle / cont inue) mode.

\section*{Reference}

■ This alarm signal outputs as the assigned signal in" SYSTEM" [PF2] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\) 1. SETTING THE INPUT/OUTPUT SIGNAL \(\rightarrow\) 6: OUTPUT SIGNAL ASSIGNMENT.

\subsection*{6.1.12 Lowest position proportion of the cursor}

Out line

You can adjust the cursor position from the upper part to the lower part of the screen by adjusting the position proportion of the cursor in the edit screen of manual mode.

You can't see the next function, step of the lowest part of the screen because the cursor moves to the lowest part of the screen in case that you adjust the position proportion to maximum \(100 \%\).

The cursor can move within the range from the upper to the center if the proportion is \(50 \%\), the screen scroll if the cursor move from the center to the lower.

\subsection*{6.1.13 Using the collision sensor}

Out line

It selects one of the method that can stop the robot if the collision sensor active..
(1) Robot stop type
(1) Emergency stop : It stops the robot with MOTOR OFF.
(2) Stop : It stops the robot in the MOTOR ON status.
(2) Signal Logic
(1) Positive : It sets up input signal logic of collision sensor with positive.
(2) Negative : It sets up input signal logic of collision sensor with positive.

\subsection*{6.2 Controller Parameter}

It displays the following massage on the screen if you select "SYSTEM[PF5] \(\rightarrow\) 2. Controller Parameter" in the first screen of manual mode
\begin{tabular}{l}
14:39:38** Controller parameter**A:0 S:4 \\
\hline 1: Setting input \& output signal \\
2: Serial ports \\
3: Robot ready \\
4: Registration of home position \\
5: Return to the previous position \\
6: End relay timer \\
7: Interlock timer \\
8: Error-output to the outside \\
9: Power saving : PWM ofF \\
10: Shift limit \\
11: f-key setting \\
12: Coordinate setting \\
Use [Number]/[Up][Down] and oress_SET]. \\
\hline\(\quad\) Previnud Next \\
\hline
\end{tabular}

Selection Method
(1) You can enter into the sub-menu if press [SET]Key after moving the highlights bar with using the arrow key to the item as you want to select.
(2) You can enter into the sub-menu if press [SET]Key after the item number as you want to select input with using the number key in the input frame.

\section*{Reference}

■ The control parameter store in the control constant file (ROBOT.COO).
■ You can't change the contents of the control constant file (ROBOT.COO) in case of being in perfectly protective status.

\subsection*{6.2.1 Input/Output signal selection}

Out line

It sets up when you need to change the attribution of the input/output signal.

Screen display
```

14:39:38** DIO signal setting ** A:0 S:4
1: Input signal $\operatorname{logic}$
2: Output signal logic
3: Output signal attribute
4: Pulse table setting
5: Delay table setting
6: Output signal assigning
7: Input signal assigning
8: Setting time for earlier output
9: Editing DIO names
10: Fieldbus conf iguration

```
\begin{tabular}{l}
Use [Number]/[Up][Down] and press [SET]. \\
\hline \multicolumn{1}{|c|}{ Previnud Next } \\
\hline
\end{tabular}

Selection Method
(1) You can enter into the sub-menu if press [SET]Key after moving the highlights bar with using the arrow key to the item as you want to select.
(2) You can enter into the sub-menu if press [SET]Key after the item number as you want to select input with using the number key in the input frame.

\subsection*{6.2.1.1 Input signal logic}

Out line

It sets up the positive, negative of the general input signal.

Screen display
\begin{tabular}{|c|c|}
\hline 14:39:38*** & al logic *** A:0 S:4 \\
\hline DI1 \(=4\) Pos & ,Nega> DI2 = 4 Posi, Nega> \\
\hline DI3 \(=\langle\) Pos & ,Nega> DI4 = ¢Posi, Nega> \\
\hline DI5 \(=\langle\) Pos & ,Nega> DI6 = Posi, Nega \(>\) \\
\hline DI7 \(=4\) Pos & ,Nega> DI8 = Posi, Nega \(>\) \\
\hline DI9 \(=\langle\) Pos & ,Nega> DI10 \(=4\) Posi, Nega> \\
\hline DI11 \(=\langle\) Pos & ,Nega> DI12 \(=\langle\) Posi, Nega> \\
\hline DI13 \(=\langle\) Pos & ,Nega> DI14 = 4 Posi, Nega> \\
\hline DI15 \(=4\) Pos & ,Nega> DI16 \(=\langle\) Posi, Nega> \\
\hline DI17 \(=\langle\) Pos & ,Nega> DI18 = 〈Posi, Nega> \\
\hline DI19 = 4 Pos & ,Nega> DI20 = 4 Posi, Nega> \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Press [SHIFT]+[<-][->] Kev}} \\
\hline & \\
\hline & Previnud Next \\
\hline
\end{tabular}

Selection Method
(1) The user move to the position that the user wants to change input signal logic. you can use the "Next [PF4]", "Previous [PF3] if there is no signal that you want to change in the present screen..
(2) It changes signal logic with using \([\) Shift \(]+[\leftarrow][\rightarrow]\) Key.

\section*{Reference}

■ You must press the "Complete"[PF5] to save the changed content after finishing to change the input signal logic, if press "Cancel" Key you can't save the changed content.

\subsection*{6.2.1.2 Output signal Logic}

Out line

It sets up the positive, negative logic of the general output signal.

Screen display

Selection Method
(1) The user moves the cursor to the position where the user wants to change. You can use "Previous [PF3]", "Next [PF4]" if there is no signal as you want to change in the present screen.
(2) You change the signal logic with using [Shift]+[-\(][\rightarrow]\) Key.

Reference

■ You must always press the "Complete [PF5]"Key to store the changing content after finishing the change of output signal logic.

\subsection*{6.2.1.3 The attribution of Output signal}

Out line

It decides the attribution of output signal. If the number of out put signal is normal " 0 ", the number 1 to 15 output the pulse signal to be assigned in the pulse signal table, and the number 16 to 30 output the delay signal assigned in the delay signal table.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38** D0 Sig attribute ** A:0 S:4} \\
\hline D01 \(=\) [0] & D02 \(=\) [0] \\
\hline D03 = [0] & D04 = [0] \\
\hline D05 = [0] & D06 = [0] \\
\hline D07 = [0] & D08 = [0] \\
\hline D09 = [0] & D010 \(=\) [0] \\
\hline D011 = [0] & D012 \(=\) [0] \\
\hline D013 = [0] & D014 \(=\) [0] \\
\hline D015 = [0] & D016 = [0] \\
\hline D017 = [0] & D018 = [0] \\
\hline D019 = [0] & D020 = [0] \\
\hline D021 = [0] & D022 = [0] \\
\hline
\end{tabular}

Select and Enter number. Press [SET] [Normal[0]; Pulse[1-15]; Delay[16-30]] Previnuld Next

Selection Method
(1) The user moves the cursor to the position where the user wants to change the attribution of the output signal. You can use "Previous [PF3]", "Next [PF4]" if there is no signal as you want to change in the present screen.
(2) You press the [SET]Key after inputting the number in the input frame with using the number key.

\section*{Reference}

■ You must press the "Complete"[PF5] to save the changed content after finishing to change the input signal logic, if press "Cancel" Key you can't save the changed content.

\subsection*{6.2.1.4 Setting the Pulse table}

Out line

3: It sets the content about the pulse signal of pulse number that input in the attribution of the output signal.

Screen display
\begin{tabular}{|c|c|c|c|c|}
\hline 14:39:38 & & Pulse table & & \(\mathrm{A}: 0 \mathrm{~S}: 4\) \\
\hline Table & Count & ON time & & t ime \\
\hline 1 & \(0]\) & [0.00]sec & & [0.00]sec \\
\hline 2 & \(0]\) & [0.00]sec & & [0.00]sec \\
\hline \(3=\) & [0] & [0.00\(] \mathrm{sec}\) & & 0.00] sec \\
\hline \(4=\) & [0] & [0.00\(] \mathrm{sec}\) & & [0.00] sec \\
\hline \(5=\) & [0] & [0.00\(] \mathrm{sec}\) & & [0.00]sec \\
\hline \(6=\) & [0] & [0.00\(] \mathrm{sec}\) & & [0.00]sec \\
\hline 7 & [0] & [0.00\(] \mathrm{sec}\) & & [0.00] sec \\
\hline \(8=\) & [0] & [0.00\(] \mathrm{sec}\) & & [0.00]sec \\
\hline \(9=\) & [0] & [0.00\(] \mathrm{sec}\) & & [0.00]sec \\
\hline \(10=\) & [0] & [0.00\(] \mathrm{sec}\) & & 0.00] sec \\
\hline \multicolumn{5}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{5}{|l|}{\(>\) [1-100]} \\
\hline \multicolumn{5}{|c|}{Previnud Next} \\
\hline
\end{tabular}

Selection Method
(1) The user moves the cursor to the position where the user wants to change the attribution of the output signal. You can use "Previous [PF3]" , "Next [PF4]" if there is no signal as you want to change in the present screen.
(2) You press the [SET]Key after inputting the number about the On/Off time, frequency with using the number key in the input frame.

\section*{Reference}

■ For example of outputting the pulse)

■ You must press the "END" [PF5] to save the changed content after finishing to change the output signal attribution, if press "CANCEL" Key you can't save the changed content.
6.2.1.5 Setting the delay table

Out line

3: It sets the content about the delay signal of delay number that input in the attribution of the output signal.

Screen display

Selection Method
(1) The user moves the cursor to the position where the user wants to change the attribution. You can use "Previous [PF3]", "Next [PF4]" if there is no signal as you want to change in the present screen.
(2) You press the [SET]Key after inputting the number about the On/Off delay with using the number key in the input frame.

Reference

■ For example of the delay output)

■ You must press the "Complete"[PF5] to save the changed content after finishing to change the output signal attribution, if press "Cancel" Key you can't save the changed content.

\subsection*{6.2.1.6 Output signal Assignment}

Out line

It uses the signal after output signal assign in special DO signal.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38** D0 Sig assignment ** A:0 S:4} \\
\hline GUN (squeeze) Sig = G1 [23] & G2 [24] \\
\hline MX(Unfolding) Sig = X1 [25 & X2 [0] \\
\hline Alarm to welding system & 0] \\
\hline Weld stick warning & [0] \\
\hline Program end & [26] \\
\hline Synthetic error & [27] \\
\hline Emegency stop & [0] \\
\hline Manual mode & [0] \\
\hline Collision sense & [0] \\
\hline Step set warning & 0] \\
\hline Inter lock-abnormal warning & \\
\hline Select and Enter number. Pre & Select and Enter number. Press \\
\hline \(>\lceil 1-256]\) & \\
\hline \multicolumn{2}{|l|}{All Formhne FormPrevinus Next Comnlete} \\
\hline
\end{tabular}

\section*{Reference}
(1) All Initialize: It initializes all of assigned output signal. It displays the following massage on the screen if you select All initialize function.

\section*{All Init.?Hardwiring: 0 . Fieldbus: \(1(0-1)\) \(>[0-1]\) \\ All FormOne FormPrevious Next Complete}

■ If you select the standard number " 0 ", All of assigned signal changes the initializing value.

■ If you select the field bus(1), It redeploys output assignment signal to use the field bus. if you select the field bus(1), it displays the following massage.
\begin{tabular}{l}
Indut the start nort number. \((1-32)\) \\
\hline [1 - 32\(]\) \\
All FormOne FormPrevious Next Complete \\
\hline
\end{tabular}

Input the start port number to be assigned. if the start port number select "1", it displays the following massage.
\begin{tabular}{|c|c|}
\hline ** D0 Sig assignme & ** A:0 S:4 \\
\hline GUN (squeeze) Sig = G1 & G2 [2] \\
\hline MX(Unfolding) Sig = X1 [3] & X2 [0] \\
\hline Alarm to welding system & 0] \\
\hline Weld stick warning & 0] \\
\hline Program end & [7] \\
\hline Synthetic error & [8] \\
\hline Emegency stop & 0] \\
\hline Manual mode & [0] \\
\hline Collision sense & [0] \\
\hline Step set warning & 0] \\
\hline Inter lock-abnormal warning & \\
\hline \multicolumn{2}{|l|}{Select and Enter number. Press [SET]} \\
\hline - 256] & \\
\hline All Form0ne FnrmPrevinus & Comn \\
\hline
\end{tabular}
(2) One initialize: Presently selected output assignment signal value return to the initialize status.
(3) Assigned D0 signal displays the small character in the "Service"[PF1] \(\rightarrow 1\). MONITORING.
ex) In case of not assigning : 031
In case of assigning : o31
(4) If press " Complete" [PF5], Save changed information. if press [Cancel]Key, Cancel them.

\subsection*{6.2.1.7 Input signal assignment}

Out l ine

It uses the signal after output signal assign in special DI signal.

Screen display

Reference
(1) All Initialize: It initializes all of output assignment signal. It displays the following massage on the screen if you select All initialize function.

All Init.?Hardwiring: 0, Fieldbus:1(0 -1\()\)
\(>[0-1]\)
All FormOne FormPrevious Next Complete

■ If you select the standard number "0", all of assigned signal changes the initializing value.

■ If you select the fieldbus(1), It redeploys input assignment signal to use the field bus. if you select the field bus(1), it displays the following massage.

Input the start port number. (1 - 30)
\(>[1-30]\)
All FormOne FormPrevious Next Complete

Input the start port number to be assigned. if the start port number select "1", it displays the following massage.

(2) One initialize: Presently selected output assignment signal value return to the initialize status.
(3) Assigned DO signal displays the small character in the "Service"[PF1] \(\rightarrow 1\). MONITORING.
\[
\begin{aligned}
& \text { ex) In case of not assigning }: 031 \\
& \text { In case of assigning } \quad: \begin{array}{c}
031
\end{array}
\end{aligned}
\]
(4) If press " Complete" [PF5], Save changed information. if press [Cancel]Key, Cancel them.

\subsection*{6.2.1.8 Setting the Earlier output}

Out line

Usually, the DO signal output after getting to the step, You can use this function when you output DO signal before getting to the step by setting this function.

Screen display

Screen description

■ Earlier out time : It sets the first out time of group output signal(GO) or each output signal before getting to the step.

■ D0 lower number : This is a first number of each output signal(DO) that is going to do first out.
■ D0 upper number : This is a last number of each output signal(D0) that is going to do first out.
■ GO lower number : This is a first number of each output signal(GO) that is going to do first out.

■ GO upper number : This is a last number of each output signal(GO) that is going to do first out.

Reference

■ But, This first out function can't apply when the step go and back in manual mode.

■ If you press " Complete" [PF5] key, save the changed information. If press [CANCEL] key , Cancel them.
6.2.1.9 DIO Name Edit

Out line

The user names in each in/out signal.

Screen display
\begin{tabular}{l}
14:39:38 \(\quad * * *\) DIO name \(* * * \quad\) A:0 S:4 \\
\hline 1: Page 1 \\
2: Page 2 \\
3: Page 3 \\
4: Page 4 \\
\\
\\
\\
\hline
\end{tabular}

\section*{Operation Method}

■ You press [SET] after selecting the page as you want with the cursor or number key.
if selecting page 1, the following massage is displayed.
\begin{tabular}{|c|c|c|}
\hline 14:39:38 & *** Page 1 *** & A:0 S:4 \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline <DI, D0> & [0] [&] \\
\hline \multicolumn{3}{|l|}{Press [SHIFT] \(+[<-][->]\) Kev.} \\
\hline \multicolumn{3}{|l|}{\(\geq\)} \\
\hline & & \\
\hline
\end{tabular}

Screen description

■ < , DO> : You can select input/output signal as you want to describe with using [Enable][->][<-]key.

■ [0] : Input the number of in/output signal as you want to describe. Press the [SET]key after inputting the number with the number key in input frame.

■ [: Resister the name of in/output signal.

\section*{Reference}
(1) The following massage is displayed if the highlight bar move to the position in the [] part.

The following massage that can input the character string is displayed if [SET] input.

■ You can input the name of DIO if press [PF5]key after making the character with using the arrow key and [SET]key in the input frame.
(2) You can make the new file (ROBOT. IMO : DIO FILE) if press "Complete"[PF5]key after inputting in the name description.
(3) You can see about the recorded DIO name in " SERVICE" [PF1] \(\rightarrow\) 1. MONITORING OF DIO NAME.
(4) If you press " Complete" [PF5]key, Save the changed information. If press [CANCEL] key, Cancel them.
6.2.1.10 Setting the field bus

Out line

It sets the Fieldbus parameter.

Screen display

Selecting Method
(1) You can enter into the sub-menu if press [SET] Key after moving the highlights bar with using the arrow key to the item as you want to select.
(2) You can enter into the sub-menu if press [SET] Key after the item number as you want to select input with using the number key in the input frame.

\section*{Reference}

■ If you set up the field bus for the first time after formatting the controller, the following massage is displayed when you select one of 4 menu.

■ You enter into the setting work with producing the ROBOT.FBU file to store the field bus parameter if press [YES] key.

\subsection*{6.2.1.10.1 Application of the field bus adapter}

Out line

It select whether Fieldbus will use or not.

Screen display

Screen description
(1) Off : Can not use the field bus.
(2) On : Can use the field bus.

Reference

■ If you press" Done" [PF5] key, save the changed information. If press [CANCEL] key, Cancel them.
6.2.1.10.2 Input source selection

Out line

It sets up from which of the hard wired or field bus the input receives.

Screen display

Reference
\begin{tabular}{|l|l|}
\hline All Init.?Hardwiring:0. Fieldbus:1(0 - 1) \\
\hline\(>[0-1]\) \\
\hline All FormPg FormPrevious Next & Done \\
\hline
\end{tabular}
(1) All initialize : All of input source selection modify standard or Fbus at one time. The following massage is displayed if "All Form" [PF1] select.

■ All of input source of the screen change <STANDARD> if press [SET]key after standard[0] input.

■ All of input source of the screen change <Fbus> if press [SET]key after field bus [1] input.
(2) Page initial : The page that describes on the present screen change the standard or Fbus. The following massage is displayed if you select Pg Form" [PF2].
\begin{tabular}{|l|}
\hline Pg Form .?Hardwiring:0. Fieldbus:1(0-1) \\
\hline\(>[0-1]\) \\
\hline All FormPg FormPrevious Next _ Done_ \\
\hline
\end{tabular}

■ If press [SET]key after the standard [0] input the input source of the screen that is displayed in the present teach pendent change <STANDARD>.

■ If press [SET]key after the field bus [1] input the input source of the screen that is displayed in the present teach pendent change <Fbus>.
(3) The present setting item will save if press" Done" [PF5], it will not save if press [CANCEL].

\subsection*{6.2.1.10.3 Input signal assignment}

Outline

It sets each signal group unit how you will map each input.

Screen display

■ Please press the [SET] after inputting the Fbus data that should use the input to be mapped as the input signal.

Reference

■ The first data of Fbus data is redeployed if press "ALL Form" [PF1].

■ If you press " Done" [PF5] key, Save the changed information. if press [CANCEL] key, Cancel them.

\subsection*{6.2.1.10.4 Output signal assignment}

Out line

It sets each signal group unit how you will map each output.

Screen display

■ Please press [SET]key after inputting Fbus data that should use the output to be mapped in the standard output signal.

Reference
- The first data of Fbus data is redeployed if press "ALL Form"[PF1.].

If you press " Done" [PF5] key, Save the changed information. If press [CANCEL] key , Cancel them.

Caution
(1) Do always in the off status in case of not building in BD470. If you put in the On status without building in BD470, All of the I/0 function don't work with occurring the error in the controller.

\subsection*{6.2.2 Serial port}

Out line

It sets up the use purpose of the serial port, and sets up the RS232C parameter
\begin{tabular}{l}
14:39:38* Serial port select* A:0 S:4 \\
\hline 1: Teach Pendant (CNTP) \\
2: Serial to I/0 Board (CNIO) \\
3: Serial port \#1 (CNSIO) \\
4: Serial port \#2 (OPSIO) \\
\\
\hline
\end{tabular}

\subsection*{6.2.2.1 Teach Pendant (CNTP)}

Out line

This port is only for teach pendent. The user can't change freely. The following massage is displayed on the screen if the user select 1: Teach Pendant (CNTP).

\subsection*{6.2.2.2 Private serial port for I/O board}

Out line

This is only for I/O board. You should set up the parameter (Baud rate, character bit, stop bit, parity bit, echo) to match with the present I/O board.

Screen display
\begin{tabular}{|ll}
\hline 14:39:38 & \(* * *\) Serial to I/0
\end{tabular}

Reference

■ If you press " Complete" [PF5] key, Save the changed information. If press [CANCEL] key, Cancel them.

\subsection*{6.2.2.3 Serial port \#1}

Out line

This is a serial port (CNSIO), It sets up the communication information when you communicate with a serial port. The user should select the purpose of the serial port \#1, echo, parity bit, stop bit, character bit, baud rate as you want.

Screen display

Reference

■ FileMng You can use this function to download and up load the file from the external computer and visa versa.

Sens You can use this function to receive the shift value from the vision. (Interface with the external vision system)

\subsection*{6.2.2.4 The use of the serial port \#2}

Out line

This is a serial port (OPSIO), It sets up the communication information when you communicate with a serial port. The user should select the purpose of the serial port \#1, echo, parity bit, stop bit, character bit, baud rate as you want.

Screen display

Reference

■ FileMng You can use this function to download and up load the file from the external computer and visa versa.

■ Sens You can use this function to receive the shift value from the vision. (Interface with the external vision system)

\subsection*{6.2.3 Robot Ready}

Out line

The robot outputs robot ready end signal if the robot is ready.

The robot ready output signal is a DO signal to be assigned in the " SYSTEM" [PF2] \(\rightarrow\) 2. Controller parameter \(\rightarrow\) 1. IN/OUT SIGNAL SETTING \(\rightarrow\) 6: OUTPUT SIGNAL ASSIGNMENT.

Screen display

Reference
(1) You can see the result in the " SERVICE" [PF1] \(\rightarrow\) 1. MONITORING if the robot ready signal comes out.
(2) If you press" Complete" [PF5]key, Save the changed information. If press [CANCEL] key, Cancel them. .

\subsection*{6.2.4 Home position registration}

Out line

This signal outputs when a robot motion is in this home position after a specific position of the robot register as a home position of this robot

The home position output signal is a DO signal to be assigned in the " SYSTEM" [PF2] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\) 1. IN/OUT SIGNAL SETTING \(\rightarrow\) 6: OUTPUT SIGNAL ASSIGNMENT.

Actual screen
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
\text { Home } 1 \text { : Program No. } & =[0] \\
\text { Step No. } & =\left[\begin{array}{ll}
1
\end{array}\right]
\end{aligned}
\]} \\
\hline & & & \\
\hline \(S=[\) & 1000] & \(\mathrm{H}=\) [& 1000] \\
\hline \(\mathrm{V}=\) [& 1000] & R2= [& 1000] \\
\hline \(B=\) [& 1000] & \(\mathrm{R} 1=\) [& 1000] \\
\hline \multicolumn{4}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{4}{|l|}{\(>\) [0-999]} \\
\hline
\end{tabular}

Screen description
■ Program No. : This is the program no. recorded the robot motion to be registered as a home position.

Step No. : This is the step no. recorded the robot motion to be registered as a home position.

■ Range : This is the range to the motion of each axis of the robot in home position.

\section*{Reference}
(1) If you press" Complete"[PF5]key, Save the changed information. if press [CANCEL] key , Cancel them.
(2) The range set up as the value of encoder bit of each axis unit. The setting value use the range of the - direction and + direction of home position point. For example If you select 100Bit the output range of the home position signal is 200Bit.
(3) Registration cancel automatically if delete step or program that is registered.
(4) The registered step No. change automatically in case of adding and deleting the step between the previous and next of home position step in the program that registered as a home position.

\subsection*{6.2.5 Return to the previous position}

Out line

This is the function that the robot returns to the previous position automatically when turning the motor on because the robot may be dropped to the down by the weight of the robot when turning the motor off by the \(H / W\) error or emergency stop etc.

Screen display

Screen description

■ Previous return function : It selects whether the previous return function will use or not.

■ Return range : It sets up the limit value that can return after dropping the robot The alarm massage is displayed when dropping over the setting value.

■ Error detection range : This is for anti interference of the peripheral equipment. The robot can't start without designating the step and occur the error when dropping over the setting value.

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. If press [CANCEL] key, Cancel them.

\subsection*{6.2.6 End Relay Output Time}

Out line

It sets up the time until the step 0 execute again after end the program by setting the output time of this signal when the program execute in continuous auto mode.

Screen display
\begin{tabular}{|l|l|}
\hline 14:39:38 \(\quad\) *** End relay \(* * * \quad\) A:0 S:4 \\
\hline \hline END relay ON time \(=[0.0] \mathrm{sec}\) \\
\\
\\
\\
\hline Enter number and press [SET] \\
\hline\([0.0-10.0]\) \\
\hline
\end{tabular}
- Press [SET] after input the end relay output time in input frame.

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. If press [CANCEL] key , Cancel them.

\subsection*{6.2.7 Inter lock error time}

Out line

It sets up the maximum waiting time of input signal.

Inter lock error time output if the time of input waiting status during playback is over the reference time. This function that is to set up this reference time is a interlock error time.

This interlock error time is a 0 signal to be assigned in the "SYSTEM" [PF5] \(\rightarrow 2\). CONTROL PARAMETER \(\rightarrow\) 1. IN/OUT SIGNAL SETTING \(\rightarrow\) 6: OUTPUT SIGNAL ASSIGNMENT.

Screen display
\begin{tabular}{l}
14:39:38 \(* * *\) Interlock Abn. *** A:0 S:4 \\
\hline Inter lock error timer \(=[60] \mathrm{sec}\) \\
\\
\\
\\
\hline Enter number and Dress [SET] \\
\hline\([0-255]\) \\
\hline
\end{tabular}

■ Press [SET] after inputting the inter lock error time in the input frame.

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. if press [CANCEL] key , Cancel them.

\subsection*{6.2.8 External error output}

Out line

This is the function that outputs the detected error no. to the external device.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Press [SHIFT] \(+[<-][->]\)} \\
\hline & \\
\hline
\end{tabular}

■ The serial output outputs ASCII code to the external device using serial interface (RS232C).

For example

In case of error 0101(E0101)
\[
\begin{aligned}
& \begin{array}{llllllllllll}
\$ & \mathrm{E} & \mathrm{R} & \mathrm{R} & 0 & \mathrm{R} & 0 & 1 & 0 & 1 & \mathrm{C}_{\mathrm{R}} & \mathrm{~L}_{\mathrm{F}}
\end{array}
\end{aligned}
\]
\[
\begin{aligned}
& \begin{array}{lllllllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13
\end{array}
\end{aligned}
\]

■ First number designation output outputs the error number to the external device through the 0 signal assigned in the" SYSTEM" [PF2] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\) 1. IN/OUT SIGNAL SETTING \(\rightarrow\) 6: OUTPUT SIGNAL ASSIGNMENT.
\begin{tabular}{|c|c|c|}
\hline \multirow{2}{*}{ Signal name } & \multicolumn{3}{|c|}{ Assignment and Quant ity } \\
\cline { 2 - 3 } & \multicolumn{2}{|c|}{ Type 1} \\
Type 2 \\
\hline Error output select & \(\mathrm{O} \quad: 1 \mathrm{EA}\) & \(\times\) \\
\hline Error output STRB & \(\mathrm{O}: 1 \mathrm{EA}\) & \(\times\) \\
\hline Error output Bit & \(\mathrm{O} \quad: 8 \mathrm{EA}\) & \(\mathrm{O}: 16 \mathrm{EA}\) \\
\hline
\end{tabular}
(1) Type 1 (8bit output)

It outputs after dividing by 2 group. One is the upper 8 bit, The other is the lower 8 bit after the error number transfers the binary code. The signal classifying the upper data and lower data is the error output selection signal, The strobe signal deciding the data check timing is the error output STRB signal.

For example
the timing in case of occurring E0101
(\(10110=006516=00000000011001012\))

08
The output selection -+ \(\qquad\)

(2) Type 2 (16bit output)

It outputs 16bit data after the error number transfers the binary. The strobe signal deciding the data check timing is
- System error => General error
- Operation error => Operation error

For example
The timing in case of occurring E0101(SYSTEM ERROR)

\subsection*{6.2.9 Power Saving : PWM OFF}

Out line

It sets up the waiting time until the power saving function start from the last operation time.

It economizes on the consumption power by cutting off the power supply of the motor if the waiting time pass in case of the stop status for a long time resulting in input signal wait, starting wait of the robot in auto mode.

Screen display

Screen description

■Power saving function: It sets up whether power saving function uses or not.
(1) Disable : It doesn't use the power save mode.
(2) Enable : It uses the power save mode.

■ Waiting time : It sets up the transferring time getting start the power save mode.

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. if press [CANCEL] key , Cancel them.

\subsection*{6.2.10 Shift Limit}

Out line

It sets up the limit value of the volume to be shifted.

It occurs the error if the shift volume is over the limit value that you set the limit value of the value to be shifted using in the XYZ SHIFT, ON-LINE SHIFT function.
\begin{tabular}{|c|l|c|}
\hline Name & \multicolumn{1}{|c|}{ Content } & \begin{tabular}{c}
Setting \\
value
\end{tabular} \\
\hline\(X\) axis direction limit & It is a limit value of \(X\) axis direction. & 200 mm \\
\hline Y axis direction limit & It is a limit value of Y axis direction. & 200 mm \\
\hline\(Z\) axis direction limit & It is a limit value of \(Z\) axis direction. & 200 mm \\
\hline\(X\) axis angle limit & It is a limit value of \(X\) axis angle. & 20 deg \\
\hline Y axis angle limit & It is a limit value of Y axis angle. & 20 deg \\
\hline\(Z\) axis angle limit & It is a limit value of \(Z\) axis angle. & 20 deg \\
\hline Shift Estimation & Opt ion & 5.0 mm \\
\hline
\end{tabular}

Screen display
14:39:38 *** Shift limit *** A:0 S:4
Axis Direction limit Angle limit
\(\mathrm{X}=[200.0] \mathrm{mm} \quad[20.0] \mathrm{deg}\)
\(\mathrm{Y}=[200.0] \mathrm{mm} \quad[20.0] \mathrm{deg}\)
\(Z=[200.0] \mathrm{mm} \quad[20.0] \mathrm{deg}\)
Shift evaluation value \(=[5.00] \mathrm{mm}\)

Select and Enter number. Press [SET]
\(>\) [0-9999.9]

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. if press [CANCEL] key , Cancel them.

\subsection*{6.2.11 Setting the user key}

\section*{Out line}

It uses this function after assigning some function in \(\mathrm{f} 1 \sim \mathrm{f} 4\) key of the teach pendent when the user wants to operate the robot easily.

For example
\begin{tabular}{|c|c|c|}
\hline No. & \(f\) key & Content \\
\hline 0 & Setting cancel & It cancels the set content. \\
\hline \multirow{3}{*}{501} & GUN2 & This the key for GUN2, same function to GUN key \\
\hline & [f?]key & It turns " G2" ON/OFF in status line of manual mode \\
\hline & [Enable]+[f?]key & The GUN2 signal outputs manually. \\
\hline \multirow{3}{*}{502} & MX & It operates the MX status(0N/OFF). \\
\hline & [f?]key & It turns " MX" ON/OFF in the status line of manual mode \\
\hline & [Enable]+[f?]key & The MX signal outputs manually. \\
\hline \multirow{3}{*}{503} & Tool selection & It selects Tool Number. \\
\hline & [f?]key & It describes " T0~T3" in status line of manual mode. \\
\hline & [Enable]+[f?]key & There is no function. \\
\hline \multirow[t]{3}{*}{509} & Speed 5\% Up & The recorded speed in presently selecting program goes up 5\% at one time. It doesn't change the speed between the step recorded block mark in case of being the step recorded block mark. \\
\hline & [f?]key & The recorded speed goes up 5\% at one time. \\
\hline & [Enable]+[f?]key & No function. \\
\hline \multirow[t]{3}{*}{510} & Speed 5\% Down & The recorded speed in presently selecting program goes down 5\% at one time. It doesn't change the speed between the step recorded block mark in case of being the step recorded block mark. \\
\hline & [f?] 키 & The recorded speed goes down 5\% at one touch. \\
\hline & [Enable]+[f?] 키 & No function. \\
\hline \multirow{3}{*}{523} & MX2 & This is the key for MX2, same function to MX(502) key. \\
\hline & [f?]key & It turns "MX2" ON/OFF in status line of manual mode.. \\
\hline & [Enable]+[f?] 키 & The MX2 signal outputs manually. \\
\hline \multirow{3}{*}{524} & GUN MANUALLY OPEN/CLOSE & This is the key to decide whether the servo gun is a big open
or small open. \\
\hline & [f?]key & No function \\
\hline & [Enable]+[f?]key & This is the function that move only when you press the open/close key as the stroke length as you set in the servo parameter. \\
\hline \multirow{3}{*}{525} & Manually gun pressure & This is the key to decide manual pressure of the servo gun. \\
\hline & [f?]키 & No function \\
\hline & [Enable]+[f?]key & This is the function that the servo gun pressure only when you press the kev with nrecent nreccure nower \\
\hline \multirow{3}{*}{526} & \begin{tabular}{l}
Manual welding condition \\
no. selection
\end{tabular} & This is the key to set up servo gun welding condition no. by manual. \\
\hline & [f?]key & It changes the \(W\) value of \(W: 1 S: 0\) in the status of manual mode. \\
\hline & [Enable]+[f?]key & No function \\
\hline 527 & Manual welding sequence no. selection & This is the key to set the servo gun welding sequence no. by manual. \\
\hline
\end{tabular}

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38*** f-kev setting *** A:0 S:4} \\
\hline \(\mathrm{f} 1=\left[\begin{array}{c}\text { [}\end{array}\right]\) & \\
\hline \multicolumn{2}{|r|}{0 : Key setting cancel} \\
\hline \multicolumn{2}{|r|}{501 :GUN2} \\
\hline \multicolumn{2}{|c|}{502 :MX} \\
\hline \multicolumn{2}{|r|}{503 :Tool selection} \\
\hline \multicolumn{2}{|r|}{509 : Speed up by 5\%} \\
\hline \multicolumn{2}{|r|}{510 :Speed down by 5\%} \\
\hline \multicolumn{2}{|c|}{523 :MX2} \\
\hline \multicolumn{2}{|r|}{524 :Servo GUN open/close} \\
\hline \multicolumn{2}{|r|}{525 :Servo GUN squeeze} \\
\hline \multicolumn{2}{|r|}{526 :Welding condition selection} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{array}{cl}
\mathrm{f}=\left[\begin{array}{cc}
{\left[\begin{array}{ll}
0
\end{array}\right]} & \mathrm{f} 2=\left[\begin{array}{ll}
0
\end{array}\right] \\
527 & \text { :Welding squence selection }
\end{array}\right]
\end{array}
\]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{2}{|l|}{\(>\) [0-527]} \\
\hline & Previnul Next Comnlete \\
\hline
\end{tabular}

Reference
(1) If you press" Complete" [PF5]key, Save the changed information. if press [CANCEL] key, Cancel them.

\subsection*{6.2.12 Coordination system registration}

Outline

It sets up the User coordination system or pedestal tool coordination system.

Screen display

\subsection*{9.2.12.1 User coordination registration}

Out line

This is the registration of User coordination system that register, define the coordination system, This means the coordination system that the user set up freely It is different from robot coordination and tool coordination.

Procedure

To register the User coordination system need the procedure that def ines coordination system as you want in advance. This describes by teaching the program that have 3 reference points (3 steps) defining the user coordination system.
Teaching method of 3 reference step to def ine the user coordination system
1) Step 1 : This is the step to define the zero point of user coordination.
2) Step 2 : This is the step to define the \(X\) axis of the User coordination.
3) Step 3 : This is the step to define the plain of \(X Y\) of the User coordination system , to decide the direction of \(Y\) axis and \(Z\) axis.

Screen display

Screen description

■ User coordination system No. : This is the number that will use as User coordination system.

■ Program No. to register : This is the number that will register as User coordination system.

Reference
(1) You can register up to total 10 User coordination system.
(2) Caution when record of the reference point to define the system.
(1) There aren't 3 reference points in the same straight line.
(2) Please doesn't make too narrow the length between 3 reference points.
(3) Steps after step no. 4 doesn't make any effective on the coordination system registration.
(3) If you press" Execute" [PF5]key, Save the changed information. If press [CANCEL] key , Cancel them.
(4) Please refer to the "Condition Setting" [PF5] \(\rightarrow\) 7. User Coordination system
6.2.12.2 Pedestal tool coordination system

Out line

It selects the position of tool end of pedestal tool in the outer of the robot.

You can input the XYZ coordination about the pedestal tool number. It is possible for you to register 4 positions from 0 to 3 .

XYZ coordination of tool end point of pedestal tool should input Base coordination of the controller. Usually Base coordination of controller is the robot base coordination.

Actual screen
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38*** Staionary tool *** A:0 S:4} \\
\hline \multicolumn{2}{|l|}{Staionary tool 0} \\
\hline \(\mathrm{X} 0=\left[\begin{array}{l}\text { [} 0 \text {] }\end{array} \mathrm{Y} 0=[1000.0] \mathrm{Z} 0=[\right.\) & 0.0] \\
\hline Staionary tool 1 & \\
\hline \(\mathrm{X} 1=[\quad 0.0] \mathrm{Y} 1=[1000.0] \mathrm{Z1}=[\) & 0.0] \\
\hline Staionary tool 2 & \\
\hline \(\mathrm{X} 2=\left[\begin{array}{cc}\text { (} & 0\end{array}\right] \mathrm{Y} 2=[1000.0] \mathrm{Z} 2=[\) & 0.0] \\
\hline Staionary tool 3 & \\
\hline X3=[0.0] Y3=[1000.0] Z3=[& 0.0] \\
\hline \multicolumn{2}{|l|}{Select and Enter number. Press [SET]} \\
\hline \(>[-5000.0-5000.0]\) & \\
\hline
\end{tabular}

Reference

You can use the process as followings to know the position of the pedestal tool with the robot coordination system.
First, You must calibrate accurately axis constant and tool constant. You can calibrate the tool constant and axis constant with using" SYSTEM" [PF2] \(\rightarrow\) 6. AUTO CONSTANT SETTING".

You should match accurately the tool end of pedestal tool end to the tool end of the robot. At this time, the position of the tool end displayed on teach pendent inputs in the pedestal tool number.

\subsection*{6.3 Machine Parameter}

The following screen is displayed if you select the robot parameter.
\begin{tabular}{l}
14:39:38 ** Machine parameter ** A:0 S:4 \\
\hline 1: Tool data \\
2: Axis constant \\
3: Softlimit \\
4: Arm interference angle \\
5: Setting encoder offset \\
6: Accel \& Decel parameters \\
7: B axis dead zone \\
8: Accuracy \\
9: Speed \\
11: Additional weight on each axis \\
Use [Number]/[Up][Down] and press [SET]. \\
\hline\(>\) \\
\hline
\end{tabular}

Selection method
(1) You can enter into the sub-menu if press [SET]Key after moving the highlights bar with using the arrow key to the item as you want to select.
(2) You can enter into the sub-menu if press [SET]Key after the item number as you want to select input with using the number key in the input frame.

Reference

■ The robot parameter store in the Machine constant file (ROBOT.C01).
■ You can't change in case that machine constant file (ROBOT.CO1) is in all protection status.

\subsection*{6.3.1 Tool Data}

Out line

You should register the length and angle of the tool. (Please register before teaching work) The robot does linear motion according to the setting length. The linear coordination motion or fixing motion of the tool end do the linear interpolation motion as you want if you must set the accurate value because the motion of the robot execute. and also, the tool angle decides the direct ion of the motion in case of tool coordination motion.

For example

The tool angle is the angle (Tn) of the end of the center of the R1 axis. as describing in the below feature. (n : Tool no. \(=0 \sim 3\)) The tool length is the length to each axis direction in the end of the center of the R1 axis. (\(n:\) Tool no. \(=0 \sim 3\))
(1)The length of \(X\) axis direction \(X n\)
(2) The length of \(Y\) axis direction Yn
(3)The length of \(Z\) axis direction \(Z n\)
(4) Rotation angle for X axis
Tn

\(x\) 축

Screen display

Screen description

■ Weight : Record the weight of tool.

■ Initia : Record the initia of the tool for tool coordination.

■ Center : Record the weight centering position of the tool basis on the R1 axis center.

Finding method of the initia for a cylindrical tool and a square pillar below feature is as following

```

Ix~=~{(Ly^2 + Lz^2 ) }/ 12XW IX~=~Iy~=~{(3r^2 + H^2 ) } / 12 X W
Iy~=~{(LX ^2 + Lz^2 ) }/ 12 X W Iz~=~{r^^ 2 }/ 2 X W
Iz~=~{ (LX ^ 2 + Ly^ 2 ) } / 12 X W

```

UNIT : WEIGHT[kg], LENGTH[m], INITIA[kg\{m^2\}]

Reference
(1) Auto calibration

Out line

You can make the same program to the previous program by calibrating automatically the tool constant without teaching when the teaching point in the previous program is different from the previous teaching point resulting in changing, modification of the tool.

You can get angle, length of new tool if executing the function after moving the setting tool in the step that taught previously.

At this time, the position data of the step that is taught is recorded as the pose data, accurate.

Screen display

Screen description

Existed program no. : You should input program no. that is taught before modification of the tool.

Step no. : Input the step no. that will execute tool constant auto calibration.

■ Tool no. to be set : Input the tool number that you want to set again.
(2) Angle calibration

Out line

It executes the calibration, angle setting of the tool.
You should select" Angle calibration" [PF2] key.

Screen display

Operation method

■ Please press "Execute [PF5]" after the direction of X, Y, Z of tool coordination that you want to define move the position of the robot to coincide with the direction of \(X,-Z, Y\).

■ At this time, the direction that the tool end is gong to move is the direction of the tool coordination system.

Reference

Position of the robot
for tool angle calibration and setting

\subsection*{6.3.2 Axis Constant}

Out line

It register the reference position of each axis.
It decides the direction of the linear motion by the axis constant.

It sets up the standard value when shipment. You need to change the constant of R1 axis according to the attaching direction of the tool, to change the constant of the S axis according to the situation of the robot and its peripheral device.

Screen display
\begin{tabular}{|lll}
\hline 14:39:38 & \(* * *\) Axis constants \(* * *\) A:0 S:4 \\
\hline \hline \(\mathrm{S}=[00400000]\) & [00400000] [& \(0.0]\) \\
\(\mathrm{H}=[00400000]\) & {\([00400000][\)} & \(90.0]\) \\
\(\mathrm{V}=[00400000]\) & {\([00400000][\)} & \(0.0]\) \\
\(\mathrm{R} 2=[00400000]\) & {\([00400000][\)} & \(0.0]\) \\
\(\mathrm{B}=[00400000]\) & {\([00400000][\)} & \(0.0]\) \\
\(\mathrm{R} 1=[00400000]\) & [00400000] [& \(0.0]\) \\
\\
\hline
\end{tabular}

Screen description

■ : Set up to the position that the axis angle by operating the Left/Right key is 0 .
■ : Set up to the position that the angle of \(H\) axis is 90 to the plain side.

■ V : Set up to the position that the angle of \(V\) axis is 0 to the plain side.

■ R2 : Set up to the position that R2 axis is 0 .

■ B : Set up to the position that B axis is 0 when R2 axis is 0 .

■ R1 : Set up to the position that R1 axis is 0 when R2 AND B axis is 0 .

Reference
(1) If you press " END" [PF5]key, Save the changed information. If press [CANCEL] key , Cancel them.

\subsection*{6.3.3 Soft Limit}

Out line

It sets to restrict the working range for each axis.

It sets the maximum working range of the robot when shipment in the production shop. Please reset according to the installation drawing when using in site.

Screen display

Screen Description

■ S LF : It sets the restriction value of the right part of the \(S\) axis soft limit.
RG : It sets the restriction value of the left part of the \(S\) axis soft limit.
■ H FW : It sets the restriction value of the forward part of the \(H\) axis soft limit.
BW: It sets the restriction value of the backward part of the \(H\) axis soft limit.
■ V Up : It sets the restriction value of the upper part of the \(V\) axis soft limit.
DW : It sets the restriction value of the down part of the \(V\) axis soft limit.
■ R2 DI : It sets the restriction value of the positive direction of the R2 axis soft limit.
RV : It sets the restriction value of the reverse direction of the R2 axis soft limit.
- B DI : It sets the restriction value of the positive direction of the B axis soft limit.

RV : It sets the restriction value of the reverse direction of the B axis soft limit.
■ R1 DI : It sets the restriction value of the positive direction of the R1 axis soft limit.
RV : It sets the restriction value of the reverse direction of the R1 axis soft limit.
■ It sets equally about the additional axis.

\subsection*{6.3.4 Arm Interference Angle}

Out line

It sets the working limit between the ARM.

In case of the robot it restricts the angle between the \(H\) axis and \(V\) axis according to the robot structure. It sets the maximum working range between the arm when shipment.

Screen display

\section*{Screen Description}

■ The minimum value : You can input the minimum value of the Arm interference angle (the minimum angle between H axis and V axis).

■ The maximum value : You can input the maximum value of the Arm interference angle(the maximum angle between \(H\) axis and \(V\) axis).

Reference

If you press " Complete" [PF5] key, Save the changed information. If press [CANCEL] key, Cancel them.

\subsection*{6.3.5 Encoder Offset Calibration}

Out line

It calibrates the original point of encoder.

It decides the original point of the encoder to the position of the reference pin of each axis. You should calibrate the encoder to match the original point of encoder as actual encoder values according to each axis are various.
You should set this value again only when you exchange the encoder, motor because of setting this value when shipment.

Screen display

\subsection*{6.3.5.1 Encoder Calibration (Position Record) \\ Out line}

You can input the encoder calibration value by moving the axis.
The encoder value to be recorded is a HEX value.

Actual Screen

Operating Method

■ The following message is displayed if you press [SET] after moving the cursor to the position of the axis where you want to set.

■ It presses [RECORD] after moving the robot to the position of the reference pin with operation button.

Reference
If you press " Complete" [PF5] key, Save the changed information. If press [CANCEL] key , Cancel them.

\subsection*{6.3.5.2 Encoder Calibration (Numer ic input)}

Out line
You can input directly the encoder calibration value.
The encoder value to be recorded is a Decimal value.

Screen display

■ It presses [SET] after inputting the offset value with numeric key after moving the cursor to the position of the axis where you want to set.

Reference
(1) If you press " Complete" [PF5]key, Save the changed information. If press [CANCEL] key, Cancel them.

\subsection*{6.3.6 Acceleration/Deceleration Speed Parameter}

Out line

It sets acceleration/deceleration time.

It is a parameter that decides the maximum speed, acceleration/deceleration time of each axis of the robot. When the robot is made a shipment from robot shop, it is set to the most suitable value.

Screen display

Contents of the screen

■ Maximum speed: It sets the maximum speed of each axis.

■ Acceleration time : It sets the time of acceleration section.

■ Deceleration ratio: It decides the deceleration time as the ratio on the acceleration/deceleration time.
\[
\text { Deceleration } \sim \text { time }=\text { Acceleration } \sim \text { time } X\{100 /(100-\text { Deceleration time })\}
\]

Reference
(1) It displays the auxiliary axis in case that it exists.
(2) Ordinarily, it can't be changed. but in case that you have to change it unavoidably, please inquire to the after service person of our company or operator.

\subsection*{6.3.7 B axis Dead Zone}

It sets the B axis Dead Zone.

The turning center of R1 axis and R2 axis is approximately parallel in the vicinity of zero degree of \(B\) axis. In this case, the robot is put in sudden movement with a little operation.
The vicinity of zero degree of B axis is called to Dead Zone. The controller adjusts automatically the movement of robot so that the movement of the wrist axis doesn't be more by free.

Screen display
\begin{tabular}{|l|}
\hline 14:39:38** B axis dead zone \(* * \mathrm{~A}: 0 \mathrm{~S}: 4\) \\
\hline Setting value \(=[10] \mathrm{deg}\) \\
Interpolation \(=\langle\) Position, Error-stop \(>\) \\
\\
\\
\hline Enter number and press [SET] \\
\hline\([0-90]\) \\
\hline
\end{tabular}

Contents of the screen

■ Setting value : It inputs the judgment angle of \(B\) axis Dead Zone.
- Interpolation Execution Method
(1) Position Interpolation : It maintains the locus of only tool end without pose interpolation.
(2) Error Stop : When the robot is in the B axis Dead Zone, it makes the robot stopped by treating as error.

Reference
(1) If [PF5] key which means "Complete" is pressed, the information which is
changed is saved. Conversely, if [ESC] key is pressed, it is cancelled.

\subsection*{6.3.8 Accuracy}

Out line

It sets the extent of coincidence with a destination position at the playback.

The range of accuracy is registered from zero to three. There are bit specifying type and distance specifying type in the specification of accuracy value.

In case that the step to move and next step are recorded as interpolat ion ON, the accuracy at the recorded point is automatically specified by distance. It is set with the standard value at the shipment from robot shop. Please set it again according to the circumstances.
< Accuracy Level >
\begin{tabular}{|c|cc|c|}
\hline Level & \begin{tabular}{c}
Bit \\
Specificat ion \\
\((X=0 \sim 9)\)
\end{tabular} & \begin{tabular}{c}
Distance specification \\
(Standard value at the shipment)
\end{tabular} \\
\hline Accuracy 0 & 128 & \(X+128\) & 5 mm \\
\hline Accuracy 1 & 256 & \(X+128\) & 10 mm \\
\hline Accuracy 2 & 640 & \(X+128\) & 50 mm \\
\hline Accuracy 3 & 3200 & \(X+128\) & 100 mm \\
\hline
\end{tabular}
※ But in case that X equals to 10 , accuracy check isn't executed.

Screen display
14:39:38 *** Accuracy *** A:0 S:4
\begin{tabular}{|c|c|c|}
\hline Level
0
1
2
3 & & Distance
\(\left[\begin{array}{r}5.0\end{array}\right] \mathrm{mm}\)
\(\left[\begin{array}{r}10.0\end{array}\right] \mathrm{mm}\)
\(\left[\begin{array}{r}50.0\end{array}\right] \mathrm{mm}\)
\(\left[\begin{array}{l}100.0\end{array}\right] \mathrm{mm}\) \\
\hline \multicolumn{3}{|l|}{Select and Enter number. Press [SET]} \\
\hline \(>\) [0-10] & & \\
\hline
\end{tabular}

\section*{Reference}
(1) In case of the gun step, without having concern with accuracy, it is 196bit in the interpolation OFF and in the interpolation ON, it restricts to that the distance isn't bigger than 1.0 mm .
(2) Discontinuous step / Continuous step
(1) Discontinuous step : It means a step to move off on the aimed step.

The move-off point is a point which the current value (feedback encoder) reaches to the accuracy level (Bit, Distance) designated in the step.
(2) Continuous step : It means a step which doesn't have the move-off point. There are steps that the cornering is possible and impossible step in the continuous step.
(3) Step that the cornering is possible
(1) The step that the cornering is possible shifts after planning the route between two steps. The step that the cornering is possible is the same as following. There are P (Interpolation 0 FF) , \(\mathrm{L}(\) Straight Line Interpolation) and C(Circular Arc Interpolation) in the interpolation type which supports in the Hi4 controller. The continuous system which supports the cornering in these types is L-L, L-J, J-L, C-J, J-C and J-J.
※ Only, the step which the coordinate system changes(for example, such case as it shifts for the direction of the positioner motive interpolation step from the robot tool interpolation) is excluded in the cornering step.
\begin{tabular}{|c|c||c|}
\hline \begin{tabular}{c}
Current step interpolat ion \\
method
\end{tabular} & Next step interpolat ion method & Corner ing \\
\hline \hline MnVF I & MnVF I & n \\
\hline MOVE L & MOVE P & O \\
\hline MOVE C & MOVE P & O \\
\hline MOVE P & MOVE P & O \\
\hline MOVE P & MOVE C & O \\
\hline MOVE P & O \\
\hline \begin{tabular}{c}
Pedestal tool straight line \\
interpolat ion
\end{tabular} & \begin{tabular}{c}
Pedestal tool straight line \\
interpolat ion
\end{tabular} & O \\
\hline SMOV L & SMOV L & O \\
\hline SMOV L & MOVE P & O \\
\hline SMOV C & SMOV P L & O \\
\hline MOVE P & SMOV C & O \\
\hline MOVE P & O \\
\hline The case of continuous step except those & \(\times\) \\
\hline
\end{tabular}
(2) The locus of L-L cornering

The L-L cornering is a method that plans the locus with a circular arc between two locuci of continuous straight line. It corners describing the locus of circular arc that circumscribes on the circle of accuracy range from two straight lines and a point which is applicable to step1 in the following figure. When replaying in the automatic mode, the locus should be checked in advance due to shifting without reaching to designate step.

(3) The locus of J-L and J-C cornering

If the J-L(or J-C) cornering enters in the accuracy range from the J step (Previous step), it plans to shift to the next step.

(4) The locus of \(\mathrm{L}-\mathrm{J}\) and \(\mathrm{C}-\mathrm{J}\) cornering

If the L-J (or C-J) cornering enters in the accuracy range from the L step (Previous step), it plans to shift to the next step.

(4) If [PF5] key which means "Complete" is pressed, the information which is changed is saved. Conversely, if [ESC] key is pressed, it is cancelled.

\subsection*{6.3.9 Speed}

Out line

It decides the record speed in making a program.
It is a value that is recorded at the same time when you record the step. If it is necessary, please set it again according to the use of robot.

There are from 1 level to 4 level in the high speed and from 1 level to 4 level in the low speed in the playback speed to be recorded. It is recorded to already decided speed in the following table according to level.
\begin{tabular}{|c|c|c|}
\hline Level Classification & \begin{tabular}{c}
Interpolation ON \\
(Interpolation
\end{tabular} & \begin{tabular}{c}
Interpolat ion OFF \\
(Joint action)
\end{tabular} \\
\hline Low speed 1 & \(10 \mathrm{~mm} / \mathrm{sec}\) & \(12.50 \%\) \\
\hline Low speed 2 & \(50 \mathrm{~mm} / \mathrm{sec}\) & \(25.00 \%\) \\
\hline Low speed 3 & \(100 \mathrm{~mm} / \mathrm{sec}\) & \(37.50 \%\) \\
\hline Low speed 4 & \(200 \mathrm{~mm} / \mathrm{sec}\) & \(50.00 \%\) \\
\hline High speed 1 & \(300 \mathrm{~mm} / \mathrm{sec}\) & \(62.50 \%\) \\
\hline High speed 2 & \(500 \mathrm{~mm} / \mathrm{sec}\) & \(75.00 \%\) \\
\hline High speed 3 & \(800 \mathrm{~mm} / \mathrm{sec}\) & \(87.50 \%\) \\
\hline High speed 4 & \(1200 \mathrm{~mm} / \mathrm{sec}\) & \(100.00 \%\) \\
\hline
\end{tabular}

Screen display

Reference
(1) If the [PF5] key which means "Complete" is pressed, the information which is changed is saved. Conversely, if the [ESC] key is pressed, it is cancelled.

\subsection*{6.3.11 Additional load per each axis}

Out line

It registers the information of transformer or the supporting structure for wiring which equipped on the basic axis of robot and so forth.

Screen display
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{14:39:38* Additional mass set * A:0 S:4} \\
\hline \multicolumn{4}{|l|}{1'st Axis =============================} \\
\hline Weight [& 0.0] Kg & & \\
\hline Component: & X & Y & Z \\
\hline Inertia[& 0.00] [& 0.00] [& 0.00]Kgm2 \\
\hline Center [& 0.0] [& 0.0] [& 0.0] mm \\
\hline \multicolumn{4}{|l|}{2'nd Axis =============================} \\
\hline \multicolumn{4}{|l|}{Weight[0.0] Kg} \\
\hline Component: & X & Y & Z \\
\hline Inertia[& 0.00] [& 0.00] [& 0.00]Kgm2 \\
\hline Center [& 0.0] [& 0.0] [& \(0.0] \mathrm{mm}\) \\
\hline \multicolumn{4}{|l|}{3'rd Axis ===========================} \\
\hline \multicolumn{4}{|l|}{Weight[0.0] Kg} \\
\hline Component: & & Y & Z \\
\hline Inertia[& 0.00] [& 0.00] [& 0.00]Kgm2 \\
\hline Center [& 0.0] [& 0.0] [& \(0.0] \mathrm{mm}\) \\
\hline \multicolumn{4}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{4}{|l|}{\(>\) [0-1000.0]} \\
\hline \multicolumn{4}{|r|}{Previnus Next Comnlete} \\
\hline
\end{tabular}

Contents of the screen

It inputs the load information of each axis by referring to the tool data of 6.3.1.

The coordinate system's origin on the each axis refers to the following figure. The \(\mathrm{X}, \mathrm{Y}\) and Z direction of each axis are set to the same direction with the coordinate system of robot.

\subsection*{6.4 Application parameter}

If you select the application parameter, the following screen is displayed.

14:39:38 *Application parameter* A:0 S:4
2: Arc
3: Palletizing
6: Conveyor
7: Volt. output proportional to Speed

Use [Number]/[UD][Down] and press [SET].
\(>\quad\) Previnild Next \(\quad\)

\subsection*{6.4.1 Spot \& Stud}

Out line

It is set to perform the spot \& stud welding work.

Screen display

Reference

■ The welding parameter is taken in custody in the control constant file (ROBOT.COO) and the servo gun parameter and the equalizing parameter are taken in custody in the machine constant file (ROBOT.CO1).
■ The spot welding data is taken in custody in the spot welding condition file (ROBOT. WSD).
■ In case that the control constant file, the machine constant file and the spot welding condition file are protected completely, it can't be changed.

\subsection*{6.4.1.1 Welding parameter}

Out line

It makes the welding work possible efficiently to save the information that is necessary when it welds is a spot welding or stud welding.

Screen display

Contents of the screen

■ Gun wait time (sec.) : It is a time when waits till the robot stops completely before outputting the gun signal.

■ Robot wait time (sec.) : It is a time when waits till the gun is opened completely after inputting the gun signal output and welding end signal. That is to say, it is a time when waits till the time the robot's movement starts after pressurizing the gun.

■ Brake wait time (sec) : It is a wait time to prevent the welding inferiority by calibrating the ON/OFF motion completion time of motor brake. It holds the motor brake because of the repulsion in the stud welding. It is a time when waits till the motor brake operates completely.

■ Weld stick detection (sec.) : It is a option.

■ Re-welding count : In case that the welding completion signal doesn't be inputted within the time set in the re-welding wait time after outputting the gun signal, it decides how many times the gun signal is outputted.

■ Re-welding wait time (sec.) : It sets a wait time till the re-welding.

■ Swerving error detection range (mm) : It means the range to display the error after detecting the slip of robot position by pressurization in doing the stud welding.

■ Swerving error detection count : After the exceeded frequency of swerving error detection range counts in doing the stud welding, if it exceeds the set frequency, it makes an error occurred.

■ Pulse width (\(0=1\) level) : It decides whether to output the gun signal to the level or the pulse. In case of the level, it sets 0 , and then the gun signal becomes OFF after inputting the welding completion signal (W1). And in case of the pulse, it sets the value that is bigger than zero, and then the gun signal automatically becomes OFF after outputting during the time when is set.

■ Gun signal first output time (sec.) : Usually, the gun signal is outputted. after a robot moves within the set accuracy range. but it sets the first output time in case of outputting gun signal before the robot arrives in the set range.
■ Welding condition synchronous output : Usually, the welding condition signal and the gun signal work differently. but, in case of outputting the welding condition signal synchronizing with gun signal, it is set to < Enable>.
(1) Disable : It doesn't use the welding condition synchronous output.
(2) Enable : It uses the welding condition synchronous output.

■ Welding condition output type : It decides whether to use the discrete type or the binary type for the welding condition signal.
(1) Discrete number : It can output the number of welding condition from 0 to 7(8EA).
(2) Binary code : It can output the number of welding condition from 0 to 255(256EA).
■ Welding condition first output time : When wanting to output the welding condition signal earlier than the gun signal, it is inputted.
■ WI common use : Usually, each welding complet ion signal is set to the Gun1, Gun2 signal, but in case that the air gun more than two uses, it is a data that decides whether to use the welding completion signal in commonness. The input signal assigned to WI (welding completion) in " System"[PF2] \(\rightarrow\) 2.Control parameter \(\rightarrow\) 1.Attribution of input/output signal \(\rightarrow 7\).Input signal assignment is the WI signal for the Gun1 and Gun2.
(1) Disable : It doesn't use the WI(welding completion) signal in commonness.
(2) Enable : It uses the WI signal in commonness.

\subsection*{6.4.1.2 Servo gun parameter}

Out line

It is set to do the spot welding by using the servo gun.

The additional axis should be registered to the servo gun and in case of making out the machine constant file, it is set to the initial value. If it is necessary, please change it according to the gun or the welding method so forth.

Please refer to the servo gun function manual for more precise contents.

Screen display
14:39:38* Servo Gun Parameter * A:0 S:4
1: First(1) servo gun parameter
2: Second(2) servo gun parameter

■ In case of using the multi-gun, it should be set on two items of the first and second servo gun parameter.
If advanced to the first servo gun parameter, the following screen is displayed.
- In case of selecting the next screen

Contents of the screen

■ Large open stroke (mm) : It designates the distance that in case of the manual opening and closing (Enable+f), the movable electrode and the fixed electrode are opened to the maximum.

■ Small open stroke (mm) : It designates the distance that in case of the manual opening and closing (Enable+f), the movable electrode and the fixed electrode are closed to maximum. Also, it designates the distance that in case of the manual gun pressurization motions (Enabletf), the movable electrode and the fixed electrode are opened to the maximum.

■ Movable electrode clearance (mm), Fixed electrode Clearance (mm) : In case of replaying the spot welding function, it designates the pressurization starting position.

■ Maximum electrode abrasion quantity (mm) : In case of using the Gun search function, it decides the range of gun search. Two times value of the maximum electrode abrasion quantity becomes the search range. Also, in case that the total abrasion quantity detected with the gun search exceeds the maximum electrode abrasion quantity, it displays the error message such as "E0154" Total electrode exceeded the maximum abrasion quantity" and stops the playback. In case of being set to 0mm, it doesn't
check the abnormality of abrasion quantity.

■ Electrode exchange abrasion quantity (mm) : In case that the electrode's abrasion quantity detected with the gun search exceeds the electrode exchange abrasion quantity, it displays the warning message such as "W0105 Total electrode exceeded exchange maximum abrasion quantity" and informs the exchange of electrode by outputting the electrode abrasion warning signal. In case of being set to 0 mm , it doesn't check the abnormality of abrasion quantity.

■ Gun arm bending offset quantity (mm) : To originate the pressurization force, the fixed electrode bending of a certain extent occurs. Like this, the bending of gun to generate the pressurizat ion force is called to the gun arm bending of fset quantity. In case of replaying the spot welding function, it pressurizes the position of movable and fixed electrode after compensating as the quantity of offset.

■ Gun arm bending quantity/100Kgf (mm) : It sets the bending quantity of gun arm by the pressurization force to the bending quantity per 100kgf. In case of replaying the spot welding function, it pressurizes the position of fixed electrode after calculating and compensating the gun arm bending quantity through this set point and the instruction pressurization force. The bending quantity of movable electrode doesn't be compensated.

■ Fixed electrode/Total bending (\%) : In case that both fixed electrode and movable electrode bend when pressurizing, it sets the ratio of the bending quantity of fixed electrode per total bending.
- Pressurization force accuracy (\%) : When checking the pressurization accord, if the practical pressurization force reaches in the range of pressurization force accuracy comparing with the instruction pressurization force, it is recognized to the pressurization accord. In case of being set to 0 , it doesn't check the pressurization accord.

■ Pressurization force error detection delay time (sec) : It sets the time when requires from the start of pressurization motions to the pressurization accord. In case of being in pressurization accord within this time, it immediately outputs the signal of sending an electric current at the moment of pressurization accord. If it is in pressurization accord within this time, it stops after outputting the error message such as "E1314 It exceeded the checking time of pressurization force accord". and if it is set to 0.0 second, it outputs the signal that is sending an electric current without checking the pressurization force accord.

■ Maximum movable electrode abrasion quantity (mm): In case that the abrasion quantity of movable electrode detected with the gun search exceeds this set point, it stops
after outputting the error message such as "E0156 The fixed electrode exceeded the maximum abrasion quantity". and if it is set to 0.0 mm , it doesn't perform the error detection.

■ Maximum fixed electrode abrasion (mm) : In case that the abrasion quantity of fixed electrode detected with the gun search exceeds this value, it stops after outputting the error message such as "E0156 The fixed electrode exceeded the maximum abrasion quantity". and if it is set to 0.0 mm , it doesn't perform the error detection.

■ Movable electrode exchange abrasion quantity (mm) : In case that the quantity of movable electrode detected with gun search exceeds this value, it informs the exchange of electrode by outputting the warning signal after outputting the error message such as "W106 Movable electrode exceeded the exchange abrasion quantity. But in case of being set to 0.0 mm , it doesn't perform the error detection.

■ Fixed electrode exchange abrasion quantity (mm) : In case that the quantity of fixed electrode detected with the gun search exceeds this value, it informs the exchange of electrode by outputting the warning signal after outputting the error message such as "W107 The fixed electrode exceeded the exchange abrasion quantity. But in case of being set to 0.0 mm , it doesn't perform the error detection.

■ Pressurization speed (\(\mathrm{mm} / \mathrm{sec}\)) : When it performs the pressurization motions in case of replaying the manual gun pressurization (Enable+f), the pressurization of gun search and the spot welding function, it designates the movable speed of fixed electrode and movable electrode.

■ Instruction value offset (mm) : To generate the pressurization force in case of replaying the spot welding function, it makes the pressurization force generated by outputting the instruction of movable electrode so much as the instruction value offset distance for the direction of pressurization from the record position.

■ Gun type=<Robot gun, Pedestal gun>: In case of using the pedestal gun, it sets the coordinate system of pedestal gun to that of user. But in case that it isn't the pedestal gun, please set to the robot gun, and in case of using the pedestal gun, please set the number of user's coordinate system in the coordinate number so that the fixed electrode direction can be the \(Z\) direction of user's coordinate system. In case that the number of coordinates is set to " 0 ", it becomes the coordinate system of robot.

■ Pressurization-Electric current table1(Gravity direction), Electric current table2 (Half-gravity direction) : It is used to adjust it in case that either the set pressurization force or the practical pressurization force exceeds the permitted limit in the measured value of pressurization force gauge. This electric current
pressurization table can set the current value on the pressurization of 5 unit choosed freely.

Reference
(1) Certainly, set a data before using the servo gun function.
(2) In case that the set point is improper, even if the "PF5" [Completion] key is pushed, it isn't changed. Therefore, please set to proper value again as follows.
- The large open stroke should be set to being within the range of soft limit.
- The small open stroke should be set to being smaller value than that of the large open stroke.
- The movable electrode clearance should be set to being smaller value than that of the small open stroke.
(3) In the multi-gun, it is possible in motor-off to register the pedestal gun. but in case of being set together with the robot gun, it can't do motor-on. therefore you should select either all of the robot guns or all of the pedestal guns.
(4) The number of pedestal gun coordinate system is effective only in case of that the gun type is a pedestal gun.
(5) The pressurization force-electric current table should be set by measuring with the pressurization force gauge because it can be different according as whether the movable electrode is a gravity direction or half-gravity direction.
(6) Please refer to the specification manual on servo gun function for the precise contents of parameter.
6.4.1.3 Spot welding data (condition, sequence)

Out line

It displays and changes the contents of a welding sequence data in the application of servo gun.

The servo gun welding condition and sequence recorded in the spot welding file(ROBOT.WSD) are datum which use in case that the spot welding function is operated.

Please refer to the user manual on servo gun function for the precise contents.

Screen display

Reference

■ The spot welding data is taken in custody in the spot welding condition file (ROBOT.WSD).
■ It can be changed in case that the spot welding condition file (ROBOT.WSD) is completely taken in custody.

\subsection*{6.4.1.3.1 Common data}

Out line

It is a data which is applied in commonness without having concern with the welding condition or sequence number.

Screen display

Contents of the screen

■ Treatment in the error: It is a treatment when the welding completion signal isn't inputted.
(1) Interlock wait : It wait until the welding completion signal is inputted.
(2) Stop : If the welding completion signal isn't inputted, it makes the robot stopped by treating as an error.

■ Gun open in the error/stop : It opens the servo gun and stops when the error or stop occurs under the welding.

■ WI common use : It is a data that decides whether the welding completion signal uses in commonness or not in case of using the servo gun more than two.
(1) Disable : It doesn't use the welding completion signal in commonness.
(2) Enable : It use the welding completion signal in commonness.

\subsection*{6.4.1.3.2 Welding condition}

Out line

It is a data that decides the welding condition and the servo gun pressurization force so forth.

Screen display

Contents of the screen

■ Number: It is the number that designates in the spot welding function and there are 64 unit.

■ Output data : It inputs the welding condition signal to output to the welder controller.

■ Output type: It is a data that designates the output type of welding condition signal. This item is fixed to binary.

■ Pressurization force (Kgf) : It inputs the data of servo gun pressurization.

\subsection*{6.4.1.3.3 Welding sequence}

Out line

It is a data that decides the welding sequence of controller in the playback of the spot welding.

Screen display
\begin{tabular}{ll}
\hline 14:39:38 *** Weld Sequence \(* * *\) A:0 S:4 \\
\hline \hline Number & \(=[1]\) \\
Condition signal & \(=<\) DSBL, ENBL \(>\) \\
Squeeze signal & \(=<\) DSBL, ENBL \(>\) \\
Welding command signal & \(=<\) DSBL, ENBL \(>\) \\
WI wait & \(=<\) DSBL, ENBL \(>\) \\
Welding wait time & \(=[0.00]\) \\
Welding end wait time & \(=[0.00]\) \\
& \\
\hline Select and Enter number. Press [SET] \\
\hline\(>[1-64]\) & \\
\hline
\end{tabular}

Contents of the screen

■ Number : It is the number that designates in the spot welding function and there are 64 unit.

Condition signal : It designates whether to output the welding condition signal or not. Currently, this item is fixed to <Enable>.

■ Pressurization signal : It designates whether to output the pressurization signal or not. Currently, this item is fixed to <Disable>.

■ Weld signal : It designates whether to output the weld signal or not. Currently, this item is fixed to <Enable>.

■ WI wait : It designates whether to do the welding completion wait or not after outputting the weld signal. Currently, this item is fixed to <Enable>.

■ Weld wait time: It designates the wait time of welding completion signal after outputting the weld signal. The 0.0 is the infinite wait.

■ Welding completion wait time: It designates the wait time of until the gun opens after completing the welding. But in case that the gun open time is short, the
welding completion wait is also come to an end.

\subsection*{6.4.1.3.4 Data copy}

Out ine

It can copy the data of welding condition number and sequence number to that of other number.

Screen display

Contents of the screen

■ Selection: It selects that the data to copy is whether the welding condition number or the welding sequence number.

Data number to copy : It inputs the data number to copy. (1 - 64)

Data number to be copied : It inputs the data number to be copied.. (1 - 64) Reference
(1) The spot welding data can be operated only in the servo gun circumstances.
(2) It can change the data in process of the playback.
(3) The election of welding condition signal in the servo gun is impossible.
(4) The deposition in the servo gun is possible only through the detection by the outside signal.

\subsection*{6.4.1.4 Equalizing parameter}

Out l ine

It is set to do the spot welding by using the equalizerless air gun.

The G1 or G2 should be <Eq' less> in "SYSTEM" [PF2] \(\rightarrow\) 5. Initialization \(\rightarrow 4\). GUN mode setting. If the initial value is set in making out the machine constant file, if it is necessary, please change it according to the gun or the welding method.

Please refer to the specification manual on the robot equalizer function for the precise contents.

Screen display

Contents of the screen

■ Fixed electrode clearance : It designates the pressurization starting position in the step that executes the order of gun pressurization.

■ Maximum fixed electrode abrasion quantity : If the abration quantity of fixed electrode detected with the gun search exceeds this value, it stops after outputting the error message such as "E0156 The fixed electrode exceeded the maximum abration quantity".

■ Fixed electrode exchange abration quantity : If the abration quantity of fixed electrode detected with the gun search exceeds this value, it informs the exchange of electrode after outputting the warning message such as "W0107 The fixed electrode exceeded the exchange abration quantity" and the warning signal of electrode abrasion. At this time, it doesn't stop replaying.

■ Fixed electrode abration search distance: It is a parameter that decides the maximum range of the robot to move so as to measure the abrasion quant ity of fixed electrode. The basis coordinate system of this gun search motions is a tool coordinate system and it inputs the aimed position by measuring the quantity to move for the direction of \(Z\) axis. In case of replaying after exceeding the fixed electrode abrasion search distance, it stops after outputting the error message such as "E1320 The sensor doesn't work in process of the gun search" and returning to the previous position of the gun search.

■ Robot equalizing speed : It is a speed that is necessary to move the fixed electrode equalizing motion to robot. The speed that the fixed electrode accesses to the test piece will be different according to this value.

■ Gun type : It sets the coordinate system of pedestal gun to that of user in case of using the pedestal gun. Please set to the robot gun in case of not pedestal gun.

Please set the number of user coordinate system in that of pedestal gun coordinate system in case of using the pedestal gun.

In case that the number of coordinate system is set to "0", it becomes the coordinate system of robot.

\section*{Reference}
(1) Please set the data without fail before using the robot equalizer function.
(2) The number of pedestal gun coordinate system is enable only in case that the gun type is a pedestal gun.
(3) Please refer to the specification manual on the robot equalizer function for the precise contents of parameter.

\subsection*{6.4.2 Arc}

Out l ine
It sets a function to do the arc welding.
Please refer to the "Operation manual on the HR controller" for the precise contents.

Screen display

Reference
- The arc condition parameter is taken in custody in the control constant file (ROBOT.COO).
■ It can be changed in case that the control constant file (ROBOT.COO) is completely taken in custody.

\subsection*{6.4.2.1 Condition parameter}

Out line

It sets a variety of condition for the welding work in the arc welding.

Screen display

Contents of the screen

1: High step forward/backward setting
It sets the speed in case of using the high speed movable function. That is to say, it is the movable speed when the [SHIFT(high speed)] + [Step forward] and [Step backward] are pressed. (Refer to the high speed movable function)

2: Inching speed setting
It is the wire feeding speed for the wire inching and the retract when using the [Delivery], [Retreat] key. The wire speed is set at the rate of maximum speed. Also, it sets the feeding speed of low speed or high speed(it works in pressing for more than three seconds). (Refer to the Inching and Retract function)

3: Welding electric current instruction output port assignment \(\sim\) 5: [ARC On] key state output signal assignment
It assigns the port number of every kind signal used in the arc welding. That is to say, it decides the number of DI and AO .

6: Welder error state input ~ 8: Gas pressure state input
It decides whether to use a variety of the dedicated input signal used in the arc welding or not

9: [Inch.] output in case of [Retract]
It decides whether to output the delivery signal or not when pressing the [Retreat] key for the welding wire retract.

10: Gas back-emission time in stopping in process of welding
It inputs the time when outputs the gas in the emergency stop in process of the welding or when the robot is stopped by the outside error.

\subsection*{6.4.3 Palletizing}

Out line

It sets the information that is necessary to use the palletizing function.

The GUN 2 should be set to the palleting in "SYSTEM"[PF2] \(\rightarrow\) 5. Initialization \(\rightarrow\) 4.GUN mode setting.

Please refer to the "Palletizing function manual" for precise contents.

Screen display

\section*{Reference}

■ The palletizing pattern register is taken in custody in the palletizing pattern file (ROBOT.PAL).

■ It can't be changed in case that the palletizing pattern file(ROBOT.PAL) is completely taken in custody.

\subsection*{6.4.3.1 Palletizing pattern register}

Out line

It saves the information that is necessary to use the palletizing function.

It inputs the basic element to execute the palletizing function. To use the palletizing function, it has to be inputted.

It can save the "pattern register" of 16 unit at maximum. If it is necessary, please change it according to the palletizing loading pattern.

Screen display

■ 1: If the pattern register 1 is selected, the next screen is displayed.
\begin{tabular}{|c|}
\hline 14:39:38 ** Pattern Register ** A:0 S:4 \\
\hline \#Palletize pattern Reg. No 01 \\
\hline Not use/use \(=[\square 0]\) \\
\hline Palletize/Depalletize \(=[0]\) \\
\hline Pattern number (CNT/layter) = [1] \\
\hline Subpattern number \(=[1]\) \\
\hline Total layter number \(=[1]\) \\
\hline Even layer rotation \\
\hline Stacking direction \(\quad=<0,1,2,3>\) \\
\hline Tool = FFork, Vaccum> User coord = [0] \\
\hline Basic Workpiece=[0.1][0.1][0.1] \\
\hline Pallet slope \(=[0.00][0.00][0.00]\) \\
\hline \multirow[t]{7}{*}{```
#Palletize pattern Reg.No 01
Slip compensation by work weight
St.layer=[1]Shift(mm) =[0.0]K=[1]
Tier sheet insertion function
Tier sheet insertion =every [0]tier
The last tier sheet =<NO,YES>
Thickness of tier sheet =[0.1]mm
```} \\
\hline Press [SHIFT] + [<-][->] Kev \\
\hline \multirow[t]{2}{*}{P[0-1]} \\
\hline \\
\hline
\end{tabular}

Contents of the screen

■ Disuse/Use : It decides whether to use the present pattern register or not.

■ Palletizing/Depalletizing : It decides whether to execute the palletizing or depalletizing.
- Pattern number (the number/first stage) : The pattern number is the total work object of one stage. There are patterns of 25 unit on the basis of the number of total work object which can stack on one stage. It sets the wishful pattern number.

■ Sub-pattern number : It divides the pattern of other shape classified by the pattern number. There are sub-pattrens of 6 unit which the loading shape and size are different each other. It sets the sub-pattern number of wishful shape.

■ Total stage number : It sets the total stage number to stack.

■ Even number stage loading rotative angle : It is to load all of the pattern by rotating properly in the even number stage to prevent the work object from falling down.

It is possible for even number stage to rotate 0,90 and 180 on the basis of the basic pattern.
It means \(0=0 \quad, 1=90\) and \(2=180\). Generally, The even number stage comparing with the odd number is loaded rotating 180 .

■ Loading direction : It decides the loading direction to decide the working order in loading the work object.

■ Handling tool : There are two cases which set this item.
(7) The case that the position where picks up the work object is changed according to the kind of handling tool.
(ㄴ) The case that the position where picks up the work object is changed according to the size variation of work object.
The robot should correspond to the position variation that picks up the work object.

■ User coordinate system : The user coordinate system can use only in case that the "handling tool" is set to the "vacuum". The step that this user coordinate system is applied is applied only in the step which the step condition is "PK". (The PK means what picks up the work object(picking))

The register of user coordinate system
Step 1 : It defines the origin of user coordinate system.
Step 2 : It defines the step that defines the \(X\) axis of user coordinate system.
Step 3 : It is the step that defines the XY plane of user coordinate system and it decides the direction of \(Y\) axis and \(Z\) axis.

■ Basis work object size : It sets the size of basis work object.

■ Palette dip angle : It compensates as the quantity as inclined considering the Palette dip angle in piling up the work object. The compensating quantity is reflected by being increased and decreased on the shift quantity. It inputs the measured value after measuring the Palette dip angle.

■ Opening stage number : It inputs the stage number to shift the compensation of variation quantity.

■ Variation quantity : It inputs the value divided the total variation quantity by the applied stage number.

■ k : It reflects the weight of work object according to the extent of deflection value.

■ Letter-paper insertion basis : It sets the basis that inserts the letter-paper.

Last letter-paper existence yes or no : It decides the existence yes or no of letter paper at the end.

■ Letter-paper thickness : It inputs the letter-paper thickness.

Reference
(1) Certainly, set the data before using the palletizing function.
(2) In case that the set point is unsuitable, even if you press the [PF5] key, the set point isn't changed. Therefore, please set to the proper value again as follows.
- The GUN 2 should be set to the palletizing to set the palletizing pattern register.
- In case of setting the pattern number and the sub-pattern number, please confirm the number that doesn't support.
- Please refer to the Palette dip angle measurement for the Palette dip angle.
- The letter-paper insertion basis can't be bigger than the total stage number.
6.4.3.2 Palette dip angle measurement

Out line

It is a function that can measure the dip angle easily by making out the teaching program separately for the Palette dip angle which is difficult to measure physically in the workshop

Screen display
\begin{tabular}{|ll|}
\hline 14:39:38 ** Pallet slope ** & A:0 S:4 \\
\hline Pallet slope teaching program & \(=\left[\begin{array}{ll}1\end{array}\right]\) \\
Palletize base step number & \(=\left[\begin{array}{ll}1\end{array}\right]\) \\
Palletize Rec.Posi(X Direct.) & \(=\left[\begin{array}{ll}1 & 1\end{array}\right]\) \\
Pallet Rec.Posi(Y Direct.) & \(=\left[\begin{array}{l}1\end{array}\right]\) \\
& \\
\hline Enter number and press [SET] \\
\hline\([1-999]\) & \\
\hline
\end{tabular}

Contents of the screen

■ Palette dip angle measurement program number : It inputs the program number made out to measure the dip angle.
- Palette basis step number : It records the position step that the palette and the initial work object are to be put.

■ Palette X direction record step number : It records the step in the direction of X axis. ( robot coordinate system basis )

■ Palette Y direction record step number : It records the step in the direction of Y axis.( robot coordinate system basis )

\subsection*{6.4.6 Conveyor}

Out line

It sets a variety of parameter to use the conveyor synchronous function and also a variety of condition to decide the motions shape of conveyor synchronous playback.

The conveyor synchronism should be set to the <ON> in "SYSTEM"[PF2] \(\rightarrow 5\). Initialization \(\rightarrow 2\). Robot type selection.

Please refer to the "User manual on the conveyor function" for the precise contents.

Screen display
\begin{tabular}{l} 
14:39:38 *** Convevor *** A:0 S:4 \\
\hline 1: Conveyor parameter setting \\
2: Conveyor angle/centr auto-set \\
\\
\\
\\
\hline Use [Number]/[Up][Down] and press [SET]. \\
\hline
\end{tabular}

\section*{Reference}

■ The conveyor constant is taken in custody in the control constant file. (ROBOT. C00)
■ It can't be changed in case that the control constant file(ROBOT.COO) is completely taken in custody.

\subsection*{6.4.6.1 Conveyor constant setting}

Out line

It sets a variety of parameter on the conveyor when intending to work by using the conveyor .

Screen display


Contents of the screen

■ Conveyor type : It sets the conveyor type that decides whether the work conveyor shape to work is a straight line or pattern. The conveyor of pattern type isn't supported at present.

■ Conveyor constant : It inputs the pulse number generated from the pulse producer when the conveyor moves 1 m .
- Straight line conveyor horizontal angle: It inputs the angle the advancing direction of conveyor rotates in the plus direction of robot coordinate system' \(Z\) axis center on the basis of X axis of robot coordinate system.

■ Straight line conveyor vertical angle: It inputs the angle the advancing direction of conveyor rotates in the plus direction of robot coordinate system' Y axis center on the basis of \(X\) axis of robot coordinate system.

■ Pattern conveyor \(X\) axis rotative angle : The pattern conveyor isn't supported at present.

■ Pattern conveyor \(Y\) axis rotative angle : The pattern conveyor isn't supported at present.

■ Pattern conveyor center \(X\) value : The pattern conveyor isn't supported at present.

■ Pattern conveyor center Y value : The pattern conveyor isn't supported at present.

■ Pattern conveyor center \(Z\) value : The pattern conveyor isn't supported at present.

■ Sampling interval : It is fixed to the 0.1 second at present.

■ Pulse error detection permissible count : Even if the pulse error is made, it makes the robot worked continuously to protect the work object in process of the synchronous work. For example, if the pulse error detection permissible count is set to 3 , even if the pulse error in process of the synchronous work in the one work object is detected more than three time, the robot doesn't make an error but makes the synchronous work continued normally by making the proper pulse value artificially.

■ Robot in case of the conveyor stop : When the signal isn't inputted in process of operating the conveyor, that is to say, when the conveyor stops, it decides the movement of robot.
(1) Execution : In case that the signal isn't inputted in process of operating the conveyor, it stops after executing by the end of cycle in process of replaying. and then it waits for the starting signal.
(2) Stop : In case that the signal is inputted in process of operating the conveyor, it makes the robot stopped.

■ Conveyor permissible frequency: It sets the upper limit value of normal pulse number outputted from the conveyor pulse producer per one second. It is possible to input from 1 kHz to 15 kHz at present.

■ Conveyor permissible speed : It treats as the error in case that the conveyor speed is higher than the set permissible speed.

■ Even number work object advance : It decides the contents to treat it in case that another work object advances into the work space hitting the limit switch when the robot works at the one work object on the conveyor.
(1) Permission : It permits the advance of even number work objects.
(2) Error : It makes the robot stopped by making an error in case that the even number work objects are advanced.
(3) Disregard : It disregards it even if the even number work objects are advanced.
- Synchronism in case of robot's temporary stop: It decides whether to carry out the conveyor tracking or not in case that the robot temporarily stops by the input of stop order in process of replaying.
(1) Prohibition : It doesn't carry out the conveyor tracking in case that the robot stops by any cause in process of replaying.
(2) Permission : It carries out the conveyor tracking in case that the robot stops by the stop order or occurrence of error so forth.

Please consult with the experts of our company for more precise contents.

■ CNVY pulse counting type : It is a item to announce the jump setting of pulse count circuit in the BD480 board to the controller.
(1) Jumper2(JP2) short of BD480 board : Up/Down count
(2) Jumper3(JP3) short of BD480 board : Up count

■ System error detection related with the synchronism : In case that the robot can't be the operation preparation ON by making the system error related with synchronism of conveyor due to the incompletion of system installation or board damage so forth, it can be set not to make an relative system error so as to do the motions that aren't related with the synchronous work such as making the robot moved to the position designated specially by the manual operation.
6.4.6.2 Automatic setting of the conveyor angle and center

Out line

In case that the direction of conveyor isn't paralleled to the X axis or Y axis of robot coordinate system when setting the horizontal/vertical angle of the conveyor, it isn't easy to measure the conveyor angle precisely which is in the space of three dimensions. It offers the method which can find the conveyor angle by the brief operation of user to remove the inconvenience such as this.

Screen display


Contents of the screen

■ Conveyor type : It selects the conveyor type which wants to work with. The pattern conveyor isn't supported at present.
■ Program number for the automat ic setting : The straight line conveyor records two points. The method which records the position is that at first, records one point after the tool end of robot indicates one point on the conveyor and then records additional one point after the tool end of robot indicates the same position on the conveyor by moving 1m approximately.

If the conveyor angle is found by the execution, the result is displayed as following screen.


\subsection*{6.4.7 : Speed proportion voltage output}

Out line

It makes the analog voltage in proportion to the tip velocity of robot outputted from the BD480 board. ( option )

If the outputted voltage is used in combination with the sealing equipment for the voltage controller type, it is possible to maintain the discharge in the vicinity of the sealing beginning position and corner in doing the sealing work.


The output of analog voltage is made through the TBAO terminal of BD411 board connected to the BD411 board and serial port.
(1) Specification of BD481 analog output part
\begin{tabular}{|c|c|}
\hline Output channel number & 4 channel \\
\hline Output voltage range & \(-12.0 \mathrm{~V} \sim+12.0 \mathrm{~V}\) \\
\hline DAC Resolut ion & \(0 \sim 3\) \\
\hline
\end{tabular}
(2) Analog output voltage per digital input value.
\begin{tabular}{|c|c|}
\hline Digital input value & Analog output voltage \\
\hline FFFh & +12 V \\
\hline 800 h & 0 V \\
\hline 000 h & -12 V \\
\hline
\end{tabular}
(3) Pin arrangement of analog output terminal
\begin{tabular}{|c|c|c|}
\hline Terminal name & Pin number & Signal \\
\hline \multirow{6}{*}{ TBA0 } & 1 & Channel 0 output \\
\cline { 2 - 4 } & 2 & AGND (Analog ground) \\
\cline { 2 - 3 } & 3 & Channel 1 output \\
\cline { 2 - 3 } & 4 & AGND (Analog ground) \\
\cline { 2 - 3 } & 5 & Channel 2 output \\
\cline { 2 - 3 } & 6 & AGND (Analog ground) \\
\cline { 2 - 3 } & 7 & Channel 3 output \\
\cline { 2 - 3 } & 8 & AGND (Analog ground) \\
\hline
\end{tabular}

Screen display


Reference
(1) In case of selecting the " SERVICE"[PF1] \(\rightarrow\) 1.Monitering \(\rightarrow\) 19.Analog data, you can do the monitoring on the input/output state of analog input/output signal.
(2) The speed proportion output data is taken in custody in the control constant file. (ROBOT.COO)
(3) It can't be changed in case that the control constant file(ROBOT.COO) is completely protected.

\subsection*{6.5 System format}

If selecting the initialization, the following screen is displayed.
\begin{tabular}{l} 
14:39:38 *** Svstem format *** A:0 S:4 \\
\hline 1: System format \\
2: Selecting type of the robot \\
4: Positioner group setting \\
5: Positioner group setting \\
Use[Number]/[Up][Down] and press [SET]. \\
\hline Previnus Next \\
\hline
\end{tabular}

\subsection*{6.5.1 System format}

Out line

It sets the control constant file (ROBOT.COO) to the value in the shipment from the robot shop after deleting all of the data being in the custody range of controller.

\section*{Screen display}

If selecting the system initialization, the following message is displayed.


■ If pressing the [Yes] key, the format is progressed. But conversely, if pressing the [NO] key, it is canceled.

\section*{Reference}
(1) The following screen is displayed after the system initialization is progressed.

(2) In case of selecting the system initialization, even if you initialize the system one more time, the same screen as that of the upside is also displayed.
(3) If selecting the "File control"[PF1], the following screen is displayed. This is a function that is necessary to use the constant file made out at the former times when the constant file doesn't exist. The operating method is same as the "SERVICE"[PF1] \(\rightarrow\) 5.File control.
\begin{tabular}{l} 
14:39:38 *** File manager *** \\
\hline \hline 1: Rename \\
2: Copy \\
3: Delete \\
4: Protect \\
Use[Number]/[Un][Down] and Dress [SET]. \\
\hline \\
\hline Sustem \\
\hline
\end{tabular}

\subsection*{6.5.2 Robot type selection}

Out line

It sets the machine constant file (ROBOT.C01) to the value in the shipment of controller from the robot shop and it is a function that a variety of record files are newly made out to the value set in the control constant file.

Screen display


■ If selecting the name that accords with the robot manipulator, the following screen is displayed.
\begin{tabular}{l} 
14:39:38 *Robot tvpe selection* A:0 S:4 \\
\hline H120 \\
The number of additional axes = [0] \\
Conveyor synchronization \(=<0 \mathrm{FFF}, \mathrm{ON}>\) \\
Vibrat ion control mode \(=\) <OFF, ON \(>\) \\
\\
\hline Enter number and press [SET] \\
\hline\([0-6]\) \\
\hline
\end{tabular}

Screen description

■ Additional axis number : It inputs the number of additional axis in case that the additional axis exists. Because the additional axis number is set to the " 0 ", in case
that the additional axis doesn't exist, if pressing the "Execution" key, the reconfirmation message is displayed as follows. If pressing the [YES] key, the constant file is made out and conversely, if pressing the [NO] key, it is cancelled.


Conveyor synchronism : When doing a work synchronizing with the conveyor, please set to the ON.

■ Vibration damping controller application : If you want to use the vibration damping controller, please set to the 0 N .

Reference
(1) If the system initialization isn't done, the following message is displayed. And if pressing the [Esc] key, you can begin it again.

(2) If the machine constant file(ROBOT.C01) exists, the following message is displayed. And if pressing the [YES] key, it is newly made out and if pressing the [Esc] key, it is cancelled.

(3) If the machine constant file(ROBOT.CO1) exists and the attribution of file is set to the complete protection, the following message is displayed. And if pressing the [Esc] key, you can begin it again.

(4) If the error history file(ROBOT.E01), stop history file(ROBOT.S01) and operation history file(ROBOT.TR0) exist, the following message is displayed. And if pressing the [Yes] key, it is newly made out and conversely, if pressing the [No] key, it is cancelled.

(5) If the error history file(ROBOT.E01), stop history file(ROBOT.S01) and operat ion history file(ROBOT.TRO) exist and the attribution of file is set to the complete protection, the following message is displayed. And if pressing the [Esc] key, you can begin it again.

(6) The file protection can be changed in "SERVICE"[PF1] \(\rightarrow\) 5.File control \(\rightarrow\) 7.Protection .

\subsection*{6.5.4 Use setting}

Out line

It is a function that sets the work use.

In case of using the palletizing function and the robot equalizing function, certainly, the use setting should be changed.

Screen display


Contents of the screen

■ GUN1 : The users select the item that they intend to use for the use of GUN1.

■ GUN2 : The users select the item that they intend to use for the use of GUN2.

ARC : If the robot is used for the arc welding, it is set to the <Enable>.

Air gun : It selects whether to use the equalizer function on the GUN1 and GUN2 or to use the equalizerless function.

Reference
(1) If the engineer code isn't inputted, even if the "Complete"[PF5] key is pressed, the GUN mode conversion information isn't saved.

\subsection*{6.5.5 Positioner group setting}

Out line

It is a process that registers the positioner manipulator and it can set the additional axis which is set to the Jig axis in the initialization menu to the positoner group. The controller of our company supports the positioner of only two unit at present. and the assignment of two axis per each positioner is possible.

Please refer to the "User manual on the positioner synchronous function" for the precise contents.

Screen display
\begin{tabular}{|c|c|}
\hline Additional Axis & Positioner Group \\
\hline T1 Axis & [0] \\
\hline T2 Axis & [0] \\
\hline T3 Axis & [0] \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Enter number and press [SET]}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{\(>[0-2]\)} \\
\hline
\end{tabular}

Reference
(1) Positioner group setting method

Example1) In case of setting the 2 axis positioner and the 1 axis positioner (It is corresponded in case that all the additional 3 axes are set to the JIG.)
\begin{tabular}{|c|c|}
\hline Additional Axis & Positioner Group \\
\hline T1 Axis & \(\rightarrow\) [1] \\
\hline T2 Axis ---- & --> [1] \\
\hline T3 Axis -- & --> [2] \\
\hline
\end{tabular}

It is the case that the T1 and T2 axis make the first positiner group in the group 1 and the T 3 axis singly makes the second positioner group.

Example2) In case of setting the 1 axis positioner and the 2 axis positioner (It is corresponded in case that all the additional 3 axes are set to the JIG.)
\begin{tabular}{|c|c|}
\hline Additional Axis & Positioner Group \\
\hline T1 Axis -- & --> [1] \\
\hline T2 Axis ---- & \(\rightarrow->\) [2] \\
\hline T3 Axis ---- & ---> [2] \\
\hline
\end{tabular}

It is the case that the T 1 axis singly makes the first group of positioner in the group 1 and makes the positioner 2 group by collating with T2 and T3.

Example3) In case that the 1 axis positioner exists two unit.
\begin{tabular}{|c|c|}
\hline Additional Axis & Positioner Group \\
\hline T1 Axis ---- & \(\rightarrow\) [1] \\
\hline T2 Axis ----- & \(\rightarrow\) [1] \\
\hline T3 Axis ----- & --> [0] \\
\hline
\end{tabular}

It is the case that the T 1 axis makes the positioner 1 group and the T 2 axis makes the positioner 2 group.

Example4) In case of setting to the Jig axis that doesn't synchronize.
\begin{tabular}{|c|c|}
\hline Additional Axis & Positioner Group \\
\hline T1 Axis & --> [0] \\
\hline T2 Axis --- & \(\rightarrow->\) [0] \\
\hline T3 Axis -- & -->> [0] \\
\hline
\end{tabular}

It is the case that uses the basic value.
(2) The method that designates the positioner group.
(1) The designation of group should be carried out according to the order from low axis.
(2) The group that doesn't synchronize is designated to [0] and should be set next to the axis that synchronizes.
(3) You should not designate the 3 axis to the same group because the same group of positioner supports only till the 2 axis.
(4) You should press the "Complete"[PF5] key to finish the group setting right.
(5) In case of defining the group setting again, you should execute the calibration of positioner again because the constant value of positioner designated in the former times is ineffective.

\subsection*{6.6 Automatic constant setting}

If selecting the constant setting, the following screen is displayed.
\begin{tabular}{l} 
14:39:38 *** Auto Const Set \(* * *\) A:0 S:4 \\
\hline 1: Optimizing axis Cnst.\& tool length \\
4: Positioner Calibration \\
\\
\\
\hline Use[Number]/[Up][Down] and press [SET]. \\
\hline Previnus Next \\
\hline
\end{tabular}

\subsection*{6.6.1 The optimization of axis constant and tool length}

Out line

It sets automatically after compensating the constant data of straight line interpolation.

It is a function that gains the straight line interpolation constant compensated from each step encoder data of the program recorded the same point as the various pose to improve the accuracy of the straight line interpolation curve and coordinate convertion.

It can automat ically set the distance till the nose of tool which is difficult to measure on the three dimensions. the straight line interpolation constants which are compensated are the axis constant of \(\mathrm{H}, \mathrm{V}, \mathrm{R} 2\), B axis and the tool length of \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) direction.

Screen display
14:39:38** Axis/Tool optimize **A:0 S:4
Setting = < Constant & Tool, Tool >
Setting = < Constant & Tool, Tool >
Program No. \(=\left[\begin{array}{l}0\end{array}\right]\)
Tool NO. \(=\left[\begin{array}{ll}0\end{array}\right]\)
Permissible position error \(=[0.1] \mathrm{mm}\)
Max step position error(X) =
(Y) =
(Z) \(=\)


Screen description

■ Setting : If using the "constant and tool" mode, both the tool length set in "SYSTEM" [PF2] \(\rightarrow\) 3.Robot parameter \(\rightarrow\) 1.Tool data and the value set in "SYSTEM[PF2] \(\rightarrow\) 3.Robot parameter \(\rightarrow\) 2.Axis constant are compensated.
Therefore this mode is selected only in case of executing the function on the first tool and from the second tool, please compensate only the tool length through the selection of tool mode.

Program number : It is a program number recorded the same point as the various pose.

■ Tool number : It is a tool number that wants to set automatically and it should accord with the tool number recorded in the program for setting.

■ Permissible range of step position error : When the maximum errors among the coordinates is within the permissible error of step position error after calculating the \(\mathrm{X}, \mathrm{Y}, \mathrm{Z}\) coordinates of the nose of tool from the each step data of program for the setting by using the constant data which is compensated, it renews the constant data automatically.

■ Maximum step position error : It outputs the maximum value of the error among the X , Y, \(Z\) coordinates on the each step found in the permissible range of step position error .

Notice
(1) Please teach it as the error between the tool end and the fixed point is within 0.5 mm .
(2) Please teach it as all of the axes work.
(3) Please teach it as the angle of \(B\) axis exists in the outside of the range that is from -12 to 12.
(4) Please teach it as the wrist axis(R2, B, R1 ) on the each step works as big as possible and the difference of wrist axis angle among each step is sufficient.
(5) It can't be executed in case that the machine constant file is protected. Please execute it after lifting the file protection.

\subsection*{6.6.4 Positioner calibration}

Out line

Please refer to the "User manual on the positioner synchronous function".

If not carrying out the "SYSTEM"[PF2] \(\rightarrow\) 5.Initialization \(\rightarrow\) 6.Positioner group setting but selecting the positioner calibration, the following message is displayed.


\section*{Screen display}


■ If pressing the "Execute"[PF5] key after inputting the program number on the applicable positioner group, the result appears.

Reference
(1) The calibration of 1 axis positioner
(1) In case of the 1 axis positioner, it teaches the three points precisely rotating 30 per one time after fixing the sharp teaching point on the positioner and then records the program. The teaching method is the same as following picture.


The calibration of 1 axis positioner
(2) The calibration of 2 axis positioner

Supposing that it is identical with the calibration of 1 axis positioner, it is different from in the record of the teaching point.
(1) It records the very first teaching point after situating the positioner at the basic position.
(2) It records the same teaching point after rotating the 2 axis of positioner nearly 30.
(3) It records the same teaching point after rotating the 2 axis of positioner nearly 30 more.
(4) It records the fourth point after rotating only the 1 axis at the position of (3) nearly 30 .
(5) It records the fifth point after rotating only the 1 axis at the position of (4) nearly 30 more and then finishes.


The calibration teaching process of 2 axis positioner

■ If pressing the execution key after selecting the "SYSTEM"[PF2] \(\rightarrow\) 6. Automatic constant setting \(\rightarrow\) 4.Positioner calibration and inputting the program number which teaches the fifth point and the applicable positioner group, the result is displayed and the constant is saved in the controller.


■ If pressing the "Execute" [PF5] key, the message of upside is displayed. and at this time, if you want to save it, press the [Yes] key.

Contents of the screen

■ Positioner Group [1] Pose : It is the position value from the base coordinates to that of the positioner. The value of Rx, Ry, Rz are the angle value calculated by the absolute conversion in the direct ion of each axis from the base coordinates.

■ D-H Parameter : In case of the 2 axis positioner, the value of DH .a and DH .alpha are calculated. The \(\mathrm{DH} . \mathrm{a}\) is the distance between two rotation axes and the DH .alpha is what indicates the angle between two rotation axes to the [deg].

Notice
(1) The tool end position of robot should be accurate. Therefore you should know of the tool information of robot precisely.
(2) The calibration of robot should be carried out before the positioner calibration.
(3) It can't be executed in case that the machine constant file is protected. Please execute it after lifting the file protection.

\section*{Chapter 7. R Code}
7. 1 (1) R0 Step counter reset ..... 7-5
7. 2 (2) R5 External start selection ..... 7-5
7. 3 (3) R6
External program selection ..... 7-6
7. 4 (4) R107. 5Run time display7-7
(5) R17 7. 5File name display in internal memory7-10
7. 6 (6) R18Frequency condition register7-11
7. 7 (7) R29Tool number setting7-12
7. 8 (8) R44Conveyor data clear7-13
7. 9 (9) R45 Conveyor register manual input ..... 7-14
7.10 (10) R46 Manual conveyor limit switch on ..... 7-15
7.11 (11) R49 Speed variation setting ..... 7-16
7.12 (12) R55 Palletize counter reset ..... 7-17
7.13 (13) R71 Recorded speed selection ..... 7-18
7.14 (14) R107 Program head data display ..... 7-19
7.15 (15) R115 Program copy ..... 7-19
7.16 (16) R116 Program number modification ..... 7-20
7.17 (17) R117 Program delete ..... 7-21
7.18 (18) R123 Robot lock ..... 7-22
7.19 (19) R136 Modify accuracy in steps ..... 7-23
7.20 (20) R137 Modify MX in steps ..... 7-24
7.21 (21) R138 Modify GUN in steps ..... 7-25
7.22 (22) R162 Shift register value change ..... 7-26
7.23 (23) R163 On-1ine shift cancel ..... 7-26
7.24 (24) R204 Spot welding condition manual output ..... 7-27
7.25 (25) R210 Serovo gun number selection ..... 7-28
7.26 (26) R211 Squeeze force setting ..... 7-28
7.27 (27) R212 Moving-tip consumption preset ..... 7-29
7.28 (28) R213 Fixed-tip consumption preset ..... 7-29
\begin{tabular}{|c|c|}
\hline 7.29 (29) R219 & Equalizerless gun number selection ............ 7 - 30 \\
\hline 7.30 (30) R220 & Equalizerless tip consumption preset ........... 7 - 30 \\
\hline 7.31 (31) R245 & Monitor mode selection.......................... 7 - 31 \\
\hline 7.32 (32) R269 & Memory protection setting........................ 7 - 32 \\
\hline 7.33 (33) R286 & Software version display......................... 7 - 33 \\
\hline 7.34 (34) R310 & Manual output of G0-signal....................... 7 - 34 \\
\hline 7.35 (35) R320 & Set max. speed of step go/back.................. 7 - 35 \\
\hline 7.36 (36) R323 & Robot interrupt function record................ 7 - 36 \\
\hline 7.37 (37) R341 & Execution code back-up .......................... 7 - 40 \\
\hline
\end{tabular}

\section*{CHAPTER 7. R CODE}

Out line

It manages general programs without recording in steps. That is it can sets several conditions for controller state.

Operation method
(1) If press R key, then the following message is displayed on the screen.

(2) Press wanted code number, and then press [SET] key.
(3) If you don't know specific code number, press \(\quad\) ? key. Then the following message is displayed on the screen.
\begin{tabular}{|c|c|}
\hline 14:39:38 & ***Manual *** A:0 S:H4 \\
\hline R0 & Step counter reset \\
\hline R5 & External start selection \\
\hline R6 & External program selection \\
\hline R10 & Rum time display \\
\hline R17 & Name of file in the memory \\
\hline R18 & Frequency condition register \\
\hline R29 & Tool number setting \\
\hline R44 & Conveyor data clear \\
\hline R45 & Conveyor register manual input \\
\hline R46 & Manual conveyor limit switch on \\
\hline R49 & Speed rate setting \\
\hline R55 & Palletizing reset \\
\hline R71 & Speed definition type selection \\
\hline R107 & Program head data display \\
\hline R115 & Program copy \\
\hline R116 & Program renaming \\
\hline R117 & Program deleting \\
\hline R123 & Robot lock \\
\hline R136 & Modifying accuracy in steps \\
\hline R137 & Modifying MX in steps \\
\hline R138 & Modifying GUN in steps \\
\hline R162 & Shift register setting \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Use Number //Up/Down and press ISETL}} \\
\hline & \\
\hline & Previous Next \\
\hline
\end{tabular}
- When you select, [NEXT] the following next message will be displayed on the screen.
\begin{tabular}{|c|c|}
\hline 14:39:38 & *** Manual *** A:0 S:H4 \\
\hline R163 : & Online shift cancel \\
\hline R204 : & Spot WELDg Cond. manual output \\
\hline R210 : & Servo GUN number selection \\
\hline R211 : & Squeeze force setting \\
\hline R212 : & Moving-tip consumption preset \\
\hline R213 : & Fixed-tip consumption preset \\
\hline R219 : & Equalizerless gun No. selection \\
\hline R220 : & Equalizing tip consump. preset \\
\hline R245 & Monitor mode selection \\
\hline R269 : & Memory protection setting \\
\hline R286 : & Software version \\
\hline \[
\begin{array}{ll}
\text { R320 } & \text { : } \\
\text { R323 } &
\end{array}
\] & Set Max speed of setp go/back Robot interrupt \\
\hline R341 & Execution code backup \\
\hline Use [Numb & ber ]/[Up][Down] and press [SET] \\
\hline \(>\) & \\
\hline & Previous Next \\
\hline
\end{tabular}
(4) After choose what you want code, press [SET] key.

\section*{7.1 (1) R0 STEP COUNTER RESET}

Out line

It resets the step counter ( step 0) and returns to the step 0 at any step. Besides, it executes.

■ General error, Lamp Off
■ Alarm Off
■ WI wait clear.

Reference
(1) It can't be executed during operation.

\section*{7.2 (2) R5 EXTERNAL START SELECTION (ENABLE/DISABLE)}

Out line

It sets whether the external start selection is enable or disable.
It also can be set at start mode by press down "System' [PF2] -> 1. User parameter -> 3. Robot Start type , orderly.

Screen display

\section*{Set Ext start selection (DSBL=0.ENBL=1) \\ \(>\) R5. 0 \\ Service Svstem Rel.WAIT Cond Set}

■ Select 1 ( = Enable ) or 0 ( = Disable ), and then press [SET].

Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\section*{7.3 (3) R6 EXTERNAL PROGRAM SELECTION (ENABLE/DISABLE)}

Out line

It sets whether the external program selection setting is enable or disable.
It also can be set at Ext. Program selection mode by press down "System' [PF2] -> 1. User parameter \(\rightarrow\) 10. External program select, orderly.

Screen display

\section*{Set Ext program selection( \(\mathrm{DSBL}=0, \mathrm{ENBL}=1\) ) >R6. 0 \\ Service Svstem Rel. WAIT Cond Set}

■ Select 1 ( = Enable ) or 0 ( = Disable ), and then press [SET].

Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\section*{7.4 (4) R10 RUN TIME DISPLAY}

Out line

It is the function to display Robot's run time.
It also can be access at Run time display by press down "Service' [PF1] -> 7. System checking -> 2. Running time, orderly.

Screen display


\subsection*{7.4.1 Display of Run Time}

Out line

It displays run time of robot motion.

Screen display
14:39:38 *** Run time *** A:0 S:4
\begin{tabular}{ll} 
*Run t ime \(=0: 0: 0.00\) & \\
Cycle time \(=0: 0: 0.00\) & Cycle \(=0\) \\
GUN1 time \(=0: 0: 0.00\) & count \(=0\) \\
GUN2 time \(=0: 0: 0.00\) & count \(=0\) \\
GUN3 time \(=0: 0: 0.00\) & count \(=0\) \\
GUN4 time \(=0: 0: 0.00\) & count \(=0\) \\
DI Sig waiting time \(=0: 0:\) & 0.00 \\
Timer waiting time \(=0: 0:\) & 0.00
\end{tabular}

Press [ESC] or [R..]

Screen description

■ Run Time means the time till the lamp is off after the start lamp is ON. (It resets automatically after 24 hours.)
- Cycle Counter means the cycle number playback during run time.

It counts in step 1, it counts the cycle number in spite of stopping in half way. (It resets the counter after 255 times during run time.)

■ GUN ON Time means the GUN signal output signal per 1 cycle during run time. (It resets automatically after 24 hours.)

■ GUN ON Count means the counts the GUN output signal per I cycle during run time. resets automatically after 65535 times.)

\subsection*{7.4.2 Total Run Time}

Out line

Total amount of the operation time after power is ON .
Total cycle count, Total GUN On time, Total Gun ON count are as above too.

Screen display


\subsection*{7.4.3 Run Time Reset}

Out line
(1) All data clear ..... It resets the all data.
(2) Run time clear ..... Reset the total run time.
(3) Cycle count clear ..... Reset the total cycle counter.
(4) GUN data clear ..... Reset total GUN on time and counter.

Screen display

After selecting "3" for All Data Clear or "4" for Run Time Clear, "5" for Cycle Count Clear, "6" for Gun Data Clear. "7" for I Signal Waiting Data Clear, "8" for Timer Waiting Data Clear, it will be displayed on the screen as followings.


■ If you select [YES], the chosen data shall be cleared. Otherwise, If you select [NO], the chosen data shall not be cleared.

\section*{7.5 (5) R17 FILE NAME DISPLAY IN INTERNAL MEMORY}

Out line

It displays the file name (Robot type, Program No.), file size, Date, file protection etc. It displays the information of a total file, remained memory volume when ending a file display. The content of the display is different from "Service[PF1] \(\rightarrow\). 5. File manager -> 1 . Show file names in memory".

Screen display


Reference
(1) It cannot be executed during operation.
(2) WSP_ being displayed to the last means the protection type.

W: Whole protection (Deleting/changing prohibition)
S: Sectional protection
(It is possible only to modify the position in whole protection)
P: Playback protection (Playback from the step 0/Step forward prohibition)
_: No protection
(3) It is possible to scroll the screen with \(\square \circlearrowleft\) key.

\section*{7.6 (6) R18 FREQUENCY CONDITION REGISTER DISPLAY/SETTING}

Out line

It displays, sets the content of a frequency condition register.
It is the same as "Service"[PF1] -> 2: Register setting -> 5: Frequency Condition Register".

Screen display


Operation method
(1) After inputting the register No., if press [SET] key it will be displayed on the screen as following message.

\section*{Enter register data ( \(0-255\) ) \\ \(>R 18.1 .0\) \\ Service Svstem Rel.IVAIT Cond Set}
(2) After inputting the register data, press [SET] key.

Reference
(1) It can not be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\section*{7.7 (7) R29 TOOL NUMBER SETTING}

Out line

It changes the selected tool number.
Input tool number what you want, press [SET] key.

Screen display

\section*{Enter tool No. ( \(0-3\) ) \\ \(>\) R29. 0 \\ Service Svstem Rel. WAIT \\ Cond Set}

Reference
(1) When [SET] key pressed after inputted tool number, the first line of Edit Frame screen shall be changed.
(2) It cannot be executed during operation.
(3) The numerical value displayed before changing is the set value at that time.

\section*{7.8 (8) R44 CONVEYOR DATA CLEAR}

Out line

It clears Conveyor data ; CP, CR, CS.

The content which will be cleared can be different according to the selected mode at "Cond Set"[PF5] -> "Applicnd"[PF1] -> 1: Conveyor oper = <Normal, Simulat, Test> as table.
\begin{tabular}{|c|c|c|c|}
\hline & General & Simulat ion & Test \\
\hline CP(Pulse) & CLEAR & \begin{tabular}{c} 
Keep present \\
pulse
\end{tabular} & CLEAR \\
\hline CR(Distance) & CLEAR & CLEAR & CLEAR \\
\hline CS(Speed) & CLEAR & CLEAR & Always '0' \\
\hline
\end{tabular}

It is the same function with 2.Conveyor data reset of "Service"[PF1] -> 2.Register -> 6. Conveyor Data.

Screen display


■ If you select [YES], the conveyor data shall be cleared.
Otherwise, If you select [NO], this function shall be cancelled.

Reference
(1) It cannot be executed during operation.
(2) The limit switch input state will be cleared, too. So, to start pulse count ing, it needs new limit switch input.

\section*{7.9 (9) R45 CONVEYOR REGISTER MANUAL INPUT}

Out line

It sets Conveyor Register (CR) value as a manual inputted value.

If this function activated, the Conveyor Pulse (CP) value shall be automatically modified in connection with Conveyor Register (CR) value.

It is the same function with \(C R\) viewed at 1. Conveyor Simulation Date Access of "Service"[PF1] -> 2.Register setting -> 6. Conveyor Data

Screen display
\begin{tabular}{|l|}
\hline Warning! \()\) Change Convevor Register? [Y/Nl \\
\hline Service_ Svstem Rel WAIT \\
\hline
\end{tabular}

■ If you select [YES], can input Conveyor Register value by manual, if you select [NO], this function shall be cancelled.
\begin{tabular}{|l|}
\hline Enter CR value. \((-99999.9-99999.9 \mathrm{~mm})\) \\
\hline R45. \\
\hline Service \\
\hline
\end{tabular}

■ To finish, press [SET] key following input number.

Reference
(1) It cannot be executed during operation.
(2) In case of the Limit switch is not activated, the \(C P / C R\) value shall not be increased, even if the manually inputted Conveyor Register (CR) value is not '0'.

\subsection*{7.10 (10) R46 MANUAL CONVEYOR LIMIT SWITCH ON}

Out l ine

It activates Pulse counting in force by inputting limit switch activation signals without relation of real performance of limit switch.

Screen display
\begin{tabular}{|l|l|}
\hline Warning! \()\) Limit Switch ON? & [YES/N0] \\
\hline Service & Svstem Rel.WAITI \\
\hline
\end{tabular}

■ If you select [YES], can start pulse counting or access for multi-workpiece , if you select [NO], this function shall be cancelled.

Reference
(1) It cannot be executed during operation.

\subsection*{7.11 (11) R49 SPEED VARIATION SETTING}

Out line

It sets the value of speed variation during the play back.
It playback to variate in the range of 1 to \(150 \%\) for the speed to be recorded on step.

You can set in the speed variation value of condition Setting 4. at "Cond Set"[PF5] -> 4. Speed rate.

Screen display
\begin{tabular}{l} 
Enter speed rate \((1-150)\) \\
\hline R49. 100 \\
Service \(\quad\) Svstem Rel. WAIT \\
\hline
\end{tabular}

■ After inputting the speed variation value, if press [SET] key, it will be displayed on the screen as following message.


Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\subsection*{7.12 (12) R55 PALLETIZE COUNTER RESET}

Out line

It can be used when you use the palletizing function.
It resets the contents of the palletize register.

Screen display
```

Input the palletize pallet number.(1-16)
>[1 - 16]
Service Svstem Rel.WAIT Cond Set

```

If press, wanted pallet No. (the number of palletizer pattern register) and [SET] key, it will be displayed on the screen as followings.
\begin{tabular}{|ll|}
\hline End palletizing? & [YES................................................................................ \\
\hline & \\
\hline Service] & \\
\hline
\end{tabular}

Press [YES] key to reset the palletizing data, and press [NO] to stop resetting.

\subsection*{7.13 (13) R71 RECORDED SPEED SPECIFICATION METHOD SELECTION}

Out line

It selects speed specification method in step recording.
There are 3 types of 0,1 , and 3 .
\begin{tabular}{|l|c|c|c|}
\hline \multirow{2}{*}{0} & \multirow{2}{*}{ Standard } & Interpolation OFF & Specify Sec \\
\cline { 3 - 4 } & & Interpolation ON & Specify Speed \\
\hline \multirow{2}{*}{1} & Specify & Interpolation OFF & Specify Sec \\
\cline { 3 - 4 } & Sec & Interpolation ON & Specify Sec \\
\hline 2 & Specify \\
\cline { 3 - 4 } & Speed & Interpolation OFF & Specify Speed \\
\cline { 3 - 4 } & & Interpolation ON & Specify Speed \\
\hline
\end{tabular}

Interpolation \(0 n\) is the case of the linear interpolation or circular interpolation.

Screen display

\section*{Rec speed t vpe? (Standard \(=0 . \%=1, \mathrm{~mm} / \mathrm{s}=2\) ) \\ \(>\) R71. 0 \\ Service Svstem Rel.WAIT Cond Set}

■ After inputting the recorded speed specification type, if press [SET] key, it will be displayed on the screen as following screen.


\subsection*{7.14 (14) R107 PROGRAM HEAD DATA DISPLAY}

Out line

It displays the content of the program head data (step 0 ).
It displays the content of step 1 if it hasn't the function in step 0.

It is the same function with "Service"[PF1] -> 5.File Manager -> 2. Show the headline of program.

Screen display


\subsection*{7.15 (15) R115 PROGRAM COPY}

Out line

It copies a source program file in the internal memory to destination program file. First, input the source program number to be copied, and then input the dest inat ion program number. It occurs to error when the destination program is already exist.

Screen display


■ After inputting the source program No. for copy, if press [SET] key, it will be appeared on the screen as following message.

\section*{Destination program to copv (1-999)}
\(>\) R115.999.
Service Svstem Rel.WAIT Cond Set
■ After inputting the destination program No. for copy, if press [SET] key, it will be copied. However if press [ESC] key program copy will be cancelled.

\subsection*{7.16 (16) R116 PROGRAM NUMBER MODIFICATION}

Out line

It changes the program number in the internal memory.
First, input the program number to change, then input the program number you want.

If occurs to error when the destination program is already exist.

Screen display
\begin{tabular}{|l|}
\hline Source program to modifv? (1-999) \\
\hline R116. \\
\hline Service \\
\hline
\end{tabular}

■ After inputting the source program No. for modify, if press [SET] key, it will be appeared on the screen as following message.
\begin{tabular}{|l|}
\hline Destination program to modifv? (1-999) \\
\hline R116.999. \\
\hline Service Svstem Rel. WAIT \\
\hline
\end{tabular}

■ After inputting the destination program No. for modify, if press [SET] key, it will be appeared on the screen as following message.
\begin{tabular}{|lll}
\hline H120.999->.005 \(\quad:\) Nodifv? & [YES/N0] \\
\hline\(>\) & & \\
\hline Service & Svstem Rel. WAIT & Cond Set \\
\hline
\end{tabular}

■ If you want to modify press [YES] key, to cancel press [NO] key, it will be appeared on the screen as following message.

\subsection*{7.17 (17) R117 PROGRAM DELETE}

Out line

It deletes the program stored in the internal memory.

Screen display
\begin{tabular}{|ll}
\hline Program to delete? \((1-999)\) \\
\hline R117. & \\
Service & Svstem Rel WAIT \\
\hline
\end{tabular}

■ After inputting the program No. for delete, if press [SET] key, it will be appeared on the screen as following message.
\begin{tabular}{|lll|}
\hline H120.006 : Delete? & [YES/NO] \\
\hline\(>\) & \\
\hline Service & Svstem Rel. WAIT & Cond Set \\
\hline
\end{tabular}

■ If you want to modify press [YES] key, to cancel press [NO] key.

\subsection*{7.18 (18) R123 ROBOT LOCK}

Out line

It sets the robot lock to 0N/OFF.

If the robot-lock is set to ON , it is possible to execute a program without outputting the move command even though playback or step go/back is executed in the motors-on state.

Screen display
\begin{tabular}{|l|}
\hline Set robot lock ( DSBL=0. ENBL=1) \\
\hline R123.0 \\
Service Svstem Rel.WAIT \(\quad\) Cond Set \\
\hline
\end{tabular}

■ If you press [1] [SET] key (Enable) it will be appeared on the screen as following message. or if you press [0] [SET] key(Disable) this function will be cancelled,
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38 \(\quad\) *** N A N U A L *** A:0 S:H4} \\
\hline \multicolumn{2}{|l|}{T0 R-L} \\
\hline \multicolumn{2}{|l|}{PN:100[*]__ S/F:4/0 Sp:100.00} \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Robot:H120, 6axes, 1steps \\
S1 \\
NOVE P. \(\mathrm{S}=100 \%, \mathrm{~A}=0, \mathrm{H}=1\)
\end{tabular}}} \\
\hline & \\
\hline \multicolumn{2}{|l|}{Use cursor Un/Down. then [ESC] for exit} \\
\hline \multicolumn{2}{|l|}{>} \\
\hline Service Svctem Rel WAIT & Cond Set \\
\hline
\end{tabular}

\subsection*{7.19 (19) R136 MODIFY ACCURACY IN STEPS}

Out line

It changes the accuracy of the selected step.

Screen display
\begin{tabular}{|l|l|}
\hline Enter accuracy \((0-3)\) & \\
\hline R136.0 & \\
\hline Service & Svstem Rel. WAIT \\
\hline
\end{tabular}

■ If press \(0 \sim 3\) key what you want, and then press [SET] to finish.

Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\subsection*{7.20 (20) R137 MODIFY MX IN STEP}

Out line

It changes/adds MX of the currently selected step.

Screen display


■ After inputting what you want key, if press [SET] key, it will be appeared on the screen as following message.
\begin{tabular}{|ll|}
\hline Set MX signal ( Off=0. On=1 ) & \\
\hline R137.1.0 & \\
\hline Service & Svstem Rel. WAIT \\
\hline
\end{tabular}

■ If you select [1] and [SET] keys MX signal will be stored. Or if you select [0] and [SET] keys MX signal will be deleted.

Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\subsection*{7.21 (21) R138 MODIFY GUN IN STEP}

Out line

It changes/adds the GUN of the currently selected step.

Screen display


■ After inputting 1 or 2 key, if press S E T key it will be appeared on the screen as following message.


■ If you select [1] and [SET] keys GUN signal will be stored in step. Or if you select [0] and [SET] keys GUN signal will be deleted.

Reference
(1) It cannot be executed during operation.
(2) The numerical value displayed before changing is the set value at that time.

\subsection*{7.22 (22) R162 SHIFT REGISTER VALUE CHANGE}

Out line

It displays/sets the on-line shift buffer's contents.

It is the same function with "Service"[PF1] -> 2.Register setting-> 2. Shift buffers.

Screen display


Reference
(1) It cannot be executed during operation.
(2) After select number, press [SET] key.

\subsection*{7.23 (23) R163 ON-LINE SHIFT CANCEL}

Out line

It stops on-line shift and resets the shift data saved in the shift buffers resets to "0".
Press [YES] or [NO] key by confirming message.

Screen display
\begin{tabular}{|lll|}
\hline WARNg \()\) Cancel on-line shift & [YES/NO] \\
\hline Service & \\
\hline Svstem Rel. WAIT & Cond Set \\
\hline
\end{tabular}

■ If you want to cancel, press [YES] key.

\subsection*{7.24 (24) R204 SPOT WELDING CONDITION MANUAL OUTPUT}

Out line

It outputs spot welding condition manually.

Operation method

■ In case of < Welding condition output type = Discrete >, at "System"[PF2] -> 4. Application Parameter \(\rightarrow\) Spot \& Stud \(\rightarrow\) 1.Welding Parameter. It will be appeared on the screen as following message.
\begin{tabular}{l} 
Input discrete welding condition (0-7) \\
\hline R204. \\
\hline Service \\
\hline
\end{tabular}

■ In case of < Welding condition output type = Binary code > at "System"[PF2] -> 4. Application Parameter \(\rightarrow\) Spot \& Stud \(\rightarrow\) 1.Welding Parameter. It will be appeared on the screen as following message.

\section*{Input binary WELDg condition ( \(0-255\) ) \(>\) R204. \\ Service Svstem Rel.WAIT Cond Set}

■ After inputting the welding condition with numeric key, press [SET] key.

Reference
(1) It cannot be executed during operation.

\subsection*{7.25 (25) R210 SERVO GUN NUMBER SELECTION}

Out line

It is a code for selection of gun, in case of using multi-servo guns. It needs to execute manual open/close of servo gun and to force manually for each gun.

Screen display
\begin{tabular}{|ll|}
\hline Enter gun number. \((1-2)\) & \\
\hline R210. 1 & \\
\hline Service & Svstem Rel WAIT
\end{tabular}

■ After select gun number, press [SET] key.

Reference
(1) It cannot be executed during playback / operation.
(2) Tool number will be automatically modified by selection of Gun number.

\subsection*{7.26 (26) R211 SQUEEZE FORCE SETTING}

Out line

It sets welding force.

Screen display
\begin{tabular}{|l|}
\hline Enter gun pressure. \((50-999)\) Kgf \\
\hline R211.100 \\
\hline Service \\
\hline
\end{tabular}

■ After input wanted welding force, press [SET] key.

Reference
(1) It cannot be executed during playback / operation.
(2) The welding force in welding condition file, will not be changed.
(3) In case of the setting welding force is out of the available setting boundary, it executes manual welding force within the limited range.

\subsection*{7.27 (27) R212 MOVING-TIP CONSUMPTION PRESET}

Out line

It sets wear amount of servo gun's moving welder tip.

Screen display

\section*{Enter move tip consumption. (-10.}
\(>\) R212.0.00
Service Svstem Rel.WAIT Cond Set

■ After input wanted wear amount with number keys, and then press [SET] key.

Reference
(1) It cannot be executed during playback / operation.
(2) In case of the setting wear amount is over the actual wear amount, it can cause mismatching of welding force or interference with working material.

\subsection*{7.28 (28) R213 FIXED-TIP CONSUMPTION PRESET}

Out line

It sets wear amount of servo gun's fixed welder tip.

Screen display

\section*{Enter fix tid consumption. (-10. - 10.) \\ \(>\) R213.0.00 \\ Service Svstem Rel. WAIT \\ Cond Set}

■ After input wanted wear amount with number keys, and then press [SET] key.

Reference
(1) It cannot be executed during playback / operation.
(2) In case of the setting wear amount is over the actual wear amount, it can cause mismatching of welding force or interference with working material.

\subsection*{7.29 (29) R219 EQUALIZERLESS GUN NUMBER SELECTION}

Out line

It selects gun, in case of equalizerless multi-air guns are using.
It needs for manual open/close and forcing manually.

Screen display
\begin{tabular}{|ll|}
\hline Enter gun number. \((1-2)\) & \\
\hline R219.1 & \\
\hline Service & Svstem Rel.WAIT \\
\hline
\end{tabular}

■ After input wanted gun number, and then press [SET] key.

Reference
(1) It cannot be executed during playback / operation.

\subsection*{7.30 (30) R220 EQUALIZING WELDER TIP CONSUMPTION PRESET}

Out line

It sets equalizerless air gun's wear amount manually.

Screen display
```

Enter fix tip consumption. (-10. - 10.)

```
\(>\) R220.0.00
Service Svstem Rel.WAIT Cond Set

■ After input wanted wear amount with number keys, and then press [SET] key.

Reference
(1) It cannot be executed during playback / operation.
(2) In case of the setting wear amount is over the actual wear amount, it can cause mismatching of welding force or interference with working material.

\subsection*{7.31 (31) R245 MONITOR MODE SELECTION}

Out line

It displays the encoder value, angle and coordinates value of each axis and input/output status of each axis.

It is the same function with "Service"[PF1] -> 1. Monitoring.

Screen display
\begin{tabular}{l} 
14:39:38 *** Monitoring *** \(\quad\) A:0 S:4 \\
\hline 0: Nonitor OFF \\
1: Axis data \\
2: Private input \\
3: Private output \\
4: DIO( \(1-24)\) \\
5: DIO( \(25-48)\) \\
6: DIO( \(49-72)\) \\
7: DIO( \(73-96)\) \\
8: DIO( \(97-120)\) \\
9: DIO(121 -144\()\) \\
10: DIO(145 - 168)
\end{tabular}
\begin{tabular}{l} 
Use [Number]/[Un][Down] and Dress [SET]. \\
\hline\(>\) \\
\hline Line \\
\hline
\end{tabular}

\subsection*{7.32 (32) R269 MEMORY PROTECTION SETTING}

Out line

It sets the program protection in the internal memory.

It is the same function with "Service"[PF1] -> 5. File Manager -> 7. Protect.

Operation method
\begin{tabular}{|l|}
\hline Program to protect? (1-999) \\
\hline R269. \\
Service \\
\hline
\end{tabular}

■ After inputting the program No. for protect with a numeric key, press [SET] key, then it will be appeared on the screen as following messages.
\begin{tabular}{|l|}
\hline Protect or Release? (1:Protect/2:Release) \\
\hline R269.6. \\
\hline Service \\
\hline
\end{tabular}

■ If you want to protect press [1] key, to release press 2 key, and press [SET] key displayed following messages.

\section*{Protect tvpe?(1:Whole/2:Section/3:Plavb) \\ \(>\) R269.6.1. \\ Service Svstem Rel.WAIT Cond Set}

■ After inputting the protect type with a numeric key, press [SET] key.

\subsection*{7.33 (33) R286 SOFTWARE VERSION DISPLAY}

Out line

It displays the system environment (Software Version) of HR Controller.

The display items are as following
(1) Robot type, number of robot axis and total number of axis.
(2) Main system version
- Version and the date of the manufacture of the main \(S / W\)
- Version and the date of the manufacture of the motion \(S / W\)
- Version and the date of the manufacture of T/P
- Version and the date of the manufacture of I/O

It is the same function with "Service"[PF1] -> 7. System checking \(->1\). System version.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Robot type: H120 (Axis: 6 Tot Ax: 6)} \\
\hline \multicolumn{2}{|l|}{Main system Version => Robot Language} \\
\hline Main S/W: V07.01-02 & 2001-06-18 \\
\hline Motion S/W: V07.00 & 2001-07-09 \\
\hline T/P Ver : V01.03 & 1999-05-31 \\
\hline I/O Ver : V01.00 & 1997-04-09 \\
\hline DSP Version & \\
\hline DSP1 S/W: V02.71 & 2000-03-20 \\
\hline DSP2 S/W: V04.33 & 1993-03-29 \\
\hline DSP3 S/W: V00.00 & 0-00-00 \\
\hline DSP4 S/W: V00.00 & 0-00-00 \\
\hline \multicolumn{2}{|l|}{Press [ESC] or [R..]} \\
\hline \multicolumn{2}{|l|}{>} \\
\hline Previnud & Next \\
\hline
\end{tabular}

\subsection*{7.34 (34) R310 MANUAL OUTPUT OF GO-SIGNAL}

Out line

It outputs 8 signals as 1 group at the same time.

Operation method
\begin{tabular}{|l|}
\hline Enter Group number ( \(1-32\) ) \\
\hline PR310.10 \\
Service \\
\hline
\end{tabular}

■ After inputting the group No. with a numer ic key, if press [SET] Key, it will be appeared on the screen as followings.
\begin{tabular}{l} 
Input data to be output manually (0-255) \\
\hline R310.10. 255 \\
\hline Service \\
\hline
\end{tabular}

■ After inputting the data with a numeric key, press [SET] key.

Reference
(1) It can not be executed during operation.
(2) The displayed value before changing the numer ical value displays the current setting status.

\subsection*{7.35 (35) R320 SET MAX. SPEED OF STEP GO/BACK}

Out line

It sets the Max. speed when the step go/back in teach mode.
It is possible to change from the speed when the step go/back in the range of 1 to \(250 \mathrm{~mm} / \mathrm{s}\) without the received speed.

Also, it is possible to set at "Condition Setting"[PF5] -> 2.Step Go/Back Max. Speed.

Screen display
\begin{tabular}{l} 
Sted GO/BACK speed? \((1-255 \mathrm{~mm} / \mathrm{s})\) \\
\hline R320.200 \\
Service \(\quad\) Svstem Rel. WAIT \(\quad\) Cond Set \\
\hline
\end{tabular}

■ After inputting the speed ratio with a numeric key, press [SET] key.

Reference
(1) It cannot be executed during operation.

\subsection*{7.36 (36) R323 ROBOT INTERRUPT FUNCTION RECORD}

Out line

While moving to target step, it skip to next step as interruption function by detecting assigned signals.

Screen display


■ Choose [0] for I-signal or [1] for Analog, [2] for Weld sticking is not available now.

\subsection*{7.36 .10 : I-signal}

Out line

While moving to target step, it skip to next step as interruption function by detecting assigned I-signal (input signal) input. (That is, treat as if reached at target step) For example, if there is a recorded function at Step2 and fulfilled assigned condition while performing Step 3, it moves to Step 4 from the point of Step 3.

Operation method

After inputting [0], if press [SET] key, it will be appeared on the screen as followings.


■ After inputting the No. of I-signal with a numeric key, if press [SET] key, it will be appeared on the screen as followings.
\begin{tabular}{l} 
Set "reference point setting" \((0-1)\) \\
\begin{tabular}{l} 
SM29=5. \\
\hline Service \\
\hline
\end{tabular} \\
\hline
\end{tabular}

■ If you choose [0] for reference point setting, other parameters (reference X, reference Y, reference Z) will be 0 automatically, and complete input. If you choose [1] for reference point setting, there will be a message as followings using search function.
\begin{tabular}{|l}
\hline Enter reference X ( \(-3000.0-3000.0)\) \\
\hline M29=5.1. \\
\hline Service Svstem Rel. WAIT \(\quad\) Cond Set \\
\hline
\end{tabular}

■ After inputting the No. of X-point with a numeric key, if press [SET] key, it will be appeared on the screen as followings.


■ After inputting the No. of Y-point with a numeric key, if press [SET] key, it will be appeared on the screen as followings.
\begin{tabular}{|l|l|}
\hline Enter reference \(Z(-3000.0-3000.0)\) \\
\hline M29=5.1.200.0.150.0. \\
\hline Service & Svstem Rel.WAIT \\
\hline
\end{tabular}

■ After inputting the No. of Z-point with a numeric key, if press [SET] key, it will be appeared on the screen as followings.


\subsection*{7.36.2 1: Analog}

Out line

In case of working material is access within the range of assigned voltage by detection of analogue sensor which is attached at robot or other place, if [1] for Analog selected, it performs next step after completion of robot moving.

Example


Operation method

After inputting [1], if press [SET] key, it will be appeared on the screen as followings
\begin{tabular}{|ll|}
\hline Enter port No \((1-2)\) & \\
\hline SM30= & \\
\hline Service & Svstem Rel WAIT \\
\hline
\end{tabular}

■ After inputting Port No. if press [SET] key, it will be appeared on the screen as followings
\begin{tabular}{|l|}
\begin{tabular}{|l|}
\(\mid n n\) \\
Indut minimum voltage. \((-10.0-10.0)\) \\
\hline M30.1. \\
Service \\
\hline
\end{tabular} \\
\hline
\end{tabular}

■ After inputting the No. of Lower voltage with a numeric key, if press [SET] key, it will be appeared on the screen as followings.


■ After inputting the No. of Upper voltage with a numeric key, if press [SET] key, it will be appeared on the screen as followings.

\section*{Set "reference point setting" (0 - 1) \\ \(>\) M30 \(=1 .-5.00 .5 .00\). \\ Service Svstem RelwaIT Cond Set}

■ If you choose [0] for reference point setting, other parameters (reference \(X\), reference Y, reference Z) will be 0 automatically, and complete input. If you choose [1] for reference point setting, there will be a message as followings.
```

Enter reference X (-3000.0 - 3000.0)
>M30=1,-5.00.5.00.1.
Service Svstem Rel.WAIT Cond Set

```

■ After inputting the No. of reference X-value with a numeric key, if press [SET] key, it will be appeared on the screen as followings.


■ After inputting the No. of reference Y-value with a numeric key, if press [SET] key, it will be appeared on the screen as followings.
```

Enter reference Z (-3000.0 - 3000.0)
>M30=1,-5.00,5.00,1,200.0,150.0.
Service Svstem Rel.WAIT Cond Set

```

■ After inputting the No. of reference Z-value with a numeric key, if press [SET] key, it will be appeared on the screen as followings.


Reference
(1) It can not be executed during operation.

\subsection*{7.37 (37) R341 EXECUTION CODE BACK-UP}

Out line

It backups execut ion codes which are recorded at flash memory of board BD411 through PCMCIA slot with Linear Flash Memory Card.

Screen display


■ If you select [YES], the back up function will be activated or if you select [NO], it will be canceled.

Reference
(1) It can not be executed during operation

\section*{Chapter 8. Programming}

\section*{Contents}
8.1 Edit step ..... 8-3
8.2 Summary of operation keys ..... 8-4
8.3 Edit command ..... 8-6
8.4 Example - move sentence ..... 8-7
8.5 Variable, numerical formula and string edit ..... 8-13
8.6 Line number edit ..... 8-17
8.7 Block edit ..... 8-18

\section*{Chapter 8. PROGRAMMING}

\author{
Out line
}

Program can be divided into 2 parts, Step and Function.

There are two way of recording Step
1) Method of recording current position by pressing [RECORD] key.
2) Method of selecting [MOVE] command at menu.

For 2) method, pose variables must be used as a factor.

To record function, both inputting by using PF keys and using keys of Teach Pendant are available.

Both Step and Function will be saved as a form of Command, and these Commands can be distinguished as a Command and Factor. Factor can be divided by Basic factor which is necessary basically and Selectable factor which can be different by situation.

If you add Command, default value shall be stored as a Basic factor and it can be changed. Selectable factors display as a form of '_', when the cursor moved over '_' mark, the range of factor shall be listed on the screen.

When edit factors of Command, inputted data shall be inserted at cursor. There are several methods to input. Direct input : by using Numer ic keys, Selection input : inputting indexes which are listed in ( ) after selection variables and functions frommenu, and Character input : inputting figures by using numerical formula or characters.
Contents of current program can be listed at Edit frame, and it need to press [SET] after change. The [CANCEL] key means back to origin program in state of non-change.

To teach, please check the Teach mode is current mode or not, after press Power [ON] \(\rightarrow\) Motor [ON]. If it is not Teach mode, you can change by pressing [MODE] key.

\subsection*{8.1 EDIT STEP}

It is a Command to move manipulator of robot, and most fundamental Command.
The position of the end of tool, speed, interpolation etc shall be assigned.

\subsection*{8.1.1 Record of Step}

There are two methods to store (adding MOVE command) steps.
- Edition by using [MOVE] key.

At Edit frame, if [REC] key pressed the MOVE statement shall be added at next line, no matter where the cursor located. In this case the locat ion of step will be stored as current position in a style of hidden pose(the factor which indicating position will not be shown).
For factors such as speed, accuracy, interpolation, the listed data on the current screen of teach pendant will be selected basically, and it can be changed with proper factor. The mode shall be changed to Edit mode in real time with recording.
Speed will be displayed at the right upper corner of frame.
Interpolation can be identified by the light of LED located under the [PF5] key.

■ Edition by using Command input from Menu
For adding steps, pose variables must be used with this method. For others . same as using [MOVE] key.

\subsection*{8.1.2 Modification of Step}

■ For step which is recorded by record key
- To modify position only, press [Enable], [Pos. Modify] keys.
- To modify others, change factors after press [Command Modify] key.

■ For [Command Input] PF keys used. - using pose variables.
- To modify position only, press [Enable], [Pos. Modify] keys.
- To modify others, change factors after press [Command Modify] key.
- For modification position only

Press [Enable]+[Pos.Modify] keys at the same time while the cursor located on MOVE. Then the hidden pose of that step will be changed as a current position of robot.

\subsection*{8.1.3 Delete of Step}

Press [Enable]+[Delete] keys at the same time while the cursor located on the line for deletion.

\subsection*{8.2 SUMMARY OF OPERATION KEYS}
\begin{tabular}{|c|c|c|c|}
\hline & \multirow[t]{2}{*}{Address Area} & \multicolumn{2}{|l|}{Command} \\
\hline & & Statement Cursor Status & Word Cursor Status \\
\hline Command Modify & - & As word cursor status. & - \\
\hline \[
\begin{gathered}
\text { EN } \\
+ \\
\text { Position } \\
\text { Modify }
\end{gathered}
\] & ```
Modify position of current
    selected step (hidden
posemodify ).
    For modify posevariables
and other factorsuse Command
edit key
``` & \begin{tabular}{l}
Modify position of current selected step (hidden posemodify). \\
For modify posevariables and other factorsuse Command edit key
\end{tabular} & - \\
\hline Cancel & Menu frame will be changed to upper menu.. & Menu frame will be changed to upper menu. & \begin{tabular}{l}
Menu frame will be changed to upper menu. \\
In case of highest menu, change to cursor mode. Cancel input value of input frame
\end{tabular} \\
\hline \begin{tabular}{l}
Record \\
Move
\end{tabular} & Adding hidden pose MOVE cormand & Adding hidden pose MOVE command & Adding hidden pose MOVE command \\
\hline EN+Delete & Delete whole command & Delete whole command & Selectable factor:Delete Able Basic factor:Delete Disable \\
\hline SET & Placing the inputted line No. at input frame to the cursor of address location & - & Placing the inputted factor value at input frame to the location word cursor \\
\hline \begin{tabular}{l}
Speed \\
Modify
\end{tabular} & Converse with word cursor mode to modify speed factor in the current line of Move command & Converse with word cursor mode to modify speed factor in the current line of Move command & Converse with word cursor mode to modify speed factor in the current line of Move command \\
\hline \begin{tabular}{l}
WEAVON \\
Signal \\
output
\end{tabular} & Add M-signal output Add WEAVON command & \begin{tabular}{l}
Add M-signal output \\
Add WEAVON Command
\end{tabular} & \begin{tabular}{l}
Add M-signal output \\
Add WEAVON command
\end{tabular} \\
\hline \begin{tabular}{l}
WEAVOF / \\
Wait
\end{tabular} & Add WAIT command Add WEAVOF command & Add WAIT command Add WEAVOF command & Add WAIT command Add WEAVOF command \\
\hline \begin{tabular}{l}
Function / \\
DELAY
\end{tabular} & Display Funct ion menu on
menu frame
Add DELAY command & Display Function menu on
menu frame
Add DELAY command & Display Function menu on
menu frame
Add DELAY command \\
\hline \[
\begin{gathered}
\text { PF2 } \\
\text { (Start } \\
\text { Status) }
\end{gathered}
\] & \begin{tabular}{l}
[BLOCK EDIT] \\
Display block edit menu.
\end{tabular} & \begin{tabular}{l}
[BLOCK EDIT] \\
Display main menu
\end{tabular} & Display different menu according to command and factor \\
\hline \begin{tabular}{l}
Command \\
Menu \\
(PF1~PF5)
\end{tabular} & Not display & Selected command will be inputted at under the current cursor in a shape of default Parameter & Display when the word cursor is located at command. Change current commandwith another command. \\
\hline \[
\begin{gathered}
\hline \text { Block Edit } \\
\text { Menu } \\
\text { (PF1~PF5) }
\end{gathered}
\] & Execute by block edit
menu (Selection, Copy,
Delete, Add, End) & Not display & Not display \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Factor menu (PF1~PF5) & Not display & Not display & Input/Modify of factor command. \\
\hline \(\uparrow\) & Move cursor upward and downward & Move cursor upward and downward & Move menu frame upward and downward. In case of there is no ' + 'mark on far right end, it moves to word cursor up/down \\
\hline \(\leftarrow\) & Move cursor to Command area & Move cursor to Address area & Move word cursor to left factor \\
\hline \(\rightarrow\) & Move cursor to Command area & Move cursor to Address area & Move word cursor to right factor. \\
\hline EN+^ \(\downarrow\) & Page Up/Down & Page Up/Down & - \\
\hline EN+ + & - & - & Move cursor to left/right in input frame. In case of Word input status, move cursor left/Right per 3 words. \\
\hline BS & (After press EN +
Command modify)
At start : Delete address
of Input frame
While input : Delete
number left side of cursor & - & At start: Delete contents of
Input frame
While input: Delete left side
word of cursor \\
\hline EN+P \(/\) STEP & Loading program which is selected & Loading program which is selected & - \\
\hline P \({ }^{\text {STEP }}\) & Move to selected step by input of step number & Move to selected step by input of step number & - \\
\hline HELP & Display help menu for each status & Display help menu for each status & Display help menu for each status \\
\hline Quick0pen & Contents or condition screen display for each status. & Contents or condition screen display for each status. & Contents or condition screen display for each status. \\
\hline
\end{tabular}

\subsection*{8.3 EDIT COMMAND}

\subsection*{8.3.1 Edition Screen}
- Address Area

It means the area which displays line number (1~9999) and step number(S1~S999).

- Command Area

It means the area which displays commands. When whole line of this area selected, that means Word cursor status.
```

14:39:38 *** M A N U A L *** A:0 S:H4
T0
PNo:100[*]__ SNo/F:4/1 Spd:100.00
S1 MOVE P,S=100%,A=0,H=1
S2 MOVE P,S=30cm/min,A=0,H=1
WEAVON WEV\#=1
ARCON ASF\#=1
MOVE L, S=30cm/min, A=0,H=1
ARCOF AEF\#=1
WEAVOF
S4 MOVE P,S=30cm/min,A=0,H=1
END
Select PF menu
Service System Rel.WAIT Cond Set

```


\subsection*{8.4 EXAMPLE - MOVE SENTENCE}

Method of adding move sentence is as follows ;
If press [REC] key, new move sentence will be created or added with already set performed factors.

Interpolation : The lighted value on LED indicates current basic interpolation value. To change interpolation, press [INTERPOLATION] key.
Pose (Tool End Position) : Storing Robot manipulator's current posture.
Speed : The value on Edit frame or on right upper side of title frame indicates basic speed value.

Accuracy : The value on the title frame indicates basic accuracy value. Tool : The value under the time display indicates selected tool.

If press [RECORD] key, move sentence will be added and changed to word cursor status simultaneously, under basis of basic value functions.

In case of there is not needed to change, just press down [SET] key.

If you want to change factors, the procedure is same as edit with [Command Modify] as follows ;

In case of adding MOVE sentence, first move cursor to the point of want. At that point press [Command Input] or [RECORD] key, then command sentence will be added in the line of the below of cursor point
\(<>:\) PF key , [] : T/P key , [CANCEL] : Upper menu. - Keys for user's operation
< Command Input > - Select inputting command

< MOVE, I/O > - Command related with Step(MOVE) and I/O

< MOVE > - Add step

■ Inserting command under word cursor
Automatically created basic factors as default value cannot deleted. Selective factor (use when needed and possible without it) displayed as '_' on the point of cursor. By command add, the cursor transfer from statement cursor status to word cursor status. After completion of command add, if it want to edit again, press [Command Modify] to transfer from statement cursor status to word cursor status.
Press [SET] key to go back to statement cursor status, after edition.
Press [ESC] key to go back to statement cursor status, without any change.

\footnotetext{
\(<\) Linear > [SET] [\(\Rightarrow\)] - Selection of Linear Interpolation.
}

To move cursor to the next factor, use cursor keys.

At word mode which is cursor indicating factor, current selected factor shown in input frame as a form of reverse character. If press [BS] key, selected factor will be deleted. If select menu, the reverse character part will be deleted and it changes to input at start. It need to edit partly, select <Numerical Formula> for word units.
\(<\mathrm{P}>-\) Selection of Pn among pose variables.

\([3]<+R[]>[2][S E T]-\) Select \(+R[\)] after number 1 input. And then input number 2
[SET]: There will be change in Edit screen by the change of content at input frame [CANCEL]: Return to statement cursor mode without saving
※ If there are 5 more menus, at the end of final menu ' * ' mark will be appeared. By pressing [\(\uparrow\)], [\(\downarrow\)] keys, it displays as follows ;

14:39:38 \(\quad\) *** M A N U A L *** A:0 S:H4 T0
\[
\mathrm{PN}: 999[*] _ \text {S/F:1/0 Sp:100.00 }
\]

Robot:H6 , 6axes, 2steps
S1 MOVE L, P3+R[2], \(\mathrm{S}=300 \mathrm{~mm} / \mathrm{sec}, \mathrm{A}=0, \mathrm{H}=0>\)

\section*{Enter index(1-999)} \(>P 3+R\lceil 2\rceil\)
\(+\mathrm{R}+\mathrm{R}[1\) Local Variable Expr.t
[\(\Rightarrow\)] - Factor move

[1][2][0] [SET] [\(\Rightarrow\)] - Press [SET] key, after input speed 120. And then factor move follows.
※ If it want to change speed to 300.12 , press [ENABLE] \(+[\Rightarrow\)] key. Then cursor locates at the end of numeric 300 .
\(>S(\mathrm{~mm} / \mathrm{sec})=300\)

At there input [.][1][2], it can be inserted. If input [.][1][2] without pressing [ENABLE] \(+[\Rightarrow]\) key previously, just \(" 0.12\) " shall be appeared as speed except 300 .

Conversion can be used in changing units while maintaining current speed.
For instance, \(300 \mathrm{~mm} / \mathrm{sec}\) equals \(1800 \mathrm{~cm} / \mathrm{min}\). To change unit and value in a same speed, press [CONVERSION] and select unit.

[1] [SET] [\(\Rightarrow\)] [\(\Rightarrow\)] - Inputting accuracy. (H=0 ; Same method with Tool number input) Move to MX.

< MX > < G1 > [SET] - <MX>, <MX2>, <G1>, <G2>, <BM>. multi inputs possible.
[CANCEL] - Transfer from word cursor mode to statement cursor mode.
[SET] - Transfer to statement cursor mode.

Input completed.
※ To change contents in Edit frame with contents in Input frame, press [SET] key. If press [SET] key one more time (that is, the contents of each frame are same), it transfer from word cursor mode to statement cursor mode.
If want to change one factor, press [Command Modify], move to the factor and input values. After that press [SET] key 2 times. 1st [SET] key executes converting inputted data and 2nd [SET] means returning to previous state of [Command Modify] after complete factor edition.

There are 3 forms of factor.
1. Arithmetic form

Arithmetic variables(V\%, V!, ...), integral number, real number, arithmetic functions. In case of there is no arithmetical rules(+, -, *, /) it can be inputted with numerical keys and menu.
2. Sentence form

Sentence form constant, sentence form variables, sentence form functions.
To input, use menu for functions / variables and use [SENTENCE INPUT] after converse to statement input status menu for sentence form constant.
3. Pose form

Pose constant, pose variables, shift etc.

For each form, several different factors can be used at the same time. For example, in case of index of pose variable, Arithmetic form can be used because index treated as a numerical formula(including constant).

For more detail, refer to Language Explanation chapter.

\subsection*{8.5 Variable, numerical formula and string edit}

In case that variable, numerical formula and string edit is needed when editing an instruction statement, it can be selected in menu. Variable is input by menu method which is in case of unitary (one variable without operator, but a subscript can be used as a variable), numerical formula uses number and variable which includes operator, and it uses edit method by a character.
- Variable

We take a speed input screen for an example.
\begin{tabular}{|l|l|}
\hline Enter \(\operatorname{speed}(0.1-1100.0)\) \\
\hline\(>S(\mathrm{~mm} / \mathrm{sec})=120\) & \\
\hline Unit Conv & Variable \(\quad\) Expr. \\
\hline
\end{tabular}
< Variable > - Entry into variable input state.

\(<\mathrm{V}\rangle-\) Select variable.

< V\%[] > - Select variable type to input.

If you select variable type that has subscript, cursor is located on subscript input position as inputting.
※ If you input it on the input frame, it as added just in front front of cursor.
\(<\) Variable \(><\mathrm{V}><\mathrm{V} \%>-\) Select variable again by subscript.

[2] [SET] - Numerical formula in the input frame becomes highlighted and input contents are reflected in the edit frame.
\begin{tabular}{|l|l|}
\hline Enter variable \\
\hline \(\mathrm{V} \%[\mathrm{~V} 2 \%]\) \\
\hline & \(>\) \\
\hline
\end{tabular}
[SET]

Variable input completion. After changed value is reflected in the instruction statement, it returns to the statement cursor again.

Numerical formula

We take a speed input screen for an example. When the present speed is V1\%mm/sec, if it inputs the speed in numerical formula form
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Enter \(\operatorname{speed}(0.1-1100.0)\)} \\
\hline \(\geq \mathrm{S}(\mathrm{mm} / \mathrm{sec})=\mathrm{V} 1 \%\) & \\
\hline Unit Conv & Variable Expr. \\
\hline
\end{tabular}
< Numerical formula > - Entry into numerical formula input state.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{[]\%!\$? \(\}: ;\). @\#\#}} \\
\hline > \(\mathrm{V} 1 \%\) & & & \\
\hline Delete & <- & \(\rightarrow\) & space \\
\hline
\end{tabular}

Present value is displayed in highlighted in the guide frame position. If you want to ignore existing value and input newly, you can input it directly in number or input character frame, and if you want to change it by using present value, press arrow of PF2, PF3 and then the cursor will appear.
※ Press [SET] after selecting relevant character that is in input character frame. PF2[<-], PF3[->] will make it move by one step, and if pressing with [ENABLE] will make it move by 5 steps.
```

< -> > [ENABLE]+[व] < SET >[2]

```

< Completion > - It returns to previous state (high position menu) which is not inputting numerical formula.

[SET] - It is reflected in the edit frame after completion of inputting by using numerical formula method.
[SET] - It changes instruction statement and then it returns to the statement cursor.
- String
[Character input/8] If you press the key, it changes to the character input state and input method is the same as the numerical formula input.

\subsection*{8.6 Line number edit}

Step number is created at the same time when MOVE statement (step) is input. Line number is available within \(1 \sim 9999\) and the input method is that it is input line number in the address area.

At first, move a cursor to the address area,

TO
PNo:100[*]__ SNo/F:4/1 Spd:100.00
S1 MOVE P, \(\mathrm{S}=100 \%, \mathrm{~A}=0, \mathrm{H}=1\)
S2 MOVE P, \(\mathrm{S}=30 \mathrm{~cm} / \mathrm{min}, \mathrm{A}=0, \mathrm{H}=1\)
WEAVON WEV\#=1
ARCON ASF\#=1
S3 MOVE L, \(\mathrm{S}=30 \mathrm{~cm} / \mathrm{min}, \mathrm{A}=0, \mathrm{H}=1\)
ARCOF AEF\#=1
WEAVOF
S4 MOVE P, \(\mathrm{S}=30 \mathrm{~cm} / \mathrm{min}, \mathrm{A}=0, \mathrm{H}=1\)
END
Select PF menu
\begin{tabular}{|ll|}
\hline\(>\) & \\
\hline Service_Blk.EditRel.WAIT & Cond_Set \\
\hline
\end{tabular}
and then press [SET] after inputting line number.
[1] [0] [SET]

Line number is reflected on the edit frame.

When a cursor is in address area in a instruction statement with line number, because the line number is highl ighted in input frame, change is that inputting the line number like input, and input has the same method with change method, and in case of delection, the line number is deleted when you press [SET] after deleting by using a backspace[BS].

\subsection*{8.7 Block edit}

Is is a function that copying and moving to other place or deleting after copying whole lines of program. The control statement which includes step number has target step number's change automatically after copying. It is possible to edit by line at the address cursor mode. Step number is automatically changed.

< block edit > [リ] - Press block edit for copy/move/deletion by line.
All of address, instruction areas are highlighted. You can move it to selection beginning line by using a cursor key.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\(\frac{14: 39: 38 ~ * * * ~ M ~ A ~ N ~ U ~ A ~ L ~ * * * ~ A: 0 ~ S: H 4 ~}{\text { T0 }}\)}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{PN:999[*]__ S/F:0/2 Sp:100.00} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{Robot:H6 , 6axes, 14steps
\[
1 \text { V10!=0 }
\]}} \\
\hline & & \\
\hline \multicolumn{3}{|l|}{V11! \(=0\)} \\
\hline \multicolumn{3}{|l|}{} \\
\hline \multicolumn{3}{|l|}{\[
\begin{aligned}
\text { S1 } & \text { MOVE L, P1+R[2] }, \mathrm{S}=120 \mathrm{~mm} / \mathrm{s}, \mathrm{~A}=0, \mathrm{H}=0 \\
& \text { *WELDING }
\end{aligned}
\]} \\
\hline \multicolumn{3}{|l|}{45 DELAY 1} \\
\hline \multicolumn{3}{|l|}{GOTO S2} \\
\hline \multirow[t]{2}{*}{} & & S2 MOVE L S \(=100 \mathrm{~mm} / \mathrm{sec}, \mathrm{A}=0, \mathrm{H}=0\) \\
\hline & & END \\
\hline \multicolumn{3}{|l|}{Set start position of block region} \\
\hline \multicolumn{3}{|l|}{\(\geq\)} \\
\hline & & Select I Delete Close \\
\hline
\end{tabular}
＜Selection＞［』］［』］［』］［』］［』］－Press＜Selection＞key at the beginning line of block to select．Move to last line of block to select by using a cursor key．Selected area is displayed in highlighted as following picture．

＜Selection＞－At the end line of selection area，it ends selection of block area by using a＜Selection＞key．The end line is flickering，so it is copied and moved by using this line as a reference．

[仓] [仓] - It moves to front line of the line where copied area will be pasted by using a cursor key. (45 DELAY 1 line)

<Copy> - Copied area is pasted just below a cursor.

Label instruction can't be copied - Line number isn't also copied but only the instruction statement can be copied.
The step number of the step to move is changed automatically.

If you press <End>, it returns to the initial screen.

\section*{Chapter 9. Quick Open Function}

\section*{CONTENTS}
9.1 Function summary 9-2
9.2 Move - step position 9-4
9.3 Welding start con. - execution at ASF\#=X 9-5
9.4 Welding end con. - execution at AEF\#=X 9-7
9.5 Welding aux. con. - retry 9-9
9.6 Welding aux. con. - restart 9-11
9.7 Welding aux. con. - auto. wire stick release 9-14
9.8 Weaving condition file 9-15
9.9 Program edit in running 9-17
9.10 Spot welding function 9-18
9.10.1 Welding condition 9-18
9.10.2 Welding sequence 9-19

\subsection*{9.1 FUNCTION SUMMARY}

\author{
OUTLINE
}

In case of teaching a work program of arc welding, it is required to set a detailed arc exclusive function such as weaving, Retry/Restart and welding machine's characteristic as well as welding relating condition such as voltage and current. And there's also several cases to need to check the step or auxiliary point's position basically. The conditions related with arc welding are managed as files inner controller, so there are needs to have functions to edit these condition files in easy and quick way. Because of these reasons, Quick Open function can be an answer that can check and change in controlling the key just once.

If taking a welding start condition for an example, if pressing [Quick Open] key (高) when cursor is on the ARCON instruction statement which is used for Arc On, condition number's contents in welding start condition are displayed using in present instruction statement, and you can check and change the contents detailed in this screen. As well, if there is an other condition file related with present condition file, it's possible to move immediately. In other words, it is function that check and change the relat ing contents detailed such as condition file or step position which is related with specific instruction statement in easy and quick way.

In a specific instruction statement, if you press [QuickOpen] key, the relating file or detailed contents are displayed. When it ends after saving, press "Complete"[PF5], when it ends without saving, press [Cancel].

In each instruction statement, when [QuickOpen] is pressed, the contents are as followings.
\begin{tabular}{|c|c|c|}
\hline \[
\begin{array}{|c}
\hline \begin{array}{c}
\text { instruct i } \\
\text { on } \\
\text { statement }
\end{array} \\
\hline
\end{array}
\] & file, contents & detailed contents remark \\
\hline MOVE & Position & \begin{tabular}{l|l}
present position, ordered position*. & *can be edit \\
\begin{tabular}{l}
X Y \(Z(\mathrm{~mm})\) Rx Ry Rz(.) \\
Robot Configuration
\end{tabular} & \\
\hline
\end{tabular} \\
\hline \[
\begin{aligned}
& \hline \text { CALL } \\
& \hline \text { JMPP }
\end{aligned}
\] & program called & imperative sentence display \\
\hline ASF\#= & \begin{tabular}{l}
weld'g start con. file \\
weld'g aux. con. file \\
welding machine characteristic file
\end{tabular} & ```
welding start condition
 Condition No., explanation, Voltage check, RETRY check, Action
 mode, Current, Voltage, WCR input wait check, wait (delay)
 t ime
welding aux. condition
 -RETRY: No. of times, RETRACT time, retract/welding line
 move amount, speed, Current, Voltage
 -RESTART: No. of times, amount of superposition, Velocity,
 Current, Voltage, overlap condition setting
welder characteristic
 welder No., name, explanation, power, setting, diameter of wire,
 prominence length, wire stick detecting time, arc off detecting
 time.
 -current characteristic
 polarity, ordering value(V), measured value(A), compensation
 value.
 -voltage characteristic
 polarity, ordering value(V), measured value(V,%),
 compensation value
``` \\
\hline AEF\#= & \[
\begin{aligned}
& \text { welding end con. } \\
& \text { file } \\
& \text { weld'g aux. con. } \\
& \text { file } \\
& \text { welder char. file }
\end{aligned}
\] & ```
weld'g end con. file
    condition No., Voltage check, explanation, Auto wire stick
release, current,
    Voltage, condition holding time, gas holding time
weld'g aux. condition file
    auto wire stick release: No. of times, current, voltage, delay
        time
``` \\
\hline WEAVON WEV\#= & weaving condition & \begin{tabular}{l}
weaving con. file \\
condition No, weaving type, frequency, basic pattern, moving time, timer
\end{tabular} \\
\hline REFP & reference point & \begin{tabular}{|l|l}
present position, ordering \\
value. \\
X Y \(Z(\mathrm{~mm}) \mathrm{Rx} \operatorname{Ry~Rz}()\).
\end{tabular}\(\quad\)\begin{tabular}{l}
ordering value can be edit. \\
same screen with" position" \\
screen
\end{tabular} \\
\hline substitutional statement & variable check and change & It can monitor a relevant variable and change the value depending on the variable type of substitutial statement. V\%, V!, V\$, P, R, LV\%, LV!, LV\$, LP, LR \\
\hline
\end{tabular}

\subsection*{9.2 MOVE - step position}

Out line
Press (Quick0pen) key at move instruction.

Screen display
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38*** Step Pose Data *** A:0 S:4} \\
\hline \multicolumn{2}{|l|}{POSE OF CURRENT STEP} \\
\hline \multicolumn{2}{|l|}{X: [840.000] mm} \\
\hline \multicolumn{2}{|l|}{Y: [960.000] mm} \\
\hline \multicolumn{2}{|l|}{Z: [0.000] mm} \\
\hline \multicolumn{2}{|l|}{Rx:[0.000\(]\) deg} \\
\hline \multicolumn{2}{|l|}{Ry:[0.000\(] \mathrm{deg}\)} \\
\hline \multicolumn{2}{|l|}{\(\mathrm{Rz}:[0.000] \mathrm{deg}\)} \\
\hline \multicolumn{2}{|l|}{Coordination : <Base, Robot, Encoder>} \\
\hline \multicolumn{2}{|l|}{Robot Conf iguration: <Define, Self-Cfg \(>\)} \\
\hline \multicolumn{2}{|l|}{\(<\) Front, Rear \(>\) <Up, Down> <Fl ip, Non-flip>} \\
\hline \multicolumn{2}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{2}{|l|}{>[-99999.999-99999.999]} \\
\hline & Save \\
\hline
\end{tabular}
screen contents

■ present step position
(1) It displays relevant step position(pose).
(2) When changing a step position, it is moved by using a cursor key, when it is edited, if [SET]key is pressed after inputing number, the contents input is reflected.

■ coordinate type : It selects the display type of present step position among Base coordinate system, Robot coordinate system and Encoder value.

■ robot config. type : It is displayed when the coordinate system form is Base or Robot coordinate system, and when the robot position is decribed, if you decribe the form uniquly, the selection of robot config. is needed because there are several values considering of its mechanism. In case of selecting the items, press [Shift(high speed) \(]+[<-][->]\).

Edit method

Move the highlight bar on the item. In case of inputting the numerical value, if you press [SET] key after inputt ing number on the input frame, the contents will be reflected. In case of selecting one out of items in \(<>\), if you press [Shift(high speed)]+[<-][->], the highlight bar is moving and then it is immediately reflected. If you want to reflect it to program, you finish it by pressing " record" [PF5]. If you finish by pressing [cancel], the contents displayed on the screen is not reflected.

\subsection*{9.3 WELDING START CONDITION - EXE. AT ASF\#=x}

Out line
If you press key, when a cursor is at the ARCON ASF\#= instruction line, the edit screen appears as followings.

Entry screen

screen contents

■ con. No. : It assigns the welding con. No. (32 conditions are available.)

■ explanation : It records the explanation about usage of the welding condition.

■ voltage check : It sets whether the checked control method of welding power machine is unification or individuation.

■ retry: In case of not detecting WCR signal after outputting ARCON signal, it determines whether using retry function or not.

■ action mode : It is the moving direction of torch when it retries.
(1) re-entry: In case that arc occurrence is failed, after moving back to before step, it tries to make an arc occurrence again. The moving distance can be set as retract distance on the welding auxiliary condition retry screen. Because it steps moving
forward after retracting in certain amount of distance, the voltage/current condition follows the welding start condition.
(2) Shift : After moving in scheduled moving amount at the retry condition of welding aux. condition, it returns to the arc occurrence step. And it tries to make an arc occurrence in the voltage/current condition at retry condition.
(3) welding line move: After moving by scheduled distance at the retract distance of welding aux. condition's retry condition with welding line, it tries to make an arc occurrence in the scheduled voltage/current condition at retry condition. If the arc occurrence is success, after it returns to the welding start point again with holding this arc, it processes the welding.

■ Output current : It inputs the welding current value to output at welding power machine.

■ Output voltage : It inputs the welding voltage value to output at welding power machine.

■ WCR input wait : It selects whether waiting WCR input or not waiting and just processing after outputting the welding condition.

■ Wait time : In case that WCR input wait is " enable" : it displays " wait time". timeout time, that is WCR input maximum wait time, it processes even though the signal is not detecting.
In case that WCR input wait is " disable" : it displays" delay time". It is the time when robot is not moving after outputting the condition.

■ Gas blowing out : It inputs the time of gas to blow out before the arc welding starts.

■ Initial condition time : After WCR is input, it sets the holding time of initial current and voltage.

■ Initial current : It sets the current value until WCR is input.

■ Initial voltage : It sets the voltage value until WCR is input.

■ Output type : While an arc welding, it selects whether you make it steep or unchangible which is the status of current and voltage from initial time to the steady state.

\section*{Reference}
(1) [cancel] ends without saving, " completion" [PF5] ends after saving the changed items.

\subsection*{9.4 WELDING END CONDITION - EXE. AT AEF\#=}

OUTLINE

When a cursor is at ARCOF AEF\#= instruction line, if you press key, edit screen is displayed as followings.

Entry screen

Screen contents

■ Con. No. : It assigns the welding condition No. (32 conditions are available.)

■ Explanation : It records explanation about usage of the welding condition.

■ Voltage check : It sets what you checked whether the control way is unification or individuation.

■ Auto wire stick release : In case that wire stick is happened after ARCOF is output, it decides whether using the auto wire stick release function or not.

■ Output current : It inputs welding current value to output at the welding power machine.

Output voltage : It inputs welding voltage value to output at the welding power machine.

■ Condition holding time : It inputs the time when current and voltage of welding end condition holds.

■ Output way: When the arc welding ends, it selects whether you make it steep or unchangable
which is condition of current and voltage value from in steady state to in end state.

■ Gas blowing out : It inputs the time when the gas is blew out continuously after Arc off.

Reference
(1) If you press [cancel], it ends without saving, if you press" completion" [PF5], it ends after saving the changed contents.

\subsection*{9.5 WELDING AUXILIARY CONDITION - RETRY}

Out line

If you press "aux. condition"[PF1] at the welding start condition file screen, the varieties of auxiliary condition file are displayed separately.

Entry screen

Screen contents

■ Count of times : It assigns the maximum number of times repeating. If arc occurrence fails within number of times assigned, it stops after returning to the reference point (initial arc on occurrence try point, welding start point).

■ RETRACT time : When it retries, it assigns the time when wire is retracted. Torch is moved after Retract, and then it makes arc on after inching.

■ Retract/welding line move : When an action mode is set to re-entry or welding line move, it is the distance of torch when it is retried. An action mode setting is assigned at start condition.

■ Shift move amount : When an action mode is set to shift, it is the move amount of torch when it is retried.

■ Speed : When a retry, it is the speed of body moving to the retry point assigned or returning to the welding start point.

■ Current : It is the output value of welding current when a retry. (It is applied until the body is returned to the welding start point.) But, in case that current value is

0 , it starts with the current value of welding start condition.

■ Voltage : It is the output value of welding voltage when a retry. (It is applied until the body returns to the welding start point.) But, in case that voltage value is 0 , it starts with the current value of welding start condition.

Reference
(1) It ends without saving when you press [cancel], but it ends after saving the contents changed when you press " completion" [PF5].

\subsection*{9.6 WELDING AUXILIARY CONDITION - RESTART}

Out line

If you select" aux. condition" [PF1] at the welding start condition screen and press " restart" [PF1], restart setting screen is displayed as followings

Entry screen

Screen contents

■ Number of times : It assigns max. repeating number of times of restart process in the same welding area.

■ Amount of superposition : It is the distance of superposition(Overlap distance) when a restart. It starts to weld after returning as long as a superposition distance.
- Speed : It is a speed of over lapping after moving to superposition position. When error occurs, it has three times of assigned speed when it moves as long as overlap distance, and this speed is applied when it welds in overlap area. After welding in Overlap section, the normal welding speed is applied.

In case that error occurs(2) when a welding processes from welding start point(1)) to welding end point(4), it moves in three times of speed assigned here as long as amount of superposition(3). It welds with current, voltage and speed which is assigned at restart until (2), and it welds in normal condition assigned at start condition from (2) to (4). But, during a welding in overlap section (from (3) to (2)), when error occurs, it immediately starts welding in that point without overlapping again.

■ Current : It is a welding current at superposition section when overlapping. But, when a voltage value is 0 , it starts with the current value of welding start condition.

■ Voltage : It is a welding voltage when overlapping. But, when a voltage value is 0 , it starts with the voltage value of welding start condition.

■ Overlap condition setting : If Arc Off, Gas Off, Wire Off signal is input when a arc welding, following exe. methods are determined depending on the restart type of welding auxiliary condition file.
(1) Arc Off : It is the processing method when " Arc Off detect" input signal is input.
(1) Enable : It stops with" current not detecting during E1189 welding" message, and it doesn't do a bid overlap when starting after pressing" start" button again.
(2) Ignore: It's still working with" current not detecting during E1189 arc welding."
(3) Semi-auto : It stops the robot with " current not detecting during E1189 arc welding" message and waits for a manual operation. If you press "start" button in manual operation after clearing error, it returns as long as amount of superposition assigned at restart condition in three times of assigned speed, and outputs condition current and voltage, and welds by arc Off point by making Torch Switch On in a setting speed, and if it gets to arc Off position, it outputs current and voltage value of welding start condition, and it continues to do a normal arc welding to the target point.
(4) Auto : It stops the robot with " current not detecting during E1189 arc welding" message and automatically returns to the three times of setting speed at restart condition, and it outputs current and voltage of restart condition, and makes Torch Switch On, and it welds by the arc Off position in a setting speed, and if it gets to the arc Off position, it outputs current and voltage value of the welding start condition, and it continues to do a normal welding to the target point.
(2) Gas Off : It is a processing method when " Gas status(enable/disable)" input signal is input.
(1) Disable: It stops with" E1275 gas pressure is not enough." message, and it doesn't do a bid overlap when it starts after pressing " start" button again.
(2) Semi-auto : It stops the robot to wait manual operation with" E1275 gas pressure is not enough." message. If you press "start" button after clearing Error by a manual operation, It returns as long as assigned amount of superposition from gas Off position, and outputs current and voltage of restart condition, and makes Torch Switch On and it welds by gas Off position in a setting speed, and if it gets to the gas Off position, it outputs current and voltage value of welding start condition and it continues to do a normal welding to the target point.

\section*{Reference}

■ "system" [PF2] \(\rightarrow\) 4. application parameter \(\rightarrow\) 2. arc \(\rightarrow\) 1. If you set a gas pressure status input signal " 0 ", it ignores even though signals are input.
(3) Wire Off : It is a processing method when " Wire status(enable/disable)" input signal is input.
(1) disable : It stops with" E1276 welding wire is not enough." message, and it doesn't do a bid overlap when it starts after pressing "start" button.
(2) seim-auto : It stops the robot to wait manual operation with" E1276 welding wire is not enough." message. If you press "start" button after clearing Error by a manual operation, it returns as long as assigned amount of superposition from wire Off position, and outputs current and voltage of restart condition, and makes Torch Switch On and it welds by wire Off position in a setting speed, and if it gets to the wire Off position, it outputs current and voltage value of welding start condition and it cont inues to do a normal welding to the target point.

\section*{Reference}

■ "system"[PF2] \(\rightarrow\) 4. application parameter \(\rightarrow 2\). arc \(\rightarrow\) 1. If you set a Wire status input signal "0", it ignores even though signals are input.

\subsection*{9.7 WELDING AUXILIARY CONDITION - AUTO. WIRE STICK RELEASE}

Out line

If you select" auxiliary condition" [PF1] at welding end condition, automatic wire stick release setting screen is displayed as followings.

Entry screen
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38** Arc Condition File **A:0 S:4} \\
\hline \multicolumn{2}{|l|}{ARC AUXILIARY CONDITION FILE} \\
\hline \multicolumn{2}{|l|}{<AUTO STICK RECOVERY>} \\
\hline \multicolumn{2}{|l|}{Repeat : [1] Times} \\
\hline \multicolumn{2}{|l|}{Current : [0] A} \\
\hline \multicolumn{2}{|l|}{Voltage : [20.0] V} \\
\hline \multicolumn{2}{|l|}{Delay : [0.30] sec} \\
\hline \multicolumn{2}{|l|}{Select and Enter number. Press [SET]} \\
\hline \multicolumn{2}{|l|}{>[0.0-200.0]} \\
\hline AEF & Save \\
\hline
\end{tabular}

Screen contents

■ Number of times : It inputs the maximum repeating times of wire stick release.

■ Current : It inputs the output value of welding current during a wire stick release.

■ Voltage : It inputs the output value of welding current during processing a wire stick release.

■ Delay time : It inputs the time when a wire stick release condition outputs.

Reference

■ Move a cursor on the content which you want to change, and press [SET] and inputting numerical number. The setting value will be changed. You should press "completion"[PF5] to save the changed value.

\subsection*{9.8 WEAVING CONDITION FILE}

Out line

If you press key, when there is a cursor in WEAVON WEA\#= instruction line, the edit screen is displayed as followings.

Entry screen

Screen contents

■ Condition number : It is the number of weaving condition. You can input the number directly or move to previous or next number by using [ENABLE]+[个] [].

■ Weaving type : It supports simple harmonic motion, triangle wave and L type wave.

■ Frequency : If 0, it selects moving time. Frequency can be set within \(0.1 \sim 5.0 \mathrm{~Hz}\).
- Basic pattern
(1) Vertical direction : Ver. distance can be input within \(1.0 \sim 25.0 \mathrm{~mm}\).
(2) Horizontal direction : Hor. distance can be input within \(1.0 \sim 25.0 \mathrm{~mm}\).
(3) Angle : Angle can be input within \(0.1 \sim 180.0\) degree.

■ Moving angle : moving angle can be set within \(-90.0 \sim 90.0\) degree.

■ Moving time : moving time can be set within \(0.04 \sim 9.99 \mathrm{sec}\).

■ Timer : timer can be set within \(0.00 \sim 2.00 \mathrm{sec}\).

Reference

Move a cursor on the content which you want to change, and it is set by inputt ing numerical number or using [Enable] \(+[\rightarrow] /[\leftarrow]\) key. After changing, if you press [cancel], it ends without saving, and if you press "record"[PF5], it ends after saving.

\subsection*{9.9 PROGRAM EDIT IN RUNNING}

Out line

If you press key when a robot program is playing back, the program edit in running (Hot Edit) screen is displayed as followings. The function explanation about program edit in running (Hot Edit) can be referred to " service" [PF1] -> 4: program edit -> 6: program edit in running(Hot Edit).

\subsection*{9.10 SPOT WELDING FUNCTION}

\section*{Out line}

When SPOT or M72 (spot welding function) is recorded as a function in editing program, if you press key after moving a cursor on, the screen is displayed as followings.

14:39:38*Servo-gun Welding Data*A:0 S:4
1: Welding condition
2: Welding sequence

\subsection*{9.10.1 welding condition}

If you select welding condition, following screen is displayed. The details about screen are referred to " system" [PF2] \(\rightarrow\) 4: application parameter \(\rightarrow 1\) : spot \& stud \(\rightarrow 3\) : spot welding data (condition, sequence) \(\rightarrow 2\) : welding condition part. The difference from this part is that the number of welding condition can not be changed but only the parameter about number of relevant welding condition can be changed.

\subsection*{9.10 .2 welding sequence}

If you select welding sequence, following screen is displayed. The detail about screen can be referred to " system" [PF2] \(\rightarrow 4:\) application parameter \(\rightarrow 1\) : spot \& stud \(\rightarrow\) 3 : spot welding data (condition, sequence) \(\rightarrow 2\) : welding system part. The difference from this part is that the number of welding sequence can not be changed but only the parameter about relevant welding sequence number can be changed.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{14:39:38 *** Weld Sequence *** A:0 S:4} \\
\hline Welding Sequence 1 & \\
\hline Condition signal & = \(<\) DSBL, ENBL \(>\) \\
\hline Squeeze signal & =< DSBL, ENBL > \\
\hline Welding command signal= & =< DSBL, ENBL > \\
\hline WI wait & = DSBL, ENBL > \\
\hline Welding wait time & \(=\) [0.00] \\
\hline Welding end wait time & \(=[0.00]\) \\
\hline \multicolumn{2}{|l|}{Press [SHIFT] \(+[<-][->]\) Kev.} \\
\hline \(\gg\) & \\
\hline
\end{tabular}

\section*{Chapter 10. Menu Tree}
10.1 MENU LIST 10-2
10.2 MOTION I/O 10-3
10.3 FLOW CONTROL 10-5
10.4 ETC 10-7
10.5 ARC 10-8
10.6 SUSTITUTIAL STATEMENT 10-10

\section*{CHAP. 10 MENU TREE}

\subsection*{10.1 MENU LIST}

This picture displays groups that each instruction is located at initial menu and instruction input.

\subsection*{10.2 Move, I/0}

Grammar : MOVE <interpolation> [, <pose>] , \(S=<\) speed \(>, A=<a c c u r a c y>, T=<T O O L>[, M X][, M X 2]\) [,G1] [,G2] [,BM] [,UNTIL <conditional expression>]

Grammar: PRINT <ouput direction>, <information,...>

Grammar: INPUT <input direction>, <variable> [,<timeout time>]

Signal output (D0 signal): It is the same as <variable>'s <out> menu.

WAIT <conditional expression> [,<timeout time>, <feedback address>]

\subsection*{10.3 FLOW control}

IF <conditional expression> THEN <address> [ELSE <address>]
IF <conditional expression> THEN ~ [ELSEIF <conditional expression> THEN ~] [ELSE ~] ENDIF

FOR <variable name>=<initial value> TO <end value> [STEP <augmenter>] ~ NEXT

heavy industries co.,LtD.
```

GOTO <address> ON <number> GOTO <address> [,<address>, ..]
JUMP(CALL)
GOSUB <address> ~ RETURN
<program number>

```


DELAY <time>

* (LABEL): It starts with an alphabet within 8 characters. an alphabet, number, under bar(_) is available.

\subsection*{10.4 ETC.}

\subsection*{10.5 ARC}

ARCON [ASF\#=<file number>] ARCON \(C=<\) current output value>,
\(\{V=<\) voltage output value \(>/ V P=\langle\) voltage ratio \(\rangle\) \}
[,T=<t ime>] [,RETRY]

ARCOF [AEF\#=<file number>] ARCOF C=<current output value>,
\(\{V=<\) voltage output value \(>/ V P=<\) voltage ratio \(>\}\)
[,T=<t ime>] [,ANTSTK]

ARCCUR C=<current output value> ARCVOL \(\{V=<\) voltage output \(>/ V P=<\) voltage rat \(i o\rangle\}\) ARCDC <current instruction value> ARCDV <voltage instruction value>

ARCDC 10

ARCDV 10

WEAVON WEV\#=<file number> REFP <reference point number>, [<auxiliary point>]

\section*{10.6 substitutional Statement}

It is a form of " variable=expression". In all case that arithmetic statement can be input as well as substitutional statement, formula menu is supported. At this time, variable menu is as followings. Formula input can be referred to the explanation (screen) about instruction statement edit.

\section*{Chapter. 11 Robot Language Explanation}
11.1 BASIC ELEMENTS \(11-3\)
11.1.1 LINE 11-3
11.1.2 CHARACTER 11-3
11.1.3 ADDRESS 11-3
11.1.4 CONSTANT 11-4
11.1.5 ROBOT CONFIG. INFORMATION 11-5
11.1.6 VARIABLE 11-6
11.1.7 OPERATOR 11-10
11.1.8 FORMULA 11-10
11.2 COMMAND LINE 11-11
11.2.1 SUSTITUTIONAL 11-11
11.2.2 ROBOT CONTROL 11-12
11.2.3 INPUT/OUTPUT 11-14
11.2.4 PROGRAM FLOW CONTROL 11-16
11.2.5 COMMENT 11-21
11.2.6 ARC WELDING 11-21
11.3 OTHERS \(11-25\)
11.4 FUNCTION 11-40
11.4.1 ARITHEMATIC FUNCTION 11-40
11.4.2 STRING FUNCTION 11-41
11.4.3 ROBOT LANGUAGE SUBTITUTION OF OLD MIT FUNCTION CODE \(11-42\)

\section*{CHAP. 11 ROBOT LANG. EXPLANATION}

There are two ways to teach an industrial robot greatly. One is an instruction code method, and the other is a robot language method.
Our old controller model such as Hi3CE, Hi3TB, etc. . in Hi controller ser ies has an instruction code method to teach.
instruction code of Hi controller
\begin{tabular}{|c|c|c|c|}
\hline section & class & role & example \\
\hline step & step code & move of tool end in robot & \[
\begin{aligned}
& \hline 340.5 \mathrm{~mm} / \mathrm{s}(\mathrm{~L}) \text { A0 T0 G1 X2 } \\
& \text { speed } 340 \mathrm{~mm} / \mathrm{s} \\
& \text { accuracy 0, tool 0, gun1, X2 } \\
& \hline
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
funct io \\
n
\end{tabular}} & M code & ```
signal input/output
jump, call, stop
conditional jump, call, stop
repeating execution
conditional repeating
execution setting
on-line shift
welding condition,
palletize etc.
various application
function execution.
etc....
``` &  \\
\hline & I code & DI signal wait & \begin{tabular}{cc} 
I25 I18 & DI18 signal wait \\
I53 IB1, 101, 2, 0 & time conditional \\
GIsignal(AND)
\end{tabular} \\
\hline & T code & t ime delay & T 5.0 5sec. wait \\
\hline
\end{tabular}

A teaching person can make a work program which can control a robot action fussily by using hundred tens of instruction codes. But, it is very difficult or almost impossible to make a program with instruction codes that needs numerical formula or string process and many data's saving and process. Also, it is difficult to analyze a program for beginner because instruction codes are consists of number codes.

On the other hand, robot language method supply that various arithmetics, string variable, functions and numerical formula type with instruction statement groups in English. It is general that industrial robot makers has their own unique robot language. Hyundai Hi4 has its unique robot language named HR-BASIC. This language is similar with BASIC language grammar which is used in PC.

\section*{11.1 basic elements}

\subsection*{11.1.1 Line}

Line number can be added at forefront of line. (optional).
254 characters can be described in 1 line. 1 line can has only 1 instruction statement.

\subsection*{11.1.2 Character}
\begin{tabular}{|c|c|}
\hline letter & \(A \sim Z, \quad a \sim Z\), Korean (capital character can be usable except in comment statement contents and string ) \\
\hline digit & 0 ~ 9 \\
\hline symbol & ! " ' \# \$ \% \& ( ) * + - , / W : ; < > ? @ [ W ] ^ \{ \} | _ \\
\hline space & <space> <tab>( conversion to <space> before transmission to controller) \\
\hline
\end{tabular}

\subsection*{11.1.3 Address}
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
explana- \\
tion
\end{tabular} & \begin{tabular}{l} 
line No., step No. or label. It is used for jump such as GOTO, GOSUB, etc. \\
line No. can be omit.
\end{tabular} \\
\hline \begin{tabular}{l} 
step \\
number
\end{tabular} & SO~S999 & \begin{tabular}{l} 
step No. is automat ically numberring when MOVE statement is \\
used.
\end{tabular} \\
\hline line No. & \(1 \sim 9999\) & \begin{tabular}{l} 
The procedure of line No. is not connected to the procedure of \\
program execut ion.
\end{tabular} \\
\hline label & \(*<\) label name \(>\) & \begin{tabular}{l} 
label name can be consists of alphabet and under bar within 8 \\
characers. It should start with alphabet.
\end{tabular} \\
\hline \begin{tabular}{l} 
example \\
for use
\end{tabular} & \begin{tabular}{l}
50 PRINT.... \\
\(*\) ERRHDL
\end{tabular} & GOTO 10 \\
\hline
\end{tabular}

\section*{Reference}
(1) Unsigned integer can only be used in line No. and step No.
(real number, arithmetic statement X)
(2) Label number per program is within 100.

\subsection*{11.1.4 Constant}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{2}{|l|}{ constant type } & range & example \\
\hline \multirow{3}{*}{ constant } & dec. & \(-32768 \sim 32767\) & \(2150,-440\) \\
\cline { 2 - 4 } & bin. & \(\& \mathrm{~B} 0 \sim \mathrm{~B} 111111111111111\) & \(\& B 01101011, \& B 1000\) \\
\cline { 2 - 4 } & hex. & \(\& H 0 \sim \& H F F F F\) & \(\& H 3 F 77, \quad \& H 2 \mathrm{~A}\) \\
\hline \multicolumn{2}{|l|}{ real number } & \(-3.4 \mathrm{E}+38 \sim 3.4 \mathrm{E}+38\) & \(55.6, \quad 0.5 \mathrm{E}-2\) \\
\hline \multirow{2}{*}{ string } & enable with 35 char. & \begin{tabular}{l} 
"INPUT WORK NUMBER: ", \\
"INVALID DATA"
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|l|}
\hline \(\begin{array}{c}\text { constant } \\
\text { type }\end{array}\) & \multicolumn{1}{|c|}{ coordinate type } & \multicolumn{1}{|c|}{ range } & \multicolumn{1}{c|}{ example } \\
\hline \multirow{3}{*}{ pose } & \(\begin{array}{l}\text { basic coordinate } \\
\text { system }\end{array}\) & \(\begin{array}{l}\text { robot coordinate } \\
\text { system }\end{array}\) & real number range
\end{tabular} \(\left.\begin{array}{l}(204.5,3719.35,277.94,0,50,0,24) \\
\text { (P* is present pose of robot) }\end{array}\right)\)

\section*{Reference}
(1) Suffix is not added in basic coordinate system, but suffix is added in robot coordinate system.
(2) In case of basic coordinate system or robot coordinate system, each elements are (X, Y, Z, RX, RY, RZ, cfg.). If there is an additional axis, it is continued after RZ. X, \(Y, Z\) are coordinate(unit: mm), RX, RY, RZ are each rotational angle of \(x\) axis, \(y\) axis, axis(unit: degree).
cfg. (configuration) is consists of 8bit ( \(0 \sim 255\) ) robot type information.
(3) In case that there is not additional axis, it is the same whether R is added or not.
(4) In case of encoder type, suffix is added.
(5) Each elements of encoder type is (S, H, V, R2, B, R1), and there is not cfg. If there is an additional axis, it is continued after R1.
(6) In case that T is added, only tool coordinate system is applied, so even though user coordinate system is set, it is ignored.

\subsection*{11.1.5 Robot type information}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 9~7 bit & 6 bit & 5 bit & 4 bit & 3 bit & 2 bit & 1 bit & 0 bit \\
\hline \begin{tabular}{l}
0: base \\
1: robot \\
3: encoder
\end{tabular} & \[
\begin{array}{ll}
0: & \mathrm{R} 2<180 \\
1: & \mathrm{R} 2>=180
\end{array}
\] & \[
\begin{aligned}
& 0: \mathrm{R} 1<180 \\
& 1: \mathrm{R} 1>=180
\end{aligned}
\] & \[
\begin{aligned}
& 0: S<180 \\
& 1: \\
& 1: S>=180
\end{aligned}
\] & \[
\begin{aligned}
& 0: \text { flip } \\
& 1: \text { nof lip }
\end{aligned}
\] & \begin{tabular}{l}
0: up \\
1: down
\end{tabular} & \begin{tabular}{l}
0: front \\
1: rear
\end{tabular} & \[
\begin{aligned}
& 0 \text { : manual } \\
& 1 \text { : auto }
\end{aligned}
\] \\
\hline
\end{tabular}

Reference
(1) 0 bit : It is an auto. cfg. function. If it is 0 , type information assigned at 1 bit \(\sim 6\) bit is applied, if it is 1 , it uses proper type created ignoring assigned type.
(2) \(9 \sim 7\) bit : It is a coordinate type of pose. When you want to use by reading coordinate information of pose in program routine, this bit is used. In case that it is set differently between coordinate system suffix and this bit, you can follow suffix.

\subsection*{11.1.6 Variable}

\subsection*{11.1.6.1 Global variable}

It can be shared and used in whole program.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{variable type} & grammar & example \\
\hline \multirow{2}{*}{arithmetic} & contsant & \[
\begin{aligned}
& \mathrm{V} 1 \% \sim \mathrm{~V} 400 \% \text { or } \\
& \mathrm{V} \%[1] \sim \mathrm{V} \%[400]
\end{aligned}
\] & \begin{tabular}{l}
\[
\mathrm{V} 10 \%, \mathrm{~V} \%[20], \mathrm{V} \%[50+\mathrm{V} 2 \%]
\] \\
(The type of numerical formula can be written in [ ].)
\end{tabular} \\
\hline & \begin{tabular}{l}
real \\
number
\end{tabular} & \[
\begin{aligned}
& \mathrm{V} 1!\sim \mathrm{V} 400!\text { or } \\
& \mathrm{V}![1] \sim \mathrm{V}![400]
\end{aligned}
\] & V10!, V![20], V![50+V2\%] \\
\hline \multicolumn{2}{|c|}{strings} & V1\$~V40\$ or V [1] ~V\$[40] & V10\$, V\$[20], V\$[V2\%] \\
\hline \multicolumn{2}{|c|}{pose} & \[
\begin{aligned}
& \mathrm{P} 1 \sim \mathrm{P} 999 \text { or } \\
& \mathrm{P}[1] \sim \mathrm{P}[999]
\end{aligned}
\] & \begin{tabular}{l}
P50, \(\mathrm{P}[70], \mathrm{P}[50+\mathrm{V} 2 \$], \mathrm{P}[20] . \mathrm{RZ}, \mathrm{P}[10] . \mathrm{X}\) \\
(The access to the elements (X, Y, Z, RX, RY, RZ, T1, T2,... T6, CFG) are available.)
\end{tabular} \\
\hline \multicolumn{2}{|c|}{shift} & \[
\begin{aligned}
& \mathrm{R} 1 \sim \mathrm{R} 100 \text { or } \\
& \mathrm{R}[1] \sim \mathrm{R}[100]
\end{aligned}
\] & \begin{tabular}{l}
R20, R[30], R[20+V2\$], R[20].RZ, R[10].X \\
(The access to the elements (X, Y, Z, RX, RY, RZ) are available.)
\end{tabular} \\
\hline
\end{tabular}

\section*{Reference}
(1) Pose type elements and shift type elements are dealt as real number type.
(2) The number of pose element \(\mathrm{T} 1, \mathrm{~T} 2 \ldots\) should be matched with the number of additional axis.
(3) When pose is encoder type, (S, H, V, R2, B, R1) elements can be accessed by using each X, Y, Z, RX, RY, RZ.
(4) At the time when controller's system is initialized, all arithmetics type variables, pose and variable elements become 0 , and string variables are initialized to blank string. It is not initialized automatically when the cycle begins and program is changed.
(5) All variables are reserved even though the power is turned off.

\subsection*{11.1.6.2 Local variable}

It exists separately in each main program and auxiliary program called. It is impossible to access local variables of other program.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{variable type} & grammar & example \\
\hline \multirow{2}{*}{arithmetic} & constant & LV1\%~LV50\% or LV\%[1] ~LV\%[50] & \begin{tabular}{l}
LV10\%, LV\%[5], LV\%[5+LV2\%] \\
(The type of numerical formula is only written in [ ].)
\end{tabular} \\
\hline & \begin{tabular}{l}
real \\
number
\end{tabular} & LV1! ~LV50! or LV![1]~LV! [50] & LV10!, LV! [5], LV![5+LV2\%] \\
\hline \multicolumn{2}{|l|}{string} & LV1\$~LV10\$ or LV\$[1] ~LV\$[10] & LV10\$, LV\$[5], LV\$[LV2\%] \\
\hline \multicolumn{2}{|l|}{pose} & LP1~LP100 or
LP[1] ~LP[100] & LP5, LP[7], LP[5+LV2\$], LP[2].RZ, LP[10].X (Access to elements (X, Y, Z, RX, RY, RZ, T1, T2,... T6, CFG) is possible.) \\
\hline \multicolumn{2}{|l|}{shift} & \[
\begin{aligned}
& \text { LR1~LR50 or } \\
& \text { LR[1] } \sim \operatorname{LR}[50]
\end{aligned}
\] & LR2, LR[3], LR[2+LV2\$], LR[2].RZ, LR[10].X (Access to elements (X, Y, Z, RX, RY, RZ) is possible.) \\
\hline
\end{tabular}

Reference
(1) Pose type elements and shift type elements are dealt as real number type.
(2) The number of pose element \(\mathrm{T} 1, \mathrm{~T} 2 \ldots\) should be matched with the number of additional axis.
(3) When pose is a encoder type, (S, H, V, R2, B, R1) elements can be accessed by using each X, Y, Z, RX, RY, RZ.
(4) At the time when controller's system is initialized, all arithmetics type variables, pose and variable elements become 0 , and string variables are initialized to blank string. It is not initialized automatically when the cycle begins and program is changed.
(5) All variables are reserved even though the power is turned off.

\subsection*{11.1.6.3 Input/output variable}


\section*{Reference}
(1) When you use index as a type of numerical type, write it in [] like DO[], GO[], AO[].
(2) The range of analog input/output value is \(-12 \mathrm{~V} \sim 12 \mathrm{~V}\) when it is based that BD 480 is equipped.

\subsection*{11.1.6.4 System variable}

These are variables to get or to set the information of inner system. In present, there are variable which is relevant to number of times register and two read only variables which are relevant to option board.

Read only variable is not substituted. It means that it can't be located in left side of the substitutional statement.
\begin{tabular}{|l|l|l|}
\hline \begin{tabular}{l} 
_RN1~16 or \\
\(\_\)RN[1]~_RN[16]
\end{tabular} & It' s relevant to number of times register No.1~No.16 & \\
\hline\(\$\) CONVREG & Encoder pulse count value of opt ion board & Read only \\
\hline\(\$ C O N V S T A T ~\) & \begin{tabular}{l} 
Status of opt ion board \\
Bit \(0:\) status in encoder singer wire short(active high) \\
Bit \(1:\) start limit switch(active high)
\end{tabular} & Read only \\
\hline
\end{tabular}

\subsection*{11.1.7 Operator}
\begin{tabular}{|l|}
\hline\((~)\) \\
\hline \(\operatorname{sign}(+-)\) \\
\hline\(\wedge\) \\
\hline\(* / \mathrm{W}\) MOD \\
\hline+- \\
\hline \begin{tabular}{l}
\(=<\gg<=\) \\
\(>=\)
\end{tabular} \\
\hline NOT \\
\hline AND OR XOR \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline high & example \\
\hline priorit & \(\mathrm{V} 10!=\left(\mathrm{V} 1!^{\wedge} 2+\mathrm{V} 2!^{\wedge} 2+\mathrm{V} 3 \mathrm{l}^{\wedge} 2\right) * 2.5\) \\
\hline \(\uparrow\) & \(\mathrm{IF}(\mathrm{V} 24!>=\mathrm{V} 50\) ! AND V10\$=" WELD" \\
\hline & (1) Three operators are available in String operation which are + (connection between two strings), =(equal) and \(<>(\) difference \()\). \\
\hline \(\downarrow\) & (2) Pose operation can be used only in type of \\
\hline low & <pose>+<shift>. \\
\hline priorit & \\
\hline
\end{tabular}
(3) W is a integer division operator that the value of left side's divided operator is divided by the value of right side's value and it is rounded off.
(4) MOD is a operation that finds remainder of division.
(5) AND, OR, XOR are bit operators, and if you want to use it as a logical operator, we recommend that operand should be 0 or 1 . So at that time, the result can be accurate.
(6) NOT is only used as a bit operator, and logical NOT is not exist. So we recommend you to use <> instead.
(7) In case of operation between integer and real number, integer is converted to real number automatically and then the operation is executed. (The result type of operation is real number type.)

\subsection*{11.1.8 Formula}
\begin{tabular}{|l|l|}
\hline \begin{tabular}{l} 
arithme- \\
tic \\
statement
\end{tabular} & \begin{tabular}{l} 
Integer, real number, integer type variable, real number type variable, \\
arithmetic function, pose element, shift element, it includes operation which \\
has integer type or real number type in result. \\
Example: -10, 10.12, V1\%, V1!, SQR(V1\%), P1.X, R2.Y, (V2! +V3! \() / 2+\& H C O 00 ~\)
\end{tabular} \\
\hline \begin{tabular}{l} 
string \\
statement
\end{tabular} & \begin{tabular}{l} 
String constant, string variable, string function, it includes operation which \\
has string type in result. \\
Example: "COMM ERR", "ABCD" + "EFCD", LEFT\$("R0BOT INIT", 5)
\end{tabular} \\
\hline \begin{tabular}{l} 
pose \\
statement
\end{tabular} & \begin{tabular}{l} 
Pose constant, pose variable, it includes operation which has pose type in result. \\
Example: (204.5, 37.35, 2.94, 0, 50, 0, 24)R+(0, 10, 0, 0, 0, 0)H, P1+R1
\end{tabular} \\
\hline
\end{tabular}

\subsection*{11.2 Command line}

\subsection*{11.2.1 Substitution}


\subsection*{11.2.2 Robot Control}

\subsection*{11.2.2.1 MOVE Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{The tool end of the robot moves to pose position.} \\
\hline Syntax & \multicolumn{3}{|l|}{MOVE <Interpolation>, [<Pose>], \(S=<\) Speed \(>, A=<\) Accuracy>, H=<Tool Number> [,<Output Option>] [ UNTIL <Condition>[, <Interrupt Status Var iable>] ]} \\
\hline \multirow{8}{*}{Parameter} & Interpo lation & P : No Interpolation, L : Straight, C : ARC & \\
\hline & Pose & Pose type, Target pose to move. If there is hidden pose, it is omitted or only the shift type is specified. & \\
\hline & Speed & Arithmetic Equation. The moving speed of the tool end. Unit(mm/sec, cm/min, sec, \%) has to be accompanied. & \\
\hline & \begin{tabular}{l}
Accurac \\
y
\end{tabular} & Arithmetic Equation. \(0 \sim 30\) is most accurate & \\
\hline & \begin{tabular}{l}
Tool \\
Number
\end{tabular} & Arithmetic Equation. \(0 \sim 3\) & \\
\hline & Out put Opt ion & MX, MX2, G1, G2, BM (Multiple selection possible) & \\
\hline & \begin{tabular}{l}
Conditi \\
on
\end{tabular} & If the condition is met, robot operation stops and it is assumed to reach the specified pose. & \\
\hline & \begin{tabular}{l}
Interru \\
pt \\
Status
\end{tabular} & \begin{tabular}{l}
Saves the result of the condition. \\
Provides the information if Move command is exited by the condition.
\end{tabular} & Used with UNTIL command \\
\hline example & \multicolumn{3}{|l|}{\begin{tabular}{l}
MOVE C, \(P[0]+R[1], S=800 \mathrm{~mm} / \mathrm{s}, \mathrm{A}=0, \mathrm{H}=1\) \\
MOVE P, R1, \(\mathrm{S}=80 \%\), \(\mathrm{A}=1, \mathrm{H}=3\) UNTIL DI1=1 \\
(hidden pose) \\
MOVE L, \(\mathrm{S}=0.5 \mathrm{sec}, \mathrm{A}=0\), \(\mathrm{H}=0\), MX, G1 UNTIL DI2=\&H7F, V1\% (hidden pose)
\end{tabular}} \\
\hline
\end{tabular}

\section*{Note}
(1) If Move command is input by using <REC> key of \(T / P\), it becomes hidden pose type.
(2) If shift data is recorded in the pose position by using T/P, it becomes hidden pose type.
(3) There are MX, G1, PU, PK, PS in the output option of palletizing mode. Signals such as MX and G1 or PU, PK, PS cannot be used simultaneously. Detailed is referred to the Palletizing function.
(4) When using robot equalizing, G1 and G2 cannot be used simultaneously.
11.2.2.2 SMOVE Command
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{The tool end of the robot moves to pose position with positioner synchronizing.} \\
\hline Syntax & \multicolumn{3}{|l|}{SMOVE <Interpolation>, [<Pose>], S=<Speed>, A=<Accuracy>, H=<Tool Number> [,<Output Option>] [ UNTIL <Condit ion>[,<Interrupt Status Variable>] ]} \\
\hline \multirow{9}{*}{Parameter} & Positio ner No. & Referred to the positioner synchronizing. & \\
\hline & \begin{tabular}{l}
Interpo \\
lation
\end{tabular} & P : No Interpolation, L : Straight, C : ARC & \\
\hline & Pose & Pose type, Target pose to move. If there is hidden pose, it is omitted or only the shift type is specified. & \\
\hline & Speed & Arithmetic Equation. The moving speed of the tool end. Unit(mm/sec, cm/min, sec, \%) has to be accompanied. & \\
\hline & \begin{tabular}{l}
Accurac \\
y
\end{tabular} & Arithmetic Equation. \(0 \sim 30\) is most accurate & \\
\hline & Tool Number & Arithmetic Equation. \(0 \sim 3\) & \\
\hline & Out put Opt ion & MX, MX2, G1, G2, BM (Multiple selection possible) & \\
\hline & \begin{tabular}{l}
Conditi \\
on
\end{tabular} & If the condition is met, robot operation stops and it is assumed to reach the specified pose. & \\
\hline & \begin{tabular}{l}
Interru \\
pt \\
Status
\end{tabular} & \begin{tabular}{l}
Saves the result of the condition. \\
Provides the information if Move command is exited by the condition.
\end{tabular} & \begin{tabular}{l}
Used with UNTIL \\
command
\end{tabular} \\
\hline example & \multicolumn{3}{|l|}{\begin{tabular}{l}
MOVE C, \(P[0]+R[1], S=800 \mathrm{~mm} / \mathrm{s}, \mathrm{A}=0, \mathrm{H}=1\) \\
MOVE P, R1, \(\mathrm{S}=80 \%, \mathrm{~A}=1, \mathrm{H}=3\) UNTIL DI1=1 (hidden pose) \\
MOVE L, \(\mathrm{S}=0.5 \mathrm{sec}, \mathrm{A}=0\), \(\mathrm{H}=0\), MX, G1 UNTIL DI2=\&H7F, V1\% (hidden pose)
\end{tabular}} \\
\hline
\end{tabular}

Note
(1) Detailed about Positioner Synchronizing is referred to the Positioner Synchronizing operation manuals.
(2) If Move command is input by using <REC> key of T/P in the position synchronizing mode, it becomes hidden pose type.
(3) If shift data is recorded in the pose position by using \(T / P\), it becomes hidden pose type.
(4) There are MX, G1, PU, PK, PS in the output option of palletizing mode. Signals such as MX and G1 or PU, PK, PS cannot be used simultaneously. Detailed is referred to the Palletizing function.
(5) When using robot equalizing, G1 and G2 cannot be used simultaneously.

\subsection*{11.2.3 I/0}

\subsection*{11.2.3.1 I/0 Substitution}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{Outputs DO signal or inputs the DI signal status.} \\
\hline Syntax & \multicolumn{2}{|l|}{<Output Variable> = <Output Value> <Arithmetic Variable> = <Variable>} \\
\hline \multirow{3}{*}{Parameter} & Output Variabl & Variable correspon Single signal is \\
\hline & Output Value & Arithmetic Equation point if float typ \\
\hline & Input Variabl & Variable correspondi Single signal is \\
\hline example & \multicolumn{2}{|l|}{\[
\begin{array}{|ll}
\hline \text { D03 = 1 } & \text { G02 = \&H7F } \\
\text { V20\% = DI2 } & \text { V21\% = GI2 }
\end{array}
\]} \\
\hline
\end{tabular}

\subsection*{11.2.3.2 PRINT Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Outputs the specified information to Teach Pendant screen or to serial port.} \\
\hline Syntax & PRINT <0ut & 估put Direction>, <Information, ... > & \\
\hline Parameter & Output Direct i on & \begin{tabular}{l}
\#0 : Teach Pendant \\
\#1 : Serial port COM 1 \\
\#2 : Serial port COM 2
\end{tabular} & \\
\hline & Informa tion & Arithmetic Equation., String equation & \\
\hline example & \multicolumn{3}{|l|}{PRINT \#0, "SIGNAL VALUE = " ; V} \\
\hline Comment & \multicolumn{3}{|l|}{\begin{tabular}{l}
If the information is divided by ', ', informations are separated by 1 character space' and by ' ;' , it is output without space. \\
If ' ;' is at the end, no open line character is attached.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{11.2.3.3 INPUT Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Inputs the informat ion to variable from the Teach Pendant screen or serial port.} \\
\hline Syntax & INPUT <I & Input Direction>, <variable>[, <timeout time>] & \\
\hline \multirow{3}{*}{Parameter} & \begin{tabular}{l}
Input \\
Directi \\
on
\end{tabular} & \#0 \(:\) Teach Pendant
\(\# 1\)
\(\# 2: S e r i a l ~ p o r t ~ C O M 1 ~\)
\#2 & \\
\hline & \begin{tabular}{l}
Variabl \\
e
\end{tabular} & Arithmetic Variable, String variable & \\
\hline & timeout & Arithmetic Equation. If certain time is elapsed, moves to the next line. & sec unit integer
\[
0.0 \sim 60.0
\] \\
\hline example & \multicolumn{3}{|l|}{\begin{tabular}{l}
INPUT \#1, V20!, 5 \\
INPUT \#0, V1\$
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{11.2.4 Program Flow Control}

\subsection*{11.2.4.1 GOTO Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & \multicolumn{3}{|l|}{ Jumps to the specified address. } \\
\hline Syntax & GOTO <Address> & \\
\hline Parameter & Address & Address to be jumped. & \\
\hline example & \begin{tabular}{l} 
GOTO 99 \\
GOTO *ERRHDL
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{11.2.4.2 GOSUB ~ RETURN Command}
\begin{tabular}{|c|c|c|}
\hline Description & \multicolumn{2}{|l|}{\begin{tabular}{l}
Calls for the address specified by GOSUB. \\
When met with RETURN command, returns to the next line of GOSUB command.
\end{tabular}} \\
\hline Syntax & GOSUB <Address> ...... RETURN & \\
\hline Parameter & Address \({ }^{\text {Address to call }}\) & \\
\hline example & \begin{tabular}{l}
GOSUB 150 \\
END \\
150 REM ---- Subroutine for testing ---- \\
PRINT \#0, "Subroutine Start" \\
PRINT \#1, "Subrout ine End" RETURN
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{11.2.4.3 JMPP Command}
\begin{tabular}{|c|c|c|c|c|}
\hline Description & \multicolumn{4}{|l|}{Jumps to the specified program} \\
\hline Syntax & \multicolumn{4}{|l|}{JMPP <Program Number>} \\
\hline Parameter & \begin{tabular}{l}
Program \\
Number
\end{tabular} & Pos & eger, Program number to call & 1~999 \\
\hline example & \multicolumn{4}{|l|}{\begin{tabular}{ll} 
IF DI29=1 THEN & \begin{tabular}{l} 
REM --- subprogram 909 - ERROR STOP \\
JMPP 909
\end{tabular} \\
PNDIF & PRINT \#0, "Unrecoverble Error!!!", TINE\$ \\
END
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{11.2.4.4 CALL Command}
\begin{tabular}{|c|c|}
\hline Description & \begin{tabular}{l}
Calls for the specified program. \\
When met with END command, returns to the next line of CALL command called.
\end{tabular} \\
\hline Syntax & CALL <Program Number> ...... END \\
\hline Parameter &  \\
\hline example &  \\
\hline
\end{tabular}
11.2.4.5 ON~GOTO Command


\subsection*{11.2.4.6 DELAY Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Delays as much as the specified time. & \\
\hline Syntax & DELAY <Time> & \begin{tabular}{l} 
Unit \(: \mathrm{sec}\) \\
\(0.1 \sim 60.0\)
\end{tabular} \\
\hline Parameter & Time & Arithmet ic Equation. Standby time & \\
\hline example & DELAY 0.5 & \\
\hline
\end{tabular}

\subsection*{11.2.4.7 STOP Command}
\begin{tabular}{|l|l|l|}
\hline Description & Stops the program. If restarted, it is cont inued from the next line. \\
\hline Syntax & STOP & \\
\hline example & \begin{tabular}{l} 
IF DI9=1 THEN \\
STOP \\
ENDIF
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{11.2.4.8 END Command}
\begin{tabular}{|l|l|l|}
\hline Description & Stops the program. If restarted, it starts over from the beginning. \\
\hline Syntax & END & \\
\hline example & END & \\
\hline
\end{tabular}

\subsection*{11.2.4.9 WAIT Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Wait until the condition is met. If the timeout time exceeded, jumps to the shelter address.} \\
\hline Syntax & \multicolumn{3}{|l|}{WAIT <Condition>[, <timeout Time>, <shelter Address>]} \\
\hline & Condition & Arithmetic Equation. Wait until the condition is met . & \\
\hline Parameter & \begin{tabular}{l}
timeout \\
Time
\end{tabular} & Arithmetic Equation. Limit time of the standby. & \[
\begin{aligned}
& \text { Unit : sec } \\
& 0.0 \sim 60.0
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
shelter \\
Address
\end{tabular} & The address to be jumped when the timeout time is exceeded. & \\
\hline example & \multicolumn{2}{|l|}{WAIT DI20=1, 1.5, *ERR} & \\
\hline
\end{tabular}
11.2.4.10 IF~ELSEIF~ELSE~ENDIF Command


\subsection*{11.2.4.11 FOR ~NEXT Commands}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Repeats the block incrementing the variable value as long as it is smaller or the same as the end value.} \\
\hline Syntax & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { FOR <Var iable>=<Init ial Value> T0 <End Value> [STEP <Increment>] ~ } \\
& \text { NEXT }
\end{aligned}
\]} \\
\hline \multirow{4}{*}{Parameter} & Var iable & Arithmetic Variable. Variable for determining the repetition. & \\
\hline & Initial Value & Arithmetic Equation. Initially set value for variable & \\
\hline & End Value & Arithmetic Equation. Repeats only if the variable value is smaller or the same as the end value. & \\
\hline & Increment & Arithmetic Equation. Increment value for the variable & \\
\hline example & \multicolumn{3}{|l|}{\begin{tabular}{l}
REM -- Moves toward the shift direction gradually slowing down. FOR V1!=300 TO 0 STEP -33.3
P1=P1+R1 \\
MOVE L, P1, \(\mathrm{S}=\mathrm{V} 1!\mathrm{mm} / \mathrm{sec}, \mathrm{A}=3, \mathrm{H}=1\) UNTIL DI1 NEXT
\end{tabular}} \\
\hline
\end{tabular}
※ Note: The commands inserted between the commands such as GOSUB~RETURN, IF~ENDIF, FOR ~NEXT must be executed in one's inside. In other words, program can not branch off to one's outside by using command such as GOTO or IF command when the block commands is being executed. If not, program can not be executed properly.

But it can branch off one's inside.
(1) Example can make errors.

IF V1\%>100 THEN
GOTO *RANGE \(\leftarrow\) IF command branch off the outside. It can be errors.
ENDIF
PRINT V1\%
END
*RANGE
PRINT "RANGE ERROR"
END
(2) Example can executed properly

IF V1\%>100 THEN *RANGE
PRINT V1\%
END
*RANGE
PRINT "RANGE ERROR"
END
11.2.5 Comments
\begin{tabular}{|l|l|l|l|}
\hline Description & Used for describing the program operation. No effect on the execution. \\
\hline Syntax & REM <Description> & \\
\hline Parameter & \begin{tabular}{l} 
Descriptio \\
\(n\)
\end{tabular} & \begin{tabular}{l} 
String for description. Up to 254 single byte \\
characters can be used.
\end{tabular} & \\
\hline example & \begin{tabular}{l} 
REM SPOT WELDING \#1 \\
Variables Setting ----------
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{11.2.6 ARC Welding}

\subsection*{11.2.6.1 ARCON Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Outputs the welding start command.} \\
\hline Syntax & \[
\begin{aligned}
& \hline \text { ARCON } \\
& \text { ARCON AS } \\
& \text { ARCON C= } \\
& {[, \mathrm{T}=<\mathrm{t} \text { im }} \\
& \hline
\end{aligned}
\] & ```
F#=<File Number>
<Current Output Value>, {V=<Voltage Output Value> | VP=
e>] [,RETRY]
``` & \(=<\) Voltage Rate \(>\}\) \\
\hline \multirow{6}{*}{Parameter} & \[
\begin{array}{|l|}
\hline \text { File } \\
\text { Number }
\end{array}
\] & Arithmetic Equation. The number of the welding start condition file & Rounded 1~32 \\
\hline & Current Output Value & Arithmetic Equation. Welding current output value (\(0 \sim 500\)) & Unit:A Rounded \\
\hline & Voltage Output Value & Arithmetic Equation. Welding voltage output value (Individual Power Source) (\(0 \sim 40\)) & Unit: V [0.0] \\
\hline & Voltage Rate & Arithmetic Equation. Output value rate about the appropriate welding voltage (Single Power source) (0~100) & Unit: \% Rounded \\
\hline & Time & Arithmet ic Equation. Standby time prior to the motion start after ARC On. (\(0 \sim 10\)) & \[
\begin{aligned}
& \text { Unit: sec } \\
& {[0.00]}
\end{aligned}
\] \\
\hline & RETRY & Retry when the arc generation fails. & \\
\hline example & \multicolumn{3}{|l|}{ARCON C=260, V=30, RETRY} \\
\hline Comment & \multicolumn{3}{|l|}{\begin{tabular}{l}
The result for each usage is as follows; \\
1. ARCON : Start welding as set by the condition using ARCCUR, ARCVOL commands. \\
2. ARCON <File> : Start welding as set by the conditions of condition file. \\
3. ARCON <Parameter> : Start welding as set by the parameters.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{11.2.6.2 ARCOF Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Outputs the Welding End Command.} \\
\hline Syntax & \begin{tabular}{l}
ARCOF \\
ARCOF AE \\
ARCOF C= \\
[, T=<Tim
\end{tabular} & \begin{tabular}{l}
F\#=<File Number> \\
<Current Output Value>, \{V=<Voltage Output Value> | VP \\
e>] [,ANTSTK]
\end{tabular} & <Voltage Rate>\} \\
\hline \multirow{6}{*}{Parameter} & File Number & Arithmet ic Equat ion. Number of welding end condition file. & Rounded. 1~32 \\
\hline & \begin{tabular}{l}
Current \\
Output \\
Value
\end{tabular} & Arithmetic Equation. Welding current output value (\(0 \sim 500\)) & Unit: A Rounded \\
\hline & \begin{tabular}{l}
Voltage \\
Output \\
Value
\end{tabular} & Arithmetic Equation. Welding voltage output value (Separate power source) (\(0 \sim 40\)) & Unit: V [0.0] \\
\hline & \begin{tabular}{l}
Voltage \\
Rate
\end{tabular} & Arithmetic Equation. Voltage output rate about the appropriate welding voltage (Single power source) (\(0 \sim 100\)) & Unit: \% Rounded \\
\hline & Time & Arithmet ic Equat ion. The delay time of the robot body before the ARC Off. (\(0 \sim 10\)) & \[
\begin{aligned}
& \text { Unit: sec } \\
& \text { [0.00] } \\
& \hline
\end{aligned}
\] \\
\hline & ANTSTK & Automatic Anti-Stick feature & \\
\hline example & \multicolumn{3}{|l|}{\begin{tabular}{l}
ARCOF AEF\#=1 \\
ARCOF C=300, V=V10!, T=1.00, ANTSTK
\end{tabular}} \\
\hline Comment & \multicolumn{3}{|l|}{\begin{tabular}{l}
The result for each usage is as follows; \\
1. ARCOF : Welding ends as previously set by the condition with ARCCUR, ARCVOL commands. \\
2. \(\operatorname{ARCOF}<\) File>: Welding ends as set by the conditions of the condition file. \\
3. ARCOF \(<\) Parameters \(>\) : Welding ends as set by the conditions of the parameters.
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{11.2.6.3 ARCCUR Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Sets the welding current output value with the set value. \\
\hline Syntax & ARCCUR C=<Current Output Value> & \\
\hline Parameter & Current Output Value & \begin{tabular}{l}
Arithmetic Equat ion. Welding current \\
output value \((0 \sim 500)\)
\end{tabular} & \begin{tabular}{l}
Unit: A \\
Rounded.
\end{tabular} \\
\hline example & ARCCUR C=200 & \\
\hline
\end{tabular}

\subsection*{11.2.6.4 ARCVOL Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Sets the welding voltage output value with the set value \\
\hline Syntax & ARCVOL \{V=<Voltage Output Value> | VP=<Voltage Rate>\} & \\
\hline \multirow{3}{*}{ Parameter } & \begin{tabular}{l}
Voltage Output \\
Value
\end{tabular} & \begin{tabular}{l}
Arithmetic Equation. Welding voltage output \\
value \((0 \sim 40)\)
\end{tabular} & Unit: V [0.0] \\
\cline { 2 - 4 } & Voltage Rate & \begin{tabular}{l}
Arithmetic Equat ion. The voltage rate about \\
the appropriate welding voltage (Single power \\
source) \((0 \sim 100)\)
\end{tabular} & \begin{tabular}{l}
Unit: \% \\
Rounded.
\end{tabular} \\
\hline example & ARCVOL V=30 & \\
\hline
\end{tabular}
11.2.6.5 ARCDC Command
\begin{tabular}{|l|l|l|l|}
\hline Description & Sets the welding current command value with the set value. \\
\hline Syntax & ARCDC <Current Command Value> & \\
\hline Parameter & \begin{tabular}{l}
Current \\
Command \\
Value
\end{tabular} & \begin{tabular}{l}
Arithmet ic Equat ion. Welding current command \\
value
\end{tabular} & \(-14.0 \sim+14.0\) \\
\hline example & ARCDC 12 & \\
\hline
\end{tabular}

\subsection*{11.2.6.6 ARCDV Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & \multicolumn{2}{|l|}{ Sets the welding voltage command value with the set value. } \\
\hline Syntax & ARCDV <Voltage Command Value> & \\
\hline Parameter & \begin{tabular}{l}
Voltage \\
Command \\
Value
\end{tabular} & \begin{tabular}{l}
Arithmetic Equation. Welding voltage command \\
value.
\end{tabular} & \(-14.0 \sim+14.0\) \\
\hline example & ARCDV 2.5 & & \\
\hline
\end{tabular}

\subsection*{11.2.6.7 WEAVON Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Starts the weaving motion & \\
\hline Syntax & WEAVON WEV\#=<File Number \(>\) & \begin{tabular}{l}
Arithmetic Equat ion. The number of the weaving \\
condition file
\end{tabular} & \begin{tabular}{l}
Rounded. \\
\(1 \sim 32\)
\end{tabular} \\
\hline Parameter & \begin{tabular}{l}
File \\
Number
\end{tabular} & \\
\hline example & WEAVON WEV\#=5 & \\
\hline
\end{tabular}

\subsection*{11.2.6.8 WEAVOF Command}
\begin{tabular}{|l|l|l|}
\hline Description & Stops the weaving motion. & \\
\hline Syntax & WEAVOF & \\
\hline example & WEAVOF & \\
\hline
\end{tabular}

\subsection*{11.2.6.9 REFP Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Sets the reference point for weaving wall point. \\
\hline Syntax & REFP <Ref. Point Number> , [<Aux. Point>] & \(1 \sim 8\) \\
\hline \multirow{3}{*}{ Parameter } & \begin{tabular}{l}
Ref. Point \\
Number
\end{tabular} & Unsigned integer. & \\
\cline { 2 - 4 } & Aux. Point & Pose type. If hidden pose, it's not set. & \\
\hline \multirow{2}{*}{ example } & \begin{tabular}{l}
REFP 1, P8 \\
REFP 2, (\(-1073.33,739.01, ~ 258.30, ~ 0, ~ 76, ~ 23) ~\)
\end{tabular} & \\
\hline
\end{tabular}

Note
(1) REFP Command belongs to the step as the MOVE command.
(2) When the REFP command is input using the <Aux. Point> key at T/P, it becomes the hidden pose type.

\subsection*{11.3 Others}
※ All the factor values can be used in the Arithmetic Equation.

\subsection*{11.3.1 PRINT Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Robot Interrupt (I signal) (M29)} \\
\hline Syntax & \multicolumn{2}{|l|}{RINT I=<Isignal \(>, \mathrm{RF}=<\) STD.\(>, \mathrm{X}=<\mathrm{X}\) coord \(>, \mathrm{Y}=<\mathrm{Y}\) coord \(>, \mathrm{Z}=<\mathrm{Z}\) coord>} & \\
\hline & I signal & the number of DI signal receiving interrupt & DI range \\
\hline Parameter & STD & Select 0 when using general robot interrupt and select 1 when using search function. Search function referred to M59. & \(0 \sim 1\) \\
\hline & X, Y, Z coord. & When using search function & \[
\begin{aligned}
& -3000.0 \\
& \sim 3000.0
\end{aligned}
\] \\
\hline Example & \multicolumn{2}{|l|}{RINT \(\mathrm{I}=<\) Is ignal \(>, \mathrm{RF}=<\) STD \(>, \mathrm{X}=<\mathrm{X}\) coord \(>, \mathrm{Y}=<\mathrm{Y}\) coord \(>, Z=<Z\) coord>} & \\
\hline
\end{tabular}

Introduct ion

If the I signal is input during moving to the destination, robot will move the next step. (That is, it is regarded that robot moved to the destination.)

Example

If this condition is satisfied from step 2 recorded this function to step3, robot will execute the functions of step 3 and move to the step 4 .

\subsection*{11.3.2 RINTA Command}
\begin{tabular}{|c|c|c|c|}
\hline Descri ption & \multicolumn{3}{|l|}{Robot Interrupt(Analog signal) (M30)} \\
\hline Syntax & \multicolumn{3}{|l|}{RINTA PT=<Port No>, VL=<Lower volt \(>\), VH=<Upper volt \(>\) , RF=<STD \(>, \mathrm{X}=<\mathrm{X}\) coord \(>, \mathrm{Y}=<\mathrm{Y}\) coord \(>, \mathrm{Z}=<\mathrm{Z}\) coord \(>\)} \\
\hline \multirow{5}{*}{Par ame ter} & Port No. & Analog port No. receiving interrupt signal & 1~4 \\
\hline & Lower volt & if the value of analog is between lower and upper & -10.0 \\
\hline & Upper volt & volt, interrupt occurs. & \(\sim\) \\
\hline & STD & 0 is off, 1 is On & 0~1 \\
\hline & \[
\begin{aligned}
& X, Y, Z \\
& \text { coord }
\end{aligned}
\] & Used at search function & \[
\begin{aligned}
& \hline-3000.0 \\
& -3000.0
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Exampl \\
e
\end{tabular} & \multicolumn{2}{|l|}{RINTA PT=<Port No>, VL=<Lower volt>, VH=<Upper volt> , \(\mathrm{RF}=<\mathrm{STD}>, \mathrm{X}=<\mathrm{X}\) coord \(>, \mathrm{Y}=<\mathrm{Y}\) coord \(>, \mathrm{Z}=<\mathrm{Z}\) coord \(>\)} & \\
\hline
\end{tabular}

Introduction

If input voltage is satisfied fixed voltage range by using analog sensor, robot will regard as arriving to the next step.

Example

Option board

\subsection*{11.3.3 SPOTCND Command}
\begin{tabular}{|l|l|l|}
\hline Description & Spot Welding Condition (M33) \\
\hline Syntax & SPOTCND <Condition Number> & \\
\hline Parameter & \begin{tabular}{l}
Condition \\
Number
\end{tabular} & \begin{tabular}{l}
The condition number output to the welder for welding \\
current change.
\end{tabular} \\
\hline example & SPOTCND 2 & 255 \\
\hline
\end{tabular}

Introduction

Spot welding condition signal is used to change the welding current according the thickness of the materials or sheets when spot welding.
Welding condition can be freely changed by connecting this signal to the welder. The welding condition can be to maximum 256 level (\(0 \sim 255\)).

It is output in Binary type of 8bit \((0 \sim 255)\).

Or it can be output in Discrete type (\(0 \sim 7\)) when selecting <Line No> of welding condition output type (SYSTEM[PF5] \(\rightarrow\) 4.APPLICATION PARAMETER \(\rightarrow 1\).SPOT\&STUD \(\rightarrow 1\). WELDING PARAMETER)
This signal is to output as welding condition number that is fixed up in "SYSTEM [PF5]
\(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\) 1. SET UP IN/OUT SIGNAL \(\rightarrow\) 6. ARRAY OUTPUT SIGNAL.

\subsection*{11.3.4 SREQ Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Shift Requirement (M51) \\
\hline Syntax & \multicolumn{2}{|l|}{ SREQ R=<Register Number>,PT=<Port Number> } & \\
\hline \multirow{3}{*}{ Parameter } & Reg. Number & Register number for saving the received shift amount. & \(1 \sim 8\) \\
\cline { 2 - 4 } & Port Number & \begin{tabular}{l}
RS232C port number to be used for shift requirement and \\
transmission.
\end{tabular} & \(1 \sim 1\) \\
\hline example & SREQ R=1,PT=1 & \\
\hline
\end{tabular}

Introduction

SREQ is a function to request external equipment to send shift amount. The shift amount is recorded in on line shift register group.

When this function is executed, robot would output data of the format such as SHIFT ※ 1 CR LF (\(\begin{aligned} & 1 \\ & \text { is register No.) through RS232C port. Then, robot would receive data }\end{aligned}\) of the format such as SHIFT \(X, Y, Z, \theta X, \theta Y, \theta Z, C R\). The input is recorded in the register \(※ 1\). The format of transmit data is ASCII code.

\subsection*{11.3.5 SONL Command}
\begin{tabular}{|l|l|l|l|l|}
\hline Description & \multicolumn{2}{|l|}{ On-line shift (M52) } \\
\hline \multirow{4}{*}{ Syntax } & \begin{tabular}{l}
SONL ST=<Start/End>,RF=<Std>,R=<Register Number>, SS=<Shelter Step \\
No>
\end{tabular} & \\
\hline \multirow{4}{*}{ Parameter } & Start/End & \begin{tabular}{l}
If 1, starts the shift application. If 0, ends. \\
If 0, all other factors are ignored.
\end{tabular} & \(0 \sim 1\) \\
\cline { 2 - 5 } & Std. & If 0, based on the ground plane. If 1, based on the tool. & \(0 \sim 1\) \\
\cline { 2 - 5 } & Reg. Number & \begin{tabular}{l}
The register number where the received shift amount is \\
stored.
\end{tabular} & \(1 \sim 8\) \\
\cline { 2 - 5 } & \begin{tabular}{l}
Shelter \\
Step No.
\end{tabular} & \begin{tabular}{l}
Step to jump to when the shift amount is not input within \\
the specified time period.
\end{tabular} & \(0 \sim 999\) \\
\hline example & SONL ST=1,RF=0,R=1,SS=10 & \\
\hline
\end{tabular}

Introduction

On-line shift is a function to shift parallelly the teaching point to an any place of X, Y, Z coordination by using the shift amount transmitted through the external equipments such as vision system. Generally it is used on the robot base coordination but the robot tool coordination can be selected.

\section*{Examples}
(1) Parallel shift

When the points A, B, C, D is parallel to the point a, b, c, d as the following picture, the robot plays back the A, B, C, D program that is corrected the difference of ' \(A\) ' and 'a' by using data from the external equipment with fixed tool angle.
(2) Tool angle correction shift

Robot makes a shift with fixed tool angle in the parallel shift. But in the tool angle correction shift, robot makes \(X, Y, Z\) shift with corrected tool angle according to the angle of robot coordination from the external equipment.
As the following picture,
(3) Jump to shelter

It is a function to jump to shelter step in case that data is not transmitted to robot during sometime when robot is in on-line shift.
(4) Request shift amount (M51)

Shift amount is a need to be transmitted from external equipment. This function (SREQ) is to request shift amount.
(5) Request shift amount on condition that time (M56)

This function is same as SREQ. But robot waits dur ing some time (\(0.1 \sim 60.0 \mathrm{sec}\)). And then robot jumps to a shelter if shift amount is not transmitted during that time.

\subsection*{11.3.6 TONL1 Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Online coordinate conversion (Slipping) (M53)} \\
\hline Syntax & \multicolumn{2}{|l|}{TONL1 ST=<Start/End>,RF1=<Basic Step number1>,RF2=<Basic Step number2>,RF3=<Basic Step number3>} & \\
\hline & Start/End & If 1, Coordinate conversion starts. If 0, exits. & 0~1 \\
\hline Parameter & Basic Step number & The step numbers to be set for 3 base points. & 0~999 \\
\hline example & \multicolumn{2}{|l|}{TONL1 ST=1,RF1=1,RF2=5,RF3=7} & \\
\hline
\end{tabular}

Introduction

Online coordinate conversion (Slipping) is a function to play back teached position correcting the difference transmitted from the external equipments such as vision system.

It finds a shift amount of specified basic 3 points and saves the shift amount transmitted through RS232C port in shift registers.

\subsection*{11.3.7 TONL2 Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Onl ine coordinate conversion (coordinate value) (M54)} \\
\hline Syntax & \multicolumn{2}{|l|}{TONL2 ST=<Start/End>,RF1=<Basic Step number1>,RF2=<Basic Step number2>,RF3=<Basic Step number3>} & \\
\hline & Start/End & If 1, coordinate conversion starts. If 0, exits & 0~1 \\
\hline Parameter & Basic Step number & Step numbers to be set for 3 base points. & 0~999 \\
\hline example & \multicolumn{2}{|l|}{TONL2 ST=1,RF1=1,RF2=5,RF3=7} & \\
\hline
\end{tabular}

Introduction

Online coordinate conversion (coordinate value) is a function to play back teached position correcting the difference transmitted from the external equipments such as vision system.

It finds a coordination (robot coordination) of specified basic 3 points and receives coordination through RS232C port and saves shift amount in on line shift registers.

Note
(1) TONL1 (M53) : Onl ine coordinate conversion (Slipping) uses the contents of shift registers as shift amount.
(2) TONL2 (M54): Onl ine coordinate conversion (coordinate value) uses the contents of shift registers as coordination system.

\subsection*{11.3.8 SREQT Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Timer conditional shift function (M56)} \\
\hline Syntax & \multicolumn{3}{|l|}{SREQT R=<Reg. Number \(>\), PT=<Port Number \(>\),WT=<Standby time>, SS=<shelterStep Number>} \\
\hline \multirow{4}{*}{Parameter} & Reg. Number & Register number for saving the received shift amount. & \(1 \sim 8\) \\
\hline & Port Number & RS232C port number to be used for shift requirement and shift amount transmission. & \(1 \sim 1\) \\
\hline & St andby Time & Standby time until receiving the shuft amount. & \[
\begin{aligned}
& 0.0 \sim 60.0 \\
& (\mathrm{sec})
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
shelter \\
Step No
\end{tabular} & Step number to be jumped when the standby time is elapsed. & 0~999 \\
\hline example & \multicolumn{2}{|l|}{SREQT R=1,PT=1,WT=10.0, SS=100} & \\
\hline
\end{tabular}

Introduction

SREQT is same function as Shift Requirement (M51). But it makes a differences to jump to the shelter step if shift amount is not input during the specified time.

\subsection*{11.3.9 SXYZ Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & XYZ Shift (M58) \\
\hline \multirow{2}{*}{ Syntax } & \begin{tabular}{l}
SXYZ RF=<Base \(>, X=<X\) Shift Amount \(>, Y=<Y\) Shift Amount \(>, Z=<Z\) Shift \\
Amount \(>\)
\end{tabular} & \\
\hline \multirow{3}{*}{ Parameter } & Base & If 0, ground base. If 1, tool base. & \(0 \sim 1\) \\
\cline { 2 - 5 } & \begin{tabular}{l}
Shift \\
Amount
\end{tabular} & Shift Amount to be shifted parallel in 3D. & \begin{tabular}{l}
\(-3000.0 \sim\) \\
3000.0
\end{tabular} \\
\hline example & SXYZ RF=0, \(\mathrm{X}=10.50, \mathrm{Y}=20.50, Z=0.00\) & \\
\hline
\end{tabular}

Introduction

XYZ Shift is a function that makes parallel shift with fixed tool angle in XYZ coordination and saves shift amount of 3 dimension.

Note
(1) The Playback of XYZ shift

The distance of \(X, Y, Z\) to the end of tool must be set accurately because it makes parallel shift with fixed tool angle.
(2) The Application of XYZ shift

As the following picture, it is used when the points \(A, B, C, D\) of workpiece parallelly face each other to the points \(a, b, c, d\).

\subsection*{11.3.10 SEA Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Search function (M59)} \\
\hline Syntax & \multicolumn{3}{|l|}{SEA ST=<0n/Off \(>\), RF=<Base>, R=<Reg. Number \(>\)} \\
\hline & On/Off & If 1, On. If 0, Off & 0~1 \\
\hline Parameter & Base & If 0, ground base. If 1, tool base. & 0~1 \\
\hline & Reg. Number & Register number to be used for online shift. & \[
\begin{aligned}
& -3000.0 \sim \\
& 3000.0
\end{aligned}
\] \\
\hline example & \multicolumn{2}{|l|}{SEA ST=1, RF=0,R=1} & \\
\hline
\end{tabular}

Introduction

Search function (M59) can find the differences of the position of workpiece and correct it's differences. It is possible to correct in tool coordination and robot base coordination.

How to use
\begin{tabular}{|l}
\begin{tabular}{|l}
1. Specify the search range \\
(Application condition \(\rightarrow\) Search range)
\end{tabular} \\
\hline 2. Teach program \\
Record requested search function \\
(1) Start search \\
(2) Robot Interrupt (DI signal) \\
(3) End search \\
(4) On line shift
\end{tabular} \begin{tabular}{l}
3. Turn on the record data of search base \\
(Application condition \(\rightarrow\) 3. Record search base data) \\
\hline 4. Play back program and record by using interrupt function in \\
1 cycle mode. \\
\hline \begin{tabular}{l}
5. Turn off the record data of search base \\
(Application condition \(\rightarrow\) 3. Record search base data)
\end{tabular} \\
\hline 6. Play back program \\
\hline
\end{tabular}
(1) 1 dimension search

As the above picture, 1 dimension search can be used in the case of an alike workpiece moving or same type workpiece that have different size.

Search function is used with interrupt function as the above. It correct the difference by using on-line shift after recording the shift amount in shift register. Robot interrupt works at step 3 and saves the shift amount in shift registers. Robot plays back step \(4 \sim\) step 7 correcting position by using shift registers. And robot interrupt function is used with a step of interpolation record
a step of interpolation record is a step recorded that interpolation (linear, circular) is on.
(2) 2 dimension search

2 dimension search uses search function twice and records the shift amounts of point \(P, Q\). The shift amount of point \(P\) is recorded in R1 register and referenced during moving to P point. The shift amount of point Q is recorded in R2 register and referenced during moving to Q point.

\subsection*{11.3.12 SPOT Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Servo Gun Welding (M72) \\
\hline Syntax & SPOT GN=<Gun No.>, CN=<Welding Condition>, SQ=<Sequence No> & \\
\hline \multirow{4}{*}{ Parameter } & \begin{tabular}{l}
Gun No.
\end{tabular} & Gun No to weld \\
& \begin{tabular}{l}
Gelding \\
Condition
\end{tabular} & \begin{tabular}{l}
Welding condition No of data for pressure, welding \\
condition
\end{tabular} & \(1 \sim 64\) \\
\cline { 2 - 4 } & Sequence No & \begin{tabular}{l}
Sequence No that gun actuat ion and electrifying signal \\
are recorded.
\end{tabular} & \(1 \sim 64\) \\
\hline Example & SPOT GN=1, \(\mathrm{CN}=1, \mathrm{SQ}=10\) & \(1 \sim 2\) \\
\hline
\end{tabular}

\section*{Introduct ion}

It is a function of spot welding. Gun actuat ion is controlled by servo system in a different way of air gun and outlay electrifying signal to a welder after gun acting.

\section*{Note}
(1) Tool number is changed automatically when gun number is selected(R210) in using of multi gun. But gun number is not changed automatically when tool number is selected (R49).
(2) Spot function must be recorded at the first function of a step. It will not be executed when recorded at the second of a step.
(3) Use one touch recording (Gun LED flickering) when step recording. If not, correction of tip abrasion would not be executed.
(4) Use in small pressure lest a test workpiece is not deformed when teaching. If a test workpiece is deformed, move the fixed tip.
(5) If the step where spot welding function (M72) is recorded is modified, the amount of abrasion would be corrected too.

\subsection*{11.3.13 GUNSEA Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Gun Search (M73) & \\
\hline syntax & GUNSEA GN=<Gun No>, SE=<Search No>, PR=<Gun Pressure> & \(1 \sim 2\) \\
\hline \multirow{3}{*}{ Parameter } & Gun No & the gun number to weld & \(1 \sim 2\) \\
\cline { 2 - 4 } & Search No & \(1:\) Gun search 1 , 2: Gun search 2 & \(50 \sim 999\) \\
\cline { 2 - 4 } & Gun & Gun actuation pressure & \\
\hline Example & SPOT GN=1,SE=1,PR=50 & \\
\hline
\end{tabular}

Introduction
It is a function to measure the abrasion amount of tip.

Gun search 1 is to use for measurement the total abrasion amount of tip and Gun search 2 is for measurement the abrasion amount of moving tip. The abrasion amount of fixed tip can be calculated by subtracting the abrasion amount of fixed tip from total abrasion amount.

Note
(1) Record servo gun axis parameter and the base position of gun search before measuring abrasion amount.
(2) Turn on Application \(\rightarrow\) 7. Gun search base position Recording for base position recording of gun search. The measurement data is not abrasion value but basic value to measure.
(3) Gun search 2 must follow gun search 1.
(4) Proceed at the position where gun is open, when recording gun search function,

\subsection*{11.3.14 TIERST Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Call program to put in a insert sheet (M94) \\
\hline \multirow{3}{*}{ Syntax } & \begin{tabular}{l}
TIERST R=<Register No>,P=<Pallet No>,PR=<Pattern Register \\
No>,TP=<Insert sheet Program \(>\)
\end{tabular} & \\
\hline \multirow{4}{*}{ Parameter } & Register No & On line shift register number & \(1 \sim 8\) \\
\cline { 2 - 4 } & \begin{tabular}{lll}
Pallet No & Pallet number & \(1 \sim 16\) \\
\cline { 2 - 4 } & \begin{tabular}{l}
Pattern \\
Register N0
\end{tabular} & Pallet izing pattern register number
\end{tabular} & \(1 \sim 16\) \\
\cline { 2 - 4 } & \begin{tabular}{l}
Insert \\
sheet
\end{tabular} & Insert sheet program number & \(1 \sim 999\) \\
\hline Example & TIERST R=1, \(\mathrm{P}=4, \mathrm{PR}=2, \mathrm{TP}=800\) & \\
\hline
\end{tabular}

Introduction
It is a function to put in a insert sheet when palletizing. This function is executed when the condition to put in a insert sheet is met.

\section*{Note}
(1) An sheet insertion program must be fixed up before using this function.
(2) Make sure that the informat ion to put in a insert sheet for a pattern register is correct.

Wrong information can cause collision.
(3) This function must be between PAL and PALEND.
(4) This function can be used before palletizing or depalletizing the initial workpiece. The basic position of sheet insertion is the lower of first level when palletizing and the upper of maximum level when depalletizing.

\subsection*{11.3.15 PALPU Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Palletizing picking up shift (M95) \\
\hline Syntax & PALPU P=<Pallet No>, SL=<Start level>,SH=<shift amount> & \\
\hline \multirow{4}{*}{ Parameter } & Pallet No & Pallet number & \(1 \sim 16\) \\
\cline { 2 - 4 } & Start level & the level to pick up (1-base) & \(1 \sim 100\) \\
\cline { 2 - 4 } & Shift amount & shift amount when picking up & \(-2000.0 \sim\) \\
2000.0 \\
\hline Example & PALEND P=1,SL=4,SH=1000 & \\
\hline
\end{tabular}

Introduction

It is a function to shift the position where robot picks up the workpiece after gripping. Robot can take a optimum path according to the change of loading height by using this function.

Note
(1) This function must be between PAL and PALEND.
11.3.16 PAL Command
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Palletize (Data Input) (M96)} \\
\hline Syntax & \multicolumn{3}{|l|}{PAL P=<Pallet No>, PR=<Pattern register No>, W=<Workpiece size>, L=<Workpiece size>, H=<Workpiece size>} \\
\hline & Pattern Number & Palletize number & \(1 \sim 16\) \\
\hline & Pattern Number & Palletize pattern register number & \(1 \sim 16\) \\
\hline & Workpiece size(W) & width of workpiece & \[
\begin{aligned}
& 0.1 \sim \\
& 3000.0
\end{aligned}
\] \\
\hline & \begin{tabular}{l}
Workpiece \\
size(L)
\end{tabular} & length of workpiece & \[
\begin{aligned}
& 0.1 ~ \\
& 3000.0
\end{aligned}
\] \\
\hline & Workpiece size(H) & height of workpiece & \[
\begin{aligned}
& 0.1 \sim \\
& 3000.0
\end{aligned}
\] \\
\hline example & \multicolumn{3}{|l|}{PAL PAL P=1, PR=1, W=500, L=300, H=250.5} \\
\hline
\end{tabular}

\section*{Introduction}

It makes shift amount to palletize by using the data that recorded in palletizing pattern register.

Note
(1) Set up Gun 2 as Palletizing in the menu of "System"[PF2] \(\rightarrow\) 5.Initialize \(\rightarrow 4\).Set up Using item
(2) Always conform the data of palletizing pattern register ("System"[PF2] \(\rightarrow\) 5.Initialize \(\rightarrow\) 3.Palletizing \(\rightarrow\) 1. Palletizing Pattern register) before using this function. If using wrong data, robot could not work properly.
(3) This function works only in the step where the condition is PS.
(4) This function(M96) must be one pair with Palletizing End(M97)

\subsection*{11.3.17 PALEND Command}
\begin{tabular}{|l|l|l|l|}
\hline Description & Exits the palletize (Data Input) (M97) \\
\hline Syntax & PALEND P=<Pallet number>, ES=<ending signal> & \(1 \sim 16\) \\
\hline \multirow{3}{*}{ Parameter } & \begin{tabular}{l}
Pallet \\
number
\end{tabular} & Pallet number to exit & D0 range \\
\hline & \begin{tabular}{l}
Ending \\
signal
\end{tabular} & \begin{tabular}{l}
the output signal (D0) to be transmitted after ending \\
palletizing. If 0, there is nothing transmitted.
\end{tabular} & D \\
\hline example & PALEND P=1, ES=81 & \\
\hline
\end{tabular}

Introduction
It is a function to end palletizing. If this function runs, robot would initialize shift amount and transmit specified signal to transfer a pallet.

\subsection*{11.3.18 PALRST Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Palletize reset (Data Input) (M98)} \\
\hline Syntax & \multicolumn{3}{|l|}{PALRST P=<Pallet number>, CS=<Condition signal>,RS=<Response signal>} \\
\hline & \begin{tabular}{l}
Pallet \\
number
\end{tabular} & Pallet number & \(1 \sim 16\) \\
\hline Parameter & Condition signal & Input signal to receive when reset palletizing by force. If 0 , reset unconditionally. & DI range \\
\hline & Response signal & Output signal to respond to forced reset & D0 range \\
\hline example & \multicolumn{2}{|l|}{PALRST P=1, CS=1, RS=5} & \\
\hline
\end{tabular}

Introduction
It is a function to reset palletizing by force. If the specified signal is input, robot would initialize all of informations and transmit a specified output signal to transfer a pallet.

\subsection*{11.3.19 CALLPR Command}
\begin{tabular}{|c|c|c|c|}
\hline Description & \multicolumn{3}{|l|}{Calls other program (Unconditional) (M102)} \\
\hline Syntax & \multicolumn{3}{|l|}{CALLPR <Program Number>} \\
\hline Parameter & Program Number & Program number to be called. & 1~999 \\
\hline example & \multicolumn{3}{|l|}{CALLPR 2} \\
\hline
\end{tabular}

Introduction
In case that a robot is handling same workpieces that have a different position or repeating identical action, there are specific repeated actions.

CALLPR(Call relative program) is used in such case that relative position and direction are same but absolute position is different. You could program the specific programs as one program and call to use it if there is a need.

There is a different point that called program is run in the base of that current position and direction when the program is called compared to just CALL PROGRAM.

You could the result that program No. 1 called relatively No. 2 as following picture.

Note
When called program is finished, robot executes the next step or function after returning to calling program
11.3.20 SELCRD Command
\begin{tabular}{|l|l|l|l|}
\hline Description & Shift coordinate system selection (M113) & \\
\hline Syntax & SELCRD <Coordinate System Number> & \(0 \sim 10\) \\
\hline Parameter & \begin{tabular}{l}
Coordinate \\
System \\
Number
\end{tabular} & \begin{tabular}{l}
Coordinate System Number to be used among the user \\
coordinate systems.
\end{tabular} & \(0 \sim 1\) \\
\hline example & SELCRD 4 & \\
\hline
\end{tabular}

Introduction
It is a function to select a base coordination to shift. Robot shifts in the base of selected coordination.

Generally shift is executed in the base of robot coordination but robot could execute shift in base of user coordination by using SELCRD command when shift data is transmitted in the form of user coordination.

After this function is executed, all of shift is in the base of selected coordination. So you must select " 0 " coordination to return to robot coordination.
(1) This function can not change the coordination of "tool coordination shift" in the base of tool coordination.
- the result of SELCRD in various conditions
\begin{tabular}{|c|c|c|}
\hline base & 0 & \(1 \sim 10\) \\
\hline Ground(robot coord. No. & Robot coord. shift & User coord. shift \\
\hline Tool(Tool coord.) & Tool coord. shift & Tool coord. shift \\
\hline
\end{tabular}
(2) Shift coordination would be changed at the next step that this function is recorded.
(3) SELCRD function can be applied to the following functions
- SONL (M52) on-line shift
- TONL1 (M53) \& TONL2 (M54) on-1 ine coordination transformation
- SXYS (M58) XYZ shift
- SEA (M59) search
- PAL (M96) palletizing (data input)
(4) There are referent funct ions such as "SYSTEM[PF2] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow 12\). RECORD COORDINATION \(\rightarrow\) 1. RECORD USER COORDINATION" and "SET UP CONDITION[PF5] \(\rightarrow\) 8. SELECT USER COORDINATION"

\subsection*{11.3.21 MIT Code}
\begin{tabular}{|c|c|}
\hline Description & All kinds of M.I.T. function codes can be used as required. \\
\hline Syntax & M<Code Number> <Factor \(1>,<\) Factor \(2>\) I<Code Number> <Factor 1>,<Factor 2> T <Delay Time> \\
\hline \multirow{2}{*}{Parameter} & Code Number Positive Integer, M : \(0 \sim 113, \quad \mathrm{I}\) : \(1 \sim 55\) \\
\hline & Factor \begin{tabular}{l}
Arithmetic Equation, Factors to be handed to M, I, T \\
function.
\end{tabular} \\
\hline example & ```
M0
M81 5,1
M99 ARC WELDING 1
M101 1,"JOB FINISHED"
M105 8,V1%
I52 1,2.0,1
I53 1,&B10001,2.0,1
T 0.5
``` \\
\hline
\end{tabular}

\subsection*{11.4 Function}

\subsection*{11.4.1 Arithmetic Function}

The functions that have the numeric value returned, are called the arithmetic functions.
\begin{tabular}{|c|c|c|}
\hline Function Name & Description & Example \\
\hline ABS(a) & Returns the absolute value of a & V19! +ABS(V20!) \\
\hline \(\operatorname{MAX}(\mathrm{a}, \mathrm{b})\) & Returns the bigger value between a and b. & MAX(V20!, 0) \\
\hline \(\operatorname{MIN}(\mathrm{a}, \mathrm{b})\) & Returns the smaller value between a and b. & MIN(V20!, 10) \\
\hline DEGRAD ( a ) & Returns radian value of a in degree. & DEGRAD(270) \\
\hline RADDEG(a) & Returns degree value of a in radian. & RADDEG(3.1415*V20! ) \\
\hline SQR (a) & Returns a square root of a. & SQR(V20! ) \\
\hline SIN(a) & Returns a sine value of a in radian. & SIN(V20! ) \\
\hline \(\operatorname{COS}(\mathrm{a})\) & Returns a cosine value of a in radian. & COS(V20!) \\
\hline TAN(a) & Returns a tangent value of a in radian. & TAN(V20!) \\
\hline ATN(a) & Returns a arctangent value of a in radian. & ATN(V20!) \\
\hline ATN2 ( \(\mathrm{a}, \mathrm{b}\) ) & Returns a arctangent value of a triangle which have \(x\) length of a and \(y\) length of \(b\), in radian. & ATN(V25!, V26!) \\
\hline DIST( \(\mathrm{a}, \mathrm{b}\) ) & Returns the distance to a point which x coordinate is a and y coordinate is b. & DIST(V5!, V6!) \\
\hline ORD (a) & Returns the character code for the first character of the string. & ORD( "ERROR") \\
\hline VAL ( a) & Returns the value of a number described in string. & VAL("29.38E-2") \\
\hline STRPOS( \(\mathrm{a}, \mathrm{b}\) ) & Returns the first location matching to b string within a string. & STRPOS(V7\$, "=" ) \\
\hline LEN(a) & Returns the length of a string. & LEN(V8\$) \\
\hline TIMER & Gets the elapsed time from the power on in seconds. & TIMER \\
\hline
\end{tabular}

\subsection*{11.4.2 String Function}

The functions that have the string returned, are called the string functions.
\begin{tabular}{|c|c|c|}
\hline Function Name & Description & Example \\
\hline CHR\$(a) & Returns a character which has the character code of \(a\). & CHR\$ (7) \\
\hline STR\$(a) & Returns a decimal string corresponding to number a. & STR\$(13.25) \\
\hline BIN\$(a) & Returns a binary string corresponding to a number a. & BIN\$(\&B0010) \\
\hline HEX\$(a) & Returns a hexa string corresponding to a number a. & HEX\$(\&H7A2F) \\
\hline MIRROR\$( a ) & Returns the reverse string corresponding to a binary string a. & MIRROR\$( HELLO ) \\
\hline LEFT\$ (a, b) & Returns a string of \(b\) characters of string a. & LEFT\$( "HELLO", 2) \\
\hline \(\operatorname{MID} \$(\mathrm{a}, \mathrm{b}, \mathrm{c})\) & Returns a string of characters from bth characters of string a. & MID\$("HELLO", 1, 3) \\
\hline RIGHT\$(a, b) & Returns a string of \(b\) characters from the back of string a. & RIGHT\$("HELLO", 2) \\
\hline DATE \$ & Returns a current date string (YY/MM/DD) & DATE\$ \\
\hline TIME\$ & Returns a current time string (HH:MM: SS) & TIME\$ \\
\hline
\end{tabular}
11.4.3 Robot Language corresponding to a existing MIT Function Code.

The same result of each operation of existing MIT function code can be obtained by using the robot language command instructions in appropriate places. The followings are the examples of such cases. The code corresponding to the other command instruction are indicated by the background color.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{M I T Function Code} & Example of corresponding HR - BASIC syntax. \\
\hline M0 & DO signal RESET & G01=0 \\
\hline M1~8 & DO signal ON/OFF & D01=1~D08=1 or D01=0~D08=0 \\
\hline M10 & DO signal RESET & G02=0 \\
\hline M11~18 & DO signal ON/OFF & D011=1~D018=1 or D011=0~D018=0 \\
\hline M20 & Step Jump (Uncond.) & GOT0 <Address> \\
\hline M21 & Step Call (Uncond.) & GOSUB <Address> \\
\hline M22 & Step Return (Uncond.) & RETURN \\
\hline M23 & Step Jump (Conditional) & IF DIn=1 THEN <Address> \\
\hline M24 & Step Call (Conditional) & ```
IF DIn=1 THEN
``` \\
\hline M25 & Step Return (Conditional) & \[
\begin{aligned}
& \text { IF DIn=1 THEN } \\
& \text { RETURN } \\
& \text { ENDIF }
\end{aligned}
\] \\
\hline M26 & Step Jump (Count Conditional) & IF Vn\%=<Count> THEN <Address> \(\mathrm{Vn} \%=\mathrm{Vn} \%+1 \quad\) (Vn\% value is initialized out of cycle). \\
\hline M27 & Step Call (Count Conditional) & ```
IF Vn%=<Count> THEN
 GOSUB <Address>
ENDIF
Vn%=Vn%+1 (Vn% value is initialized out of cycle).
``` \\
\hline M28 & Step Return (Count Conditional) & ```
IF Vn%=<Count> THEN 
``` \\
\hline M29 & Robot Interrupt (DI signal) & MOVE L, P1, S \(=\ldots, \mathrm{A}=\ldots, \mathrm{H}=\ldots\) UNTIL <I Signal>=1 \\
\hline M32 & Output signal SET & D0n=1 \\
\hline M33 & Spot welding condition & SPOTCND \\
\hline M34 & Output signal RESET & DOn=0 \\
\hline M41 & Robot Stop (Uncond.) & STOP \\
\hline M42 & Robot Stop (Conditional) & \[
\begin{aligned}
& \text { IF DIn=1 THEN } \\
& \text { STOP } \\
& \text { ENDIF }
\end{aligned}
\] \\
\hline M43 & Line number designated output within MB signal group & G0<Group Number>=<8bit Binary> \\
\hline M44 & binary coded output within MB signal group. & GO<Group Number>=<Data> \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{M I T Function Code} & Example of corresponding HR - BASIC syntax. \\
\hline M51 & Shift Requirements & SREQ \\
\hline M52 & Onl ine Shift & SONL \\
\hline M53 & Onl ine Coordinate Conversion & TONL1 \\
\hline M54 & Onl ine Coordinate Conversion & TONL2 \\
\hline M56 & Timer Cnditional Shift Function. & SREQT (SREQT) \\
\hline M58 & XYZ Shift & SXYZ \\
\hline M59 & Search Function & SEA \\
\hline M62 & Function setting Step Jump (Uncond.) & GOTO <Address> \\
\hline M63 & Function setting Step Jump (I conditional) & IF DIn=1 THEN <Address> \\
\hline M64 & Function setting Step Jump (Count Conditional) & \begin{tabular}{l}
IF Vn\%=<Count> THEN <Address> \\
\(\mathrm{Vn} \%=\mathrm{Vn} \%+1\) (Vn\% value is initialized out of cycle).
\end{tabular} \\
\hline M68 & Shift Amount Substitution & Rn=<Pose Constant> \(\mathrm{n}=1 \sim 8\) \\
\hline M69 & Shift Amount Addition & Rn. \(\mathrm{X}=\) Rn. \(\mathrm{X}+<\) Addition value>.... n is \(1 \sim 8\) for each element. \\
\hline M70 & Count Register Initial Value Setting & LETN \\
\hline M80 & Program Call (Uncond.) & CALL <Program Number> (At the end of called program END) \\
\hline M81 & Program Call (DI Cond.) & ```
IF DIn=1 THEN
 CALL <Program Number> (At the end of called program
 END)
ENDIF
``` \\
\hline M82 & Prograsm Call (Count Conditional) & \(\left.\begin{array}{l}\text { IF Vn\%=<Count> THEN } \\
\text { CALL <Program Number> }\end{array} \quad \begin{array}{r}\text { (At the end of called } \\
\text { program, END) }\end{array}\right]\)\begin{tabular}{l} 
ENDIF \\
Vn\%=Vn\%+1 (Vn\% value is initialized out of cycle).
\end{tabular} \\
\hline M83 & Program Jump (Uncond.) & JMPP <Program Number> \\
\hline M84 & Program Jump (DI Cond.) & ```
IF DIn=1 THEN
    JMPP <Program Number>
ENDIF
``` \\
\hline M85 & Program Jump (Count Conditional) & ```
IF Vn%=0 THEN
 JMPP <Program Number>
ENDIF
Vn%=Vn%+1 (Vn% value is initialized out of cycle).
``` \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{M I T Function Code} & Example of corresponding HR - BASIC syntax. \\
\hline M86 & Function Jump (Count Conditional) & ```
Vp%=Vn%/<Division Count> or Vp%=Vn% MOD <Division
Count>
value is initialized out of cycle).
ON Vp%+1 GOTO <Address1><Address2><Address3>...
``` \\
\hline M87 & Function Jump (I Conditional) & \begin{tabular}{l}
\(\mathrm{Vn} \%=\operatorname{DIn} 2 * 2 \wedge 2+\mathrm{DIn} 1 * 2+\) DIn0 \\
ON Vn \(\%+1\) GOTO <Address1><Address2><Address3>. .
\end{tabular} \\
\hline M88 & Function Jump Exit & Not required \\
\hline M92 & END & END \\
\hline M94 & Call Insert sheet program & TIERST R=1, \(\mathrm{P}=4, \mathrm{PR}=2, \mathrm{TP}=800\) \\
\hline M95 & Palletizing picking up shift & PALPU P=1, SL=4, SH=1000 \\
\hline M96 & Palletizing shift & PAL P=1, PR=1, W=500, L=300, \(\mathrm{H}=250.5\) \\
\hline M97 & Palletizing end & PALEND P=1, ES=81 \\
\hline M98 & Palletizing reset & PALRST P=1,CS=1,RS=5 \\
\hline M99 & Comment Function & 'SPOT WELD or REM SPOT WELD \\
\hline M101 & String Output (RS-232C) & PRINT \#1," <String>" \\
\hline M102 & Other Program Call (Uncond.) & CALLPR \\
\hline M103 & Other Program Call (I Cond.) & Use IF instruction \\
\hline M104 & Other Program Call (Count Cond.) & Use IF instruction, and variable value increment \\
\hline M105 & Output Signal(0N/OFF) & DOn=1 or DOn=0 \\
\hline M113 & Shift Coordinate System Selection & SELCRD \\
\hline & & \\
\hline I1~24 & Signal Wait & WAIT DIn=1 \\
\hline I25 & I Signal Wait (Input Signal Setting) & WAIT DIn=1 \\
\hline I26 & \[
\begin{aligned}
& \text { I Signal Wait (Sub-Logic } \\
& \text { Signal) } \\
& \hline
\end{aligned}
\] & WAIT DIn=0 \\
\hline I52 & \begin{tabular}{l}
Time Conditional I \\
Signal Wait
\end{tabular} & WAIT DIn=1,<Wait Time>,<shelterAddress> \\
\hline I53 & Time Conditional IB Signal (AND) & WAIT (GIn AND <Binary Condition>)=<Binary Condition>, <Wait Time>, <shelterAddress> \\
\hline I54 & Time Conditional IB Signal (OR) & WAIT GIn AND <Binary Condition>, <Wait Time>, <shelterAddress> \\
\hline I55 & Time Conditional IB Signal & WAIT GIn=<Binary Condition>, <Wait Time>, <shelterAddress> \\
\hline T & Delay Time Setting & DELAY <Delay Time> \\
\hline
\end{tabular}

\section*{Chapter 12 Signal Connection}

\section*{INDEX}
12.1 EXTERNAL INPUT SIGNAL (BD430/BD431) 12-2
12.2 EXTERNAL OUTPUT SIGNAL (BD430/BD431) 12-7
12.3 BD481 CIRCUIT 12-17

\section*{CHAPTER 12 SIGNAL CONNECTION}

\subsection*{12.1 EXTERNAL INPUT SIGNAL (BD430/BD431)}

\subsection*{12.1.1 INPUT CIRCUIT}
- Connector Specification

Board-side : 3M MDR 10240-52A2JL

Plug-side : 3M MDR 10140-3000VE (HOOD; 10340-55F0-008)

- Connection Specification

Input port device : AC input type photocoupler
Input impedance \(=3 \mathrm{k} \Omega\)
Common (+) input voltage \(=24 \mathrm{VDC}\)
Common (-) input voltage \(=\) OVDC
- Connection Diagram

Common (+) or (-) voltage

Note.
(1) Use external power source.

\subsection*{12.1.2 CNIN2 Input Signal}
\begin{tabular}{|c|c|c|}
\hline Pin No. & Symbol & Description (for expanded board / for base board) \\
\hline 1 & DI01 & general-purpose input 1 \\
\hline 2 & DI02 & general-purpose input 2 \\
\hline 3 & DI03 & general-purpose input 3 \\
\hline 4 & DI04 & general-purpose input 4 \\
\hline 5 & DI05 & general-purpose input 5 \\
\hline 6 & DI06 & general-purpose input 6 \\
\hline 7 & DI07 & general-purpose input 7 \\
\hline 8 & DI08 & general-purpose input 8 \\
\hline 9 & C0MIN5 & \multirow[b]{2}{*}{common voltage input (user's power) : +24 V or 0V for DI01~DI08} \\
\hline 10 & COMIN5 & \\
\hline 11 & DI09 & general-purpose input 9 \\
\hline 12 & DI10 & general-purpose input 10 \\
\hline 13 & DI11 & general-purpose input 11 \\
\hline 14 & DI12 & general-purpose input 12 \\
\hline 15 & DI13 & general-purpose input 13 \\
\hline 16 & DI14 & general-purpose input 14 \\
\hline 17 & DI15 & general-purpose input 15 \\
\hline 18 & DI16 & general-purpose input 16 \\
\hline 19 & COMIN6 & \multirow[t]{2}{*}{common voltage input (user's power) : +24 V or 0V for DI09~DI16} \\
\hline 20 & C0MIN6 & \\
\hline 21 & DI17 & general-purpose input 17 \\
\hline 22 & DI18 & general-purpose input 18 \\
\hline 23 & DI19 & general-purpose input 19 \\
\hline 24 & DI20 & general-purpose input 20 \\
\hline 25 & DI21 & general-purpose input 21 \\
\hline 26 & DI22/WI & general-purpose input 22 (welding complete signal input) \\
\hline 27 & DI23/EX_START & general-purpose input 23(external start signal input) \\
\hline 28 & DI24/EX_STOP & general-purpose input 24(external stop signal input) \\
\hline 29 & COMIN7 & \multirow[t]{2}{*}{common voltage input (user's power) : +24 V or 0V for DI17~DI24} \\
\hline 30 & COMIN7 & \\
\hline 31 & DI25/PI1 & general-purpose input 25(external program select signal 1) \\
\hline 32 & DI26/PI2 & general-purpose input 26(external program select signal 2) \\
\hline 33 & DI27/PI3 & general-purpose input 27(external program select signal 3) \\
\hline 34 & DI28/PI4 & general-purpose input 28(external program select signal 4) \\
\hline 35 & DI29/PI5 & general-purpose input 29(external program select signal 5) \\
\hline 36 & DI30/PI6 & general-purpose input 30(external program select signal 6) \\
\hline 37 & DI31/PI7 & general-purpose input 31(external program select signal 7) \\
\hline 38 & DI32/PI8 & general-purpose input 32(external program select signal 8) \\
\hline 39 & C0MIN8 & \multirow[t]{2}{*}{common voltage input (user's power) : +24 V or 0V for DI25~DI32} \\
\hline 40 & COMIN8 & \\
\hline
\end{tabular}
1) General DI Signal

DI1 ~ DI18 signal connect as followings.

2) External start, External stop

It connects external Start/Stop signal, External Motors OFF for controlling the operation in external unit.

But, set up External stop as 0 of "PF2(system), 2: Control parameter, 1: Set up of In/Out signal, 6:Array of input signal" in case that you don't use external stop.
3) Connection of Program selection Signal, Discrete/Binary Signal

It is selects the external program selection by this signal at playback. It is selected to [Enable] "System[PF5] \(\rightarrow\) 1. User Define \(\rightarrow\) 8. External Program Select. There are Discrete/Binary input in program selection signal. You can select one of 8 signal for Discrete input, and one of 225 signals for binary input.

Connect program selection signal as followings.

Connect Discrete/Binary input signal as followings.

※ It is a binary input in case that this signal is open.
4) Program Strobe Signal

It decides to confirm program selection signal.
It acquire the signal in a stable timing between the input signals to decide the timing being read for the program selection for external.
(1) Binary program selection in case that program strobe signal is not used.

\subsection*{12.2 External Output Signal (BD430, BD431)}

\subsection*{12.2.1 Output Circuit}

All output circuit are as followings.
- Connector Specification

Board-side : 3M MDR 10250-52A2JL

Plug-side : 3M MDR 10150-3000VE (HOOD; 10350-52F0-008)

- Connection Specification
* BD430

Output port device : PNP transistor open collector
Output rating \(=125 \mathrm{~mA}(\) Continuous load current), 24 VDC
Common (-) input voltage = OVDC
* BD431

Output port device : MOS relay
Output rating \(=125 \mathrm{~mA}(\) Cont inuous load current), 24VDC
Common \((+)\) input voltage \(=24 \mathrm{VDC}\)
Common (-) input voltage \(=\) OVDC
- Connection Diagram

BD431 Board : Common (+) or (-) voltage

BD430 Board : Common (-) voltage only

Note
(1) Use external power source for power source.
(2) All output signals are from transistor open collector output. So, use them within the rating. (Otherwise a circuit may be damaged.)
(3) Set noise absorbing diode to a load.

\subsection*{12.2.3 CNOUT2 Output signal}
\begin{tabular}{|c|c|c|}
\hline Pin & Singal & Discription \\
\hline 1 & D001 & General output signal 1 \\
\hline 2 & D002 & General output signal 2 \\
\hline 3 & D003 & General output signal 3 \\
\hline 4 & D004 & General output signal 4 \\
\hline 5 & D005 & General output signal 5 \\
\hline 6 & D006 & General output signal 6 \\
\hline 7 & D007 & General output signal 7 \\
\hline 8 & D008 & General output signal 8 \\
\hline 9 & COMOUT5 & \multirow[t]{2}{*}{common voltage input (user's power) : +24 V or 0V for D001~D008} \\
\hline 10 & C0MOUT5 & \\
\hline 11 & D009 & General output signal 9 \\
\hline & D010 & General output signal 10 \\
\hline 13 & D011 & General output signal 11 \\
\hline 14 & D012 & General output signal 12 \\
\hline 15 & D013 & General output signal 13 \\
\hline 16 & D014 & General output signal 14 \\
\hline & D015 & General output signal 15 \\
\hline 18 & D016 & General output signal 신호 16 \\
\hline 19 & COMOUT6 & \multirow[t]{2}{*}{common voltage input (user's power) : +24 V or 0V for D009~D016} \\
\hline 20 & COMOUT6 & \\
\hline 21 & & \\
\hline 22 & & \\
\hline 23 & & \\
\hline 24 & & \\
\hline 25 & & \\
\hline 26 & & \\
\hline 27 & & \\
\hline 28 & & \\
\hline 29 & & \\
\hline 30 & & \\
\hline 31 & D017 & General output signal 17 \\
\hline 32 & D018 & General output signal 18 \\
\hline 33 & D019 & General output signal 19 \\
\hline 34 & D020 & General output signal 20 \\
\hline 35 & D021 & General output signal 21 \\
\hline 36 & D022 & General output signal 22 \\
\hline 37 & D023/GUN1 & General output signal 23 / GUN Signal 1 \\
\hline 38 & D024/GUN2 & General output signal 24 / GUN Signal 2 \\
\hline 39 & COMOUT7 & \multirow[t]{2}{*}{common voltage input (user 's power) : +24 V or 0V for D017~D024} \\
\hline 40 & COMOUT7 & \\
\hline 41 & D025/MX & General output signal 25 / MX Signal \\
\hline & D026/PROGRAM END & General output signal 26 / Program end signal \\
\hline 43 & D027/TOTAL ERROR & General output signal 27 / System fault \\
\hline 44 & D028/INTERLOCK ERROR & General output signal 28 / Input Signal Wait Time Over \\
\hline 45 & D029/RUNNING & General output signal 29 / Robot running \\
\hline 46 & D030/AUTO MODE & General output signal 30 / Auto Mode \\
\hline & D031/ROBOT READY OK & General output signal 31 / When Robot is ready to Start \\
\hline 48 & D032/HOME & General output signal 32 / When Robot is on the Home Position \\
\hline 49 & COMOUT8 & \multirow[t]{2}{*}{common voltage input (user's power) : +24V or 0V for D025~D032} \\
\hline 50 & COMOUT8 & \\
\hline
\end{tabular}
1) General DO Signal

Connect DO 1~ DO 8, DO \(11 \sim\) DO 18 output signal as followings.

\section*{2) GUN Signal}

It is output this signal after arriving to the recorded point (destination point)
if it is GUN output function on a destination step at playback.

3) MX Signal

It is output (ON/OFF) according to the condition of destination step before starting from destination step.

4) PROGRAM END

It is output when program is ended in playback.
Refer to "SYSTEM [PF5] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\) 6. END Relay Output
Time for the setting of end signal output time.

5) TOTAL ERROR SIGNAL

It is output in case of occurring a serious system error. It resets the output status by the motors ON after curing error or RESET SET key.

6) EMERGENCY STOP

It is output when emergency stop is pressed.

7) STEP SET ALARM SIGNAL

It is output this signal when a step which is kept away from the current step by two or more steps, is specified in the one step or teach mode. It is output for 200 msec .

8) INTERLOCK ERROR SIGNAL

It is output this signal in case that inter lock signal is not input despite of exceeding the time set in "SYSTEM [PF5] \(\rightarrow\) 2. CONTROL PARAMETER \(\rightarrow\)
7. Interlock Error Time waiting interlock in playback.

If interlock signal is normally input after this signal is output, the next step is executed at that state.

9) PROGRAM ACK. SIGNAL

It is output the confirming signal when program is selected by external program selection. This signal is output for 200 msec

10) ROBOT RUNNING

It is out the confirming signal that robot is running.

11) IN LOW MODE SIGNAL

It is output when low speed command is input or low speed mode is set.

12) ROBOT READY SIGNAL

It is output when automatic operation is enable.
Refer to "SYSTEM [PF5] \(\rightarrow\) 2.CONTROL PARANETER \(\rightarrow\) 3.Robot Ready for the condition of robot ready.

13) ROBOT HOME SIGNAL

It is output when the robot locates on the position set on "SYSTEM [PF5] \(\rightarrow\)
2. CONTROL PARAMETER 4. Home Position Registration.

\subsection*{12.3 BD481 CIRCUIT DRAWING}

\section*{BD481 CNWFComedar}

Specification of Connector
\begin{tabular}{|c|c|c|c|}
\hline ITEM & MAKER & TYPE & SPECIFICATION \\
\hline Receptacle & 3 M & \(10220-52 \mathrm{~A} 2 \mathrm{JL}\) & MDR system, 20-Pin \\
\hline Header & 3 M & \(10120-3000 \mathrm{VE}\) & MDR system, 20-Pin \\
\hline Hood & 3 M & \(10320-52 \mathrm{~F} 0-008\) & MDR system, 20-Pin \\
\hline
\end{tabular}

BD481 TBAIO Terminal Block

\begin{tabular}{|c|c|c|c|}
\hline ITEM & MAKER & TYPE & SPECIFICATION \\
\hline \begin{tabular}{l}
TERMINAL BLOCK \\
(Pling Part)
\end{tabular} & PHOENIX & MCV1.5/10-ST-3.81 & 10-pin, 3.81mm pitch, Plug Part \\
\hline TERMINAL BLOCK (Honcing) & PHOENIX & MCV1.5/10-G-3.81 & \(10-\mathrm{pin}, 3.81 \mathrm{~mm}\) pitch, Housing \\
\hline & \({ }_{1}\) CNSTK & \begin{tabular}{l}
onnector
\(\qquad\) 2: WS_B \(\qquad\) \\
1 : WS_A
\end{tabular} & EXTERNAL WELDING SYSTEM \\
\hline
\end{tabular}
\begin{tabular}{|c|r|c|c|}
\hline ITEM & MAKER & TYPE & SPECIFICATION \\
\hline TERMINA & P & MKDS \(1 / 2-3.81\) & \(2-\) pin, 3.81mm pitch, \\
L BLOCK & H & & Terminal Block \\
\hline
\end{tabular}

BD481 CNPOW Connector

\begin{tabular}{|c|c|c|c|}
\hline ITEM & MAKER & TYPE & SPECIFICATION \\
\hline CONNECTOR(Header) & AMP & \(770966-1\) & MATE-N-LOCK Header, 2-Pin \\
\hline CONNECTOR(Plug) & AMP & \(172165-1\) & MATE-N-LOCK Plug, 2-Pin \\
\hline CONNECTOR(Contact) & AMP & \(770988-1\) & MATE-N-LOCK Contact, AWG22 \\
\hline
\end{tabular}
Free Manuals Download Websitehttp://myh66.comhttp://usermanuals.ushttp://www.somanuals.com
http://www.4manuals.cc
http://www.manual-lib.com
http://www.404manual.com
http://www.luxmanual.com
http://aubethermostatmanual.com
Golf course search by state
http://golfingnear.com
Email search by domain
http://emailbydomain.com
Auto manuals search
http://auto.somanuals.com
TV manuals search
http://tv.somanuals.com```

